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Abstract: Biometric systems are considered an efficient component for identification in the developing
modern technologies. The aim of biometric systems is to verify or determine the identity of a user
through his/her biological and behavioral characteristics. The threat of spoof attacks is always an
important issue in biometric verification and authentication, which requires an updated and stronger
protection system. In this article, we propose an anti-spoofing system based on auditory perception
responses. To the best of our knowledge, this is the first time that an auditory perception based
anti-spoofing system has been presented for age verification. The proposed auditory perception
based anti-spoofing system was evaluated with 770 trials conducted by many subjects of each gender
and age range (12–65 years of age). The results achieved are encouraging, as the auditory perception
based system showed the lowest Equal Error Rate (EER) value of 5.5%.
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1. Introduction

Biometric systems allow us to identify a person and provide authentication based on an
identifiable and verifiable dataset, which is uniquely specific to the person. It can be used for
surveillance, access control, and security systems [1]. Due to scientific growth and technological
advancement, in the fields of pattern recognition, computer vision, machine learning, data storage,
data processing, and data acquisition, it is now very much possible to identify and verify a subject.
Several biometric modalities such as face, iris, fingerprint, veins, blood flow, and auditory perception
can successfully allow a subject’s identification and authentication. In parallel, several spoofing
techniques have also been introduced to crack such biometric systems.

In the present era, the threat of malicious actions is among the major challenges that biometric
systems confront. The main type of malicious action uses a conventional type of attack, known as
“spoofing”, to trick a biometric system. Biometric spoofing is a technique to deceive a biometric system.
In this technique, a false object such as a fingerprint mold made of artificial material that copies the
unique biological features of a subject is presented to the biometric scanning tool. The system computes
the features in a manner that the biometric system will otherwise not be able to recognize the artifact
from the genuine biological target. Therefore, the aim of spoofing a biometric system is to present the
spoof attacker as a real user by producing a fake identity to fool the biometric sensors. Anti-spoofing
systems thus are required in order to reject the spoofing attacks [2]. Biometric systems without an
anti-spoofing system pose a greater threat to the security of users’ data [3,4]. In previous studies, eight
different points have been highlighted regarding spoofing attacks [5,6], and they are categorized into
two major groups such as direct attacks and indirect attacks.

Direct attacks [6] are possible by generating synthetic samples, and this is the first unsafe point at
the sensor level of a biometric security system. For direct attacks, no particular information is needed
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about the system such as the matching algorithm, feature extraction, the format of data, etc. It works
in the analog domain, outside of the digital boundary of the system. Therefore, digital protection
techniques like digital signatures and watermarking are not useful. For direct spoofing, the attacker
targets the sensors typically. Several biometric modalities can be constructed by using common types
of equipment to copy actual biometric readings such as printers, audio recorders, and stampers.
As concerns that, the biometrics community has proposed spoofing benchmarks. Benchmarks allow
the biometric systems to work on the concepts of anti-spoofing systems. For example, face, iris, and
fingerprint are some important modalities for which spoofing detection has been investigated. Each of
them shares a common characteristic for benchmarks such as video based or images. For iris, spoofing
attacks usually occur with printed iris images [7] or cosmetic contact lenses [8–10]. For faces, a digital
video or photograph can be used for a spoof attack [11]. A 3D mask is also a logical option for a face
spoof attacker [12]. However, for fingerprints, artificial replicas are modeled in a supportive way
for spoofing [13]. A mold of the fingerprint of an authentic user can also duplicate the real user in a
specific material such as silicon, play dough, gelatin, etc.

Indirect attacks require all the information and knowledge about the system to trick it. In order to
manipulate a biometric system, indirect attacks require knowledge about specific feature extraction
procedures, the matching algorithm used, possible weak links in the communication channel,
and database access. In a biometric system, indirect attacks are like bypassing the feature extractor or
the comparator, manipulating the biometric references in the biometric reference database, by taking
advantage of the weak points in the potential interaction channel [14]. The security of a biometric
system depends on information regarding data acquisition in a secure environment. Even a small
modification in the system needs to reconstruct the whole system from scratch.

Threats to biometric system regarding spoofing attacks are now acknowledged by researcher.
However, the anti-spoofing systems are still facing challenges to handle spoof attackers. They can
minimize the chances of spoofing, but they can also end up rejecting access to genuine subjects.
In the future, anti-spoofing systems will require more intensive study and attention.

Human age estimation and classification based on auditory perception responses were presented
for the first time in 2017. In this article, we present an anti-spoofing system for a pre-existing biometric
system for age estimation and classification based on auditory perception [15].

The article is organized as follows: In Section 2, several anti-spoofing systems based on different
biometric traits are discussed. In Section 3, we describe auditory perception based on the human age
estimation/classification system and its potential vulnerabilities to spoofing. The anti-spoofing system
based on auditory perception responses is explained in Section 4. The performance and evaluation
methodology of the anti-spoofing system will be discussed in Section 5. A summary of our proposed
methods is presented in Section 6, while the work will be concluded in Section 7, together with some
ideas for future research.

2. Related Work

In this section, a review about anti-spoofing systems is given for different biometric modalities.

2.1. Fingerprint

In the modern authentication and verification systems, spoof attacks are highly observed, using
several kinds of materials such as wood glue, printed fingerprints, gelatin, and silicone [16]. For a
specific spoofing technique, a special anti-spoofing system is designed that cannot be used globally.
Dubey et al. [17] proposed a method of combining multiple techniques for feature extraction such as
the SURF method for the detection of the local point of interest, the pyramid multi-scale characteristic
of the Histogram of Oriented Gradients (HOG), and the Gabor texture characteristic. They combined
all the characteristics to identify the spoof and separate it from genuine subjects. This technique
was tested in fingerprint Liveness Detection competition (LivDet2011)and an Average Equal Error
Rate (AEER) of 3.95% was achieved, while the Average Classification Error Rate (ACER) was 2.27%.
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Rattani et al. [18] also presented a fusion of features (a Histogram of Oriented Gradients (HOG) and
Grey Level Co-occurrence Matrix (GLCM)) based system for liveness detection by using different
materials and a material detection scheme, which obtained an average correct detection rate up to 74%.
Recently, researchers have been inspired by some techniques based on deep learning feature extraction
(e.g., Convolution Neural Network (CNN)) to propose more precise methods for the detection of spoof
attackers [19].

2.2. Iris

Iris recognition/verification has gathered significant attention due to its well established
architecture, with high precision and operational performance. The viability of spoofing attacks
was recognized for the first time by Daugman [20]. He used fast Fourier transform for the verification
of high frequency spectral measures inside the frequency domain. In the literature, several solutions
are available to detect the liveness of iris, which rely on special acquisition hardware [21–23], as well
as software based solutions that use the pattern of someone’s iris on contact lenses to analyze the
textural effects of the spoof attacker [24]. Software based solutions have also investigated pupil
construction [25], cosmetic contact lenses [8,26,27], and multiple biometrics, EEG and iris together [28].

Hsieh et al. [29] used a system for the detection of spoof attacks of subjects having Cosmetic
Contact Lenses (CCL). They used a spectral imaging system to capture the iris images of the subjects
wearing CCL. By using the technique of independent component analysis, they achieved promising
results with the value of the false rejection rate from 10.52% to 0.57%.

For image quality measures such as motion, occlusion, focus, and pupil dilation, 22 images
were used by Galbally et al. [30]. Sequential floating feature selection was used for the best features’
selection and then forwarded to a quadratic discriminant classifier [31]. To analyze pattern regularities
in irises, some peak values inside the frequency spectrum are a concern with respect to spoof attackers.
Iris anti-spoofing methods investigate strong features through texture patterns, bags of visual words,
and image quality metrics. A strong variation has been found from dataset to dataset concerning the
performances [2] and has shown an accuracy of 99.84%.

2.3. Face

The face based anti-spoofing techniques are categorized into four different groups [32] such as
user behavior modeling, data driven characterization methods, relying on user corporation, and relying
on extra devices. Users’ behavior modeling concerns the behavior of a user in front of the camera,
and some researchers considered motion detection such as the unintentional movement of different
parts of the head and face [33,34] and eye blinking [35]. These methods rely on extra devices such
as allowing a user to utilize specific anti-spoof hardware, and thermal or infrared images could be
deployed [36]. Multiple 2D cameras or 3D cameras have been used, which can also provide additional
protection [37]. The physical characteristics of materials relating to their unique reflective qualities have
also been presented as a measure of distinction between a real face and a printed face on paper as a 2D
image. Polarized light (light that vibrates in one direction) can be utilized to distinguish reflections.
Stokes’ parameters have been applied to generate Stokes images, which have then been utilized to
create the final picture, known as the Stokes Degree of Linear Polarization (SDOLP). Statistically,
the strength of an SDOLP image has been studied, and promising results have been demonstrated
between skin and a paper mask in the material classification [38].

From many decades, people have been wearing masks or facial disguises so as not to be identified.
In the present era, the use of plastic surgery is a newer trend to modify one’s appearance. The procedure
of plastic surgery is performed because of its cost and time effectiveness to achieve perfection. Despite
all this, recently, a robust algorithm was designed to detect the facial surgery changes [39–41]. However,
the problem of face recognition after going through an operation of plastic surgery is still a challenging
task [42]. Even without going through a permanent treatment, temporary make-up can also affect
the efficiency of a face based biometric system [37]. Adaptive Gradient Location and Orientation
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Histogram (AGLOH) based extraction features have also been introduced for successful plastic surgery
face recognition. The features indicated have been omitted from the granular region of the face [43].
All the above techniques mentioned such as face masks, make-up, and plastic surgery are used to hide
the identity of a person. Adults try to impersonate a child; males can try to impersonate females, etc.
It has also been demonstrated that a female intruder can impersonate a male successfully by wearing
some make-up [44].

2.4. Gait

For gait recognition, spoof attacks have not been studied as intensively as needed. High quality
video of a legitimate volunteer replayed in front of the camera can affect the system. Gait is a behavioral
trait, and it may not remain the same, especially over a longer period of time, due to changes in body
weight, and particular injuries [7]. Synthetic attacks cannot affect the performance of gait biometrics.

Meanwhile, four different spoofing mechanisms have been explored. The gait motion has been
captured through an accelerometer sensor, which provided the gait signature. Traditional approaches
such as a vision based gait recognition system have more potential and are more practical compared to
a sensor based approach.

The first spoofing attack for gait signature is that an individual can walk behind the genuine
target by copying his/her moves. This kind of spoofing can be identified as a spoofing attempt that
has a lower match score in comparison to the genuine gait. The second spoofing attack is related to
the reaction of an accelerometer sensor connected to the leg, which is projected on a wall. A spoof
attacker can visualize and try to match the moves of the target, and this is used for identification.
This technique has an accuracy of 60% to trick the gait biometric system. For the third spoofing attack,
an accelerometer is used like the previous approach and focused on one’s performance achieved via
practice. Only those spoof attackers were found to be successful that were closely matched to the
genuine signature gait of the target, and with practice, the performance of the signature gait can affect
the system. The fourth study showed how a an attacker impersonated the clothing of a genuine subject
to trick the gait recognition system. It is among one of the most straightforward and robust methods
used for spoofing. It was used to enter a secure environment where formal types of dress or uniforms
are common. Impersonation of clothes is also one of the most efficient techniques used to spoof gait
signature [45].

Using targeted attacks and clothing impersonation can trick a gait recognition system. No artificial
detection exists for such kinds of attacks, and this is especially extremely challenging.

2.5. Multimodal

Multimodal biometrics can also be defined as a fusion of a matcher and liveness detector or
multiple biometric systems without liveness detection [46]. Multimodal biometric systems are
considered more secure as compared to unimodal systems by making it difficult for the intruder
to spoof the trait of a genuine subject [47]. Ricardo et al. [48] considered a biometric system combining
face and fingerprint modalities, and the likelihood rate and weighted sum were used as score fusion
rules. The performance evaluation results showed a lower value of false acceptance rate (4.33%
and 4.71%).

An anti-spoofing system extracted different kinds of features for each biometric trait. Ridgelets
was used to extract features from the face, while from fingerprint Level 1 such as local orientation and
frequencies and Level 2 (minutiae) extracted the required characteristics. The local ternary pattern
was calculated for iris. Finally, all the features were fused and fed to the classifier for classification.
A multimodal biometric system with the fusion of three biometric modalities (face, fingerprint, and iris)
was also designed based on a convolutional neural network with promising results [49].

For all biometric modalities such as iris, face, gait, etc., there are spoofing detection methods.
All the existing systems are based on a deep feature extraction and provide a solid direction that allows
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us to develop a more efficient anti-spoofing system. In this paper, we present an anti-spoofing system
for auditory based human age estimation and classification.

3. Age Estimation Using Auditory Perception and Its Potential Vulnerabilities

In this section, we will explain the mechanism of the existing system for human age estimation
using auditory perception and its vulnerability to spoof attacks.

3.1. Age Estimation Based on Auditory Perception

The ability of a human to receive and interpret different sounds that reach the ears or the human
auditory system through audible frequency waves transmitted through air or other means is known as
auditory perception [50]. Auditory perception has a high correlation with human age. The auditory
perception response varies with age; for example, as age increases, the highest audible range of
frequency decreases. The decrease in the highest audible frequency leads to hearing loss.

The flowchart of the proposed auditory perception based age estimation and classification
approach is shown in Figure 1. First, the auditory system is stimulated via dynamic frequency
sound waves. The audible frequencies are registered and utilized for age estimation of a person. After,
the responses of the auditory perception are registered in a dataset to analyze the separability between
the different age groups, to classify the perceived responses into an age group, and estimate the age of
the subject.

Figure 1. Flowchart of the proposed auditory perception based age classification and estimation
approaches.

3.2. Protocol of Stimulation

By generating dynamic frequency sound waves, the human auditory system is stimulated
according to the following model:

x(t) = A0.sin(2π.φ(t).t),

whereφ(t) = α.t + φ0,
(1)

A0 stands for the sound amplitude, t for time, φ0 the initial frequency, and α the speed of frequency.
The dynamic frequency sound is generated according to proposed Formula (1) with the time

duration of t = 20 s. A test subject has to interact with the system in real time. The subject should
respond when he/she stops hearing the sound for the first test and respond while he/she starts hearing
the sound for the second test. The subject should conduct two tests:

• First test: The sound is generated from lower frequency (20 Hz) to higher frequency (20,000 Hz).
The subject can complete the first test (e.g., keyboard action) once the subject is unable to detect
the sound,

• Second test: The second test starts automatically. In this case, the sound is generated from higher
frequency (20,000 Hz) to lower frequency (20 Hz). The subject can complete the second test
(e.g., keyboard action) once the subject starts detecting the sound.

Both frequencies are registered in a database, and the system then calculates the mean of the
two frequencies (first test frequency and second test frequency). The three frequencies are the
feature vectors, which are used to describe the response of auditory perception for every test subject.
While performing this experiment, two objectives were achieved:
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• Human age classification using auditory perception
• Human age estimation using auditory perception.

Human age estimation and classification was achieved by using the random forest regression and
classification model [51].

3.3. Performance and Vulnerabilities to Spoofing

In this section, the performance of human age estimation and classification is briefly explained
along with the vulnerability of the system to spoof attacks. The proposed approach of human age
classification based on auditory perception showed a good classification rate of 92% and 86% for
three to five age groups, respectively. A robust regression model was also designed for human age
estimation, and it had a root mean square of error value of 2.6 years.

The auditory perception-based system for age estimation and classification showed promising
results. Although it was very sensitive to spoof attacks, a subject could easily fool the system with
respect to age. Two scenarios exist to trick the system:

• An old subject can impersonate a young one just by finishing the experiment with a high frequency
in the first test and respond after some seconds as the second test of the experiment.

• A young subject can impersonate an old one by finishing the first test with lower frequency
and respond with a higher delay for the second test.

To check the vulnerability of the auditory perception based system for human age estimation and
classification, it was tested under two scenarios:

• The licit scenario for evaluating the baseline performance (no spoof attacks and no anti-spoofing
system) utilizing genuine and zero-effort imposter trials.

• The spoof scenario for evaluating the baseline performance of the same system under spoof attack.

The comparison of the human age estimation system under the licit scenario and spoof scenario
is shown in Figure 2. The efficiency of a biometric system can be evaluated by calculating the Equal
Error Rate (EER). The lower value of ERR indicates the higher accuracy of the biometric system, while
a higher value of EER indicates worse performance. The EER value for the human age estimation
system under the licit scenario was nearly 2%, while under the spoof scenario, it increased to 60%.
We concluded that the existing system for human age estimation was vulnerable to spoofing and
required a strong anti-spoofing system to overcome this challenge.

.
Figure 2. Licit scenario vs. spoof scenario of the biometric system for auditory based human
age estimation.
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4. Proposed Anti-Spoofing System

The biometric system for age estimation and classification based on auditory perception was
vulnerable and easy to spoof, as briefly explained in Section 3. Therefore, we present an anti-spoofing
system based on auditory perception responses, and the flowchart of the proposed system is shown in
Figure 3.

Figure 3. Auditory perception based anti-spoofing system.

Experimental design: a test subject was required to take the test for age estimation using auditory
perception, as shown in Figure 1. As the auditory perception based system estimated the age, our
proposed anti-spoofing system would verify the age of the test subject. A system was designed to
generate ten random frequencies of sound according to our standard database by taking the estimated
age of the subject as an input. Among these ten sound frequencies, some were audible and some were
inaudible for the test subject. To make it more secure against spoofing attacks, some of the audible
frequencies were repeated to ensure that the test subject provided the same feedback. According to our
previous study, the minimum and the maximum values of audible and inaudible sound frequencies
for each age were assigned from a reference database. It was hard for a spoof attacker to guess the
audible and inaudible sound frequencies in the set of generated sound frequencies. Every feedback for
each generated sound frequency had a value of 1/b to calculate the final score, where b is the total
number of randomly generated sound frequencies, as shown in Algorithm 1. The final score must be
greater than a decision threshold τ to prove that the subject is genuine and verify the input age.

The value of decision threshold τ was chosen according to the evaluation standards given by:

τ∗EER = arg.min|FAR(τ, Ddev)− FRR(τ, Ddev)| (2)

Here, the decision threshold τ was set in order to equalize the False Rejection Rate (FRR) and the
False Acceptance Rate (FAR). FRR is defined as the ratio of the number of false rejections divided by the
number of verification attempts; while FAR is defined as the ratio of the number of false acceptances
divided by the number of verification attempts. The baseline performance of the algorithm can also be
illustrated as a function of the decision threshold τEER.

As FRR and FAR are inversely related, the decision threshold can be fixed to equalize the ratio of
FAR and FRR. Therefore, the a posteriori performance criterion to minimize can be the value of the
Half Total Error Rate (HTER):

τ∗EER = argmin.HTER(τ, Ddev) (3)

HTER(τ, Ddev) =
FRR(τ, Ddev) + FRR(τ, Ddev)

2
) (4)
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Ddev is the development dataset used to determine the decision threshold by using the proposed
anti-spoofing system. More details about the algorithm are given in Algorithm 1.

Algorithm 1 Auditory perception based anti-spoofing system for age estimation system.

1: procedure OUTPUT: AGE VERIFICATION
2: a = real-age,
3: b = nbr-freq,
4: c = nbr-random-hearable-freq,
5: d =nbr-repetition-hearable-freq,
6: Input: a, b, c, d, e(τEER)
7: a← insert()
8: F3, F4 = [min-f(a), max-f(a)]
9: F1, F2 = [min-f(a), max-f(a)]

10: TAB : rand-f(b)
11: for i = 1:b do
12: TAB[i] = 0
13: end for
14: hearable-indices [ ]← c
15: for i = 1:length(hearable-indices) do
16: TAB[hearable-indices(i)] = (F1,F2)
17: end for
18: for i = 1:d) do
19: d← rand[ ]
20: d = TAB[position]
21: end for
22: for i = 1:b) do
23: if TAB[i] 6= 0
24: TAB[i] = (F3,F4)
25: endif
26: end for
27: for i = 1:b do
28: play sound(<TAB[i])
29: user feedback[i]← ask user feedback >
30: end for
31: nbr-correct-answers← check user feedback(user-feedback[])
32: if (nbr-correct-answers≥ τEER):
33: verified-age← True
34: else
35: verified-age← False
36: end
37: end procedure

5. Experiments and Results

In this section, we will discuss the dataset collected for decision threshold optimization and the
dataset for testing the anti-spoofing system with the standard value of the decision threshold.

5.1. Datasets Collection

We developed two datasets as shown in Table 1 under two different scenarios, the licit scenario
and the spoof scenario, by using Algorithm 1:

The development dataset was utilized to decide the optimization point of the threshold for
efficient performance at a specific operational value. The total number of trials for the development
dataset was 360, for both genders (male and female).

The anti-spoofing dataset was used to assess the vulnerability of the proposed anti-spoofing
system with the required threshold τ value, and 410 trials were conducted for the anti-spoofing dataset.
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Table 1. Datasets collected for different scenarios.

Datasets Development
Dataset

Anti-Spoofing
Dataset

Gender Male Female Male Female
Licit Scenario 200 80 220 108
Spoofing Scenario 60 20 60 22
Total trials 360 410

5.2. Decision Threshold Optimization

The development dataset was utilized for optimization of the decision threshold. The performance
of the anti-spoofing system was assessed on a licit scenario with genuine and zero-effort imposter
trials. The function of the decision threshold (τ) is illustrated in Table 2, and the best threshold
that minimized the HTER was set to 80% of all the experiments. As the number of repetitions or
experiments was fixed in this work to ten, imposter trials correlating to a score a little higher than
eight trials would be misclassified as genuine trials, such that the genuine trials with correct answers
fewer than eight trials would be misclassified as imposter trials. The score distribution for the licit
scenario is illustrated in Figure 4; still, a small overlap existed between the distribution of genuine
and imposter trials. The x-axis determines the value of decision threshold τ, and the y-axis shows the
number of trials of the subjects. During the process of decision threshold optimization, the FAR value
was higher for the initial values of τ = 10%, 20%, 30%, 40%, 50%, 60%. Thus, the system would not
make many errors in distinguishing between genuine and spoof attackers. The behavior of the system
for varying decision threshold τ showed a continuous effect in the performance of the anti-spoofing
system. The decision threshold τ at 80% showed the minimum misclassification of imposter trials
as genuine. The efficiency of the proposed anti-spoofing system could be demonstrated with the
Detection Error Trade-off (DET) profile, as shown in Figure 5. Under the licit scenario, the EER value
was 2.2% for our proposed anti-spoofing system.

Figure 4. Genuine users’ and zero-effort imposters’ score distribution while a decision threshold τ

was determined with a vertically drawn dashed line, while the x-axis represents the value of decision
threshold τ, and the y-axis represents the number of trials.
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Figure 5. Detection of Error Trade-off (DET) plot showing an Equal Error Rate (EER) of 2.2%. FFR,
False Fake Rate; FLR, False Living Rate.

Table 2. Optimization for the decision threshold (τ) for auditory perception. HTER, Half Total
Error Rate.

Decision Threshold (τ) 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
FAR 100% 100% 100% 94% 91% 42% 13% 6.8% 5.7% 0%
FRR 0% 0% 0% 5.7% 8.5% 8.5% 3.4% 4.6% 20.5% 25.7%
FAR-FRR 100% 100% 100% 88.3% 82.5% 33.5% 9.6% 2.2% 14.8% 25.7%
HTER 50% 50% 50% 49.4% 49.75% 25.25% 16.4% 5.7% 23.35 12.8

5.3. Performance Evaluation of the Anti-Spoofing System

In the field of biometrics, we consider a binary classification to distinguish genuine and spoof
trials. Like other biometric systems, this also gave rise to two other kinds of errors, False Fake Rate
(FFR) and False Living Rate (FLR). FFR represents the value of genuine trials misclassified as spoofed
trials, while FLR represents the value of spoofed trials misclassified as genuine trials.

In Figure 6, each profile represents a specific configuration profile according to the baseline
approach. The blue profile (first line from the bottom) shows the baseline performance (auditory
perception based age estimation) of the biometric system under the licit scenario (genuine trials).
The black profile (the highest line) shows the efficiency of the system while having the same
configuration of the baseline under the spoofing scenario. The cyan profile (second from highest) shows
the performance of the baseline system under the licit scenario with zero-effort imposters. The red
profile (second from bottom) shows the performance of the baseline system, equipped with auditory
perception based anti-spoofing under spoofing attack. In order to quantify how many genuine users
were misclassified as spoof attackers and to recapitulate all of the above configurations, we needed to
study the system under a complex contact of the integrated system with a spoofing attack.

The overall efficiency of a biometric system is the main concern, and there is always an assessment
of unconventional performance. The first configuration (blue line) was specified as the baseline
configuration, while the forth configuration (black line) was simple with no anti-spoofing system
and open to spoof attacks. A separate configuration needed to be applied which can support the licit
scenario under spoof attack. However, the third configuration (cyan line) was the baseline system with
zero-effort imposters (attackers with no spoofing background). The second configuration (red line)
allowed the system to stay secure under spoof attack and could be evaluated for overall performance.
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Hence, the value of FLR/FFR can decide the overall efficiency of a biometric system under the
required conditions. The performance depends on the requirement and security of the system such
that for some applications, FLR is more important than FRR and vice versa. The EER value for
the baseline under the licit scenario, the baseline under the licit scenario with zero-effort imposters,
the baseline under spoof attacks, and the baseline with anti-spoofing system was 2.7%, 43%, 60%,
and 5.5%, respectively. These results demonstrated that the anti-spoofing system based on auditory
perception showed promising accuracy for age verification.

Figure 6. False Fake Rate (FFR) and False Living Rate (FLR) of the proposed biometric system
with/without spoof-attack.

5.4. Vulnerabilities to the Proposed Anti-Spoofing System

The performance of the anti-spoofing system based on auditory perception was evaluated with
the spoofing scenario such that the subset of zero-effort imposters was replaced by spoofed trials.
It can be illustrated from the score distribution that the overlap between spoofed trials and genuine
was greater than imposter and genuine trials.

The vulnerability of the system was quantitatively measured and expressed in terms of Spoof
False Acceptance Rate (SFAR). SFAR is the percentage value of the spoofed trials that are classified as
genuine for a given decision threshold τ. An example is presented in Figure 7, which shows the score
distributions for subjects of genuine, impostor, and spoofed trials. It can briefly illustrate the SFAR
profile with a threshold function τ. The difference among the impostor and spoofed trial distributions
showed the potential impact of spoofing on the quality of biometric verification, and the correlation
of genuine and spoofed trial score distributions was significantly greater than that of genuine and
impostor distributions. In Figure 8, the DET plot presents both the spoof (SFAR vs. FRR) and licit (FAR
vs. FRR) scenarios. Expressing the vulnerability at a certain point is very important; thus, the EER
for SFAR and FAR for a common FRR is shown in Figure 8. The FAR under the licit scenario was
2.3% for a baseline system, while SFAR was 5.5% under the spoof scenario, which means there was a
chance for nearly five trials to be misclassified among one hundred trials. The results showed that
our proposed anti-spoofing system was highly secure and that it was difficult for a spoof attacker to
deceive this system.
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Figure 7. Score distributions of zero-effort imposters, genuine, and spoof attackers with the spoof false
acceptance rate; the the x-axis represents the value of decision threshold τ, and the y-axis represents
the number of trials.

Figure 8. DET determines the Spoof False Acceptance Rate (SFAR); EER on the decision threshold τ

illustrated from the development dataset.

6. Summary

The performance evaluation methods presented in this article were based on standard
methodologies existing in the state-of-the-art for anti-spoofing systems. In this study, we presented
techniques to secure our existing system for human age estimation using auditory perception
considering its vulnerability to spoofing.

Baseline system: Human age estimation based on auditory perception responses was presented
as the baseline. This baseline system was tested under different scenarios (licit scenario and spoof
scenario) to demonstrate its vulnerability to spoofing.

Anti-spoofing system: The proposed anti-spoofing model based on auditory perception consisted
of a feature vector that was created as a result of generating different sound frequencies, audible and
inaudible. From the feature vector, the value of the decision threshold (τ = 80%) was calculated for age
verification. For global model adaptation, the system was trained in real time with genuine, imposter,
and spoof trials. The performance of the system was achieved by observation of the global model
against spoofing trials with the predefined decision threshold τ.
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Vulnerability: As our purposed anti-spoofing system was well equipped with a solid design,
every biometric system shows a weakness for spoof attacks. Although some biometric modalities
such as gait, fingerprints, etc., claim more secure behavior as compared to other biometric systems,
that does not mean these approaches are reliable in the presence of spoof attackers. Thus, in this article,
we also presented a secure anti-spoofing approach, which can be used for other biometric modalities.

Usability: The anti-spoofing system based on auditory perception was easy to use and was more
secure as compared to the existing approaches. This depends on the requirement of the system, e.g., some
systems are highly secure and accept a higher value of FRR as compared to FAR. Our proposed system is
easy to optimize according to the requirements of biometric systems. The anti-spoofing system has not
yet been implemented in real-time applications and requires more time for testing.

7. Conclusions and Future Work

For the first time, we demonstrated successfully in 2017 that human age can be estimated using
auditory perception responses. As our proposed system for age estimation was working in real-time,
it was identified as vulnerable to spoof attacks. For example, an adult can easily fool the system to
impersonate himself/herself as a child or a child can impersonate himself/herself as an adult. Hence,
we felt the need for an anti-spoofing system to secure the system against spoof attacks.

Until now, all the biometric systems have been facing the mutual issue of spoof attacks.
In this article, we introduced an anti-spoofing system based on auditory perception with promising
knowledge and a standardized evaluation method. Our proposed anti-spoofing system was
tested in real time by different volunteers of different ages and genders. We concluded that our
proposed anti-spoofing system was robust by having an EER value of 5.5% under the spoofing
scenario. This position contributes to a range of forward-looking study strategies, including merged
countermeasures and classification techniques. As it is a new trait, more challenging systems are
needed to keep biometric systems safe from spoof attackers. However, it is hard to estimate the
effectiveness of an anti-spoofing system without implementing it in a critical situation. This includes
not only the capacity to identify spoof attacks, but also the effect on the suitability of the model.

As future work, we are planning to test our proposed anti-spoofing system under different
scenarios to enhance its performance. We will also implement our system with other biometric
modalities such as face, gait, hand, etc., as a multimodal anti-spoofing system to enhance the
performance of age verification systems. We are also planning to test the compatibility of the proposed
anti-spoofing system with other biometric traits for age verification in real time.
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