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Abstract: Fault injection simulation on embedded software is typically captured using a high-level
fault model that expresses fault behavior in terms of programmer-observable quantities. These
fault models hide the true sensitivity of the underlying processor hardware to fault injection, and
they are unable to correctly capture fault effects in the programmer-invisible part of the processor
microarchitecture. We present SimpliFI, a simulation methodology to test fault attacks on embedded
software using a hardware simulation of the processor running the software. We explain the purpose
and advantage of SimpliFI, describe automation of the simulation framework, and apply SimpliFI on
a BRISC-V embedded processor running an AES application.

Keywords: fault injection; software vulnerability evaluation; hardware simulation

1. Introduction

Fault attacks are a hardware-oriented attack on the system-level security of hardware
or software. Fault attacks use precisely tuned fault injection on those systems to induce
privilege escalation or to cause information leakage. Defense against fault attacks is not
easy, because the designer must understand the mechanism of fault injection and fault
propagation for every available fault injection point, and resolve which of the faults may
induce loss of data or control. The attacker’s job is easier, since a successful fault attack is
typically any fault injection that leads to the intended privilege escalation or information
leakage. Moreover, to perform a fault attack, the attacker does not have to understand the
exact nature of the fault.

To develop a countermeasure against a fault attack, the fault attack vector must
be precisely understood. The traditional defense against a fault attack is therefore to
over-design the system through temporal and spatial redundancy in the design. This is
expensive and only applicable to designs where performance and/or cost is secondary
to security. To design more efficient countermeasures, it is necessary in the first place to
understand how faults are injected and propagated.

In this paper, we propose an environment to study fault attacks on software systems.
Surprisingly, there is no general methodology to deal with simulation of hardware fault
vectors in fault attack simulation on software systems. Typically, software fault attack
simulation requires forfeiting physical accuracy in return for more efficient analysis of
the fault impact on software data flow and control flow [1]. For example, a designer can
choose a high-level fault model such as bit-flip or instruction-skip, and then evaluate the
sensitivity of the software system against attacks based on such a fault model [2]. This
is a simplification of reality, and there is not guarantee that the physical processor that
runs the secure software will exhibit the same fault behavior as the presumed fault model.
Therefore, many of the current methodologies to study fault attacks on software systems
are based on hardware prototypes [3,4]. The results of such evaluations are highly device
dependent, and often the precise nature of the fault still cannot be understood because the
hardware prototype is a black box from fault evaluation perspective.
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In this paper, we propose a SImulation Methodology for embedded Processors to
Learn the Impacts of Fault Injection (SimpliFI), which relies on hardware simulation to
obtain physically-accurate software fault evaluation results. This approach uses a low-
level model of the physical attributes of an actual device, such as gate layout and signal
propagation, to predict realistic responses to fault injection attacks. By encapsulating
hardware fault propagation and software execution in one simulation, SimpliFI supports
root-cause analysis of software fault impacts for both short instruction sequences and
full applications. To our knowledge, SimpliFI is the first design-time methodology that
enables automated fault evaluation and explains software-level fault effects through their
manifestation in the device.

This article presents SimpliFI as a high-level generic framework for automatic evalua-
tion of embedded software fault vulnerabilities, and presents an implementation of the
framework for the open-source BRISC-V embedded processor [5,6]. The results collected
by the framework are able to show how different fault injection parameters affect the
processor state, which faults propagate to program outputs, and which subsets of the
processor microarchitecture are more susceptible to fault injection. This article makes
the following contributions to the field. First, we present a simulation methodology of
root-cause analysis of fault attacks in software, where we study fault propagation using
hardware simulation and fault impact analysis at the instruction-level and program-level in
software. Second, we present an automation framework that can exhaustively inject faults
in a software application and classify their outcome at instruction-level and program-level.
We are able to deduce device-specific microarchitectural effects from the observed fault
patterns. Third, we describe our experimental results on a SimpliFI prototype for the
BRISC-V processor running AES encryption.

The remainder of this article is structured as follows. Section 2 discusses background
topics in fault injection techniques and current fault injection analysis methods. Section 3
presents SimpliFI as a generic framework that defines specific functional requirements.
Section 3 also discusses a practical implementation of the framework using the Xilinx
Vivado Design Suite to analyze a BRISC-V FPGA core. Section 4 discusses how results from
SimpliFI provide insight into instruction-level and application-level fault vulnerabilities
of embedded software running on BRISC-V. Finally, Section 5 concludes by discussing
SimpliFI’s place in the security electronic design automation tool landscape and proposing
useful extensions for future work.

2. Related Work

In this section, we describe the design space of tools to study software fault injection,
and we review related work.

2.1. Design Space of Fault Attack Simulation

While fault injection techniques have been used to exploit both digital systems and em-
bedded software [7,8], a physical fault always manifests as a 0 or 1 bit in the hardware state.
The fault injection technique always causes a change at the hardware level, but whether
or not faulty data will be stored in the registered hardware state is not always predictable.
In this paper, we adopt the following definitions.

• Fault Injection/Attack—The act of tampering with the system and parameters and
environment to cause faults in the hardware.

• Fault Manifestation—The process by which injected faults affect the circuitry and are
either successfully incorporated into the hardware state or otherwise lost.

• Hardware Faults/Faulty Bits— The bits in the hardware state that are successfully
affected by an injected fault.

• Hardware Fault Propagation—The process by which faulty bits propagate through
the hardware, creating erroneous bits in different parts of the circuitry.
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• Software Fault—Bits in the software-level state that have been changed by hardware
faults. Not every faulty bit in the hardware will have an impact on the correctness of
software execution.

• Software Fault Impact/Response—The general changes in software behavior caused
by software faults. This may be described quantitatively or qualitatively in terms of
instruction execution.

Even when a fault injection successfully induces faulty bits in the hardware state, there
is a large abstraction stack that separates the hardware fault from software-level behav-
ior [9]. Figure 1 summarizes the layering of abstractions that a fault travels through, when
fault injection is used to attack a software program. Between different ISAs, microarchitec-
tures, and physical implementations, any two given embedded processors may respond
differently to the same fault injection attacks. At the hardware level, differences in the
physical circuitry and layout can lead to different impacts on the hardware state from the
same fault. For example, the program counter in two different physical implementations of
the same processor may produce different faulty states for the same clock glitch attack due
to differences in the critical paths. At the architecture level, microarchitectural differences
of the same ISA can lead to very different fault propagation behavior simply due to the
nature of the microarchitecture having unique impacts on data flow.

Software

Device Physics

Circuit Technology

Digital Circuitry

μ-architecture

if (x == 5){ 
   func(); 
}

Software

ISA
bne x1,x2,8 
jal x2,func 

Fault injected
in circuitry

Faulty bit affects
processor execution

Fault manifests
as 0 or 1 bit

Execution changes affect
software behavior

Figure 1. The impact of a fault injection attack through all of the main layers of hardware and
software abstraction.

Due to the many abstraction layers that exist between fault injection and eventual
software fault analysis, there are multiple solutions to address fault attack simulation on
embedded software. Indeed, even though the physics of fault injection do involve fault
manifestation and propagation through the complete hardware and software stack, this is
not essential. By selecting an appropriate fault model (e.g. stuck-at-1, instruction-skip) it is
possible to abstract the lower layers of the fault injection stack away at the loss of modeling
accuracy and the gain of simulation speed.
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2.2. Fault Characterization of Embedded Software

In the past decade, multiple studies have focused on characterizing the effects of
embedded software fault attacks on various platforms. While the results vary by platform,
authors agree that most results can be explained by replacing the original instruction with
a different one [10–13]. Hence, these results confirm empirically what we would expect to
determine with SimpliFI in a simulation.

Moro et al. tested EM faults on an ARM Cortex-M3, focusing heavily on applying
faults to a single load instruction while fetching it from flash memory [10]. The authors
concluded that all faults that are explained by single instruction replacement must be faults
on the instruction fetch, and that all unexplained outcomes are faults on the data fetch.
These observations culminate in a simple model, where the time of the fault corresponds
to the number of 1s that will be read from the memory data line. This result was deemed
device dependent because the bus precharge value is responsible for whether a stuck at 0
or stuck at 1 fault manifests.

Proy et al. provided more insight into fault behavior on an ARM Cortex-A9, compared
to the single instruction analysis from the prior study [11]. Proy concludes that single
faults can be explained in terms of the following observable behavior: instruction skip
(instruction replacement via a NOP), register upper half-word reset, full register corruption,
source operand substitution, instruction replay and repeated fault effects.

Similar studies were performed by Trouchkine on multiple embedded platforms,
finding similar instruction-level replacements and effects [12]. Beyond explaining fault
responses with an ISA-level model, Trouchkine designed specific instruction test sequences
to exercise different parts of the microarchitecture. For example, a memory store and
load test was able to distinguish between the caches and memory management unit being
faulted during the attack.

While these studies use actual fault injection attacks to characterize the target systems,
Berthier et al. introduced a new method that places a fault injection module on the target
platform which is able to add faults to the device state when requested during program
execution [14]. These embedded fault injection simulators incorporate realistic architecture-
level fault propagation in the fault response due to the nature of running on physical
hardware. However, this technique only modifies system registers together as a whole,
instead of injecting a realistic fault and having it accurately manifest. Other variations
on technique that use various styles of integrating the target device and fault injector are
summarized by Piscitelli et al. [15].

2.3. Related Work

In this section, we discuss fault simulation techniques related to SimpliFI, using Table 1
as a guidance. The columns of the table mark the different abstraction levels in the fault
simulation stack, from fault injection methods, over fault manifestation and propagation in
hardware and software. The different methods listed are marked up for no/partial/full
support of the abstraction levels listed in the columns.

Table 1. Summary of fault evaluation method capabilities.

Method
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HW
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HW
Analysis

SW
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SW
Analysis

TVVF [16] } • • • ◦ ◦
VerFI + Modeling [17] • ◦ • • ◦ ◦

MAFIA [18] } • } } ◦ }
FiSim [1] ◦ ◦ ◦ ◦ • •

SimpliFI (this) } • • • } •
◦ = No Support;} = Limited Support;• = Full Support.
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The Timing Violation Vulnerability Factor (TVVF) [16] is a metric for evaluating timing
fault vulnerabilities in digital circuits using actual timing properties from the physical
implementation. Determination of the TVVF for a circuit and set of faults is split into two
phases: analyzing the scope of vulnerability (SoV), and analyzing the scope of propagation
(SoP) [16]. Analyzing the SoV determines the likelihood that a given clock glitch results in a
faulty register state. This is accomplished by performing static timing analysis. Analyzing
the SoP determines the likelihood that a successful glitch from the SoV propagates through
downstream circuitry to reach a circuit output. While this technique was shown to be
effective for accurately determining hardware vulnerability to clock glitches, it is unknown
how calculating TVVF would apply to processor hardware and how the computational
intensity scales as the circuit grows.

The Verification Tool for Fault Injection (VerFI), introduced by Arribas et al., is a
framework intended for testing hardware fault countermeasure coverage that also supports
user-specified fault models [17]. The tool accepts an RTL description of the hardware and
a fault configuration from the user, and automates the testing of multiple faults on a
synthesized netlist. VerFI synthesizes the RTL design into a netlist of logic cells, and builds
a software representation of the circuit with additional properties at each node that allow for
simulated fault injection. The fault configuration file controls the properties of the injected
faults. While VerFI is able to track fault propagation through a circuit, and allows the user
to test resistance to a wide and flexible range of fault attacks, it does not inherently take into
account which faults are more realistic to occur. As with TVVF, VerFI is oriented towards
hardware and it is unknown how easy it is to scale VerFI to software fault simulation.

Microarchitecture-Aware Fault Injection Attacks (MAFIA) [18] are an effort to raise
the abstraction level of fault injection simulation. MAFIA first profiles the target device in
simulation to learn how clock glitch attacks affect the execution of different instructions.
The resulting information can then be used to craft clock glitch fault attacks that target
specific instructions and minimize the effect on other instructions in the processor pipeline.
While this technique is effective for simulating realistic fault manifestation of the clock
glitch mechanism, the only metric measured is the exact glitch width that causes the first
output corruption. Furthermore, the simulation method for MAFIA is only applied in the
context of building more powerful fault attacks. The results of profiling only explain which
faults cause errors in the software, but not how the software or hardware is affected by
fault attacks.

FiSim [1] is an ISA-level simulation tool designed to evaluate software fault attack
vulnerabilities. FiSim currently supports evaluating software for ARM architectures, al-
lowing the user to input a platform model defining the address space, memory regions,
and stack information. The tool runs an ISA-level simulation of the program using this
information, and allows emulates fault injections on arbitrary instructions using either an
instruction skip or instruction encoding bit flip model. However, users can add their own
software-level fault models to the simulator. This type of fault evaluation is important since
it can exhaustively evaluate fault propagation through software in response to different
instruction-level fault models at different points in the program. This is much easier than
having to instrument a device and track the program’s progress to correctly inject the fault,
as is necessary with physical testing. However, a significant downside to ISA-level simula-
tion is the lack of hardware-specific results, both in terms of microarchitectural effects and
realistic fault manifestation. Several other tools have used an ISA-level modeling approach
similar to FiSim [19–21].

Our proposal, SimpliFI, aims to span the full range of these methods in one integrated
simulation and analysis flow, enabling evaluation of software-level outcomes in response
to fault attacks while retaining knowledge of fault propagation and manifestation at the
hardware level. By using post-layout netlist simulation, SimpliFI captures realistic timing
fault manifestation in response to clock glitches. Although the BRISC-V implementation
presented in this paper does not directly support other injection mechanisms such as voltage
glitches and EM pulses, SimpliFI could be extended to support them in order to meet the
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injection method coverage of VerFI in Table 1. At the software level, SimpliFI determines
accurate faulty output responses for both individual instructions and full applications,
but is limited in its ability to continuously track software-level faults throughout execution.

3. Simulation Framework

The current fault evaluation methodologies discussed in Section 2 each highlight the
important aspects of effective fault injection analysis. Our Simulation Methodology for Em-
bedded Processors to Learn the Impacts of Fault Injection (SimpliFI) is a general framework
that supports the best capabilities from current methods. By combining physically-accurate
fault manifestation and hardware-level propagation analysis with a focus on software-
level evaluation, SimpliFI is the first publicly-available methodology the supports realistic,
design-time evaluation software fault vulnerabilities. We introduce SimpliFI here as a
collection of design principles, functional requirements, and additional features that can be
implemented as an automated tool for different platforms. The end of this section briefly
describes an implementation of the framework the BRISC-V platform using Xilinx Vivado
design tools.

3.1. Design Space Exploration

We encapsulate the capabilities of SimpliFI within three main design principles that
can apply to any device and embedded systems development toolchain. Each of the
design principles contributes towards SimpliFI supporting accurate fault modeling and
propagation across the entire fault manifestation stack. By retaining both software and
hardware-level context, SimpliFI covers the full range of fault evaluation capabilities
that other current methods only partially support. Furthermore, these design principles
describe only the necessary features of SimpliFI, leaving room for extra components and
evaluation capabilities that may be valuable when implementing the framework for a
particular target platform.

1. Simulate Realistic Fault Manifestation—Using a post-layout netlist gives SimpliFI
access to physical circuit properties that are critical for modeling realistic fault mani-
festation. For example, the SDF file of a post-layout netlist can provide device-specific
signal propagation delays which enable the framework to model timing-based faults.
While VerFI uses a synthesized netlist of device components, the benefit of having
hardware-level information is lost by using a software representation of the circuit.
Retaining physical information about the device is a key requirement that guarantees
that realistic faults are considered during evaluation.

2. Capture Hardware Fault Propagation—In order to determine how the simulated
faults impact the processor state, hardware-level signals must be tracked so that
faulty software-level outcomes can be traced back to corrupted hardware state bits.
While physical circuit properties are already required by the fault manifestation
design principle, this fault propagation principle requires that the hardware state be
actively tracked during execution, and not just during fault injection. An easy way of
achieving this is to use gate-level timing simulation with the post-layout netlist, that
way signal timing is maintained for design principle 1 and all hardware signals are
available and accurate for hardware-level analysis.

3. Support Software-Level Analysis—The final results should be tailored towards eval-
uating software-level behavior. Therefore, SimpliFI implementations must be able
to collect software-relevant state at the end of a test, including processor registers,
the program counter, and the final processor hardware state. These results should
contain at least as much information as what can be collected with physical device
testing [11,12]. In conjunction with design principle 2 the software-level data collected
by SimpliFI gives users more information than what is possible with physical fault
testing methods, where the microarchitectural state is inaccessible.

As shown in Figure 2, SimpliFI consists of two main parts: an outer test layer and
inner hardware simulation core. The hardware simulation core runs gate-level simulations
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of the post-layout netlist and collects hardware-specific fault injection results, while the
outer layer supports software-level analysis and test management. This hierarchy mimics
the nature of the hardware–software relationship; in reality, software is just an advanced
configuration of the hardware, and the hardware is the entity that does computational
work. The inner and outer layers of the framework together support analysis of both
simple instruction sequences and full programs. Evaluating short instruction sequences
can aid the user in characterizing general fault vulnerabilities in the embedded processor,
which is akin to studies that use physical testing to characterize a device’s fault response
behavior [12]. However, SimpliFI adds another dimension to characterization results by
analyzing how faulty bits manifest and propagate through the hardware. Testing full
applications aids the user in evaluating realistic fault vulnerabilities in critical security
software. Examples of these two uses for the framework are discussed in Section 4. For the
purposes of this study, SimpliFI is only tested and implemented for evaluating clock
glitch faults. However, Section 3.1.2 discusses how additional injection techniques can be
modeled in the same framework.

Program
Integration

Program
Compilation

Log Parsing /
Analysis

Hardware
Simulation

Core
Fault Evaluation

Results

Simulation
Fault Script

Hardware
State Log

Device Netlist

User Fault
Configuration

Target Program

Fault Test
Generation

Programmed
Netlist

Figure 2. High-level depiction of the SimpliFI framework.

3.1.1. Outer Framework: Software-Centric Control

The outer layer of SimpliFI is responsible for building the device simulation environ-
ment for a specific program, generating a complete set of fault test cases, and analyzing
data collected during simulation. The first step of the outer framework compiles user test
programs into binaries that can run on the embedded processor. To support both instruction
sequence and application testing, SimpliFI accepts either a main assembly file or main C
program file. The exact compilation process is highly device and program dependent and
is therefore left as an implementation detail. Regardless of compilation style, a compiled
binary of the program is necessary for simulating the target platform running the test
program. Integrating the program with the simulated netlist is also platform dependent.
In some cases, this may need to be an extra step in the simulation build process, while in
other cases the program may need to be loaded during the simulation phase. An example
where the dedicated integration step is necessary is when an FPGA-based processor stores
a program in an internal memory primitive, such as Xilinx Block RAM [22]. The SimpliFI
prototype implemented for the BRISC-V platform in Section 3.3 uses simulation build-time
scripting to handle this program storage format.

Test Automation

Automated fault simulation is a key feature of SimpliFI, allowing users to fully config-
ure multiple fault injection tests on selected program target points. To increase the flexibility
and impact of the simulation framework, SimpliFI supports test configurations that inject
a range of faults on multiple target instructions and even supporting fault simulation on
specific pipeline stages during instruction execution. To clarify the difference between
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user-designed tests, program target points, and individual fault injection events, we adopt
the following terminology:

• Test—A user-defined program and configuration pair that instructs the framework
to test different fault injections at multiple points in the target program. A test may
encapsulate multiple subtests.

• Subtest—A subtest is one part of a larger test case which specifies a start point, target
point, and multiple fault injection trial parameters. The target and start points are
described below, and take different meanings when testing instruction sequences vs
full applications.

• Fault Injection Trial—A singular execution of the test program with one fault injected
during a specific clock cycle.

The outer layer of the framework creates a fault simulation script for the simulation
core which specifies all of the fault injection trials that must be run. The simulation core
expects a full specification of the following parameters for each subtest:

• Program Type,
• Start Point,
• Target,
• Observe Point,
• Starting Glitch Period,
• Ending Glitch Period, and
• Glitch Period Step.

The three parameters related to the clock glitch width hold the same meaning for
instruction and application tests, while the other parameters vary in purpose for the two
test types. In an instruction test, the start point parameter indicates the memory address of
the instruction being evaluated, and the target parameter specifies the instruction execution
cycle that should be faulted. This allows the user to create multiple subtests to evaluate
the fault response of different processor pipeline stages. In these tests, the observe point
specifies the number of clock cycles after the start point when the instruction output
should be recorded. For most instructions, this is the number of clock cycles required to
process the instruction. However, since the full device memory is not recorded by the
simulation core, the observation point could be set to a later time in the case of memory store
instructions, where the value written into the memory can be read back into a processor
register for observation.

Since applications have significantly more complicated program flow than a short
sequence of instructions, the address of an instruction is not a sufficient identifier for when
the simulator should inject a fault. Instead, the test program can be instrumented using a
unique macro or function that is called when the simulator should prepare to inject the fault.
In this case, the start point parameter identifies the memory address of the macro, and the
target identifies where the target instruction is following the macro. The observation point
is determined in a similar method to the start point.

To simplify user configuration of the simulation tool, SimpliFI defines a custom and
flexible file format for the user to specify test configurations. Instead of fully specifying
all parameters for every subtest, the user can set global parameters that apply to every
subtest, and then create shorthand entries for different instruction and cycle subtests.
Before SimpliFI starts the simulation core, it converts the user configuration file into a fully-
specified fault simulation script that the simulation controller can understand. An example
user configuration file is provided in Listing 1, where the GStep, GStart, GEnd, Observe
Point, and test type are set for all subsequent subtests. With the “@@” characters acting as
subtest delimiters, this configuration file will create subtests for the instruction at address
2C for stages 0 through 7, and the same for the instruction at address 4C.
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Listing 1. Sample user fault configuration file.

SEQ

GStep: 0.5
GStart: 12
GEnd: 4
ObservePoint: 7

StartPoint: 2c
Target: 0,1,2,3,4,5,6
@@

StartPoint: 4c
Target: 0,1,2,3,4,5,6
@@

Output Processing

SimpliFI analyzes both hardware fault propagation and software-level outcomes
by leveraging the hardware state information recorded during simulation. The post-
processing performed on the data supports the same types of analyses as physical device
testing, where program and instruction outputs are inspected for errors. For instruction
sequences, the goal of post-processing is to determine how the instruction output and
hardware state are impacted by different fault parameters, with faults being injected at
different stages across multiple subtests. SimpliFI computes the Hamming distance (HD)
between actual execution outputs, and the expected values observed during a clean run
of the same program. The HD analysis identifies all registers that were corrupted in at
least one subtest and calculates how each fault injection trial affects the final value. For full
application tests, the same final register data is collected as in the instruction tests, but only
the registers which hold program outputs are used to determine the application-level
impact of fault injections.

Although its focus is on program-level effects, SimpliFI can analyze how fault propa-
gation through the hardware state corresponds to different program outcomes. While some
software-level corruption may primarily be the outcome of software-level error propaga-
tion, it is possible that some software outcomes consistently correspond to the same types
of hardware-level fault propagation. These main analysis features are only a starting point
for the output processing stage, and users can implement their own metrics and analytic
methods to extend the results of the SimpliFI framework.

3.1.2. Inner Framework: Hardware Simulation Core

The inner layer of the SimpliFI framework is responsible for injecting faults into the
simulated hardware and tracking the hardware state both immediately after the fault and
at the end of execution. This is accomplished through a post-layout netlist simulation
testbench along with an extra level of control scripting that interprets test cases as shown
in Figure 3.

By using post-layout gate-level simulation, SimpliFI incorporates timing properties
of the device signals into simulated fault manifestation. There are numerous hardware
simulation tools that support physical netlist timing simulations, which are developed
to efficiently evaluate hardware [23,24]. While it is possible to write a custom simulator
that has built-in fault support, such as VerFI, simulating with a dedicated hardware tool is
likely faster and more efficient [17].
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Figure 3. SimpliFI hardware simulation core diagram.

The simulation core control level is responsible for reading each subtest configuration
and loading the parameters into the hardware testbench. Modern hardware simulators
support testbench intervention like this at runtime, allowing the simulator to be invoked
once and restarted multiple times to run different fault injection trials. Before running the
fault injection trials, the controller runs an initial clean test for each configuration to gather
the expected values and runtime. This baseline data is necessary for effective fault response
analysis during output processing. The testbench functionality shown in Figure 3 can
be achieved with a SystemVerilog testbench which supports high-level modules reading
values from lower levels of the simulated hardware. This feature allows the internal state
to be recorded at arbitrary time points during simulation.

3.2. Fault Modeling

A critical part of SimpliFI is its ability to inject realistic faults into the hardware.
As stated earlier, this study focuses on simulating clock glitch fault attacks, although other
injection mechanisms can be simulated as well. By using gate-level simulation, the timing
information required to emulate clock glitch attacks is automatically included in the simu-
lated netlist behavior. During gate-level simulation, gate outputs are updated according to
their propagation delays defined in an SDF file.

With signal propagation time enforced by the simulator, the testbench can emulate
a clock glitch by manually shortening the clock period for one cycle and then returning
to the correct clock frequency. If the period is not short enough to violate signal timing,
no faulty bits are latched into the registers and the simulation will continue to run as if no
fault was injected. However, if the clock period does cause timing violations, then faulty
bits may manifest in the hardware state and propagate through the program. While any
violation of the critical path constitutes a successful clock glitch event, the resulting faulty
bits are caused by two distinct timing events.
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To demonstrate the two event types, consider the circuit shown in Figure 4a. The XOR
and OR gates both have propagation delays from input to output, which for the purposes
of this example are just considered to be greater than 0 nanoseconds. The timing diagram
in Figure 4b shows signal propagation in response to the input {a, b, c} changing from
{0, 1, 0} to {1, 1, 1}, with a transitioning before c. If the clock edge occurs at the end of the
s0 window in Figure 4b, the correct e value is latched into the register. If the clock edge
occurs at the end of the s1 window, a setup time violation occurs due to e transitioning
during the setup windows. In this case, the register state is unpredictable and may even
become metastable. Finally, if the clock edge occurs in s2, there is no setup time violation
since the data does not change in the sampling window. However, the temporary 0 value
on e will be latched into the register. While both of these events count as timing violations,
one of them violates the setup time, and the other causes an early incorrect sample.

D Q
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z k

s0s1s2

(b)
Figure 4. Examples of register sampling conditions in a sequential circuit: (a) example circuit; (b) timing diagram of register
input sampling conditions. The signal labels a–e in (b) correspond to the circuit wires in (a). Box s0 represents a regular
clock sample point, and s1 and s2 represent early sample points with s1 causing a setup time violation.

Hardware simulators naturally handle incorrect sampling events, since the propa-
gation delays are modeled correctly so that signal e appears as a 0 at sampling point.
However, the setup time violation event is more complicated since setup time violations
in a real circuit can lead to register metastability. Current metastability models rely on
analog characteristics of the register and data signal to characterize metastable flip-flop
outputs with some level of accuracy [25–27]. Since digital gate-level simulation abstracts
away the underlying device physics, there is not enough information to simulate potential
metastable behavior using the existing models.

However, SimpliFI supports a random metastability model as a best effort to simulate
setup time violations. Instead of latching the data signal value at the exact time of the
clock edge, a random value is assigned to the register state. While metastability is not a
fully random phenomena, this technique acknowledges that unpredictable values may
be introduced into the hardware state as a result of clock glitches that cause setup time
violations. This random model has been used before as a technique for acknowledging
metastability in digital simulations [28].

Injection Mechanism Extensions

The underlying physical effect SimpliFI leverages for fault injection is timing viola-
tions, with the injection technique being a clock glitch. Therefore, other timing-based faults
could be added to the framework for future extensions, including voltage-based faults
and even EM faults. Similar to clock glitch faults, voltage-based faults also disrupt circuit
timing to inject errors into the state. Figure 5 shows example clock and voltage glitch fault
effects on a register. A voltage glitch attack increases the propagation delay of data signals,
leading to longer critical paths. Figure 5c shows this, with the normal data transitions from
the clean sample taking a longer amount of time to update in the faulted version. In this
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example, the clock and voltage glitches can lead to setup time violations or critical path
violations. In both cases, the rising clock edge occurs closer to the data transition times; the
clock glitch moves the clock edge closer to the data, while the voltage glitch moves data
transitions closer to the clock edge.

data

clock

output

a

b

(a)

data

faulted clock

output

a

b

(b)

voltage glitch data

clock

output

a

b

(c)
Figure 5. Signal sampling events caused by different fault injection mechanisms: (a) regular data
signal sampling with no fault, (b) early data signal sampling due to clock glitch, and (c) sampling of
a delayed data signal due to a voltage glitch. The a–b lines emphasize that the data input before the
clock edge is latched to the output after the edge.

These shared properties are one potential way to achieve voltage glitch simulation in
the SimpliFI framework. The clock glitch mechanism already moves the clock edge closer
to the data transitions, and could be used in the same way to simulate voltage glitches.
The key challenge that needs to be addressed is calculating how the clock glitch width maps
to a particular voltage glitch. More work would be required to determine this relationship,
but this is a potential starting point for supporting more injection techniques. Voltage
underpowering attacks have similar effects as voltage glitch attacks, so the mechanism
for voltage glitches could be applied for a longer period of time to simulate voltage
underpowering. While EM faults are more complicated than clock and voltage attacks,
the underlying fault manifestation is caused by setup time violations with data signals at the
positive supply voltage [29]. Since SimpliFI already supports basic metastability modeling
in setup violations, EM faults could be integrated into the framework by modifying data
signals in the device that would realistically be affected by EM pulses. This is one extension
for future work on SimpliFI that would greatly increase the versatility of the framework
beyond its current abilities.

3.3. Integration in Embedded Flow

We implemented SimpliFI for the BRISC-V platform created by the Boston University
Adaptive and Secure Computing Systems Lab [5,6]. This implementation demonstrates
a practical integration of the SimpliFI methodology into an embedded toolchain, but the
generic, high-level framework is suitable for other platforms as well, regardless of the
particular development tools. To apply SimpliFI to another device, a gate-level netlist
would be required in addition to changes in the BRISC-V implementation scripts. BRISC-V
is an open-source RISC-V processor platform that allows users to customize a proces-
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sor implementation with different pipeline lengths, memory hierarchies, and memory
sizes. The customization used for the SimpliFI prototype had a 7-stage pipeline and a
single memory that stores both the program code and data. Figure 6 depicts the selected
processor pipeline.

   Instruction 
   Decode 

 

Reg

Execute  Writeback 

Memory

     Instruction 
    Fetch

    Memory
    Access

Memory

     Memory 
    Receive

Figure 6. BRISC-V 7-stage pipeline.

We implemented the BRISC-V processor for Xilinx FPGAs, and developed the frame-
work implementation around the Xilinx Vivado Design Suite. When building the BRISC-V
processor in Xilinx Vivado, the original netlist did not utilize Block RAM due to an incom-
patible memory access process in the Verilog code. To bypass this and achieve a netlist
that uses Block RAM for memory, we modified the original memory access code to match
the Xilinx memory inference template. The main functional difference between these two
versions is that when the memory is written to, the write value propagates to the output
bus. This did not cause any execution errors when testing large applications to verify
validity. Otherwise, the changes to the enable logic preserve the original behavior, but by
using only one if statement per port as required by Vivado Block RAM inference.

Figure 7 depicts the various steps in the SimpliFI tool flow that work together to
build an automated simulation environment for user test cases. One critical phase of this
flow is the process of converting a user test program into a Xilinx simulation snapshot.
This implementation of SimpliFI uses a series of scripts to convert the compiled binary
into Xilinx Block RAM initialization parameters, which are then applied to a copies of the
post-layout netlist to produce device images that have the exact same circuit but different
programs loaded in them. By doing this, SimpliFI ensures that the software evaluation
results for all test cases accurately represent realistic fault responses of the original device
netlist provided by the user.
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Figure 7. Dataflow diagram of the BRISC-V SimpliFI framework implementation.

4. Results

We used SimpliFI to characterize software fault vulnerabilities of programs running
on the BRISC-V processor synthesized and implemented for the 28 nm programmable logic
on the Xilinx Zynq xc7z020clg484-1 device. Therefore, the detailed fault response data
is dependent on the particular propagation delays for the specific processor layout and
device timing properties. We characterize the fault response at two levels: the instruction
level and the application level.

4.1. Characterization at the Instruction Level

Using simple instruction sequences to characterize an embedded processor’s fault
response has been shown to be an effective technique during physical device testing [10–12].
SimpliFI supports this technique, and provides benefits over physical testing by enabling
rapid evaluation through simulation and collecting hardware state information during
execution. The goal of this type of evaluation is to build a knowledge base or model of
how any type of instruction may be vulnerable to fault attacks. Therefore, all aspects of
an instruction are of interest: opcode, addressing mode, operands, data, etc. An evaluator
generally wants to know how each of these instruction components contribute to overall
fault response. Acquiring this information essentially provides insight into how the hard-
ware that implements each component is vulnerable to fault attacks. To fully characterize a
device, tests are designed to isolate microarchitectural components to evaluate their fault
responses, and to generalize the common fault vulnerabilities and behavior exhibited by
instructions with similar parameters.

To demonstrate SimpliFI’s instruction characterization capabilities, we characterize
ADD, LW (load word), and JALR (jump-and-link with register) instructions from the RISC-V
32 bit integer ISA (RV32I). These three instructions together represent the range of capabili-
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ties on a load-store architecture, where most instructions are categorized as performing
arithmetic and logic, memory access, or control flow functions. Although these three
instructions are representative of the full ISA, the same analysis can be performed for all
instructions. Within each instruction, the effect of different destination registers, source
registers, source orderings, register values, and immediate values are evaluated. To do
this, a separate test is created for each instruction component that isolates the behavior
for the component of interest. To test fault effects on the destination register, we simulate
faults on multiple copies of the same instruction with varying destinations. The same
approach is used for the other components of interest. For the purposes of this evaluation,
the following terms apply:

• Instruction Component—A portion of the specification for an instruction executed by
the processor. Examples of instruction components include the destination register,
source registers, and immediate values.

• Instruction Test—A collection of SimpliFI tests that help characterize the behavior of a
specific instruction in response to different fault attacks.

• Instruction Component Test—A specific SimpliFI test that is designed to isolate the
impact that different microarchitectural blocks have on the instruction fault response
by changing one component of the instruction.

• Fault Response—The behavior of faulty bits in the processor in response to different
fault attacks. The results may refer to the fault response of the hardware state as a
whole, or of the test outputs. For the test outputs, response is usually qualitatively
defined in terms of how the number of faulty output bits changes as a function of
the fault injection parameter. For example, a monotonic output response means that,
in general, the number of faulty bits in the outputs consistently increases or decreases.
An oscillatory output response means that the number of faulty bits alternates between
high and low counts as the clock glitch width changes.

• Fault Sensitivity—The range of clock glitch widths which induce erroneous bits in the
fault response. This term can apply to both the hardware state fault propagation and
the test outputs.

• Fault Intensity—The number of errors induced in the fault response by a fault injection
attack. This term can apply to both the hardware state fault propagation and the test
outputs.

For each instruction component test (e.g., destination and source 1), 4 instances of
the same instruction with varying selections of the target component were evaluated.
To evaluate each of these components using SimpliFI, a unique test program was written
for each instruction component. Listing 2 provides the specific test programs for evaluating
the impact of the first source register in ADD instructions. The target instructions are padded
with NOPs to ensure previous and future test setup instructions do not interact with the
target instruction execution. Furthermore, each subtest was conducted with faults being
applied at each execution stage, with clock glitch widths ranging from 12 to 2 nanoseconds
in 250 picosecond increments.

ADD Instruction

Figure 8 shows the results from injection clock glitches during different stages of
an ADD instruction. The fault evaluation analysis calculates the Hamming distance (HD)
between the results of clean simulations with no faults and the results of fault injection
trials. The top graphs in Figure 8 and subsequent figures plot the number of faulty bits
in the output register in response to multiple clock glitch widths. The bottom heatmaps
depict how the number of faulty bits in the entire hardware register state changes as the
instruction executes. In each heatmap, the lowest point on the vertical axis shows the
number of faulty bits in the cycle immediately following fault injection, and time proceeds
up the vertical axis until the instruction finishes execution. Since the state only contains
faulty bits after the fault is injected, previous cycles of execution are omitted from the
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heatmaps. For example, the hardware state fault heatmap in Figure 8c starts at execution
cycle 3 since the fault was injected during stage 2.

Listing 2. An example instruction sequence test program that focuses on evaluation of the ADD source
1 instruction component.

li x23,0x12345678
li x31,0x12345678
li x17,0x12345678
li x2,0x12345678
li x8,0x12345678
(7 nops)
add x5,x23,x8 # Target 1
(7 nops)
add x5,x0,x0 # Clear
(7 nops)
add x5,x31,x8 # Target 2
(7 nops)
add x5,x0,x0
(7 nops)
add x5,x17,x8 # Target 3
(7 nops)
add x5,x0,x0
(7 nops)
add x5,x2,x8 # Target 4
(7 nops)
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Figure 8. Final register corruption and state error propagation for glitch attacks on various ADD instruction execution stages:
(a) stage 0—instruction fetch, (b) stage 1—instruction receive, and (c) stage 2—instruction decode.
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The instruction output plots in Figure 8 show that the impact of identical faults on the
instruction output varies depending on when the fault is injected. When faults are injected
at the beginning of execution in stage 0, only clock glitch widths between 7.25 and 5.5 ns
result in corrupted output data. However, faults injected in stage 2 affect instruction output
as long as their glitch widths are shorter than 10.5 ns. The instruction fault responses give
an indication of how different faults will affect software execution since the instruction
outputs are ultimately relevant to software behavior.

The hardware state fault propagation heatmaps instead give insight into how faults
affect processor execution even when they fail to affect instruction outputs. The hardware
state fault propagation plots in Figure 8 always exhibit erroneous bits remaining in the
circuitry up until the end of execution where corrupted output data appears in the registers.
For example, a high volume of state corruption can be seen throughout execution in
Figure 8a in response to faults that cause corrupted outputs. Glitches in the range of 7.75 to
5.75 ns induce hardware state errors that propagate through to the output, although only
glitches shorter than 7.25 ns affect the data registers and glitches between 7.75 and 7.25 ns
only affect the program counter. There is also significant error propagation from glitches
shorter than 3 ns, which only affect the program counter by the end of execution.

However, attacks during stages 1 and 2 have significantly different effects on the
hardware. Figure 8b,c show that every tested glitch width resulted in at least 50 corrupted
state bits within the third subsequent execution cycle, but that the glitches applied in stage
1 result in up to 85 state errors. However, none of these errors propagate to the data outputs,
and only 7.75 to 5.25 ns glitches in stage 2 resulted in program counter errors. Another
fault behavior in these results is that certain faults induce few errors during injection, while
others induce significantly many errors. One trend shown by all of the hardware fault
propagation heatmaps is that glitches resulting in few immediate errors tend to cause
amplified state corruption a few cycles later. These gradually amplifying faults seem to
have the greatest impact on instruction outputs. Conversely, faults that immediately cause
significant state error suddenly disappear two clock cycles before the end of execution.

In most of the tests, only the targeted destination register and the program counter
are affected by fault injection. However, clock glitches with 4.25 ns widths applied in
stage 1 not only affect the target destination register, but other registers as well. This is
shown in Figure 9, where faults were injected on the instruction decode stage of multiple
ADD instructions each targeting a different destination register. The instruction targeting
register R15 also modifies R11, and the instruction target R5 modifies R1. This behavior
was only observed in response to faults during stage 1. Furthermore, the final erroneous
bits in the destination registers vary slightly from one instruction to another. For 4.25 ns
glitches injected in stage 1, instructions targeting destinations R2 and R25 result in slightly
more erroneous bits. These anomalous behaviors for stage 1 faults call attention to the
underlying circuitry for the pipeline stage. It may or may not be a coincidence that targeting
registers R5 and R15 results in corrupted values in registers R(5−4=1) and R(15−4=11),
while targeting R2 and R25 results in additional corruption in the intended destinations
for the exact same fault attack. The important observations here are that (i) data can be
written to the wrong destination register, and (ii) that the selected destination register has a
minimal but non-zero impact on the faulty bits that propagate to the end of execution.

When testing different source registers, SimpliFI revealed that the selected source
register has a greater impact on faulty instruction outputs compared to the destination
register. The impact from faulting the instruction decode stage of ADD instruction induced
the response shown in Figure 8c for all destination register selections. However, the re-
sponses for the same exact faults vary when selecting different source registers, as shown
in Figure 10. While the responses have similar monotonic structures, the exact number of
faulty output bits changes depending on the first source register. The impact of the second
source register is lesser than the first. However, the instruction using R2 as the second
source register was not affected by 10 to 8.25 ns glitches (Figure 10b).
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destination registers.
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Figure 10. Final register corruption for glitch attacks on stage 2 (instruction decode) of ADD instructions targeting each of the
source operand components: (a) results from testing source operand 1; (b) results from testing source operand 2.

Furthermore, the first and second source registers’ impacts on the fault response
exhibit opposite behavior at the extreme ends of their fault sensitivity ranges. In Figure 10a,
fault responses to glitches longer than 4 seconds are influenced by the first source register,
while Figure 10b shows that responses to glitches shorter than 3 ns are influenced by the
second source register. The different fault responses observed when testing different source
1 and source 2 operands indicate that the hardware that either pipelines the source selections
or that propagates values from the source register to the ALU is unbalanced. The hardware
for source 1 appears to be more sensitive since fault responses fluctuate significantly more
when targeting the first source operand compared to the second. However, the logic paths
that select R2 for the second source may be unbalanced as indicated by the different fault
sensitivity shown in Figure 10b.

LW Instruction

Results from testing the LW instruction showed that different classes of instructions
have unique responses to fault attacks. Unlike the ADD instruction, faults during the instruc-
tion fetch did not result in faulty outputs for the LW instruction, and the fault responses to
attacks during the instruction decode varied between the two classes. Even though the
same destination and source registers were selected for both classes, the way that the mi-



Cryptography 2021, 5, 15 19 of 25

croarchitecture handles decoding of the two instruction types leads to different instruction
fault responses. In particular, faults on the decode stage of LW instructions corrupted more
than one unintended register in some cases, where faults on the ADD instruction corrupted at
most one additional register. Additionally, the LW exhibited vulnerabilities to faults during
the memory receive stage (stage 5) of the BRISC-V pipeline, which was not a vulnerable
stage for the ADD instruction. This is expected since arithmetic instructions do not require
further memory access after the instruction fetch. One unexpected microarchitectural
effect was revealed in the LW results, where the first instruction had a different output fault
response than subsequent sections. When store instructions were placed in between the
target LW instructions, all tested instances of the LW instruction exhibited nearly-identical
fault responses.

JALR Instruction

Testing the JALR instruction demonstrated further impacts of the microarchitecture on
instruction fault responses. The JALR instruction computes the target program execution
address by adding an immediate value to an address obtained from a source register,
and also stores the return address in a selected destination register. The fault response of
the program counter matched closely with the fault response of ADD instruction destination
registers for faults injected during the instruction decode and execute stages. This is likely
because the ALU is used in similar ways during ADD and JALR registers. For example, both
of these instructions obtain their first operand from a source register during the decode,
and use a similar add operation to compute their final value. On the other hand the fault
response of the return address destination register in JALR instructions was similar to that
of the ADD destination register for faults during the instruction receive stage, but not during
the decode or execute stage. This behavior is also attributable to the microarchitecture,
where the ALU used in the execute stage has logic for computing the return address which
is separate from the logic for adding two full operands together. Finally, the destination
registers for both of these instructions share the exact same fault response for faults during
the writeback stage (stage 6), since the only event that happens is the final value being
written into the destination register.

The raw program counter values collected from the JALR test results indicated exactly
how flow control could be violated using fault attacks. Faults during the instruction fetch
induce faulty bits in the hardware state but they do not propagate to the new program
counter value. In general, the precise timing of a fault during the instruction decode stage
determined the type of effect that the fault had on flow control. Some faults resulted in
skipped jumps, which is in line with traditional models. Other faults reset the program
execution to start at address 0, after which the processor would sometimes successfully
complete the original jump, but other times remain at the program start. The former case is
previously unobserved behavior which would enable an attacker to execute instructions
from the start of the program, but then allow the program to continue executing from
the originally-intended function address. Finally, the remaining instruction decode faults
resulted in other non-zero corruptions of either the target address, return address, or both.

Summary

A high-level summary of each instruction’s susceptibility to faults injected in different
stages is given in Table 2, and the impact of each component (destination, source, immediate
value, etc.) on the fault response is summarized for all three instruction types in Table
3. SimpliFI is able to provide detailed information about how any fault applied during
execution will affect instruction behavior by analyzing both the hardware fault propagation
and final instruction outputs. The tests discussed in this section provided more fault
response information than has been obtained with other techniques, and in some cases
highlighted fault outcomes that are rarely seen in practical fault studies.
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Table 2. Fault impacts on final instruction outputs for multiple instruction classes and pipeline
execution stages.

Instruction Corrupted Output In...
Target Stage

0 1 2 3 4 5 6

ADD
Intended Reg X X X X X

Other Reg X

LW
Intended Reg X X X X X X

Other Reg X X

JALR
Intended Reg X X X X X

Other Reg X

Table 3. Impact of instruction components on the final output fault response.

Instruction Component
Target Stage

0 1 2 3 4 5 6

ADD
Destination • ◦ ◦

Source 1 •
Source 2 ◦ • ◦

LW
Destination • • ◦

Source •
Immediate ◦ • ◦ ◦ ◦

JALR
Destination • ◦

Source ◦ ◦ ◦
Immediate ◦

◦ = minimal impact;• = significant impact.

4.2. Characterization at the Application Level

SimpliFI is also able to characterize the effects of faults on full applications running
on the target platform. The goal for application-level characterization is determine broad
effects that a given fault will have on the program. Traditional software-level fault outcome
characterizations place faults into three main categories based on their program-level effect:

1. Unsuccessful Fault—The fault caused no change in program behavior.
2. Fatal Error—The program crashed.
3. Successful Fault—The program produced faulty outputs.

However, SimpliFI’s access to hardware-level fault propagation enables deeper insight
into how the fault affects the processor evern when the application is not affected. Therefore,
application-level characterization with SimpliFI expands the possible outcome categories
to consider 6 different behaviors:

1. Silent Fault—The hardware state was not affected by the fault.
2. Unsuccessful Fault—The hardware state was affected, but the fault caused no change

in program behavior.
3. Fatal Error—The program did not complete within 500 clock cycles beyond the

expected execution time.
4. Output Corruption—The program produced faulty outputs.
5. Time Difference—The program execution time was different than expected, but no

outputs were affected.
6. Output and Time Corruption—The program both produced faulty outputs and exe-

cuted in an unexpected number of cycles.

We present the characterization of an Advanced Encryption Standard (AES) program
running on the BRISC-V processor. Differential Fault Analysis (DFA) attacks on AES
have been shown to be effective for a number of points in the algorithm. Two possible
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points are after the first add round key operation, and during the last round of encryption
before the mix columns operation [30,31]. We use the reduced t-table, unprotected AES
implementation included as the reference cipher in the NIST lightweight cryptography
benchmarking suite [32]. This implementation originally comes from the MbedTLS library.
The code was instrumented for SimpliFI fault simulation by calling __SimpliFI_Start
and __SimpliFI_Observe macros to mark the start of the injection point region and final
output observation point, respectively. Two points in the algorithm were targeted: the
input of the first round following the round 0 add key transformation, and at the start of
the 9th round. The instructions around these points heavily consist of arithmetic and logic
instructions and only 1 or 2 memory instructions, but both points in the program have a
control flow instruction. Round 1 has a branch-on-greater-than instruction and round 9 has
a jump-and-link instruction. Clock glitches were injected at the start of each instruction,
with glitch widths ranging from 12 to 2 ns.

A simple breakdown of the test outcomes for attacks on rounds 1 and 9 of the AES
implementation is given in Table 4. In general, round 1 attacks caused more fatal errors than
round 9 attacks, while round 9 attacks caused more output corruption with and without
time differences. This is intuitive from an algorithmic point of view, since faults injected
earlier in the program have a longer amount of time to cause more errors throughout
execution. The plots in Figure 11 show much more detail about which exact faults caused
these outcomes. Comparing the vertical patterns to the horizontal ones reveals that different
glitch widths tend to have similar effects on program execution no matter which instruction
they were applied to. Conversely, the impact of different faults applied to the same
instruction varies significantly as the glitch width changes.

Table 4. Breakdown of AES fault simulation results by outcome category.

Location
% of Total Test Outcomes

Silent Unsuccessful Fatal Time
Difference

Output
Corruption

Output+Time
Corruption

Round 1 4.27 45.12 25.40 2.44 10.98 11.79
Round 9 4.27 49.19 11.38 1.63 18.90 14.63

The results in Figure 11 also show how the same glitches have different effects on
rounds 1 and 9. While the instructions executed during each point are slightly different,
there is enough similarity to compare the results. For example, the [12,10] ns range has
nearly the same effect when applied both rounds, except for a few extra execution time
inconsistencies and fatal errors at 11.75 and 10.5 ns. Some interesting features of how the
results differ are seen at [9.75,9.5] ns and [8.5,8] ns. A two-column region of fatal errors
at 9.75 and 9.5 ns in Figure 11a turns into mostly output+time corruptions in Figure 11b.
However, next to this at 9.25 and 9.0 ns, another region of fatal errors turns into mostly
unsuccessful faults. Similar to the first region, the unsuccessful faults from 8.5 to 8.0 ns in
the round 1 tests turn into mostly output+time corruptions with a few fatal errors.

The fault responses from on round 9 faults are ideal for an attacker compared to
round 1. Since the adversary wants to collect faulty outputs, the round 1 fatal errors are
undesirable. In round 9, the attacker would have a greater chance of obtaining faulty
outputs and less of a chance of crashing the device. This insight into the program behavior
is valuable for software engineers since it can inform them about which points in the
program are more vulnerable. With these results, the software engineer would likely
focus more time securing the round 9 operations, and focus less on round 1 due to the
high number of fatal errors. However, the software fault responses during round 1 are
still pertinent for fault evaluation, particularly if the attacker may utilize fault sensitivity
analysis as proposed by Li et al. [33].
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Figure 11. Program impacts of glitch attacks on the starting instructions of different AES rounds: (a) program outcomes
from faults injected in round 1; (b) program outcomes from faults injected in round 9.



Cryptography 2021, 5, 15 23 of 25

5. Conclusions

With extensive research into fault attacks over the years, embedded security re-
searchers and analysts have a strong collective knowledge of what fault attacks are capable
of, and how they occur. We are at a point where this vast amount of knowledge can
be integrated into automated techniques for hardware and software fault evaluation,
and this study demonstrates that with the introduction of SimpliFI. Even with a simple
injection mechanism, SimpliFI reveals device-specific microarchitectural effects on software
fault vulnerabilities. Careful design at the hardware level may be able to mitigate these
instruction-dependent vulnerabilities for clock glitch faults; such changes may also conse-
quentially dampen the effects of other fault injection mechanisms as well. As discussed
earlier, voltage faults can be emulated with the SimpliFI framework due to timing violation
similarities between voltage and clock attacks. While integrating voltage faults into the
framework would be an improvement, adding the ability to simulate EM faults would
greatly increase the power of SimpliFI. Since EM faults can be considered as sampling
faults, the metastability simulation feature of SimpliFI could be a key component for
implementing simulated EM faults.

With regard to software-level analysis, the BRISC-V processor evaluation presented
in this article contains an overwhelming amount of data that could be synthesized into
insightful information about the software and processor itself. While this was outside
the scope of this study, developing advanced analytic extensions for data collected with
SimpliFI would be another strong improvement. This would enable near-fully-automated
characterization of processor and software fault responses. Taking this one step further,
the information obtained from the extended SimpliFI results could be used to build a highly-
detailed, device-specific fault model that integrates with ISA-level simulators such as FiSim.
With access to so many fault evaluation methods, the embedded security community
would benefit from studies that integrate tools together into powerful full-stack fault
analysis toolchains.

Author Contributions: Conceptualization, J.G. and P.S.; methodology, J.G.; software, J.G.; validation,
J.G.; formal analysis, J.G.; investigation, J.G.; data curation, J.G.; writing—original draft prepara-
tion, J.G. and P.S.; writing—review and editing, J.G. and P.S.; visualization, J.G.; supervision, P.S.;
project administration, J.G. and P.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This material is based upon work supported by the National Science Foundation under
Grant Num. 1503742.

Data Availability Statement: The data presented in this study are available in article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AES Advanced Encryption Standard
ALU Arithmetic Logic Unit
DFA Differential Fault Analysis
EM Electromagnetic
FPGA Field-Programmable Gate Array
HD Hamming Distance
ISA Instruction Set Architecture
SDF Standard Delay Format



Cryptography 2021, 5, 15 24 of 25

References
1. Riscure. Riscure FiSim; GitHub: San Francisco, CA, USA, 2020. Available online: https://github.com/Riscure/FiSim (accessed

on 1 December 2020).
2. Dureuil, L.; Petiot, G.; Potet, M.; Le, T.; Crohen, A.; de Choudens, P. FISSC: A Fault Injection and Simulation Secure Collection. In

Proceedings of the Computer Safety, Reliability, and Security—35th International Conference, SAFECOMP 2016, Trondheim,
Norway, 21–23 September 2016; Skavhaug, A., Guiochet, J., Bitsch, F., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2016; Volume 9922, pp. 3–11. [CrossRef]

3. Balasch, J.; Gierlichs, B.; Verbauwhede, I. An In-depth and Black-box Characterization of the Effects of Clock Glitches on 8-bit
MCUs. In Proceedings of the 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2011, Nara, Japan, 29
September 2011; Breveglieri, L., Guilley, S., Koren, I., Naccache, D., Takahashi, J., Eds.; IEEE Computer Society: Los Alamitos, CA,
USA, 2011; pp. 105–114. [CrossRef]

4. van Woudenberg, J.G.J.; Witteman, M.F.; Menarini, F. Practical Optical Fault Injection on Secure Microcontrollers. In Proceedings
of the 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2011, Nara, Japan, 29 September 2011; Breveglieri,
L., Guilley, S., Koren, I., Naccache, D., Takahashi, J., Eds.; IEEE Computer Society: Los Alamitos, CA, USA, 2011; pp. 91–99.
[CrossRef]

5. Bandara, S.; Ehret, A.; Kava, D.; Kinsy, M. BRISC-V: An Open-Source Architecture Design Space Exploration Toolbox. In
Proceedings of the 27th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), Monterey, CA,
USA, 24–26 February 2019; ACM: New York, NY, USA, 2019.

6. Agrawal, R.; Bandara, S.; Isakov, M.; Mark, M.; Kinsy, M. The BRISC-V Platform: A Practical Teaching Approach for Computer
Architecture. In Proceedings of the Workshop on Computer Architecture Education (WCAE), Phoenix, AZ, USA, 22 June 2019.

7. Bar-El, H.; Choukri, H.; Naccache, D.; Tunstall, M.; Whelan, C. The Sorcerer’s Apprentice Guide to Fault Attacks. Proc. IEEE
2006, 94, 370–382. [CrossRef]

8. Barenghi, A.; Breveglieri, L.; Koren, I.; Naccache, D. Fault Injection Attacks on Cryptographic Devices: Theory, Practice, and
Countermeasures. Proc. IEEE 2012, 100, 3056–3076. [CrossRef]

9. Yuce, B.; Schaumont, P.; Witteman, M. Fault Attacks on Secure Embedded Software: Threats, Design, and Evaluation. J. Hardw.
Syst. Secur. 2018, 2, 111–130. [CrossRef]

10. Moro, N.; Dehbaoui, A.; Heydemann, K.; Robisson, B.; Encrenaz, E. Electromagnetic Fault Injection: Towards a Fault Model on a
32-bit Microcontroller. In Proceedings of the 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2013,
Santa Barbara, CA, USA, 20 August 2013; Fischer, W., Schmidt, J., Eds.; IEEE Computer Society: Los Alamitos, CA, USA, 2013;
pp. 77–88. [CrossRef]

11. Proy, J.; Heydemann, K.; Berzati, A.; Majéric, F.; Cohen, A. A First ISA-Level Characterization of EM Pulse Effects on Superscalar
Microarchitectures: A Secure Software Perspective. In Proceedings of the 14th International Conference on Availability, Reliability
and Security, Canterbury, UK, 26–29 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; [CrossRef]

12. Trouchkine, T. SoC Physical Security Evaluation. Ph.D. Thesis, Université Grenobles Alpes, Grenoble, France, 2016.
13. Given-Wilson, T.; Jafri, N.; Legay, A. The State of Fault Injection Vulnerability Detection. In Proceedings of the Verification

and Evaluation of Computer and Communication Systems—12th International Conference, VECoS 2018, Grenoble, France,
26–28 September 2018; Atig, M.F., Bensalem, S., Bliudze, S., Monsuez, B., Eds.; Lecture Notes in Computer Science; Springer:
Cham, Switzerland, 2018; Volume 11181, pp. 3–21. [CrossRef]

14. Berthier, M.; Bringer, J.; Chabanne, H.; Le, T.H.; Rivière, L.; Servant, V. Idea: Embedded Fault Injection Simulator on Smartcard;
Engineering Secure Software and Systems; Jürjens, J., Piessens, F., Bielova, N., Eds.; Springer International Publishing: Cham,
Switzerland, 2014; pp. 222–229.

15. Piscitelli, R.; Bhasin, S.; Regazzoni, F. Fault Attacks, Injection Techniques and Tools for Simulation. In Hardware Security and Trust:
Design and Deployment of Integrated Circuits in a Threatened Environment; Sklavos, N., Chaves, R., Di Natale, G., Regazzoni, F., Eds.;
Springer International Publishing: Cham, Switzerland, 2017; pp. 27–47.

16. Yuce, B.; Ghalaty, N.F.; Schaumont, P. TVVF: Estimating the Vulnerability of Hardware Cryptosystems against Timing Violation
Attacks. In Proceedings of the 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Washington,
DC, USA, 5–7 May 2015; pp. 72–77. [CrossRef]

17. Arribas, V.; Wegener, F.; Moradi, A.; Nikova, S. Cryptographic Fault Diagnosis using VerFI. In Proceedings of the 2020 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), San Jose, CA, USA, 7–11 December 2020; pp. 229–240.

18. Yuce, B.; Ghalaty, N.F.; Deshpande, C.; Santapuri, H.; Patrick, C.; Nazhandali, L.; Schaumont, P. Analyzing the Fault Injection
Sensitivity of Secure Embedded Software. ACM Trans. Embed. Comput. Syst. 2017, 16, 1–25. [CrossRef]

19. Höller, A.; Krieg, A.; Rauter, T.; Iber, J.; Kreiner, C. QEMU-Based Fault Injection for a System-Level Analysis of Software
Countermeasures Against Fault Attacks. In Proceedings of the 2015 Euromicro Conference on Digital System Design, DSD 2015,
Madeira, Portugal, 26–28 August 2015; IEEE Computer Society: Los Alamitos, CA, USA, 2015; pp. 530–533. [CrossRef]

20. Ferraretto, D.; Pravadelli, G. Simulation-based Fault Injection with QEMU for Speeding-up Dependability Analysis of Embedded
Software. J. Electron. Test. 2016, 32, 43–57. [CrossRef]

21. Breier, J. On Analyzing Program Behavior under Fault Injection Attacks. In Proceedings of the 11th International Conference on
Availability, Reliability and Security, ARES 2016, Salzburg, Austria, 31 August–2 September 2016; IEEE Computer Society: Los
Alamitos, CA, USA, 2016; pp. 474–479. [CrossRef]

https://github.com/Riscure/FiSim
http://doi.org/10.1007/978-3-319-45477-1_1
http://dx.doi.org/10.1109/FDTC.2011.9
http://dx.doi.org/10.1109/FDTC.2011.12
http://dx.doi.org/10.1109/JPROC.2005.862424
http://dx.doi.org/10.1109/JPROC.2012.2188769
http://dx.doi.org/10.1007/s41635-018-0038-1
http://dx.doi.org/10.1109/FDTC.2013.9
http://dx.doi.org/10.1145/3339252.3339253
http://dx.doi.org/10.1007/978-3-030-00359-3_1
http://dx.doi.org/10.1109/HST.2015.7140240
http://dx.doi.org/10.1145/3063311
http://dx.doi.org/10.1109/DSD.2015.79
http://dx.doi.org/10.1007/s10836-015-5555-z
http://dx.doi.org/10.1109/ARES.2016.4


Cryptography 2021, 5, 15 25 of 25

22. Xilinx. 7 Series FPGAs Memory Resources; Xilinx Inc.: San Jose, CA, USA, 2019.
23. Mentor Graphics. ModelSim User’s Manual; Mentor Graphics Corporation: Wilsonville, OR, USA, 2012.
24. Xilinx. Vivado Design Suite UserGuide: Logic Simulation; Xilinx Inc.: San Jose, CA, USA, 2020.
25. Gabara, T.J.; Cyr, G.J.; Stroud, C.E. Metastability of CMOS master/slave flip-flops. IEEE Trans. Circuits Syst. II Analog. Digit.

Signal Process. 1992, 39, 734–740. [CrossRef]
26. Horstmann, J.U.; Eichel, H.W.; Coates, R.L. Metastability Behavior of CMOS ASIC flip-flops in Theory and Test. IEEE J. Solid-State

Circuits 1989, 24, 146–157. [CrossRef]
27. Kleeman, L.; Cantoni, A. Metastable Behavior in Digital Systems. IEEE Des. Test Comput. 1987, 4, 4–19. [CrossRef]
28. Chard, G.F.; Koyuncu, O.; Koh, T.P.R.; Dondershine, S. Modeling Metastability in Circuit Design. U.S. Patent 7139988B2,

10 November 2005.
29. Dumont, M.; Lisart, M.; Maurine, P. Modeling and Simulating Electromagnetic Fault Injection. IEEE Trans. Comput. Aided Des.

Integr. Circuits Syst. 2021, 40, 680–693. [CrossRef]
30. Blömer, J.; Seifert, J.P. Fault Based Cryptanalysis of the Advanced Encryption Standard (AES). In Financial Cryptography;

Wright, R.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 162–181.
31. Moradi, A.; Shalmani, M.T.M.; Salmasizadeh, M. A Generalized Method of Differential Fault Attack Against AES Cryptosystem.

In Proceedings of the Cryptographic Hardware and Embedded Systems—CHES 2006, Yokohama, Japan, 10–13 October 2006;
Goubin, L., Matsui, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 91–100.

32. NIST. Lightweight Cryptography Benchmarking; GitHub: San Francisco, CA, USA, 2021. Available online: https://github.com/
usnistgov/Lightweight-Cryptography-Benchmarking (accessed on 24 February 2021).

33. Li, Y.; Sakiyama, K.; Gomisawa, S.; Fukunaga, T.; Takahashi, J.; Ohta, K. Fault Sensitivity Analysis. In Proceedings of the
Cryptographic Hardware and Embedded Systems, CHES 2010, Santa Barbara, CA, USA, 17–20 August 2020; Mangard, S.,
Standaert, F.X., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 320–334.

http://dx.doi.org/10.1109/82.199899
http://dx.doi.org/10.1109/4.16314
http://dx.doi.org/10.1109/MDT.1987.295189
http://dx.doi.org/10.1109/TCAD.2020.3003287
https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking
https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking

	Introduction
	Related Work
	Design Space of Fault Attack Simulation
	Fault Characterization of Embedded Software
	Related Work

	Simulation Framework
	Design Space Exploration
	Outer Framework: Software-Centric Control
	Inner Framework: Hardware Simulation Core

	Fault Modeling
	Integration in Embedded Flow

	Results
	Characterization at the Instruction Level
	Characterization at the Application Level

	Conclusions
	References

