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Abstract: The recent scientific and technical advances in Internet of Things (IoT) based pervasive
sensing and computing have created opportunities for the continuous monitoring of human activities
for different purposes. The topic of human activity recognition (HAR) and motion analysis, due
to its potentiality in human-machine interaction (HMI), medical care, sports analysis, physical
rehabilitation, assisted daily living (ADL), children and elderly care, has recently gained increasing
attention. The emergence of some novel sensing devices featuring miniature size, a light weight, and
wireless data transmission, the availability of wireless communication infrastructure, the progress of
machine learning and deep learning algorithms, and the widespread IoT applications has promised
new opportunities for a significant progress in this particular field. Motivated by a great demand for
HAR-related applications and the lack of a timely report of the recent contributions to knowledge in
this area, this investigation aims to provide a comprehensive survey and in-depth analysis of the recent
advances in the diverse techniques and methods of human activity recognition and motion analysis.
The focus of this investigation falls on the fundamental theories, the innovative applications with
their underlying sensing techniques, data fusion and processing, and human activity classification
methods. Based on the state-of-the-art, the technical challenges are identified, and future perspectives
on the future rich, sensing, intelligent IoT world are given in order to provide a reference for the
research and practices in the related fields.

Keywords: Internet of Things (IoT); human activity recognition (HAR); motion analysis; wearable
sensors; machine learning

1. Introduction

In the future information systems featuring rich sensing, wireless inter-connection, and data
analytics, which are usually denoted as Internet of Things (IoT) and cyber-physical systems (CPS) [1,2],
human motions and activities can be recognized to perform intelligent actions and recommendations.
The monitoring, recognition, and in-depth analysis of human gesture, posture, gait, motion, and other
daily activities has received growing attention in a number of application domains, and significant
progress has been made, attributing to the latest technology development and application demands [3].
As a result, new sensing techniques and mathematical methods are dedicated to the numerical
analysis of the posture and activities of human body parts, and plenty of related studies are found in
the literature.
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The significant progress in human activity recognition (HAR) and motion analysis may be
driven by the following powers: (1) The new powerful information systems require more efficient
human-machine interactions for potential intelligence; (2) the development of integrated circuits (ICs)
and circuits fabrication techniques has prompted the emergence of low-power, low-cost, miniature-sized,
and flexible wearable sensing devices; (3) there have been recent advances in data analytics techniques,
including filtering and machine learning techniques in dealing with data processing and classification;
and (4) some new emerging applications fields, including wearable sensor-based medical care, sports
analysis, physical rehabilitation, assisted daily living (ADL), etc., have also provided new opportunities
for the techniques to revolutionize the traditional techniques in these fields. As a result, much research
effort has been devoted to this area, and a number of technical solutions have been proposed.

There have been plenty of innovative studies that introduce novel sensing techniques to human
activity recognition and motion analysis. Human-machine interaction (HMI) may be a critical area,
where human gesture, posture, or motion can be recognized for the efficient interaction between
machines covering a wide field of applications, including human-—object interaction, virtual reality,
immersive entertainment, etc. [4-6]. Human activity recognition and motion analysis has also been an
effective way for sports analysis evaluation, while peer investigations are identified for golf swing
analysis [7], swimming velocity estimation [8], and sports training [9]. Medical care has become a new
research interest in the recent years, where precise and quantitative representation of human motion
can help physicians in diagnosis, treatment planning, and progress evaluation; typical applications
include gait analysis for stoke rehabilitation therapy [10], clinical finger movement analysis [11],
Parkinson’s disease treatment [12], etc. In addition, many other innovative applications are also found
in assisted daily living, elderly and children care, etc. It is easy to see how through the applications,
the innovative usage of the mentioned techniques has revolutionized the traditional approaches and
resulted in convenience, efficiency, and intelligence that have never been seen before.

Many different techniques are employed to obtain the raw sensor data for monitoring human
activities. The most commonly used techniques are the smartphone built-in inertial measurement units
(IMUs) and optical cameras [13,14]. Since smartphones have almost become a must-have assistant
for people’s everyday life, a lot of human body and human activity related studies are carried out by
taking advantage of smartphones. An optical camera, as a widely used sensing device, is a mainstream
solution for human activity recognition. A depth camera, due to the one added dimension of depth
information, has its unique strength compared to normal optical cameras [15]. Then, electromagnetic
waves, such as frequency modulated continuous wave (FMCW) radar [16], impulse radio ultra-wide
band (IR-UWB) radar [17], WiFi [18], and capacitive sensor array [19], featuring non-contact and
non-line-of-sight (NLOS) traits, have also been introduced to human activity recognition. For the sensing
techniques, accuracy, safety, privacy protection, and convenience are key factors for their applications.
The low-cost, lightweight, and miniature-sized wearable IMU sensor devices have been prevalent
techniques employed by peer investigations for human activity recognition, and the integration of two
or more techniques may result in a better performance [20]. In addition, discrete sensing devices may
be combined to constitute a wireless body area network (WBAN) for the establishment of wearable
computing in many high-performance systems [21].

In addition to sensing techniques and networking techniques, data processing techniques including
filtering, segmentation, feature extraction and classification are also indispensable enablers. For the
pre-processing of sensing data, moving average filter (MAF), Kalman filter (KF) and complementary
filter (CF) are the common approaches [22-24]. For classification, different machine learning algorithms
have been used to create recognition models such as decision tree (DT), Bayesian network (BN),
principle component analysis (PCA), support vector machine (SVM), artificial neural networks (ANNs),
logistic regression, hidden Markov model (HMM), K-nearest neighbors (KNN) and deep neural
networks (DNNs) [25-28]. Deep learning methods, such as the convolutional neural network (CNN)
and recurrent neural network (RNN), due to their performance and wide acceptance in data analysis,
have also recently gained interest in being used as tools [29-31]. The data processing techniques
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play an important role in guaranteeing the efficiency and accuracy of the recognition and analysis of
human activities.

Admittedly, due to the potential in the different application fields, there has been a great demand
for accurate human activity recognition techniques that can lead to the convenience, efficiency, and
intelligence of information systems, new opportunities of medical treatment, more convenient daily
living assistance, etc. However, there lacks a timely report on the recent contributions of recent technical
advances with an in-depth analysis of the underlying technical challenges and future perspectives.
Motivated by both the great demand for a more efficient interaction between human and information
systems and the lack of investigations about the new contributions to knowledge in the field, this paper
aims to provide a comprehensive survey and in-depth analysis of the recent advances in the diverse
techniques and methods for human activity recognition and motion analysis.

The rest of this paper is organized as follows: Section 2 summarizes the innovative application
regarding human activity recognition and motion analysis; Section 3 illustrates the fundamentals,
including the common methodology, the modeling of human parts, and identifiable human activities.
Sections 4 and 5 present the novel sensing techniques and mathematical methods, respectively.
Then, Section 6 gives the underlying technical challenges and future perspectives, followed by Section 7,
which concludes the work.

2. Latest Progress in HAR-Related Applications

The past few decades have witnessed unprecedented prosperity of electronics techniques and
information systems, which have resulted in a revolutionary development in almost all aspects of
technological domains, including aeronautics and astronautics, automotive industry, manufacturing
and logistics, consumer electronics and entertainment, etc. Human activity recognition and motion
analysis, due to its potential in wide areas of applications, has attracted much research interest and
made remarkable progress in recent years. This section gives an overview of the latest technical
progress and a summary of the application domains of human activity recognition and motion analysis.

2.1. Owverview of the Latest Technical Progress

An overview of the latest technical progress of human activity recognition is given in Figure 1.
The technical progresses of HAR are found to focus on the following aspects: new sensing device and
methods, innovative mathematical methods, novel networking and computing paradigms, emerging
consumer electronics, and convergence with different subject areas.
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Figure 1. Overview of the latest technical progress of human activity recognition (HAR) investigations.

1.  New sensing devices and methods: The acquisition of raw data is the first step for accurate and
effective activity recognition. The cost reduction of the electronic devices has accelerated the
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pervasive sensing and computing systems, such as location and velocity tracking [32]. On account
of the sensing techniques, many new techniques that were previously not possible for their cost,
size, and technical readiness are now introduced for human activity related studies in addition to
the traditional video cameras (including depth cameras), FMCW radar, CW-doppler radar, WiFj,
ultrasound, radio frequency identification (RFID), and wearable IMU and electromyography
(EMG) sensors, etc. [15-18]. Among the above candidates, FMCW radar, CW-doppler radar, WiFi,
ultrasound, and RFID are both NLOS and contactless. Wearable IMU is NLOS and body-worn,
for which the applications are not limited to specific areas. The micro-electro-mechanical system
(MEMS) IMUs, due to their advantages in being low-power, low-cost, miniature-sized, as well as
able to output rich sensing information, have become a dominant technical approach for HAR
studies [33,34].

2. Innovative of mathematical methods: To take advantage of the sensor data, an appropriate
modeling of human body parts activities, the pre-processing of raw data, feature extraction,
classification, and application-oriented analysis are pivotal enablers for the success of HAR-related
functions. With respect to pre-processing, a number of lightweight, time-domain filtering
algorithms, which are appropriate for resource-limited computing, including KF, extended
Kalman filter (EKF), unscented Kalman filter (UKF), and Mahony complementary filter, are
common alternatives that deal with wearable electronics [35,36]. In terms of feature extraction, the
time-domain and frequency-domain features, including mean, deviation, zero crossing rate, and
statistical characteristics of amplitude and frequency, are the most fundamental parameters [37].
Fast Fourier transform (FFT), as a classical algorithm, is the main solution for the frequency-domain
feature analysis. With respect to classification, much effort in classical machine learning, including
DT, BN, PCA, SVM, KNN, and ANN, and deep learning methods, including CNN and RNN, has
been devoted to this particular area in recent years [25,38].

3. Novel networking and computing paradigms: The sensing and computing platforms are crucial
factors for effective human activity recognition. For visual-based solutions, high-performance
graphics processing units (GPUs) have paved the way for the intensive computations in HAR [39].
For wearable sensing solutions, many new pervasive and mobile networking and computing
techniques for battery-powered electronics have been investigated. Various wireless networking
and communication protocols, including Bluetooth, Bluetooth low energy (BLE), Zigbee, and
WiFi were introduced for building a body area network (BAN) for HAR [40]. New computation
paradigms, such as mobile computing and wearable computing, were proposed to handle
the location-free and resource-limited computing scenarios, and sometimes the computation
is conducted on an 8-bit or 16-bit micro-controller unit (MCU) [41]. The novel networking
and computing paradigms customized for HAR are more efficient and flexible for the related
investigation and practices.

4. Emerging consumer electronics for HAR: Another evidence of the progress in HAR is the
usage of emerging HAR consumer electronics, including Kinect, Fibaro, the Mi band, and Fitbit.
The Kinect-based somatosensory game is a typical use case of recognizing human motion as an
input for human-computer interactions [42]. Fibaro detects human motion and changes in location
for smart home applications [43]. Some wearable consumer electronics, such as the Mi band and
Fitbit, can provide users with health and motion parameters, including heartbeats, intensity of
exercises, walking or running steps, sleeping quality evaluation, etc. [44,45]. In addition, there
are electronic devices such as MAX25205 (Maxim, San Jose, USA) used for gesture sensing in
automotive applications using an IR-based sensor, where hand swipe gestures, finger, and hand
rotation can be recognized [46]. These devices have stepped into people’s daily lives to assist
people to better understand their health and physical activities, or to perform automatic control
and intelligent recommendation via HAR.

5. Convergence with different subject areas: The HAR techniques were also found to be converging
with many other subject areas and thus continually allowing for new applications to be created.
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Typically, HAR is merging with medical care, and this has resulted in some medical treatment
and physical rehabilitation methods of diseases such as stroke and Parkinson’s disease [10,12].
HAR has also been introduced in sports for sports analysis for the purpose of enhancing
athletes’ performance [7,8]. HAR-assisted daily living is another example as a field of application,
where power consumption, home appliance control, and intelligent recommendations can be
implemented to customize the living environment to people’s preferences [2,47].

2.2. Widespread Application Domains

Driven by the subtantial technical progress in the related fields, HAR has been extended to a
wide spectrum of application domains. Since human involvement is the most critical part for many
information systems, the introduction of HAR can potentially result in greater efficiency and intelligence
of the interaction between human and information systems, which also creates new opportunities for
the human body or human activity related studies and applications. The fields of applications/domains
are summrized as follows:

1.  Human-machine interaction (HMI)—HAR is used to recognize the gesture, posture, or motion of
human body parts and use the results as inputs for information systems, and to perform efficient
interactions or provide people intelligent recommendations [48,49].

2. Medical care/physical rehabilitation—HAR is used to record the motion trajectory of human
body parts, conduct numerical analysis, and the results can be used as reference for medical
treatment [12,50].

3. Sports analysis—HAR is used to record information such as the acceleration, angular velocity,
velocity, etc., for numerical analysis of human body parts motions in order to evaluate the
performance of sports and advise improvement strategies [7,51].

4.  Assisted daily living—HAR is used to recognize people’s gesture and motions for home
appliance control, or analyze people’s activities and habits for living environment customizations
and optimization.

5. Children and elderly care—HAR is used to analyze children’s or elderly people’s activities,
such as fall detection and disease recognition and to perform assistance or report warning to
caregivers [52,53].

6. Human intent analysis—HAR is used to analyze people’s motions and activities in order to predict
people’s intents in a passive way for particular applications, such as intelligent recommendation,
crime detection in public areas, etc. [54].

Although many new techniques and methods have been introduced in HAR for different
applications and remarkable progress has been made, there is still large room for improving the
performance of the methods and systems. More convenient, lightweight, powerful computation
sensing devices and systems, more accurate classification algorithms, and some application-oriented
studies will still continually gain attention and play a more important role in various information
systems and in people’s daily lives.

3. Fundamentals

In order to give a comprehensive understanding of the HAR techniques and methods, this section
presents the fundamentals of HAR regarding the sensing devices and data processing techniques. Since
there are many different sensing devices, pre-processing, and classification techniques involved, the
abstract, common methodology covering the different techniques and methods is illustrated, and the
correspondence between the identifiable human activities with the innovative applications is reported
as well.

3.1. Common Methodology

In view of the sensing and processing techniques for HAR, the methods can be described with a
common methodology as shown in Figure 2, which may be applicable for both optical tracking and
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wearable sensing techniques [55,56]. The common methodology consists of four steps: data acquisition
and pre-processing, segmentation, feature extraction, and classification [57].

Feature
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Figure 2. Common methodology for HAR.

1.  Data acquisition and pre-processing—Motion sensors such as 3D cameras, IMU, IR-radar, CW radar,
and ultrasound arrays, either mounted onto a fixed location or body-worn, are used to obtain
raw data including human activity information, such as position, acceleration, velocity, angular
velocity, and angles. In addition, various noise cancellation techniques, either time-domain or
frequency-domain ones, need to be applied to optimize the quality of the signal for further processing.

2. Segmentation—Human motion is normally distributed in particular time spans, either occasionally
or periodically. The signals need to be split into window segments for activity analysis, and the
sliding window technique is usually used to handle the activities between segments.

3. Feature extraction—The features of activities including joint angle, acceleration, velocity and
angular velocity, relative angle and position, etc., can be directly obtained for further analysis.
There may also be indirect features that can be used for the analysis of particular activities.

4.  Classification/model application—The extracted features can be used by various machine
learning and deep learning algorithms for the classification and recognition of human activities.
Some explicit models, such as skeleton segment kinematic models, can be applied directly
for decision-making.

3.2. Modeling of Human Body Parts for HAR

Since the human body is a systematic whole, a primary step in using HAR is to build a mechanical
and posture kinematic model for the motion of human body parts. Human skeleton joints are the key
features for optical tracking based HAR methods, where markers are sometimes applied for human
gesture and posture recognition as well as motion tracking [53,58]. Figure 3 shows a skeleton-based
multi-section model for the hand and human body. For wearable IMU-based HAR, the multi-segment
model of human skeleton is also used as a basis to build a kinematic model of body segments.
For example, the kinematic model of an elbow joint can be estabished with two segments connected
by two revolute joints, allowing two degrees of freedom (DoF), as shown in Figure 4 [59]; the DoF
kinematic model of the left leg, including three DoF angle joints, one DoF knee joint, and three DoF hip
joints, is presented in [60], and the kinematics of the ankle to the hip and trunk is discussed in [61].
With the multi-segment model and kinematic model, the posture and the motion of human body parts
and the whole body can be estimated with the angle and position data obtained with sensor devices.
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Figure 4. Kinematic model of elbow joint.
3.3. Identifiable Human Activities

Since human body parts are not rigid structures and are, instead, structures that deform and
move in different ways following complex kinematic patterns, human activity parameters that belong
to these parts are very hard to measure. Many new technical solutions are customized for human
activity measurment, and remarkable progress has been made. The identifiable human activities are
summarized in Table 1.

Table 1. Identifiable human activities and example applications.

Human Body Parts Activities Example Applications
Finger movement Rheumatoid arthritis treatment [11]
Hand Hand gesture Robot-assisted living [62]
Hand movement Handwriting recognition [63]
Forearm movement Home health care [64]
Upper limb Arm swing Golf swing analysis [7]

Elbow angle Stroke rehabilitation [59]
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Table 1. Cont.

Human Body Parts Activities Example Applications
Gait analysis Gait rehabilitation training [10]
Lower limb Knee angles in movement Risk assessment of knee injury [60]
Ankle movement Hip and trunk kinematics [61]
Stairs ascent/descent Human activity classification [65]
Spine Swimming Swimming motion evaluation [51]
Fall detection Elderly care [18]
Whole body Whole-body posture Bicycle riding analysis [66]
Whole-body movement Differentiating people [67]

As shown in Table 1, many human body parts and the human body as a whole can be used for
activity recognition for different purposes, including fingers, hand, arm, elbow, knee, ankle, and the
whole body. Of course, the identifiable human activities and the corresponding applications are not
limited to those listed in the table. Rapid technical progress has resulted in the continual addition of
new possibilities and the creation of new applications in this particular field.

4. Novel Sensing Techniques

The appropriate measurement techniques and quality sensor data are the fundamentals for
effective HAR and further applications. In this section, the sensing techniques for HAR are summarized
with taxonomy and compared with proposed indexes. The sensor network solutions for wireless data
collection and multi-sensor nodes for whole body monitoring are also discussed.

4.1. Taxonomy and Evaluation

According to the principles of sensor devices, the sensing techniques can be divided into six
categories: optical tracking, radio frequency techniques, acoustic techniques, inertial measurement,
force sensors, and EMG sensors. Each of the above categories may include a couple of different sensing
techniques that may exhibit different performances in dealing with HAR applications. The feasibility
of sensing techniques for HAR can be evaluated with five indicators: convenience of use, application
scenarios, richness of information, the quality of raw data, and cost. The discussion and analysis of
the sensing techniques are conducted with the abovementioned categories and evaluation indicators,
which are as shown in Figure 5.

Sensing techniques
‘ Optical tracking ‘ Evaluation indexes
‘ RF techniques ‘ e Conveniency of use
. . e Application scenarios
‘ sicoustic techniques ‘ e Richness of information IIIAR
‘ Inertial sensors ‘ e Accuracy/quality of data Applications
e Cost
‘ Force sensors ‘
‘ EMG sensors ‘

Figure 5. Taxonomy and evaluation indexes for HAR sensing techniques.
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4.2. Sensing Techniques with Example Applications

To give a comprehensive overview and in-depth discussion of the sensing techniques for HAR
and related studies, the sensing techniques of the five types and the corresponding typical applications
are summarized in Table 2.

Table 2. Sensing techniques with typical applications.

Type Sensing Techniques Typical Applications

Finger spelling recognition [68], detection of hand trajectories for

RGB camera industrial surveillance [69], gait measurement at home [70]

Optical
Hand gesture recognition [51], human behavior understanding [71],
RGB-D .
human body reshaping [72]
Depth sensor 3D dyr}avmlc gesture recognition [58], rt?a}l—tlme continuous action
recognition [73], full hand pose recognition [15]
1 Non-contact human gait identification [17], non-contact human
IR-UWB . i . -,
motion recognition [74], human respiration pattern recognition [75]
RF - . P
Continuous human activity classification [16,76],
FMCW radar human limb motion detection [77]
Commodity WiFi Contactless fall detect1qn [18], handwritting recognition [63,78],
gesture and user detection [79]
UHF 2 RFID Ambient assisted living [80], in-car activity recognition [81]
Acoustic Ultrasound L'ower hmk'> motion es'tlmatlon [82], }}a.nd gesture recognition [83],
finger motion perception and recognition [84]
3-axis accelerometer Discrimination of human activity [85], arm movement classification
Inertial for stroke rehabilitation [64]
Recognition of daily and sport activity [86], hip and trunk motion
estimation [61], assessment of leg squat [60], measurement of elbow
6- or 9-axis IMU angles for physical rehabilitation [59], reconstruction of angular
kinematics for smart home healthcare [87], fall detection and daily
activity recognition [88]
Piezoelectric, FSR 3, thin film Wearable gait recognition [89], human motion detection [90],
Force . . . ..
strain sensor, etc. real-time gait feedback and training [91]
EMG EMG electrodes Classification of finger, hand, wrist, and elbow gestures [92]; knee

movement estimation [93]; wrist-hand pose identification [94]

1 IR-UWB, 2 UHF, and 3 FSR are the abbreviations of impulse radio ultra-wide band, ultra-high frequency, and force
sensitive resistor, respectively.

1.  Optical tracking—Optical tracking with one or a few common cameras is the most traditional
way of human activity recognition. The temporal and spatial features of the human body and
the activities can be extracted with image processing algorithms. The classification that takes
advantage of the features can be sorted out with machine learning or deep learning techniques.
This method is competitive in accuracy and wide application domains, including entertainment,
industrial surveillances, public security, etc. With the progress in high-speed cameras and depth
sensors in recent years, more innovative investigations and applications are found in both
academic studies and practical applications. The strengths of optical tracking methods are high
accuracy, contactless monitoring, and rich activity information, while the weaknesses are the
fixed location of use and potential risk of privacy leak.

2. RF and acoustic techniques—The sensing technique working under the principle of radar
includes IR-UWB, FMCW radar, WiFi, and ultrasound. The motion of human body parts or the
whole body can be perceived using Doppler frequency shift (DFS), and some time-frequency
signatures can be obtained for further analysis. Machine learning and deep learning techniques
are widely used for classifications of human activities. Evidently, the strengths of this method
are contactless measurement, NLOS, and no risk of privacy leak. Specifically, the commodity
WiFi takes advantage of the existing communication infrastructure without added cost. Their
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weaknesses are the monotonousness and implicity of information provided by the sensors which
requires specialized processing.

3.  Inertia sensors—The inertial sensors, especially the MEMS IMUs, became a dominant technical
approach for human activity recognition and analysis. They provide 3-axis acceleration, 3-axis
angular velocity, and 3-axis magnetometer signals, which can be employed for the estimation of
attitude and motion of human body parts by mounting the devices on them. The strengths of
IMUs in HAR are their miniature size, low cost, low power, and rich information output, which
make them competitive for wearable applications that can be used without location constraints.
Their weakness is their contact measurement, which may be inconvenient to people for daily
activities recognition.

4. Force sensors and EMG sensors—Force sensors may include piezoelectric sensors, FSR, and some
thin film pressure sensors of different materials. They may provide pressure or multiple axis
forces of human gait, hand grasp, etc., for sports analysis, physical rehabilitation or bio-feedback.
EMG sensors work in a similar way as force sensors do and implement similar functions by
using the EMG signal. Since EMG provides the muscle activities, it may provide more useful
information for medical care, such as rehabilitation and amputation. The strengths of force sensors
and EMG sensors are their capability in obtaining useful information of body part local areas.
Their weakness is also the contact measurement, which may be inconvenient to people for daily
activities recognition.

5. Multiple sensor fusion—In addition to the above, there are also multiple sensor fusion based
techniques that combine more than one of the above alternatives. For instance, inertial and magnetic
sensors are combined for body segments motion observation [24]; optical sensor, IMU, and force
sensor are combined for pose estimation in human bicycle riding [66]; knee electro-goniometer,
foot-switches, and EMG are combined for gait phase and events recognition [95]; and FMCW
radar and wearable IMUs are combined for fall detection [96]. The purpose of the combination is
to compensate the limitations of one sensor technology by taking advantage of another so as to
pursue maximal performance. For example, IMU and UWB radar are usually combined with
real-time data fusion to overcome the limitations in continuous error accumulation of IMU, and
NLOS shadowing and random noise of UWB [23].

On account of the different sensing techniques, they may behave differently with respect to
the different evaluation indexes. In summary, for the convenience of use, the optical tracking and
radar techniques are non-contact, but they are normally installed on particular locations. The inertial
sensors can be wearable and provide rich useful information for human activity analysis, but contact
measurement is involved, which may introduce inconvenience for users’ daily activities. As a contact
measurement method, force sensors and EMG can reveal information of body part local areas, which is
competitive in medical care.

4.3. Body Area Sensor Networks

For the wearable sensing techniques, it is important to carry out the data collection without
interrupting people’s normal activities. Therefore, power cords data wires should be replaced
with miniature batteries and wireless communication nodes. The optional wireless communication
techniques which are commonly used include Bluetooth, WiFi, BLE, Zigbee, 4G/5G, NB-IoT, and LoRa,
etc. [97] Since 4G/5G, NB-IoT, and LoRa are commonly used for long range data transmission for
different purposes, Bluetooth, WiFi, BLE, and Zigbee are more likely to be chosen for short range
wearable communications. A comparison of the wireless techniques is given in Table 3.

Since wearable sensing devices are powered with batteries, the energy consumption, data rate, and
network topology are the key parameters to be considered when establishing the systems. Normally,
Bluetooth is used for the data collection of single sensor devices: For example, Bluetooth is employed
to transmit IMU data for sports analysis [7], force data of piezoelectric sensors for gait recognition [89],
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and IMU data for assessment of elbow spasticity [98]. Then, BLE and ZigBee are competitive in
building a BAN for the data collection of multiple nodes systems; ZigBee is used for multiple IMU data
collection in [66], while BLE-based wireless BAN (WBAN) was used for joint angle estimation in [99].

Table 3. Alternative wireless communication standards for HAR.

Standards Range  Maximum Data Rate  Carrier Frequency  Energy Consumption Network Topology
Bluetooth (Ver. 4.2) 10 m 2 Mbps 2.4 GHz Medium P2p
BLE 10 m 1 Mbps 2.4 GHz Low Star, mesh
ZigBee 50 m 250 Kbps 2.4 GHz Low Star, tree, mesh
WiFi (802.11 n) 10-50 m 450 Mbps 2.4 GHz High Star, tree, mesh, P2P

5. Mathematical Methods

Once the sensor data are obtained, how to make use of it is also a challenging task. As presented
in the common methodology given in Figure 2, the key steps include pre-processing, segmentation,
feature extraction, and classification/model application. In this section, we focus on the mathematical
methods for the two key steps: feature extraction and classification.

5.1. Features and Feature Extraction

The feature extraction methods can be categorized into four types according to their outputs:
heuristic, time-domain, time—frequency, or frequency-domain features [85,100], which are as shown in
Table 4. Heuristic features are those derived and characterized by an intuitive understanding of how
activities produce signal changes. Time-domain features are typically statistical measures obtained
from a windowed signal that are not directly related to specific aspects of individual movements or
postures. Time—frequency features, such as wavelet coefficients, are competitive for detecting the
transitions between human activities [65]. Then, frequency-domain features are usually the preferred
option for human activity recognition. Mathematical tools such as FFT, short-time Fourier transform
(STFT), and discrete cosine transform (DCT) are the commonly used methods.

Table 4. Types of features for HAR [60,71,80,95].

Types Examples of Features

Minimum, maximum, zero-crossing, threshold amplitude, inclination angles, signal

Heuristic magnitude area (SMA), etc.

Mean, variance, standard deviation (SD), skewness, kurtosis, root mean square
(RMS), median absolute square (MAS), interquartile range, minimum,
interquartile range, auto-correlation, cross correlation, motion length,

motion cycle duration, kinematic asymmetry, etc.

Time domain

Frequency domain Spectral distribution, coefficients sum, spectral entropy, etc.

Time—frequency Approximation coefficients, detail coefficients, transition times

5.2. Classification and Decision-Making

For most human activity recognition studies, the classification to discriminate the different types of
activities using the extracted features is a critical step. Due to the complexity in human gesture, posture,
and daily activities, how to descriminiate them with certain accuracy using different mathematical
models becomes a research focus. The classification can be classified into two categories:

1.  Threshold-based method—Threshold can be eaisly used to obtain many simple gestures, postures,
and motions. For example, fall detection, hand shaking, and static standing can be recognized

using the acceleration threshold calculated using equation ary = /a2 + ai + a2, and walking or
running can be recognized using Doppler frquency shift thresholds.
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2. Machine learning techniques—Machine learning is a method of data analysis that automates
analytical model building, which is suitable for the classification of human activities using sensor
data. Its feasibility and efficiency have been demonstrated by many published studies with
accuracies over 95%. Typically, HMM achieves an accuracy of 95.71% for gesture recognition [101];
SVM and KNN are employed for human gait classification between walking and running
with an accurate over 99% [102]; PCA and SVM recognize three different actions for sports
training with an accuracy of 97% [9]; KNN achieves an accuracy of 95% for dynamic activity
classification [65]. There are also peer investigations providing evaluations of different machine
learning methods [9,88,103].

3. Deep learning methods—Deep learning techniques take advantages of many layers of non-linear
information processing for supervised or unsupervised feature extraction and transformation,
as well as for pattern analysis and classification. They presents advantages over traditional
approaches and have gained continual research interest in many different fields, including HAR in
recent years. For example, CNN achieves an accuracy of 97% for the recognition of nine different
activities in [31], an accuracy of 95.87% for arm movement classification [64], an accuracy of 99.7%
for sSEMG-based gesture recognition in [93], and an accuracy of 95% for RFID based in-car activity
recognition in [81]. The past investigations have demonstrated that deep learning technique is
an effective way of classification for human activity recognition. There are also investigations
applying long short-term memory (LSTM) [104] or bidirectional LSTM (Bi-LSTM) [76,96], as well
as recurrent neural networks in sports and motion recognition, which have exhibited competitive
performance compared to CNN.

Due to the superior performance of machine learning and deep learning techniques, many tool
libraries—such as MATLAB machine learning toolbox, pandas, and scikit-learn [105]—for different
development environments are available, which makes the implementation of the classification quite
convenient. The different machine learning techniques will continually be considered the dominant
tool for classification for various sensor data based human activity recognition.

6. Discussions

Driven by the related sensing, communication, and data processing techniques, HAR has undergone
a rapid progress and is extended to widespread fields of applications. This section summarizes the state-of-
the-art, the underlying technical challenges, and the future trend.

6.1. Performance of the State-of-the-Art

Based on the above investigation, it is a critical issue to determine how to select the appropriate
sensing techniques and mathematical methods for HAR applications. It is found that the technical
solutions are highly dependent on the particular HAR tasks. For accurate indoor human activity
recognition, optical depth sensors with PCA, HMM, SVM, KNN, and CNN are commonly seen to
obtain an accuracy over 95%, and combination of UWB and IMU can also find applications with
accuracy over 90%. For wearable outdoor applications of consumer electronics, sports analysis, and
physical rehabilitation, a single IMU is a competitive choice, which normally uses Kalman filter or a
complementary filter for noise cancellation and uses SVM or CNN for decision-making. The accuracy
for walking and running step counting and other motion recognition is normally over 90%. Then, for
medical care, physical rehabilitation or bio-feedback, thin film force sensors and EMG sensors are
commonly used to obtain information of local areas of body parts. Deep learning is the most prevalent
choices, which may result in an accuracy at about 90%. According to the analysis in Sections 4 and 5,
each sensing technique and mathematical method has its own pros and cons and suitable application
scenarios. The combination of two or more sensing techniques or mathematical methods may overcome
the limitations of one technique by taking advantage of the others.
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6.2. Technical Challenges

According the survey of the state-of-the-art, the techniques for HAR are far from technically ready

for various application in the different application fields. Eventually, the technical challenges for the
human activity recognition and motion analysis techniques are summarized as follows:

1.

Limitation of sensing techniques for convenient uses—The sensing techniques, including optical
tracking, radar, inertial measurement, force, and EMG sensors, all have their limitations in
performing accurate, non-contact, location-free human activity sensing. Optical sensors are
competitive in accuracy, but they are LOS and limited to specific areas. Radar techniques, such as
FMCW, IR-UWB, WiFi, and ultrasound, are NLOS, but they work in specific areas, and they are
not as accurate. IMUs, force data, and EMG are low cost and low power, making them suitable for
wearable applications, but the battery power and wireless modules make the size of the devices
inconvenient for daily use. They lack sensing techniques that do not interrupt people’s normal
daily activities.

Dependency on PCs for data processing—For the body-worn sensing devices, the data acquisition
and pre-processing are usually completed with low power MCUs, and further processing such as
feature extraction and classification are conducted on PCs. This results in the requirements of a
high transmission data rate and the involvement of a powerful PC. The high data rate is also a
challenge for the deployment of multiple sensor nodes to establish a BAN. The traditional way of
communication and computation has constrained the application of body-worn HAR.
Difficulties in minor gesture recognition—Most of the existing techniques are for the recognition of
regular and large-scale human gesture, posture, and movements, such as hand gesture, arm swing,
gait, and whole-body posture, with classification techniques. It is still a challenge to quantitively
discriminate minor gesture variations, which may be potentially valuable for many applications.
Specificity in human activity recognition and motion analysis—Most of the state-of-the-art may
focus on the postures or activities for a particular body part, or a particular posture or activity of the
whole body. The focus usually falls on the specific sensing devices and classification techniques,
while lacks comprehensive posture and activity recognition and further understanding of the
kinematics of human body and behaviors of people based on the in-depth analysis of their
daily activities.

6.3. Future Perspective

To overcome the technical challenges mentioned above, a number of future investigations are

expected to focus on the following aspects:

1.

Unobtrusive human activity monitoring techniques—The sensing techniques that can perform an
unobtrusive perception of human activities without or with minimum interferece to people’s
normal activities, and that can also be used anywhere, need greater study. New investigations
about minimizing the size of sensing devices and the way of powering the device may be new
research interests.

Optimization of sensing network and computation powers—It is critical to explore the optimal
BAN of sensing devices for HAR, and to optimize the computation power between sensor nodes
and the central processor to relieve the burden of the sensor network for data transmission. A new
paradigm of wearable computing for wearable BAN may become an effort attracting topic.
Further studies for minor gestures and posture recognition—Further investigation of the sensing
techniques and feature extraction techniques for minor gesture recognitions may find applications
in different fields, such as HMI. For example, UWB Doppler features based human finger motion
recognition for the operation of handheld electronics may be one potential use case.
Comprehensive recognition and understanding of human activities—Based on the recognition of
human gestures and movements, the further positional and angular kinematics of the human
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body and human behaviors can be investigated for the further analysis. Research outputs may
provide valuable reference for the studies of bionic robotics and for customized human intent
estimation as well as smart recommendations in smart environments.

The above technical challenges may draw attention to the investigations of this field in the
future, and the related studies about unobtrusive sensing, optimized sensing network and computing
system, minor gesture and posture recognition, and further human body kinematics and behavior
understanding are promising research topics that may add new features to HAR and create new
opportunities of research and applications. Since HMI is a key attribute for the usability of information
systems, HAR as a promising solution for the efficient and convenient interaction between human and
inforamtion systems will play an important role in the future rich, sensing IoT world.

7. Conclusions

This article presented a comprehensive overview of the recent progress in the sensing techniques
that have been introduced to human activity recognition and motion analysis. Remarkable technical
progresses in new sensing devices and methods, innovative mathematical models for feature extraction
and classification, novel networking and computing paradigms, convergence with different subject areas
have been identified, which have extended to widespread application fields. To provide a comprehensive
understanding of the fundamentals, the skeletal based multi-segment models and kinematic modeling
of human body parts were firstly presented. Then, the sensing techniques were summarized and
classified into six categories: optical tracking, RF sensors, acoustic sensors, inertial sensors, force sensors,
and EMG sensors, followed by in-depth discussions about the pros and cons of the proposed evaluation
indexes. Further to the sensing devices, the mathematical methods including feature extraction and
classification techniques are discussed as well. According to the state-of-the-art HAR techniques,
the technical challenges focused on were found to include the limitation of sensing techniques for
convenient uses, dependency on PCs for data processing, difficulties in minor gesture recognition, and
specificity in human activity recognition and motion analysis. The solutions for these challenges are
considered to be the development trend of future studies. Since human activity recognition and moton
analysis is a promising way for efficient interaction between human and information systems, it may
play a more important role in future IoT enabled intelligient information systems.
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