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Abstract: Although the development of watermarking techniques has enabled designers to tackle
normal processing attacks (e.g., amplitude scaling, noise addition, re-compression), robustness
against malicious attacks remains a challenge. The discordant size content replacement attack is
an attack against watermarking schemes which performs content replacement that increases or
reduces the number of samples in the signal. This attack modifies the content and length of the
signal, as well as desynchronizes the position of the watermark and its removal. In this paper,
a source-channel coding approach for protecting an audio signal against this attack was applied.
Before applying the source-channel encoding, a decimation technique was performed to reduce
by one-half the number of samples in the original signal. This technique allowed compressing
at a bit rate of 64 kbps and obtaining a watermarked audio signal with an excellent quality scale.
In the watermark restoration, an interpolation was applied after the source-channel decoding to
recover the content and the length. The procedure of decimation–interpolation was taken because it
is a linear and time-invariant operation and is useful in digital audio. A synchronization strategy
was designed to detect the positions where the number of samples in the signal was increased or
reduced. The restoration ability of the proposed scheme was tested with a mathematical model
of the discordant size content replacement attack. The attack model confirmed that it is necessary
to design a synchronizing strategy to correctly extract the watermark and to recover the tampered
signal. Experimental results show that the scheme has better restoration ability than state-of-the-art
schemes. The scheme was able to restore a tampered area of around 20% with very good quality, and
up to 58.3% with acceptable quality. The robustness against the discordant size content replacement
attack was achieved with a transparency threshold above −2.

Keywords: audio signal; content replacement attack; decimation; discordant size; interpolation;
self-recovery; watermarking

1. Introduction

Information security is becoming more and more important. Information hiding for
the authentication and recovery of missing multimedia information has been extensively
exploited in the last decade. A still challenging problem that causes loss of information is
due to the various attacks that can tamper with a signal. Digital watermarking is one of the
prospective solutions to this problem. Digital watermarking consists of embedding some
information, known as a watermark, imperceptibly and securely in the original medium,
to show ownership, content recovery, authenticate the multimedia, establish a secret
communications channel, etc. [1]. In the case of content recovery, such watermarking is
called self-recovery watermarking. Self-recovery watermarking has two properties: content
authentication and self-reconstruction. In self-recovery schemes, a watermark is generated
from the content of the original signal and embedded to combat tampering. The amount
of the watermark that survives the tampering helps the receiver not only to detect the
tampering and localize it, but also to recover the lost content, depending on the tampering
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rate and the structure applied for the watermark generation. A watermarked signal
generated for this purpose is called a self-embedding signal [2]. One of the more severe
attacks against watermarking schemes, called the discordant size content replacement
attack, has been tried so as to counteract this technique. In an audio signal, this attack
performs modifications to the content, causing it to have a meaning that is different from
the original. Although most of the audio watermarking techniques have mainly been
inspired by watermarking approaches for digital images, due to the temporal nature of
audio signals, different strategies must be developed to deal with this attack. In the present
paper, these modifications are considered as discordant size content replacement attacks.
A discordant content replacement attack consists of replacing a set of samples from an
audio signal with another set of samples that increases or reduces the number of samples
in the signal, i.e., the attack is not uniformly applied. Consequently, the integrity and
authentication of digital media is impaired [3,4]. The desynchronizing of the signal length
has been the major problem to address due to the fact that the attack could generate content
replacement of equal, larger or smaller size. These replacement sizes temporally change the
signa, and when the signal contains a watermark, the watermark loses its original position,
and as a consequence, the watermark is removed in the area attacked. For instance, content
replacement attack which increases or reduces the number of samples in the signal would
require the design of a synchronization strategy to detect the positions where the increase
or reduction in samples took place, and to be able to determine the position of the next
watermarked window. Hence, desynchronization is generated by the difference between a
set of replacement samples and a set of replaced samples; i.e., desynchronization is defined
by the number of samples added to or removed from the attacked signal.

This attack could be used against some applications, such as tampered speech, where
certain words of a recorded phone conversation could be modified to change the original
meaning; the tampered speech could be submitted to forensic analysis to determine its
authenticity [5]. Another scenario is censorship in music, when the content has been
modified by editing the song [6]. In these scenarios, the substituted content can be taken
from another audio signal or could be artificially generated.

Recently, watermarking self-recovery schemes have started to become robust against
content replacement attacks with sample sets of equal size, i.e., the number of replacement
samples is the same as the number of replaced samples. This case is the simplest because
the signal maintains its length after an attack; however, the discordant size content replace-
ment attack could be applied by using content replacement of equal, larger, or smaller size.
When the attack uses content replacement of larger or smaller size, the attacked signal
is desynchronized in length. In these cases, the content replacement attack uses sets of
samples from an audio signal with another set of samples that increases or reduces the
number of samples in the signal, i.e., the attack is not uniformly applied. Such desynchro-
nization in the signal length has been a major problem to address. In an audio signal, it
is more probable that the discordant size content replacement attack can be applied. The
audio signal has non-stationary signal features, and the temporality could be changed. This
feature has complicated the developments of new schemes, because the signal changes with
regard to time. A scheme should be capable of recovering the length of a desynchronized
signal; this implies having a synchronization strategy and achieving robustness against the
discordant size content replacement attack. In the receiver, the synchronization strategy
must know the original signal length before an attack; if the synchronization strategy is not
performed, the recovery fails.

In the literature, there are self-recovery schemes that try to address particular attacks.
For instance, speech signal self-recovery schemes have been proposed in [2,7]. Both
proposed self-recovery schemes restore a speech signal manipulated by the replacement
of zeros in samples of the same size, but their solutions use different approaches. In [2],
it has been shown that the digital signal self-recovery problem can be modeled as a
source-channel coding problem. However, ref. [7] is based on embedding information,
and the original signal is estimated by solving a linear equation with the least squares
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QR-factorization (LSQR) method. QR-factorization is particularly important in the least
squares estimation of a nonlinear model where analytical techniques cannot be used.
However, these schemes do not address a discordant size content replacement attack.
Functional self-recovery schemes for audio signals have also been proposed in [3,8–11].
The schemes of [3,9–11] employ a channel coder to protect the watermark; however,
the schemes [9,11] only apply content replacement of size equal to zeros that can perform
recovery for tampered areas of up to 15% and 20%, respectively. The self-recovery scheme
of [10] is robust against attacks other than the discordant content replacement attack.
The scheme in [8] restores an audio signal when it has been tampered with by a content
replacement attack of equal size, but it fails when the attack is discordant. In addition,
another limitation is that it only restores audio signals that were attacked by less than
0.6%, however, restoration is perfectly achieved. The only scheme that restores an audio
signal tampered with by the discordant size content replacement attack is that proposed
in [3]. This attack replaces regions of the signal with other content but uses sets of samples
of different sizes, i.e., content replacement of equal, larger or smaller size. Consequently,
the tampered watermarked signal is desynchronized in size and the watermark is lost. The
scheme achieves a recovery from tampering with 20% of the signal, using a source-channel
coding, however, the compression quality is applied at a very low bit rate, i.e., 32 kilobits
per second (kbps).

The existing watermarking schemes have a problem with robustness against the
discordant size content replacement attack. The desynchronizing in the signal length
has been the major problem to address. These replacement sizes temporally change the
signal, and when the signal contains a watermark, the watermark loses its original position,
and as a consequence, the watermark is removed in the attacked area. Hence, a discordant
content replacement attack that increases or reduces the number of samples in the signal
would require the design of a synchronizing strategy to detect the positions where the
increase or reduction in samples took place and be able to determine the position of
the next watermark window. Furthermore, a limitation to the existing methods is their
recovery capacity against the discordant size content replacement attack. The schemes
of [9,11] only address the case when the content replacement is of equal size with zeros,
in which case they can perform a recovery when the tampered area is up to 15% and 20%,
respectively. The scheme of [8] only performs a recovery when the tampered area is 0.6%,
and only with sets of replacement samples of equal size, whereas [3] achieves a recovery
until 20% with sample sets of equal, larger, and smaller sizes. The schemes are limited
in the severity percentage. The present proposal contributes with a recovery of sets of
replacement samples of equal, larger, and smaller sizes over 20% and 58.3% of the tampered
area. This has been achieved due to the decimation and interpolation techniques included;
the recovery quality is better than that of [3]. To evaluate the robustness of the scheme,
a mathematical model of the discordant size content replacement attack was designed.
Before this proposal, this attack was empirically handled.

This paper focuses on the development of a digital signal watermarking self-recovery
scheme in the field of audio signals based on the scheme proposed in [3]. The proposed
scheme shows the better quality of the recovered audio after the attack than that in the work
of [3] by incrementing audio compression bitrate through decimation and interpolation
operations. The scheme was modeled as a source-channel coding problem to generate
the watermark from the original signal content, but two sampling techniques were added:
decimation (downsampling) and interpolation (upsampling). The procedure of decimation
and interpolation is used because it is a linear and time-invariant operation [12]. This
property is useful in applications to signals and systems, communications systems, digital
audio, etc. The scheme searches for operations that are invertible; hence, the decimation–
interpolation techniques can be used in the recovery process because the decimation is
an approximate inverse to the interpolation. Decimation reduces the input sampling rate
by an integer factor M and interpolation increases the sampling rate by an integer factor
L [12–14]. Hence, decimation with M = 2 helps increase the compression ratio. This
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way, the compressed output symbols obtain a better quality since the signal has only
been compressed by one-half. On the other hand, interpolation with L = 2 recovers
the compressed signal. In the step of the watermark generation, the decimation was
applied before the source coding, i.e., over an original signal content copy with the goal
of decreasing the signal size using an integer factor M = 2 to obtain half of the signal
samples. In the step of the watermark restoration, an interpolation using L = 2 is applied
after the source decoding, to restore the watermark in size and content. The decimation
and interpolation obtain a double compression rate, larger than that shown in [3], and the
host audio signal is self-recovered with better audio quality. Unlike the scheme proposed
in [3], a mathematical model representing the discordant size content replacement attack
was used to tamper with the watermarked audio signal. The model enables attacks with
content replacement of equal, larger or smaller size, depending on the input parameters,
i.e., the cardinality of the set of replaced samples, the cardinality of the set of replacement
samples, the discordance generated by the attack and the start and end positions of the
attack. The validation and evaluation of the audio signal self-recovery scheme by using a
mathematical model is proposed to achieve robustness against the discordant size content
replacement attack.

The remainder of this paper is organized as follows. The watermarking self-recovery
scheme for an audio signal is introduced in Section 2. This Section also includes the
formalization of the mathematical model of the discordant size content replacement at-
tack. Experimental results and performance analysis are presented in Section 3. Finally,
a discussion and the conclusions are given in Section 4.

2. Description of the Watermarking Scheme for Audio Signals Self-Recovery

The self-recovery algorithm proposed was developed on the basis of a small version
and presented earlier in [3]. The goal of both algorithms is to recover signals that have
been tampered with by a discordant size content replacement attack. In [3], the problem
was modeled as a source-channel coding. In the source coding phase, an audio codec
to compress the original audio was applied at a rate of 32 kbit/sec. Then, a channel
coder was used to protect the source coding. The channel coding and hash information
computed for each frame were used to construct the watermark, which was inserted in
the least significant bits (LSB). The LSB technique is widely used for high payload data
hiding applications, as one bit can be embedded within a binary word each time [1].
Then, the inverse process is performed to restore the tampered watermarked signal. The
watermark extraction is applied using the LSB, i.e., to obtain the hash information and the
channel coding. The hash information helps determine the tampered frames, meanwhile
the channel coding is processed with a channel decoder and a source decoder. This part of
the reconstructed watermark is applied to recover the tampered blocks of the host audio
signal. The approach proposed in this paper adds a decimation and an interpolation
process: the former to decrease and the latter to reconstruct the content and length of the
original signal copy [12–14]. In addition, the mathematical model of the discordant size
content replacement attack was introduced and used to evaluate the restoration capability
of the scheme.

2.1. Reed–Solomon

Reed–Solomon (RS) codes are employed to recover the information destroyed by
tampering [15]. These codes are used in communications and particularly in data storage
systems. RS codes are a special class of nonbinary Bose–Chaudhuri–Hocquenghem (BCH)
codes and are defined on a finite field (Galois field (GF) [15]. If the errors occur as a cluster,
specifically if we have a burst of errors, then this code can correct any burst. This is the
reason why RS codes are particularly attractive in channels with bursts of errors. When
a content replacement attack is applied, this has a behavior similar to a burst of errors,
since the samples are replaced in a contiguous sample set. The error correction capability
of a systematic (n, k) code, which has n− k parity check bits, can correct errors of length
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b < b 1
2 (n− k)c. b is defined as a sequence of b-bits errors, n as the block length, and k as

the number of information sequences [16,17].

2.2. Watermark Generation and Embedding Algorithm

The scheme uses an original audio signal X of t seconds, a sampling frequency of
48 kHz, and 16 bits. First, the watermark is generated by using an original signal copy
denoted by x. The copy x is decimated by an integer factor M = 2 which yields one-half
of the samples. The decimated values D are processed with the OPUS source coder [18]
and the output symbols are concatenated to 16 bits; these symbols are scrambled with a
secret key. The key length is the same as the concatenated symbol’s length. Therefore, if the
concatenated symbols are formed by k samples, the length of the key is k. If the length of
the key is k, then there are up to k! available keys. Furthermore, the larger the total number
of samples is, the larger the number of available keys is. The secret key helps change the
order of concatenated symbols before applying a channel coder. In the receiver, the secret
key recovers the original order of the symbols. Hence, the secret key is known to both the
embedding phase (transmitter end) and audio signal reconstruction phase (receiver end).
The scrambled code is protected by applying the RS channel coder. Afterward, the original
signal X is divided into frames and the hash information is computed on 14 MSB of each
sample by frame. Finally, the watermark, formed by channel-coded symbols and hash
information, is embedded in the two LSBs of the samples of each frame and the original
signal length λ is embedded in the last frames. Thus, the watermarked signal is obtained.
The overall flowchart is shown in Figure 1.

Figure 1. Diagram of watermark generation and embedding.

The original audio signal is denoted by X, with a time of t seconds and a length λ.
The original signal copy is represented by x and the decimation using the integer factor M
is denoted by D. The output length of the source coding is fixed by Γ and the source-coded
symbols by k. The source-coded symbols k are the symbols concatenated to m = 16 bits.
The secret key ϕ is randomly taken, to provide security in the scrambled symbols, and the
output symbols of the channel coding, applying RS, are denoted by n. The MSB bit number
in each frame is represented by bMSB, the bit number of the hash symbols by bh, the bit
number of the channel code by bch, the LSB bits available in each frame by bLSB, and the
watermarked audio signal by X′. bh and bch denote the bit set of the symbols that are
embedded in each frame. The watermark generation and embedding steps are performed
as follows:

1. The watermark generation is performed as the start point. The input parameter is the
original audio signal X to be protected against the discordant size content replacement
attack. Each feature of the audio signal corresponds with a time of t seconds, sampling
frequency of 48 kHz, 16 bits and a length λ.

2. Obtain x, the original signal copy, and decimate it by an integer factor of M = 2,
i.e., D[n] = x[nM], n = 0, 1, 2, ..., λ

M − 1. With this process, the original signal X is only
represented using one-half of its samples, with the goal of performing a compression
over a small version and obtaining a better compression rate.

3. The decimated values D are processed with the OPUS audio codec to compress it
at the rate of 64 kbps. The compression ratio of the proposed scheme has a quality
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two times better than the rate used in the scheme [3]. The source coding output is of
length Γ to 8 bits per sample.

4. The symbols obtained are concatenated to m = 16 bits. Two symbols of 8 bits are
used, forming a new source-code of size k = Γ

2 . It is important to perform this step
because the RS channel codes work on symbols of length m.

5. Scramble the code of k symbols with a secret key ϕ. The secret key must be shared
between the transmitter and receiver to provide the required security of the em-
bedding algorithm; its value is randomly chosen. The scrambling helps to avoid a
tampering of a set of contiguous samples. The process of channel decoding would
consider it as small tampering in different positions, which eases the restoration of
the individual portions.

6. To protect the scrambled code, Galois fields GF(2m) are used and after applying the
RS coder, RS(n, k). The coder adds parity symbols of size n− k, where k represents
the original information symbols and n = k× 2 represents the output channel coding.
Thus, the first part of the watermark is obtained.

7. The embedding process of the watermarking on the original audio is applied. First,
the original audio signal X is decomposed into frames of 10 milliseconds; hence, the
frame consists of 480 samples.

8. Then, compute the hash information of the 14 most significant bits (MSB) of each
sample by frame, i.e., the bMSB = 14× 480 bits in each frame that are not modified.
Use only 8 hash symbols or bh = 64 bits. The second part of the watermark is obtained.

9. After that, distribute 56 symbols or bch = 896 bits of channel-code, and the 8 symbols
or bh = 64 bits hash, replacing the two LSBs of the samples of each frame, i.e.,
bLSB = 960 bits that are available.

10. Finally, insert the parameters λ and Γ in the LSBs of the frames that are not wa-
termarked. Each one is represented by 20 bits and 16 bits, respectively. They are
distributed 24 times by frame. These values are embedded in the last frames on the
assumption that the relevant information of the attacker is contained in the body
of the audio signal. It is important to note that both parameters are useful in the
extraction and restoration of the watermark. Therefore, the watermarked audio signal
X′ is then produced.

2.3. Mathematical Model That Describes the Attack

The decimation and interpolation techniques are used in modeling the attack [14]. In
addition, content replacements of equal, larger and smaller sizes are considered as cases
that could occur with tampering. The model receives an audio signal X′. A set of replaced
samples Z over X′ is put to zero before applying a set of replacement samples; so, xz is
obtained. Afterward, a decimation with an integer factor M is applied in the set left with
zero values in xz. The decimated block D is interpolated with an integer factor L. Finally,
the interpolated block I is tampered with using a set of replacement samples r, and the
tampered watermarked signal Y is obtained. The model is presented in Figure 2. The next
steps describe the strategy of the algorithm.

1. Define the input parameters as the size of the set of replaced samples i, the size
of the set of replacement samples j, the discordance a (the difference between the
number of samples of the original signal and the number of samples of the attacked
signal), and the start and end positions of the attack, pos_ini_ataq and pos_ f in_ataq,
respectively.

2. It is necessary to put to zero the set of replaced samples of size i before using the
decimation technique. The process enables that the set of replaced samples have a
preparation previous to applying the set of replacement samples. This set takes the
place of the watermarked audio signal received, X′, of size λ and n indicating the
n-th sample:

xz[n] = X′[n]× z[n]. (1)
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The values in z, which has the same length as X′, contain sets of ‘0’s in the attacked
area, and ‘1’s in the samples not tampered with:

z[n] =

{
0, pos_ini_ataq ≤ n ≤ pos_ini_ataq + i

1, otherwise.
(2)

3. Prior to applying the decimation and interpolation technique to xz, it is necessary
to compute a value, decimal, that depends on the discordance of the attack, i.e., of
equal, larger or smaller size. The quantity of samples added or removed by the attack
is represented in the discordance. Without this value, one cannot obtain the integer
factors used in the decimation and interpolation:

decimal =


1, a = 0,

1 + a
i , a = j− i,

1− a
i , a = i− j.

(3)

When the cardinality of the set of replaced samples i is equal to the cardinality
of the set of replacement samples j, i.e., a = 0, the value decimal is equal to the
first condition. The second condition takes place when the cardinality of the set of
replacement samples j is larger than the set of replaced samples i. If the attack is
performed with a smaller content replacement, i.e., if the cardinality of the set of
replacement samples j is smaller than the set of replaced samples i, the third condition
is executed.

4. Independently of the value taken by decimal, its value is converted to a fractional
format, where the integer values L and M obtained represent the integer factors of
the interpolation and decimation, respectively. The fractional format is as follows:

L
M

= decimal. (4)

5. The first sampling technique is applied, i.e., the decimation with an integer factor M.
This technique is only performed on the original set of size i by replacing it with zero
values using Equations (1) and (2). The set replaced is contained in xz and its process
can be observed in the following equation:

D[m] = xz[mM], pos_ini_ataq ≤ m ≤ (pos_ini_ataq + i), (5)

where D[m] is the downsampled sequence, obtained by taking a sample from the
data sequence xz[n] for every M samples (discarding M − 1 samples for every M
samples) [14]. The decimated block size is given by BD = i

M , and the size of the
output signal D[n] is given by long_D = λ− (i− BD).

6. The second sampling technique, namely the interpolation with an integer factor L,
is applied. By using the decimated block D[m] of size BD, its process is described
as follows:

I[m] =

{
D[m

L ], m = n× L, pos_ini_ataq ≤ n ≤ w2

0, otherwise,
(6)

where D is the sequence to be upsampled by a factor of L, and I[m] is the upsampled
sequence, obtained by adding L− 1 zeros for each sample [14]. The end position
of the interpolation is limited by w2 = pos_ini_ataq + BD. Hence, an interpolated
block of size BI = BD× L is obtained, and consequently an output signal I[n] of size
long_I = (long_D + BI)− BD is achieved.
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7. Once the decimation–interpolation process has finished, only the interpolated block
I[m] is tampered with, using a set of replacement samples of size j. The set of
replacement audio samples r[n] is added as follows:

Y[n] = I[n] + r[n], (7)

where the set of replacement audio samples r[n] takes the place of the replacement
audio A:

r[n] =

{
A[n], pos_ini_ataq ≤ n ≤ pos_ f in_ataq

0, otherwise.
(8)

Therefore, the watermarked audio signal is tampered with by a discordant size content
replacement attack. The result is the tampered watermarked audio signal Y.

Figure 2. Mathematical model of the discordant size content replacement attack.

The content replacement attack with duration change is a more general case. Some ap-
plication scenarios, such as tampered speech [5] and cancellation of censorship in music [6],
are examples where the attack could cause a desynchronization in the signal length, loss of
the original position of the watermark, a change in the content of the host signal, and wa-
termark loss in the tampered area. It is important to clarify that this paper is addressed
to counteract the specific effects caused by the discordant size content replacement attack.
The common channel operations are not discussed in this paper, supposing a noise-free
communications channel for transmitting. However, these considerations will be included
in a later study.

2.4. Extraction and Reconstruction of the Watermark

The inverse process of the tampered audio signal self-recovery is performed as follows.
A tampered watermarked audio signal Y of size µ is received. First, a synchronizing
strategy is developed with the length of the original signal λ extracted of Y and the length
µ computed of Y. The tampered signal is synchronized by using only the first tampered
frame, then the channel code and the hash information are extracted from the two LSBs
of each frame. The synchronized signal is decomposed into frames, and for each frame,
the computed hash information is compared to the extracted hash information of the same
frame. The tampered frames are detected. The collected channel coding is input to the RS
channel decoder, the inverse process of the scrambling is applied to the output symbols
with a secret key, and they are converted from 16 to 8 bits. The OPUS source decoder
is applied to the ordered symbols, and an interpolation with an integer factor L = 2 is
performed to reconstruct in size and content the watermark. The tampered frame content
is replaced with the reconstructed watermark. Therefore, the recovered audio signal X′′ is
produced. The overall flowchart is shown in Figure 3.
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Figure 3. Diagram of synchronization, extraction and reconstruction of the watermark.

The extraction and reconstruction of the watermark are performed as follows:

1. A tampered watermarked audio signal Y of size µ is received. Extract λ and Γ by
taking the 30 last frames. Each frame contains 480 samples. The frames should be
obtained starting from the last frame of the signal. Both parameters were repeated
24 times by frame, i.e., a total of 864 bits was distributed by each frame. It is possible
to recover both parameters with only one frame that had not been tampered with.

2. A synchronizing strategy is then developed. Once λ has been extracted, which is the
length of the original audio signal, compute the length error ε using the size of the
tampered signal received µ:

ε = µ− λ. (9)

3. Decompose the audio signal Y into frames of 480 samples or 10 milliseconds, in such
a way as to extract the hash information from the LSBs of the samples of each frame,
i.e., the eight symbols or bh = 64 bits embedded.

4. Calculate the hash information for all bMSB = 14× 480 MSBs of the samples of each
frame, obtaining bh = 64 hash bits of the frame. Compare the extracted and calculated
hash bits of each frame to determine the first tampered frame.

5. Then, by only using the first tampered frame, it must be possible to synchronize Y.
The process adds zeros or removes samples from this first tampered frame, depending
on the value of the length error ε:

a. If ε < 0, add a set of zeros of size |ε|, where | • | would be a positive value.
b. Else if ε > 0, remove a set of samples of size ε.

In the case where ε = 0, the length of the tampered signal is the same as the original
signal, and it is not necessary to synchronize the signal.

6. Once the tampered signal has been synchronized in length, Y′, it is possible to compute
the hash information and to extract the channel coding of each frame. Similarly
as in the steps 3 and 4, all frames must be correctly determined. For each frame,
the generated hash bits are compared to the embedded hash bits of the same frame.
The frames are marked as healthy when the extracted and reproduced hash bits
match, and otherwise tampered. Therefore, each tampered frame results in losing bch

m
channel code symbols. The proposed method allows a channel code symbol length
set to m = 16, and every frame hosts 56 channel code symbols or bch = 896 bits of
channel code.

7. Channel coding output bits are collected from the watermark bits of the audio signal.
The collected channel coding output bits are input to the channel decoding module.
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Collect all of the bch = 896 bits of the channel code or 56 symbols of the 2 LSBs of
the samples of each frame. The number of watermarked frames is block_marked = Γ

56
where Γ is the value extracted in step 1 which represents the total samples generated
by the source coding.

8. Pass the channel-coded symbols to the RS(n, k) channel decoder, where n = Γ and
k = n

2 . This decoding process finds the k source-coded symbols. The channel decoder
is used to compress the recovered audio.

9. The inverse process of scrambling is applied to the k output symbols of the channel
decoder in case of its successful decoding by using the secret key ϕ. This allows
returning the symbols to their original positions.

10. Convert the ordered output symbols of 16 bits to 8 bits, where the size of the new
set of ordered symbols will be Γ, i.e., the concatenation applied in the watermarking
generation process is removed.

11. Apply the OPUS source decoder to the new set of ordered symbols to find the
compressed decimated signal D.

12. After the source decoding, it is necessary to interpolate with an integer factor L = 2 the
output symbols of the source decoder using the spline method [19,20] to reconstruct
in size and content the decimated signal:

I[m] =

{
D[m

L ], m = n× L, n = 0, 1, 2, ...

spline, otherwise.
(10)

13. Replace the content of the tampered frames of Y′ with the recovered interpolated
audio signal I, i.e., with the reconstructed watermark.

14. This yields the recovered audio signal X′′.

3. Experimental Results

The evaluation of the proposed scheme was performed with 16 bits 48 kHz sampled
music audio signals and a time of 5 s. A total of 150 audio signals were subject to the
protection against possible tampering by the discordant size content replacement attack.
The clips were randomly taken from a database that contains 982 CD-quality audio clips.
All of the clips were musical, from different music styles ranging from classical to big band
and including Latin pop and Caribbean rhythms; no music style classification was explicit
(the dataset is fully available in [21]). The representation of the attack was proposed as a
mathematical model with three cases of content replacements: equal, larger and smaller
sizes. The content replacement sizes were randomly taken in each case. Each case uses
six attack degrees, which is the number of the different replacements applied by the
mathematical model to each input signal. The attacked area was randomly generated. This
way, a total of 150× 6 = 900 tampered watermarked signals are obtained by case. Thus,
the self-recovery algorithm works on a total of 900× 3 = 2700 tampered signals, where 3
represents the size cases of discordant content replacement, i.e., equal, larger and smaller.
The quality of the watermarked (WM) and recovered (Rec) audio signal compared to
the original audio signal (Orig) is measured on the basis of the Perceptual Evaluation of
Audio Quality (PEAQ) criterion. PEAQ is based on psychoacoustic principles; original
and processed audio signals are transformed to a basilar membrane representation and
differences are analyzed. The PEAQ performs a classification of an audio signal on a scale
from 0 to −4 corresponding to the objective difference grade (ODG) [22]. ODG equal to
0 indicates that distortion is imperceptible, thus, ODG equal to −4 means very annoying
distortion [23]. The perceptual impact of the scheme was measured to determine whether
the transparency threshold of −2 ODG could be achieved. Furthermore, the reconstruction
quality or distortion error of the scheme is evaluated using the Peak Signal-to-Noise
Ratio (PSNR) metric [24]. PSNR is a widely used tool in digital signal processing as it
quantifies signal quality after any performed process. To show the functionality of the
proposed algorithm, an audio signal with a length of λ = 240,000 samples, t = 5 s, was
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processed, as is shown in Figure 4a. The watermarked signal, Figure 4b, is obtained
using the decimation technique and source-channel coding over an original signal copy,
with a bit rate of 64 kbps. The channel coding obtained joined with the hash information
is distributed in the LSBs of the samples by frames of the original audio signal. The
watermarked signal is then tampered with using the mathematical model of a discordant
size content replacement attack. A set of replacement samples of j = 160,000 and a set
of replaced samples of i = 55,000 is input to the mathematical model. The discordance
or samples added from the attack is a = 105,000, and the start and end positions of the
attacked area were randomly generated. Then, as model output, a tampered watermarked
audio signal with a length of µ = 345,000 samples, i.e., 7.1875 s, is obtained. The result
of the tampering shows a temporal change with regard to the original audio signal, i.e.,
an increment of 43.7% of the signal total, as can be seen from Figure 4c. The tampered
signal is delivered to the receiver. The hash information procedure at the receiver results in
determining the tampered frames. The tampered signal is synchronized in length using
the first tampered frame. So, the correct extraction of the channel symbols and detection of
the tampered frames can be performed using the synchronized tampered audio signal. The
channel symbols extracted are processed with the inverse module of the source-channel
coding, and applying the interpolation to obtain the watermark reconstructed in length
and content. Finally, the tampered frames of the synchronized tampered audio signal were
recovered using the watermark. The result is shown in Figure 4d.
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Figure 4. Simulation results for the audio signal self-recovery scheme: (a) the original audio signal;
(b) the watermarked audio signal, the color line indicates the region to be attacked; (c) the attacked
watermarked audio signal, the color line indicates the attacked region; and (d) the restored audio
signal, the color line indicates the recovered region.

In order to have a better comparison, the original, watermarked and recovered signals
are shown in more detail in the subsequent results. In this study, the perceptual evaluation
between the watermarked and original signals achieve, on average, an ODG = 0 and a
PNSR = 86.2967 dB, i.e., an excellent audio quality and negligible distortion imposed by
the watermark. The average quality of the audio signals recovered by the algorithm after a
content replacement attack of equal size, is presented in Table 1. It can be observed that
if the size of the attacked area i increases in equal size as the set of replacement samples
j, where the attack degree represents the six different sizes of replacements of equal size,
then the self-recovery process decreases (% recovery), the quality (ODG) of the recovered
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audio decreases, and the distortion error (PSNR) increases. However, in comparing the
watermarked (WM) and original (Orig) audio signal with the recovered (Rec) one, one
obtains an average above ODG = −1 and a PSNR with a very small difference. This
means that the recovered audio quality is classified between excellent and very good,
i.e., the distortion is inaudible and the recovery error is negligible. Thus, the scheme has
achieved a recovery of 90% of the total tampered signal in this case.

Table 1. Average value of ODG and PSNR in the case of recovering against the content replacement
of equal size.

% Attack Degree Orig vs. Rec WM vs. Rec

j−i % Recovery ODG PSNR ODG PSNR

10,000–10,000 100 −0.5861 49.0191 −0.4757 49.0365
15,000–15,000 100 −0.6506 46.5534 −0.5326 46.5791
19,000–19,000 100 −0.7118 45.0146 −0.5878 45.0289
24,000–24,000 100 −0.7673 44.3166 −0.6388 44.3185
38,000–38,000 100 −0.8733 42.0566 −0.7348 42.0578
55,000–55,000 45 −1.0321 41.3916 −0.8683 41.0578

The results of the recovered audio quality when the content replacement attack used a
larger size are presented in Table 2. The similarity of the recovered (Rec) audio signals with
regards to original (Orig) and watermarked (WM) audio signals were classified with an
average value ODG over −1 and a PSNR with a small variability. This result was achieved
despite the fact that the set of replacement samples j was larger than the set of replaced
samples i. Note that the recovery percentage decreases as the attack degree increases with
six different larger replacements. Furthermore, there is a small decrease in ODG, and a
small increase in recovery in terms of the PSNR. Hence, the algorithm was able to recover
92% of the tampered signals, and an excellent and very good audio quality were obtained.
These ODG results have shown that the distortion transparency is imperceptible on the
recovered signals, which is more than sufficient for the desired target of an ODG over −2.

Table 2. Average value of ODG and PSNR in the case of recovering against content replacement of
larger size.

% Attack Degree Orig vs. Rec WM vs. Rec

j−i % Recovery ODG PSNR ODG PSNR

40,000–20,000 100 −0.7153 45.3185 −0.5911 45.3381
60,000–24,000 100 −0.7512 44.5893 −0.6212 44.5906
80,000–28,000 100 −0.7958 43.9882 −0.6642 44.0045

100,000–32,000 100 −0.8261 43.0283 −0.6922 43.0293
120,000–45,000 100 −0.9192 41.6639 −0.7803 41.6658
160,000–55,000 56 −1.0165 40.1697 −0.8781 40.1699

In the third case, the quality of the recovery obtained by the algorithm is presented
in Table 3. The tampering of watermarked audio signals with a content replacement of
smaller size was performed, i.e., with a set of replacement samples j smaller than the set of
replaced samples i. In this case, a portion of the set of replaced samples is removed by the
process of the attack, so the possible accuracy of a restoration by the proposed scheme is
limited. Despite the severity of the attacks, the scheme achieved a recovery of tampered
audio signals, e.g., by using sets of replacement samples smaller than j = 12,000, the scheme
has achieved a recovery percentage of less than 50%. Furthermore, in Table 3 it can be
observed that the values of the ODG and PSNR decrease when increasing the severity of
the attacks, when a set of replacement samples j of smaller size is used, which is to be
expected, since lower ODG values indicate a more perceptible distortion in the recovered
audio signals, while lower PSNR values indicate a greater difference between the host and
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restored audio signals. However, the audio quality achieves an audibility scale of excellent
and very good for attack degrees larger than j = 15,000, and a good quality scale for attack
degrees smaller than j = 12,000. Thus, the algorithm managed to recover 73% of the total
tampered signal.

Table 3. Average value of ODG and PSNR in the case of recovering against content replacement of
smaller size.

% Attack Degree Orig vs. Rec WM vs. Rec

j−i % Recovery ODG PSNR ODG PSNR

25,000–28,000 100 −0.7971 44.1190 −0.6654 44.1208
20,000–35,000 100 −0.8519 42.6765 −0.7167 42.6858
15,000–44,000 100 −0.9189 41.5872 −0.7771 41.5909
12,000–50,000 45 −0.9753 40.6038 −0.8367 40.6041

300–56,000 48 −1.0327 40.7395 −0.8809 40.7398
100–62,000 46 −1.0149 39.2611 −0.8980 39.2614

In order to extend the performance evaluations, a large-scale tampering experiment
was conducted with the goal of knowing whether the scheme was able to recover the
content of audio signals subjected to a tampering of a continuous part of the watermarked
audio, where a set of replaced samples i is higher than or equal to the total length of the
audio signal. A total of 150 watermarked signals were tampered with six attack degrees
in the three cases, resulting in 150× 6 = 900 tampered signals generated in each case.
This way, a total of 900× 3 = 2700 tampered signals was obtained by the mathematical
model of the attack with 3 cases, i.e., equal, larger and smaller sizes. The quality of the
recovered audio signals is presented in Table 4. The table only presents the resulting values
with attack degrees where the algorithm achieved a recovery, i.e., the different sizes of
tampering. With a tampering of one-half of the content, i.e., a set of replaced samples of
i = 120,000, the algorithm recovered a percentage not larger than 30% of the total tampered
signal in the three cases. Furthermore, with a small percentage, the scheme has managed
to recover from tampering with up to i = 140,000 replaced samples, but this is not possible
for higher sizes than this. The quality of the recovered audio decreases while the distortion
error increases when the severity of the attacks are higher than one-half of the total length.
The mean ODG values for the restored signals obtained a scale over −2, which means a
restoration with acceptable quality; the quality of the watermarked (WM) and original
(Orig) audio signals compared to the recovered one (Rec) is tested. Hence, the scheme
is able to accomplish a restoration when from 50% to a maximum of 58.3% of the total
length of the signal has been tampered with by the discordant size content replacement
attack. This means that the scheme performed the recovery of a set of replaced samples
i on a watermarked audio signal higher than one-half of its total length. The recovery
limits are due to the attack size, the start and end positions of the attacked area, obtaining
parameters that are useful in the synchronizing process, and the watermark extraction.
If the extracted watermark information was tampered with above 50% of its total length,
the scheme is not able to reconstruct the watermark and the host audio signal. Figure 5
shows the restoration of a watermarked audio signal tampered by one-half of its total
length by a content replacement attack of equal size.
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Table 4. Average value of ODG and PSNR in signal recovery against content tampering higher or
equal to one-half of its total length.

% Attack Degree Orig vs. Rec WM vs. Rec

j−i % Recovery ODG PSNR ODG PSNR

Equal size

120,000–120,000 22 −1.4257 36.7428 −1.3539 36.7428
130,000–130,000 14 −1.4313 36.5323 −1.3309 36.5321
140,000–140,000 9 −1.3751 36.7690 −1.2729 36.7690

Larger size

240,000–120,000 21 −1.4217 37.5442 −1.2966 37.5443
260,000–130,000 19 −1.4161 37.0987 −1.3447 37.0987
280,000–140,000 10 −1.6282 37.6108 −1.5034 37.6109

Smaller size

60,000–120,000 26 −1.3611 35.2997 −1.2475 35.2997
65,000–130,000 14 −1.5525 38.3139 −1.4093 38.3136
70,000–140,000 8 −1.5404 35.0041 −1.4728 35.0042
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Figure 5. Simulation results for an audio signal self-recovery with a tampering equal than to one-half
of its total length: (a) the original audio signal; (b) the watermarked audio signal, the color line
indicates the region to be attacked; (c) the attacked watermarked audio signal, the color line indicates
the attacked region; and (d) the restored audio signal, the color line indicates the recovered region.

Comparative Results

In order to more clearly illustrate the advantages of the proposed scheme, a com-
parison between the proposed scheme and recent schemes [3,8,9,11] was performed. The
results are shown in Table 5, where!denotes that the corresponding scheme has the ability
and%denotes that the corresponding scheme does not have the ability to recover from
discordant content replacements of equal, larger or smaller sizes. The % recovery denotes
the tampered area percentage that the scheme is capable of recovering. These schemes
have been chosen for comparison based on robustness against the discordant size content
replacement attack and its recovery percentage. The discordant size content replacement
attack performs modifications to the content by using another set of samples of different
signals. The attack could generate content replacements of equal, larger or smaller sizes.
These replacement sizes temporally change the signal. The schemes of [3,9,11] and the
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proposal of the present paper employ a channel coder to protect the watermark; however,
the schemes of [9,11] only apply a content replacement of equal size with zeros and can
perform a recovery until 15% and 20% of the tampered area, respectively. The scheme of [3]
achieves a recovery with a tampered portion of around 20% of the signal total in each case
and uses sets of samples from another audio signal to tamper the signal. The scheme of [8]
only restores audio signals that were attacked by less than 0.6% over a content replacement
of equal size. The three cases can be treated by the scheme of [3] and the present proposal;
however, the proposed scheme achieves a recovery for the tampering of around 20% of the
signal with good audio quality and up to 58.3% of its total length with an acceptable quality.
The equal, larger or smaller sizes can be restored when sample sets are used from another
audio signal. The present proposal can tolerate more tampering at the expense of sacrificing
the quality of the recovered audio signal. The recovery percentage is limited by the fact
that if the tampered portion is increased, the watermark loses the channel code information.
These results were achieved because the decimation–interpolation techniques have helped
to obtain a watermarked and recovered signal with better quality; the compression rate was
increased and the watermark has obtained an excellent quality. It is important to add that
the proposal has used a mathematical model of the discordant size content replacement
attack to evaluate its performance; whilst the other schemes have not applied one.

Table 5. Comparative results.

Discordant Size Content Replacement Attack

Scheme Equal Larger Smaller % Recovery

[8] ! % % 0.6
[3] ! ! ! 20
[9] ! % % 15
[11] ! % % 20

The proposal ! ! ! 20–58.3

4. Discussion and Conclusions

In this paper, a self-recovery scheme for digital audio signals was proposed. The
evaluation of the proposed scheme consisted in testing the restoration capability of the
scheme after a discordant size content replacement attack was applied to watermarked
audio signals. This attack desynchronizes the signal length, and in a watermarked signal,
desynchronizes the position of the watermark and causes its removal. Furthermore, the at-
tack performs modifications to the content, causing it to have a meaning that is different
from the original. A mathematical model of the attack with content replacement of equal,
larger and smaller size was developed and evaluated. To counteract the effects caused by
the attack, a source-channel coding approach was applied to generate the watermarked
audio signal. A decimation–interpolation technique is added to the process above. Thus,
the decimation technique to be applied before the source-channel coding process was
developed in this scheme. This technique has allowed a compression with a better quality
at 64 kbps. A decimation, source coding, and channel coding were applied over an original
signal copy. The channel coding output joined with hash information was distributed in
the LSBs of the original audio signal. In the receiver, the signal delivered is synchronized
in length. Then, the watermark was extracted and reconstructed by applying a channel
decoding, source decoding and interpolation. Finally, the tampered frames, which are
detected by comparing the computed and extracted hash information of the host audio
signal, are recovered using the watermark. The experimental results show that it is possible
to recover from tampering with content replacements that increase or reduce the number
of samples in the audio signal, where the design requires a synchronization strategy. The
perceptual impact of the encoding process has been determined, and it has been found that
the distortion imposed by the watermark and distortion error are negligible, i.e., ODG = 0
and PSNR = 86.2967 dB. The evaluation of the restoration capability of the scheme, after an
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attack with six different percentages of severity applied to the watermarked signals, ob-
tained a recovered audio quality between excellent and very good in the three cases. In
other words, the scheme achieved an ODG average over −1, a very good audio quality,
when a tampering around 20% of the signal total was performed. The recovered signals
have had a small distortion error, PSNR, compared to the original and watermarked signals.
In an extension of these experiments, a tampering higher or equal to one-half of the total
length of the signal was evaluated: the scheme was able to achieve a restoration until the
tampering reached 58.3% of the total length of the signal, with an average value of ODG
above the −2 threshold and acceptable quality. Hence, the audio signals restored by the
scheme obtained an average transparency threshold above the −2 set as our goal.

In conclusion, the obtained audio restoring capacity was better than that of the other
state-of-the-art schemes, due to the decimation–interpolation techniques included. These
helped increase the compression rate of the original signal, and as a result, a better audio
quality in the recovery process was obtained. Furthermore, the technique allowed recov-
ering from a tampering affecting an area higher or equal to one-half of the signal’s total
length. The mathematical model of the discordant size content replacement attack allowed
knowing that it is necessary to perform the signal synchronization using the original signal
length. It is important to take into account the start and end positions of the attack because
the attacked area and the survival of the watermark depend on these. The synchronizing
of the tampered signal could be limited when the attack has replaced the last frames where
the two parameters that are useful in this step were embedded. Then, the success or failure
of the scheme depend on the size of the tampering and its position over the set of replaced
samples. Hence, an audio signal self-recovery was only achieved if the original signal
information was contained as a watermark and if the signal synchronizing was performed.
Finally, it can be seen that by increasing the severity of the attacks, the recovered audio
quality decreases, and the similitude error or distortion error increases. However, even
for the most severe attack, the errors are relatively small. Furthermore, the watermarked
audio signal can tolerate a higher tampering at the expense of sacrificing the quality of the
recovered audio signal. Note that the recovered audio signal was not the original because
a decimation technique and a lossy compression were applied. Hence, the recovered audio
signal was only an approximation of the original audio signal. The restoration capability of
the scheme is limited by the size of the attack. When the host audio signal loses more than
50% of the embedded watermark, the scheme is not able to reconstruct the watermark and
recover the host audio signal. Thus, the proposed scheme is robust against a discordant
size content replacement attack and the used techniques have allowed obtaining good
experimental results.

The proposed scheme is suitable for speech restoration applications. Suppose that
there is a recorded phone conversation, and this recording is subsequently modified to
incriminate one of the interlocutors by modifying certain words of their speech. This
tampered recording could be used against the person. A means to obtain the original
words from the tampered speech could be part of the repair process and could prove
the innocence of the accused. Another scenario for audio self-recovery is in the music
industry. Some songs contain inappropriate language; for these songs to be included in
radio airplay, the inappropriate content has to be censored by editing the songs. Offensive
content is removed through re-sampling, bleeping, and replacing words with silence,
sound effects or single tones. In a music distribution scenario, censored songs could be
freely distributed, but premium users could pay a fee to remove the censorship. In the
present paper, these modifications are addressed as content replacement attacks, thus the
proposed algorithm has shown robustness to them. However, due to the well-known
fragility of LSB embedding, the proposed scheme is weak against lossy compression.
Future work considers the exploration of different embedding strategies to achieve lossy
compression robustness.
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