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Abstract: The Internet of Things (IoT) has experienced constant growth in the number of devices 

deployed and the range of applications in which such devices are used. They vary widely in size, 

computational power, capacity storage, and energy. The explosive growth and integration of IoT in 

different domains and areas of our daily lives has created an Internet of Vulnerabilities (IoV). In the 

rush to build and implement IoT devices, security and privacy have not been adequately addressed. 

IoT devices, many of which are highly constrained, are vulnerable to cyber attacks, which threaten 

the security and privacy of users and systems. This survey provides a comprehensive overview of 

IoT in regard to areas of application, security architecture frameworks, recent security and privacy 

issues in IoT, as well as a review of recent similar studies on IoT security and privacy. In addition, 

the paper presents a comprehensive taxonomy of attacks on IoT based on the three-layer 

architecture model; perception, network, and application layers, as well as a suggestion of the 

impact of these attacks on CIA objectives in representative devices, are presented. Moreover, the 

study proposes mitigations and countermeasures, taking a multi-faceted approach rather than a per 

layer approach. Open research areas are also covered to provide researchers with the most recent 

research urgent questions in regard to securing IoT ecosystem.  

Keywords: security; privacy; cyber-attack; threat; mitigations; risk; cryptography; vulnerability; 

intrusion; encryption-key 

 

1. Introduction  

The Internet of Things (IoT) encompasses a wide range of application domains, including home, 

health, manufacturing and supply chain, agriculture, transportation, city and utilities. Physical 

devices in these domains are increasingly being connected to each other and the Internet [1]. These 

devices include home IoT devices, such as smart door locks, thermostats and appliances, connected 

cars, wearables, health-related devices, such glucose monitoring systems and pacemakers, industrial 

devices, such as manufacturing sensor networks and supply chain radio frequency identification 
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(RFID) tags, agricultural devices, such as greenhouse sensors and irrigation controllers, and city 

services, such as street lighting and water distribution systems [2].  

The IoT presents many benefits to individuals, organizations and municipalities alike. Devices 

that make home life more convenient are available and inexpensive, and remote sensors can monitor 

areas that are difficult to access [3]. Smart city IoT technology allows municipalities to track energy 

consumption and monitor the environment [4]. In both hospital settings and remote care monitoring, 

medical IoT devices can improve patient outcomes and reduce human errors [5]. The proliferation of 

IoT devices across application domains has attracted interest on many fronts, including investors, 

business and academia [3].  

However, the IoT also presents challenges to security and privacy. Firstly, the hardware used to 

power the IoT is very limited compared to traditional IT devices like desktops, laptops and 

smartphones. IoT hardware has limited memory and processing capacity, from tens of kB of RAM at 

the lowest end sensors, to devices like the Raspberry Pi that can run an operating system [6]. While 

traditional IT devices can be updated, IoT devices usually do not allow updates by the user [7] and 

are also usually not subject to regular security patches and updates [8]. Limited processing capacity 

also limits the ability to run typical cryptographic protocols. The heterogeneity of device hardware 

and protocols makes it difficult to have a unified security solution [7]. Secondly, the vast amount of 

data collected by IoT devices gives rise to privacy concerns. New smart devices promise convenience 

and better living, but the variety and quantity of user data collected, analyzed, transported and stored 

at all layers of the IoT architecture is a vulnerability, allowing threats to user privacy. 

A variety of approaches have been taken in defining layered IoT security architectures and 

frameworks. Earlier research [7] suggested a three-layer model with Perception, Transportation and 

Application layers where the Perception layer represents the physical sensors and actuators, e.g., 

RFID tags, that interact with the physical world, the Application layer provides smart functionality 

to the IoT users, and the Network layer transports information between the other two layers using 

various wireless technologies. More recent research presents security architectures defining 

additional layers. A Processing layer that represents an intelligent interface between the Application 

and Network layers is added in [9], where information from the Physical layer is processed through 

services including data mining, parallel computing and cloud computing. The authors of [10] present 

a five-layer security architecture, with an End-User layer representing the IoT devices, an Edge 

Network layer with servers that collect, process and provide storage for data from the devices, a Core 

Network layer that transports the processed data from the Edge Network layer to a Service and 

Storage layer, with data servers, software servers, and control servers. The data servers store the data 

processed on the edge network for further analysis, the software servers hold applications and 

operating system images, and the control servers manage the data and software servers; the fifth 

layer is a Management layer that provides overall management of the Service and Storage layer. A 

six-layer end-to-end view of security architecture is provided in [11], encompassing an application 

layer, a cloud layer, and information transmission layer, a gateway information layer, an internal 

communications layer, and end device layer. 

Attacks may target a specific layer of any security architecture framework because of 

vulnerabilities in that layer. In this paper, we will review attacks and security challenges on the 

Perception (Physical) layer, the Network layer and the Application layer. The IoT devices in the 

Physical layer are resource constrained and may be in an open, unprotected environment, vulnerable 

to physical damage, tampering and forgery attacks [7,12–14]. The Network layer is critical to the 

transport of information between IoT devices and Application layer processes; Denial of Service 

(DoS) attacks can threaten the availability of network services [15,16] and vulnerabilities in the 

wireless protocols lead to additional security threats [13]. The Application layer that processes data 

from the IoT devices and provides smart functionality to users is vulnerable to exploits of software 

errors, application protocol weaknesses and permissions [13,16].  

Security is of utmost importance in the IoT, especially in application domains that have systems 

critical to individual and community safety [17]. For example, connected cars and smart 

transportation systems need to be secure to prevent accidents and injury, as well as to protect the 
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privacy of drivers who might be tracked as they travel on the roads [18]. Medical and health 

monitoring devices need to be secure to ensure that the information the devices monitor, collect, or 

report is correct and that life critical devices remain available and operating [19]. Researchers were 

able to breach an IoT-connected camera and retrieve images [20]. This kind of security breach can 

pose a threat to both individual privacy and corporate secrecy depending on the location of the 

camera. IoT devices can not only be the target of attack, but they can be harnessed to attack another 

system [21], just as traditional computers have been recruited into botnets to launch attacks.  

There are three basic security requirements, confidentiality, integrity and availability, commonly 

known as the Confidentiality, Integrity and Availability (CIA) triad [22]. These security principles 

apply to the IoT as they do to the Internet as a whole [23]. If there is a loss of any one of these basic 

requirements, there is some impact to the individual or organization involved. The National Institute 

for Standards and Technology (NIST) provides definitions for Low, Moderate and High potential 

impacts due to loss of confidentiality, integrity or availability in FIPS 199 [24]. A loss of availability 

in one IoT application might not have the same impact as a similar loss in another IoT application 

[25]. In addition to providing a taxonomy of attacks by Perception (Physical), Network, and 

Application layers, we will consider the potential impact of attacks on the CIA triad according to the 

NIST definitions in a representative IoT device. 

While mitigation and countermeasures can be taken for a specific attack, because of the 

interconnectedness and heterogeneity of the IoT network, a security strategy should take a more 

comprehensive, multi- and cross-layer approach [7]. Trade-offs between functionality and constrained 

device capabilities can be made across architecture layers [26–28]. Cryptography and encryption can 

provide confidentiality and integrity of data on devices and of data as it is transported through the 

network [29–31]. Blockchain networks have also been presented as a multi-layer countermeasure to 

provide security to IoT [32,33]. End-to-end security is a comprehensive mitigation approach to protect 

wireless communication between devices, adapted to the specific protocols in use [34]. Authentication 

applies to all layers, to verify and identify devices prior to sending or receiving data [35] and user 

identity, using various techniques, including access controls [36–39]. Given the heterogeneous nature 

of the IoT environment, standardization of protocols across devices and networks can mitigate security 

threats [30,36,40–45]. Addressing security countermeasures, including standardization, is a current 

open area of research for IoT.  

Contribution 

In addition to discussing recent surveys on IoT security, this paper makes the following 

contributions:  

 Review the latest related security and privacy similar studies in IoT; 

 Discuss proposals for IoT security architectures and frameworks in recent literature; 

 Provide a taxonomy of attacks on IoT; 

 Present classification of attacks’ impacts according to NIST’s FIPS 199 definitions on loss of 

Confidentiality, Integrity and Availability (CIA) due to attacks on select smart devices; 

 Discuss a multi-faceted approach to mitigation and countermeasures in IoT security; 

 Allocate a section on open research area pertain to IoT ecosystem.  

The rest of this paper is organized into the following sections: Section 2 provides an overview of 

IoT; related work is presented in Section 3; the need for security is explored in Section 4; Section 5 

discusses IoT security architecture and frameworks; Section 6 provides a taxonomy of attacks, threats 

and vulnerabilities in IoT and possible impact of attacks on CIA security objectives; mitigation and 

countermeasures are discussed in Section 7; Section 8 reviews current open research areas; the paper 

concludes and comments on future work in Section 9. 
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2. IoT Overview 

2.1. Internet of Things (IoT)  

The desire to collect and capture data, exchange and share information automatically, remotely, 

at any time and without interruption help push forward the creation of Internet of Things (IoT). IoT 

is defined as a network of Internet-connected objects/devices with embedded sensors that have the 

ability to collect and send or exchange data. Today, there is a plethora of devices that are 

interconnected but with no network standard or clearly defined boundary.  

Despite IoT’s future promise of many beneficial applications, there are grave concerns about the 

security of IoT, especially with regards to the lack of privacy, insufficient user authentication and 

authorization, and weak or non-existent data encryption [46] 

With the arrival of IoT, it is of paramount importance to expediently develop and embrace 

security-standards ensuring secure IoT-device design, connectivity, and accessibility. IoT will 

undoubtedly be the next big thing in our digital age after connecting people through social networks 

[47]. IoT will provide the connectivity of people and Things (devices around them) and of the 

networks of connected Things.  

The world of IoT can be thought of as a “social network” for Things—connected devices, such 

that interaction occurs, not just between humans and devices, but among devices themselves. 

2.2. Application and Scope of Internet of Things  

The benefits of IoT on our daily activities are evident. However, when the IoT was first adopted 

in the late 1960s [48], security issues were not fully appreciated and, therefore, security was not a 

design goal. Today, security has become crucial for IoT survival and vast adoption. IoT applications 

and devices are permeating all aspects of our daily lives. In healthcare, IoT, including Wireless Sensor 

Network (WSN) and Wireless Body Area Network (WBAN), has become an essential component of 

many healthcare environments [49–51]. In the home environment, IoT devices have extended into 

our living spaces enabling home automation and creating intelligent, hyper-connected homes. 

Household devices ranging from power outlets, light bulbs, thermostats, and more are now packaged 

with networking capabilities allowing for wireless remote control. Just about every home appliance 

can be replaced with an automated and remotely controllable alternative. As shown in Figure 1, we 

are surrounded by IoT devices and applications in our homes, cars, trains, streets, transportations, 

agriculture, and businesses.  

 

Figure 1. Internet of Things environments. 

Alam et al. [52], citing Statistic’s estimates and predictions, indicate that by 2025, with the current 

rate of expanding, as shown in Figure 2, IoT connected devices will reach over 75 billion. 
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Figure 2. Internet of Things (IoT) expected devices by 2025 (in billions) [53]. 

2.3. Sheer Volume of Devices Lacking Sophistication  

In general, IoT devices lack complexity and are designed to be compatible with and adaptable 

to our everyday Internet devices. With the increasing number of IoT devices, new vulnerabilities will 

emerge, unforeseen design flaws will surface, resulting in higher chances of system compromise. 

With this in mind, it is crucial to strike a balance between embracing a technology in a timely manner 

while without making compromises on the necessary protection of the Privacy, Confidentiality, 

Integrity and Availability of our networks and our data [47]. 

According to a recent report by Symantec [53,54], there were a massive number of attacks on IoT 

devices between 2017 and 2018, and the average number of attacks was around 5200 attacks per 

month. Figure 3 shows the top source-countries for these attacks on IoT [53]. 

 

Figure 3. Source countries for IoT attacks. 

Comparing this recent report to a previous one also by Symantec [54], IoT devices are still under 

massive attacks every year, albeit in a different ways and sources. Table 1 shows attacks on different 

types of IoT devices.  
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Table 1. Attacks on different IoT devices. 

Device Type Vulnerability Possible Exploits/Attacks 

Cars 
Chrysler car company had to recall 1.4 million vehicles after researchers proofed that attackers are able 

take control of the vehicle remotely 

Smart home 

devices 

Millions of homes are affected. 

Multiple vulnerabilities in a lot of commercially smart home devices such as smart door lock that could 

be hacked and opened remotely without using a password 

Medical 

devices 

Multiple vulnerabilities in medical devices such as insulin-pumps, Xray and CT-scanners devices, and 

implantable sensors 

Smart TVs 
Millions of Internet-connected televisions are vulnerable multiple attacks such as click fraud, data theft, 

and ransomware 

Embedded 

devices 

Everyday devices such as routers, watches, cameras, and smart phones using the same hard embedded 

code SSH and HTTPS server certificates left by manufactures leaving other millions of devices 

vulnerable to attacks such as interception and interruption 

Ferrag et al. [55] conducted a comprehensive survey on IoT authentication protocols. They 

categorized protocols based on the targeted IoT environment. Sfar et al. [56] discussed security 

challenges in IoT devices and discussed access control, privacy, and identification security aspects. A 

systemic approach has been followed in which each component was presented, discussed, and 

highlighted to ensure the security for IoT components. 

2.4. Privacy Concerns, IoT’s 

Privacy concerns are the biggest issue for IoT. We cannot talk about IoT without addressing the 

privacy concerns that come with it. The convenience of new technology and the eagerness to adopt 

it usually outpace the need to ensure security and privacy. However, in the world of IoT, the privacy 

issue is too significant to ignore. The benefits of big data can result in the premature adoption of IoT 

technology before it is fully developed. Data that IoT devices collect is both enormous in magnitude 

and diverse in nature. There are a lot of fundamental security questions we have to bear in mind, 

such as how data is collected, processed, transported and stored.  

Privacy concerns are raised through all the layers of the IoT architecture. Attempting to 

minimize these security concerns has led to identifying security concerns depending on the IoT layer 

they reside in, as shown in Table 2. 

Table 2. Privacy concerns in IoT. 

Layer/Function Privacy Concerns 

Application  
 Who has access to the data, information reports?

 What does it use for?

Transportation/

Network  

 Data transmitted across networks encrypted?

 In general, Wireless networks, Cloud services are vulnerable.

Perception/ 

Sensor  

 The vast majority of devices collect personal information such 

as name, address, date of birth, and some intrusively gather 

information about the user’s taste of music, food preferences, 

not to mention health and credit card information.

Luckily, we can use the standard C-I-A triad (Confidentiality, Integrity, and Availability) to 

structure the way we approach the challenge of providing security [57]: 

 Confidentiality-It ensures that only authorized users can access the data and information reports 

and only to the extent they need that access. 

 Integrity-It ensures that data are secured and encrypted and only modified by authorized users 

during transmission, processing, and storage. 
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 Availability-Although it is essential to secure the data and information, we have to make sure 

data is available in a timely manner; otherwise, it may lose its value, e.g., in emergency and 

medical applications.  

As pointed out earlier, IoT devices are susceptible to attacks not only during data collection, 

exchange, and transmission phases, but also at the design stage. This gives very little confidence and 

limited assurance about the IoT’s confidentiality, integrity, and availability of data. If those issues are 

not resolved, we will face even more significant security and privacy problems. Fortunately, despite 

its rapid growth, IoT is still in its infancy. With the right focus and enhanced effort on security at the 

design and development stage and throughout the product life cycle, IoT will be able reach its full 

potential and truly be of benefit without compromising anyone’s security, especially privacy. 

2.5. Phases of Data as They Pass Through IoT’s Different Layers  

The goal of IoT is to collect and process data and information and make meaningful, informative, 

visually enhanced data presentations for end users (humans, applications, machines, or devices) [58]. 

Those end users will either consume the information and data or intelligently use that information 

or data to determine what action to take. Data passing through IoT’s layers can be organized into 

phases, as shown in Table 3 [59,60]:  

Table 3. Data passing through IoT’s layers. 

Phase Layer Process 

Phase 1 Perception layer Data perception and collection from the sensors 

Phase 2 Perception layer Data storage on sensors 

Phase 3 Perception layer Data processing on the sensors 

Phase 4 Transporting/Network layer Data transmission 

Phase 5 Application layer Data delivery, data presentation for end users, output devices 

At each phase, we see the transformation of the data and have inherent vulnerabilities that can 

be exploited by attackers. 

2.6. IoT Wireless Protocols and Standards 

As shown in Table 4, depending on the IoT layer, there are different wireless protocols that can 

be used in the Application and Message layer, Network and Transport layer, and Datalink layer 

[61,62]. There are different common types of IoT wireless technology, such as Bluetooth, radio 

frequency identification (RFID), Wi-Fi, Low-Power Wide Area Networks (LPWANs), Cellular 

(4G/5G), and Zigbee. Each of these wireless technologies has its strengths and weaknesses in various 

network criteria; thus, a suitable protocol can be selected based on the specific use of the IoT [63,64]. 

Table 4. IoT wireless protocols. 

Layer Protocols 

Application and Message 

Layer 
JSON, HTTP, RESTFUL, XML, FTP, Etc... 

Network and Transport 

Layer 
IPv6, TLS, 6LoWPAN, 6lo, TCP/UDP, Etc...  

Datalink Layer 
Bluetooth, ZigBee, WiFi, 4G/5G/LTE, IEEE 802.15.4e, 

Etc... 

Depending on the IoT layer’s model, most of the standards and protocols for IoT layers are 

proposed by the Institute of Electrical and Electronics Engineers (IEEE), International 

Telecommunication Union (ITU), and Internet Engineering Task Force (IETF) [62]. When it comes to 

the data link layer, IEEE is mostly used. For example, IEEE 802.15.4e is the data link standard for 

several MAC behaviors [65]. For the network, security firmware, and management, IETF new 
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standards are mainly used [66]. ITU-T defined global standard recommendations for IoT and clarified 

the concept and scope of such standards worldwide [29]. 

3. Related Work 

Many surveys have focused on IoT security and privacy in the past five years. The authors of 

[67] selected and surveyed commercially available and frequently used IoT programming 

frameworks from major cloud providers that supported rapid IoT application development. They 

compared the approaches taken to security and privacy at the programming level of the frameworks. 

They found that the frameworks did support security to some degree, but design flaws could cause 

security issues and the frameworks did not adequately consider the vast number of microcontrollers 

with minimal hardware security present in the IoT network.  

In [68], Machine-to-Machine (M2M) applications are enumerated in major application domains, 

including Automotive, e-Health, Smart Metering, City Automation and Home Automation. A 

taxonomy of attacks against M2M is presented, categorized by the target of the attack, whether 

physical, logical or data. Scalability, heterogeneity, constrained resources, and a variety of end-to-

end communication protocols are identified as challenges for M2M. The authors note that while most 

existing solutions addressed authentication and privacy, they did not address confidentiality. 

The IoT is represented by three layers, Application, Transportation, and Perception in [7], and for 

each layer they enumerate the potential attack types. They also review communication protocols, 

security issues and possible solutions by layer. They find that the Perception layer is the most vulnerable 

due to the physical availability of these devices that sense and monitor in the IoT environment. The 

difference between traditional IT security requirements and IoT security requirements is also discussed 

and the need for a multi-layer and cross-layer approach to security is advocated.  

The authors in [69] provide a comprehensive survey of attacks on IoT networks, covering both 

common and specific types of attacks in IoT applications. They focus on Smart Home, Smart Grid 

and Vehicular Ad hoc Network (VANET) applications in IoT and the related wireless networking 

technologies. They provide a taxonomy of attacks between each of these applications and the relevant 

wireless network, as well as classifying those attacks. They review existing solutions and found no 

common solution that would apply to all attacks, leading them to recommend more sophisticated 

schemes, including cryptography specifically adapted to the resource constrained IoT devices. 

IoT applications in the domains of Industry, Personal Medical Devices, and Smart Home are 

discussed in [70], along with general IoT security requirements to protect data privacy and security. 

They find that most security threats to IoT are related to data leakage and loss of service. They also 

describe threats to Smart Home and classify different types of attacks by threat level, from low to 

extremely high, including possible solutions.  

IoT in healthcare is the focus of [5] with applications categorized by healthcare setting, including 

clinical care, remote monitoring, and context awareness. They present the network topology of 

healthcare IoT networks and describe frameworks for health information service models and Wide 

Body Area Networks (WBAN) for healthcare applications, noting that there are no well-defined 

architectures in IoT in healthcare [50]. They identify challenges for healthcare in IoT, including 

scalability, data privacy and security, and low-powered devices, and enumerate requirements for 

WBAN in IoT in healthcare [50,51]. 

Blockchain as a security solution for IoT is discussed in [61]. A taxonomy of security issues by 

layer is provided. Security issues and potential solutions are categorized by groupings of the layers 

of the protocol stack, with low level including the Hardware, Physical and Data Link layers, 

intermediate level including Network and Transport layers, and high level encompassing the 

Application layer. Blockchain-based solutions are discussed, though they note that blockchain itself 

is not without vulnerabilities. 

The authors of [15] describe a three-layer IoT architecture divided between Perception, Network 

and Application layers and posits that the security goals of confidentiality, integrity, and availability 

(CIA-triad) apply to the IoT. They divide security challenges into two categories, technological, which 

contains challenges such as the heterogeneity of IoT hardware, wireless networking technologies and 
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scalability, and security, which contains the CIA-triad and end-to-end security. Security challenges 

are discussed by layer and countermeasures, including authentication, trust establishment, federated 

architecture, and security awareness, are discussed. 

An overview of IoT architecture and the interoperability of interconnected networks is provided 

in [71], as well as an analysis of security issues and mitigation strategies. They believe that the ease 

in conducting attacks against IoT is a significant threat. They discuss security constraints for 

hardware, software and networks, and present requirements for information security, access level 

security, and functional security. A taxonomy of attacks is categorized by device properties, 

adversary location, access level, attack strategy, and damage level, as well as by host and protocol.  

The authors in [72] discuss security goals and requirements for IoT, including data 

confidentiality, privacy and trust, while also providing a background of threats, attacks and 

vulnerabilities pertaining to IoT system components. They also provide an analysis of the motivations 

and capabilities of the intruders who would threaten the IoT. Intruders are classified into three main 

types, individuals, organized criminal groups, and state intelligence units; the motivation and 

capabilities of each are discussed. 

Classification of the IoT in a corporate environment into four component layers, including 

connected objects, transportation, storage and data mining, API and GUI, is done in [73], with 

multiple technologies possible in each layer. A taxonomy of threats and attacks for each of these 

components is provided. A case study is undertaken to demonstrate the operation of these 

components in connected thermostat devices, offering threat scenarios and corresponding mitigation 

measures, showing how an attacker could compromise one layer and use the trust between layers to 

gain access to additional resources.  

A taxonomy and comparison of smart technologies in a host of application domains, Smart 

Cities, Smart Homes, Smart Grid, Smart Building, Smart Transportation, Smart Health, and Smart 

Industry, is discussed in [74], along with the objectives and characteristics of each smart technology. 

The authors believe that the unique capabilities of the IoT and smart technologies bring new 

opportunities to businesses and consumers. They present case studies from four countries that they 

believe were successful examples of IoT and smart technology use to improve life, safety, efficiency 

and environmental monitoring.  

An end-to-end view of IoT is taken in [20], where the authors describe three main components, 

things, cloud, and controllers, where the cloud serves as a middleman for the things and controllers. 

The authors define ten major functionalities in their end-to-end view, including upgrading, pairing, 

binding, local and remote authentication and control, relay and big data analytics by cloud, and 

sensing and notification. They argue that security in IoT needs to be considered across five 

dimensions, hardware, software, OS/firmware, networking, and data. A detailed analysis of a 

connected camera system’s functionalities and communications between the three main components 

is made, as well as a discussion of their implementation of remote attacks that successfully gave them 

control of the camera. 

The authors of [75] believe that understanding the difference between traditional IT systems and 

cyber-physical systems is important to comprehending the security requirements of cyber-physical 

systems. A proposal of a cyber-physical system model with three parts, (i) physical, for those devices 

that directly connect with the physical world, (ii) cyber-physical, where connections between the 

physical and cyber worlds are made, and (iii) cyber, which has no connection to the physical world, 

is made. They present a comprehensive review of cyber-physical systems, choosing four major 

applications, Industrial Control Systems (SCADA), Smart Grid, Medical Devices, and Smart Cars, as 

representative systems for further analysis. A review of general threats applicable to cyber-physical 

systems in general, as well as threats targeted to each of the four major applications, is made, 

including the source, target, motivation, attack vector, and possible consequence of each attack. The 

causes of general and application-specific vulnerabilities, examples of real-life attacks, and controls 

are also discussed.  

A comparison of IoT reference models, the early three-level model, the alternative five-level model, 

and the CISCO seven-level model is made in [76]. A detailed taxonomy of attacks, security requirements, 
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and countermeasures is made for the Edge-side levels, including Edge Nodes, Communication, and Edge 

Computing (Fog). The authors believe that the traditional CIA-triad of confidentiality, integrity, and 

availability is not sufficient to provide full security in IoT and thus consider the expanded IAS-Octave 

security requirements in their discussion of attacks and countermeasures. They see the enormous growth 

of insecure IoT devices in the wild and the privacy implications to the vast amount of data present in the 

IoT environment as major challenges to be addressed. 

IoT applications are classified into major application domains and the critical security issues 

relevant to each domain are discussed in [77]. They divide IoT applications themselves into four main 

layers, including Application, Middleware, Network, and Sensing. For each of these layers, including 

the Gateways that connect them, they present the various attacks and security issues to which the 

layer is susceptible. Because of the heterogeneity of the IoT infrastructure and the high level of 

connectedness between IoT devices and systems, the authors believe major improvements are needed 

to make IoT secure and to protect the large amount of private information generated by devices. They 

categorize existing IoT security solutions into four distinct approaches, blockchain, fog computing, 

edge computing, and machine learning. For each of these approaches to IoT security, they present 

the particular security issues that the solution can address, but they also acknowledge that these 

solutions are not without their own security issues.  

A comprehensive look at IoT security is presented in [78]. The services and protocols in the layers 

of the IoT protocol stack they categorize as Semantics, Application, MAC/Adaptation/Network, and 

Physical/Perception are enumerated. Threats to IoT in general and at each of the four layers are 

detailed. A major contribution of this survey is a review of major malware attacks on IoT devices and 

an analysis of the malware attack methodology, from the preparatory phase, through the infiltration, 

execution and propagation phases, to finally the hideout and clean-up phase. The authors see current 

IoT security as inadequate against these malware attacks and so propose guidelines for an IoT 

security framework that would provide comprehensive security for IoT. Each security measure in the 

proposed framework is designed to counter a particular threat to IoT.  

The authors in [25] propose a taxonomy of vulnerabilities in IoT grouped into nine classes that 

include weaknesses in the hardware, software, and resources available in the IoT system. They 

examine the vulnerabilities in the context of layers, security impact, attacks, countermeasures, and 

situational awareness capabilities. As part of this examination, they consider impact and attacks on 

the general security principles of confidentiality, integrity and availability. A unique contribution of 

this survey is an empirical analysis of darknet data passively collected from a/8 network telescope. 

This data is correlated with third-party information to determine the number of unique devices, 

manufacturers of the devices, countries of traffic origin, and the business sectors involved.  

In [79], the authors approach IoT as a security object to be protected and detail specific IoT 

properties that are critical to security. They present vulnerabilities according to the particular IoT 

asset or property being targeted by attackers as well as enumerating IoT device vulnerabilities 

recorded in the National Institutes of Standards and Technology (NIST) National Vulnerability 

Database (NVD). Among the components of IoT that they see as security objects to be protected are 

data, devices, communications, applications and clouds. They propose a combination of hardware 

and software solutions as well as proper access control, organizational policies and shared threat 

detection and intelligence for IoT information security. 

Viewing the IoT as a collection of features that are representative of IoT devices as opposed to 

traditional IT devices is the approach taken in [80]. These features include aspects of IoT devices, such 

as constrained, unattended, mobile, ubiquitous, diversity, myriad, intimacy and interdependence 

that have impact on security and privacy. These features relate to the vast number of connected 

devices in a heterogeneous technical and application environment. Threats, challenges and solutions 

for each feature are described. The authors conclude that vulnerabilities related to the features they 

call “constrained” and “interdependence” would be exploited by attackers more in the future. 

The authors in [81] propose a four-layer reference model, with each layer, Cloud, Network, Edge 

Computing and Perception, having a set of building blocks. In developing an IoT attack model they 

take a multi-layer approach, considering the general building block types, including physical objects, 
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protocols, data, and software, as IoT assets. After identifying attack surfaces by building block asset 

and IoT security requirements, including confidentiality, integrity and availability, as well as the 

extended IAS-octave, the authors present a taxonomy of attacks, compromised security requirements 

and countermeasures by each building block asset category.  

A different approach to IoT security is taken in [56]. Instead of dividing the IoT into layers by 

technological function, the authors consider the various actors, relationships and interactions in the IoT. 

This systemic and cognitive approach is presented as a tetrahedron with four nodes representing the 

person, the intelligent object or device, the process, and the technical ecosystem. The edges between the 

nodes reflect the relationships and tensions between them. This theoretical model is further illustrated 

by a case study in the Smart Manufacturing application domain. The edges that relate to security are 

presented in more detail, including privacy, trust, identification and access control. The authors believe 

the increased expectation for objects and networks to be intelligent and act on their own requires IoT 

security to become more context aware, adaptive and similarly autonomous.  

In [2], the authors focus on nine major application domains of IoT, including smart healthcare, 

grid, home, wearables, transportation, manufacturing, agriculture, supply chain and city. For each of 

these application domains, they present security requirements, including confidentiality, integrity 

and availability, as well as the extended IAS-Octave. Additionally, system models, threat models that 

include the comparative level of threats, and protocols and technologies applicable to each 

application domain are presented in detail. Solutions to address the limitations of IoT devices, namely 

their low power and capacity, are discussed, including cryptographic primitives, authentication 

protocols, hardware, application-specific, and current lightweight solutions. 

Finally, most IoT surveys have focused on IoT devices as the target of attacks. The authors of 

[21] consider the IoT device as the enabling force in an attack on another target that is not necessarily 

another IoT device. The authors limit their work to verified attacks, whether they occurred in the real 

world or were produced by researchers. Their model of IoT-enabled attacks includes the adversary, 

the IoT device, and the actual target, which is typically a critical system. The access, means and 

motivation of the adversary are examined, as are the vulnerabilities at different IoT system layers and 

the direct, indirect and non-existent connections between the IoT device and the target system. They 

propose a risk methodology that assesses threat, vulnerability and impact levels to provide a risk 

profile for different IoT systems. Attacks in IoT application domains SCADA, Smart Power Grids, 

Intelligent Transportation Systems, E-Health and Medical Systems, and Smart Home and 

Automation are analyzed, with the authors finding that the closeness of device and target, 

exploitation of network and physical communication, and the extension of IoT device functionality 

played a role in the viability of an attack across all of the aforementioned application domains. 

4. The Need for Security  

The explosive growth, proliferation of IoT devices and the integration of IoT into our daily life 

has created an Internet of Vulnerabilities [82,83]. The convenience and comfort that IoT deliver to us 

comes with a security and privacy toll. Until recently, IoT devices were not completely secured. 

Security and privacy are delimiting factors in adopting and deploying IoT devices in many fields, 

sectors, services and applications such as mission critical applications [11,82].  

A report by the TCS Global Trend Study, July 2015. Internet of Things: the complete 

reimaginative force [84] stated that reliability and security are the two main inhibiting factors for 

industry to deploy IoT in many fields and sectors to provide services. Traditional security techniques 

will not function well in the IoT environment due to the complexity, heterogeneity and the scale of 

IoT-enabled ecosystem [85,86]. This is mainly due to the fact that IoT devices are small in size, have 

low energy, low battery lifetime, memory size limitations, and low processing power to run complex 

encryption protocols. Identity allocation, management and the authentication of billions of IoT 

devices also play a role in this [85,86]. 

To gain insight into the need for security in IoT, we need to put security and privacy into action 

through practical IoT applications. In a smart health care environment, heart suffering or diabetics 

patients via pacemakers or insulin pumps, respectively. Patients can be monitored remotely via 
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telehealth provision for their conditions. These IoT implants provide health monitoring but can be 

compromised. If these IoT implants were hacked and patients’ data were breached, it can put their 

life at risk. Moreover, if the authenticity of information from these devices cannot be verified, then 

that is another life-threatening situation [85]. Some of the security and privacy concerns in this context 

are as follows: (i) Who has access to a patient’s information? (ii) Is information communicated over 

the wireless medium encrypted? (iii) Is the data stored securely? (iv) What personal information 

about the patient is being collected and more? 

In an IoT-enabled smart home, for example, if the heating control system is compromised, the 

hacker will gain access to the home network and from there to the home security system, which 

jeopardizes the physical security of the home occupants. Some of the security and privacy concerns 

that arise from this case are as follows: (i) Who has access to the home security system? (ii) Is the data 

communicated by different components of the smart home encrypted? (iii) Does the actuator accept 

data from authenticated sources and more? 

In the previous two cases we just touched based on two wide spread practical scenarios that 

clearly show the need for security in IoT-enabled systems and services. The more IoT-enabled 

services and applications, the more vulnerabilities are ready to exploit by an adversary.  

5. IoT Security Architectures and Frameworks 

Urien proposes a four-quarter security architecture, based on a secure element [87]. It uses an 

Arduino board as a General Purpose Unit (GPU) to coordinate three subsystems: a WiFi SoC in charge 

of communication, a secure element (SE) performing TLS protocol operations and defining object 

identity, and sensors and actuators. The GPU has a limited SRAM size of 8KB, which is the most 

critical resource. The entire system is controlled using a mobile App. The WiFi unit implements the 

IEEE 802.11i security protocol and provides a TCP/IP stack with client and server features. The SE 

has a smartcard form factor, supports Java Virtual Machine (JVM), and runs software written in the 

Javacard language. The system uses a digital temperature sensor for the sensors and actuators unit.  

Liu et al., propose a four-layer security architecture consisting, top-to-bottom, of information 

application security at the application layer, information processing security at the processing layer, 

information transmission security at the network layer, and information processing security at the 

perceptual layer [9].  

Protection at the perceptual layer is in the form of physical security of the sensing devices 

themselves, authentication, and Wireless Sensor Network (WSN) security [49]. Authentication can be 

done using asymmetric encryption to the ensure security of a node’s ID. Some of the attacks on a 

WSN include fake routing information, selective forwarding and black hole attacks [49]. Mitigating 

methods include integrated security policies such as encryption algorithms, key distribution 

strategies, intrusion detection mechanisms, and secure multi-path routing strategies. 

At the network layer, issues of longer-distance transmission, such as mobile communication 

networks and long-distance cable networks, are tackled. Issues to account for include the denial of 

service attacks, unauthorized access, man-in-the-middle attacks, and virus attacks. The processing 

layer acting as an interface between the network and the application layers needs to ensure data 

integrity and confidentiality. 

Obaidat et al., propose a six-layer security architecture [11] consisting of top-to-bottom security, 

application security, cloud security, information transmission security, gateway information security, 

internal communications security, and end-device security. At the application layer, they identify 

authentication as the most important, yet often overlooked, mechanism to employ. The cloud layer 

is to address data protection, privacy policies, and secure connections. The information transmission 

security layer handles reliable secure communication throughout the system. This includes wired, 

wireless and mobile networks. The gateway information security layer handles heterogeneity at the 

network edge using control and protocol security. Internal communications security handles security 

under the perimeter. Finally, the end-device security layer ensures physical IoT-device security. It is 

worth mentioning that the architecture is based on an end-to-end security framework. 
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Sridhar and Smys propose end-to-end security architecture [34]. They address the three domains 

of the communication in an IoT infrastructure, namely, the sensing device domain, network domain, 

and cloud domain. Mutual authentication is achieved through an authentication-delegation process. 

Key management is accomplished using a dedicated Master Key Repository. Communication 

between nodes and device gateway and between device gateway and cloud service gateway is 

conducted using symmetric encryption while communication of these gateways with the Master Key 

Repository is done using asymmetric encryption. The repository generates a key-pair sharing its 

public key with the gateways via a one-time handshake. Lee et al., proposed a three-factor mutual 

authentication protocol for multi-gateway IoT environments to solve the existing security 

weaknesses in two factor authentication protocols [46]. The proposed scheme protects IoT ecosystem 

against existing threats such as user impersonation attacks, gateway spoofing attacks, and session 

key disclosure [46]. Due to resource limitations in IoT, a lightweight authentication mechanism is 

needed. Yu et. al., in [88], proposed a secure and lightweight three-factor authentication scheme for 

IoT in cloud computing environment to secure IoT devices against attacks that were not previously 

addressed by previous mechanisms such as session key disclosure, replay attacks and user 

impersonation. In addition, it provides mutual authentication and anonymity.  

Olivier et al., propose an IoT security architecture based on software-defined networking (SDN) 

[89]. The architecture is meant for securing wired, wireless, ad hoc networks, and object networking 

(devices such as sensors, tablets, smart phones and the like).  

The network is assumed to be heterogeneous with nodes that have more resources being SDN-

capable, while others with limited resources are not. Nodes with limited resources are assumed to be 

in the vicinity of an SDN-capable node. The larger network is referred to as an extended SDN domain 

that is divided into multiple domains, where a domain represents an enterprise network or a data 

center. Each domain can have or more controllers for managing the devices within that domain. To 

allow for scalability, the authors introduce a Border Controller that sits at the edge of each domain. 

The architecture is not hierarchical, rather control functions are not distributed on multiple 

controllers, while routing functions and security rules are distributed across edge controllers.  

Each SDN domain has its own security policies and management strategy. SDN controllers are 

responsible for authenticating network devices, and once a device is authenticated, a controller will 

push the appropriate flow entries to the access switch. As opposed a master/slave model, all border 

controllers follow equal interaction mode having read/write access to the switch. This means they 

have to synchronize their operations. 

Edge controllers are also responsible for establishing connections and exchanging information 

with other SDN border controllers. An edge controller exchanges its security rules with controllers 

of other domains following a concept of a grid of security.  

Unlike other SDN-based schemes that assume a single controller and hence a single point of 

failure in case the controller is attacked, this scheme uses edge controllers working together in a 

distributed fashion in order to guarantee the independence of each domain in case of failure. 

Ling et al. present an end-to-end view of IoT security meant as a guide to design a secure and 

privacy-preserving IoT system [20,90]. By focusing on standalone IoT systems consisting of three 

components (thing, controller and cloud) they identify 10 basic IoT functionalities related to security 

and privacy. These functionalities are listed and described in Table 5.  

To secure an IoT system, the authors identify five dimensions: hardware, operating system and 

firmware, software, networking and data generated and maintained within the system. The 10 

functionalities span these five dimensions. 

As a case study, the exploiting an IP camera system manufactured by Edimax is presented under 

this view of IoT security and privacy. They focus on remote attacks when the controller is away from 

the home network. Using three types of attacks, they are able to remotely control any camera. These 

attacks are: device scanning attack, brute force attack, and device spoofing attack. 
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Table 5. Identified functionalities and their description. 

Functionality Description 

Upgrading Updates to IoT-device (thing) firmware 

Pairing The process of connecting a controller, e.g., a mobile app, to the IoT thing. 

Binding Configuring the thing through the controller once pairing is done. 

Local 

Authentication 

Takes place when the controller resides on the same local network as the thing. Thing may provide an 

open port for the controller to connect to. Thing should authenticate user to allow for further actions 

from user. 

Local Control Ability to locally control thing through sending user-commands after authentication. 

Remote 

Authentication 

When the controller is away from the home network, it may not be able to connect directly to the thing 

because the latter is probably behind NAT. In this case, it must use a cloud service to authenticate. 

Remote Control Ability to control thing while away from the home network through the cloud. 

Relay 
Cloud is to relay the authentication and control messages between the thing and controller. Cloud may 

need to authenticate both thing and controller using its own authentication servers. 

Big Data Analytics 
The cloud may collect data from the thing, the user, and may also contact other clouds for data on 

other things. 

Sensing and 

Notification 
A thing may report on environment or actions, e.g., room temperatures or number of login attempts. 

Through identifying two major challenges in IoT networks, Guo et al., propose a five-layer IoT 

architecture [10]. The first of these challenges is interoperability due to high degree of disparity 

between different nodes in terms hardware architecture, embedded operating system, applications 

and functionalities. The second is management of both devices and resources. An example of the first 

is the need to update software and settings while an example of the latter is the ability to gather data 

from myriad devices in a timely manner. 

The authors propose centralized management of resources including operating system (OS), 

applications, and data, while improving scalability using transparent computing (TC). TC refers to 

the decoupling of the software stack from the underlying hardware and separating computing unit 

from storage. In this model, OS, applications and data are considered resources that can be centrally 

managed and scheduled by the server. Prior to such scheduling, an IoT device acts as a lightweight 

terminal with no OS, yet is capable of executing small segments of code or data as demanded by the 

server (called block-streaming). 

The architecture consists of five layers: the end-user layer, edge network layer, core network 

layer, service and storage layer, and management layer. The end-user layer is comprised of the IoT 

devices running a resident software such as MetaOS such that they are capable of booting various 

operating systems as instructed by the Edge network layer.  

The edge network layer is made of devices such as servers. They perform two types of tasks: (a) 

collecting and processing user data gathered by the end-user layer. Processed data is sent to the 

service and storage layer through the network layer, (b) providing computing and storage services 

to IoT devices. The core network layer provides the communication infrastructure and is used for 

communication between the edge network layer and service and storage layer.  

The service and storage layer consists of different types of servers. Data servers for storing data 

received from the edge network layer and providing such data for analysis. Software servers for 

storing OS images and applications to make available to IoT and edge devices. Finally, control servers 

control and manage both data and software servers. The Management layer manages service and 

storage layer servers, and assigns tasks to the control server, such as adding and updating software. 

Liu et al., propose a security framework for IoT based on a future Internet Architecture named 

MobilityFirst [91]. MobilityFirst addresses, among many others, two major issues with the Internet 

of today, mobility at scale and security. These are achieved by cleanly separating human-readable 

names, globally unique identifiers (GUIDs), and network location information. To that end, two 

services are used, a name certification and resolution service (NCRS) is used to securely bind a 

human-readable name to a GUID while a global name resolution service (GNRS) is used to securely 

map a GUID to a network address (NA). By allowing the GUID to be a cryptographically verifiable 

identifier (e.g., a public key), trustworthiness is improved. Separation of the location information 
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(NA) from the identity (GUID) enables users to request content by name without worrying about the 

current network address. This results in seamless mobility at scale. 

The authors adopt the MobilityFirst architecture in addressing IoT needs in terms of scalability, 

mobility, content retrieval, inter-operability, and security. While many of these are clearly needed in 

an IoT setting, mobile IoT may not be. A mobile IoT application scenario is Vehicular Ad hoc 

Networks (VANETs). Sensors can be installed in moving vehicles to collect data and make it available 

to relevant applications through the underlying IoT infrastructure. 

The authors propose a framework comprised of four components: devices, applications, 

MobilityFirst network, and IoT middleware as shown in Figure 4. Devices are the things of the IoT 

network, capable of sensing, actuating and communicating. Applications are used by users to both 

consume data after being processed and feed back into the system. 

The IoT middleware is further divided into three functional layers, Aggregator, Local Service 

Gateway (LSG), and the IoT server. The aggregator provides sensor abstraction hiding the hardware 

specifics for the underlying sensors and presenting a unified interface for querying and subscribing 

to the sensor data. The aggregator passes collected raw data to the LSG layer.  

The LSG connects the IoT system to the global Internet. It might process raw data provided by 

the aggregator for context refining and aggregation purposes. The LSG also publishes the 

information, along with a data GUID, access control policy, and the storage location information 

(either human-readable names or NA), to the IoT server. Applications (users) can query the IoT server 

regarding where to fetch the data from through its edge router. After that, it can fetch the data from 

either a storage location or directly from the aggregator. In enforcing access control, the IoT server 

may decide to handle it itself or delegate it to the NCRS/GNRS. 

 

Figure 4. Components of the IoT MobilityFirst architecture, reproduced from [91]. 

Huang et al., propose a security framework for IoT that is meant to strike a balance between 

security and usability [92]. Three main scenarios were user experience is important are considered: a 

body-area network, a home network, and a hotel network. Two additional scenarios were also 

considered: logistics IoT and an office IoT. To better understand user perceptions of the importance 

of security vs. usability, and how willing users are to trade one for another, a survey is conducted. 

User were asked about three aspects of security: authenticity, integrity, and availability.  

The survey results show that while different aspects of security matter differently depending on 

the application, security matters to all users and in all applications. This is particularly the case when 

it comes to access systems and payment systems.  

The proposed framework, named SecIoT, is composed of sensors that communicate to a central node, 

e.g., a web server, which is connected to the Internet. The central node stores, processes, and delivers data 
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to users. Users can also control objects via this unit. The central unit also provides interoperability when 

communicating with other IoT networks. An all-IP 5G network is assumed, such that either the gateway 

or even the IoT nodes are equipped with a 5G SIM card so they are able to communicate. 

Two forms of authentication are used: users when connecting to the central node to enquire or 

control objects, and objects when providing data to the central unit. A single-sign-on mechanism is 

used to authenticate users, while a Multi-channel security protocol (MCSP) is used for authenticating 

devices. In MCSP, a no-spoofing and no-blocking (NSB) out-of-band channel is used to communicate 

security properties (e.g., public key). Examples of NSB channels are emails, SMS messages, phone 

calls, and even face-to-face conversations. Using a user’s mobile phone or email address, it is easy to 

exchange public keys between the mobile phone and the IoT central service provider using, e.g., 

public key infrastructure. 

The second component of the framework is providing a successful secure channel. This is 

relatively easy to accomplish once authentication takes place. The public key distributed during 

authentication can be used to ensure secure communication. 

For authorization, role-based access control is proposed. The role is more encompassing than 

simply a job role. It could include the user’s context, e.g., location being in the vicinity or location, 

access during business hours. 

The last component is a risk indicator, which helps users assess their current configurations and 

choices in terms of security risks. The risk indicator provides information in three elements: asset 

identification, threat identification, and risk evaluation. 

Colombo and Ferrari et al., propose Fine-Grained Access Control (FGAC) to NoSQL databases, 

which have been gaining popularity in the data storage and analysis layer of IoT platforms [93–96]. 

The papers attribute this adoption of NoSQL databases in IoT to several reasons, including 

performance, scalability, support for handling high volumes of data, and the ease of interaction with 

external applications. 

NoSQL databases support multiple data models, with document-oriented being the most 

popular. MongoDB, the most popular NoSQL datastore, follows this data model. Using this model, 

a database is made of collections, each collection has a number of documents within, and each 

document contain key-value pairs [93,97]. 

A major shortcoming of NoSQL databases, however, is the poor data protection mechanism they 

offer; e.g., MongoDB, integrates a role-based access control model operating at collection level only. For 

handling sensitive IoT data, the database could greatly benefit from the integration of FGAC [95,97]. 

The authors propose the integration of a purpose-based model operating at document level into 

MongoDB and even at field level, which supports content-and context-based access control policies 

similar to those of Oracle VPD (Virtual Private Database). They also extend FGAC to map-reduce 

systems. An extracted key-value pair is dynamically modified on the basis of the specified FGAC 

policies, before the mapping phase starts the processing [93,97]. 

In recent years, fog-based access control has been proposed to move the computational complexity 

from the core to the edge. To dynamically control context-sensitive access to cloud data resources, a 

novel approach was proposed in [38], which combines the benefits of fog computing and context-

sensitive access control solutions. The new model reduces administrative efforts and processing 

overheads. For comprehensive look at the context-aware access control schemes for cloud and fog 

networks as well as open research issues, the reader is encouraged to refer to the study in [39]. 

Irshad created a review and comparison of IoT security frameworks [98]. To survey the available 

literature, three search phrases were used: “IoT Security Framework”, “IoT Security”, and “IoT 

Information Security Governance” and four security frameworks were identified and compared as a 

result. The results of comparing these frameworks were presented in a table format and are 

reproduced as shown in Table 6. 
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Table 6. Comparison of four IoT Security Frameworks [98]. An X indicates a criterion that is 

insufficiently developed. 

Security 

Framework 

Policies, Standards, Process 

Adaption and Secure IOT 

Components 

Security Service Level Agreement Applicability 

Cisco Security 

Framework  

Authentication Threat Detection, 

X 

Infrastructure 

Authorization Anomaly Detection, Framework 

Network Enforced Policy Predictive Analysis  

Secure Analytics: contextual- Awareness  

Risk and Assurance     

Floodgate Security 

Framework  

Software APIs to enable 

secure boot 

Runtime Integrity 

Validation (RTIV) 

Identify the threats and 

Floodgate firewall IDS 

Supp 

Best Fit in 

Hardware root of trust 

integration 

Application Guarding 

APIs Internet security 

(DDOS) 

Compliance support 

Security Evaluation 
Infrastructure 

Software based vTPM for 

legacy systems 
  Security 

Integration for secure remote 

firmware updates. 
    Framework 

Constrained 

Application 

Protocol 

Framework 

(COAP)   

IoT Smart Objects 

X X 

Best Fit in 

Protocol suites. Application 

CoAP, UDP, 6LoWPAN Security 

IEEE 802.15.4e provide the 

easy mapping to HTTP at the 

gateway 

Framework 

Object Security 

Framework for IoT 

(OSCAR)   

Technological Trends and 

Design Goals 
Access Control 

Analyzed and extracted 

risks of utilizing cloud 

computing by using the 

Risk Breakdown 

Based on Object 

Security 

Approaches 

Producer-Consumer Model  Confidentiality Structure (RBS) method. 

Best Fit in 

application 

Security 

Fitting the Concept with the 

REST Architecture and CoAP 

Object Security Approaches 

Authenticity   

  Availability     

Krishna and Gnanasekaran also compare different IoT security protocols [99]. Protocols are 

classified based on the layer at which they operate. Nine different schemes are compared, three at the 

perceptual layer, two at the network layer, and four at the application layer. These are compared in 

terms of the issues they address, the solution they provide, and their limitations.  

Issues addressed include the life style of the elderly, absence of real-time data from nodes, and 

data integrity at the perceptual layer, security of home devices and device security at the network 

layer, and e-health information systems and environmental changes at the application layer. 

6. Attacks, Threats and Vulnerabilities 

6.1. Perception/Physical Layer 

The security challenges at this layer rise from the fact that the IoT device is residing in an open 

unprotected environment. In addition, it is because of the nature of IoT nodes and devices that have 

limited resources. [12,13,83]. Physical layer challenges include physical damage and tampering with 

the IoT device [7,13]. Attacks at this layer are centered on the idea of forging information [14]. The 

following threats/attacks are the most common at the physical layer in IoT devices. 

Node capture/tampering/physical damage attack: This could be either by physically tampering 

with the hardware components of the node or device, or replacing the entire node with a malicious 

node. The aim of the attacker is to gain access and control the node or IoT device. This could also be 

by damaging the functionality of the hardware components or compromising the sensitive 

information in the device, such as keys necessary for communications. Injection, using the device’s 

interface to inject malicious code that spreads to the rest of the network [13,15,100–104] and physically 

damaging the IoT node or device to hinder the availability and proper functionality of the system 

[104]. Since IoT nodes are usually operated outside in an unprotected environment, they are 
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vulnerable to such attacks. The attacker with physical access to the node or device might reprogram 

it, tamper with the software components, and reconfigure or extract cryptographic information 

[14,105–108]. The extraction of security information: after gaining access to the device driver, an 

attacker can steal the encryption keys [13,15,76,100,101,109–111]. 

Physical Attacks/Tampering: against RFID tags: Some of the physical attacks against tags include 

probe attack, circuitry manipulation, clock glitching and material removal [112]. These attacks enable 

the attacker to gain access to information from the tag or modifying the tags for forgery [13,76,83,112]. 

Hardware Trojan: The attacker changes the design of the integrated circuit (IC) before or 

throughout the production process to add the hardware Trojan. This enables the attacker to gain 

access to data or the software implemented on the integrated circuit (IC) [76]. The attacker builds a 

certain trigger mechanism into the circuitry to enable activating this mechanism later on. This type 

of hardware Trojan attack includes both externally and internally activated Trojans. 

Denial of Service (DoS) Attacks: IoT nodes are vulnerable to DoS attacks due to the fact that 

nodes and devices in IoT system have limited resources, such as power, battery, memory and 

processing capabilities [7,13]. DoS attacks at the node include, but are not limited to, sleep 

deprivation, outage attacks and battery draining. Because of the small batteries that IoT nodes have, 

they are vulnerable to this attack where the attacker depletes the battery to move the node into 

shutdown state [113–116]. This has very serious consequences in case of an emergency where the 

node cannot function and report the emergency. Moreover, keeping the node awake and preventing 

it from going into sleep mode would cause the DoS attack through sleep deprivation. A node might 

not function properly due to an outage attack. This could be as a result of code injection, unauthorized 

access, or the node being defective due to manufacturing error [13,76]. In case of DoS attacks against 

the RFID tag, the tag reader is not able to read the tag due to jammed radio frequency (RF) channel. 

This makes the tags unavailable which in turn causes DoS [76,110]. 

Node Jamming attack: In this attack, the attacker transmits a noise signal over the 

communication channel to interfere with the IoT radio signal to occupy the transmission media that 

will cause jamming of the signal. The aim of the attacker is to corrupt the transmitted signal from 

legitimate nodes by introducing and increasing the number of collisions that will lead to unnecessary 

retransmissions. This causes power consumption that leads to fast depletion of the resources. 

Continuously jamming the signal will disable the communications between IoT nodes and devices. 

This ultimately causes DoS of the IoT node preventing communication to the nodes or the entire 

system [13,101,102,104,109–111,117,118]. 

Replication/duplication of a node/device attacks: A malicious node is inserted into the system 

that appears to be genuine by duplicating the information (i.e., hardware, software and 

configuration) of a genuine node. This attack uses the duplicated node to redirect traffic, drop 

packets, or gain access to sensitive information such as the shared encryption keys 

[13,76,100,101,119,120]. 

Social Engineering: The aim of the attacker is to have the users of an IoT system perform specific 

acts by manipulating them to do such acts [104]. The attacker has to interact with the IoT user to get 

the information of interest or perform a certain action. 

Malicious code injection attacks: The attacker infects an IoT node by injecting a malicious code 

to the node or device which gives the attacker full access or control of the node or the entire IoT 

system [104]. This attack could drain the network resources which leads to DoS attack in WSN [49]. 

Moreover, viruses could be injected into nodes [13,100,111,121]. 

Malicious Node Injection: This is used to carry out MiTM attack by introducing a malicious node 

between two or more legitimate genuine nodes. The attacker will be able to monitor, modify and 

eavesdrop on the communications between two IoT devices in the system. This is considered an 

insider threat since the attacker must physically exist and insert the node into the network [84]. 

Camouflage/Corrupted/Malicious Node attack: In this attack, a fraudulent node is inserted or 

attacks a legitimate node to hide at the edge. This node later could be used to perform traffic analysis, 

send and redirect packets [76,120,122]. By using a corrupted/malicious node, the attacker aim is to 
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gain access to the system [12], which could include getting access to other nodes, the network and its 

communications [76,100,111,120,122]. This might halt the entire network. 

False data injection attacks: The attacker injects information to replace existing true information 

that is initially collected by the IoT device. This device will then transmit the erroneous information 

to the intended destination [13]. 

Replay attacks (or freshness attacks): The goal of the attack is to have a malicious node or device 

gain the trust of the rest of the IoT nodes or devices. This is accomplished through communicating 

with the destination node or device using legitimate identification information that has already 

established communications with the destination node or device [13,15,102]. 

Cryptanalysis attacks and side-channel attacks: The attacker aim is to get the encryption key. 

Predicting the encryption key by obtaining the cipher-text or plain text from the communication 

[110,111]. The effectiveness of the cryptanalysis attack is very low. To maximize the effectiveness of 

such an attack, a side-channel attack is used. In this attack, some techniques are applied to get the 

encryption key. One of these techniques is the timing technique, where the attacker analyzes the time 

it takes to perform the encryption process and from that the attacker can predict the encryption key 

[13,15,102,103,111]. The way the side-channel attack is launched against RFID tag is that the attacker 

extracts information by intercepting wireless communications between different parties and 

processing it. The attacker then looks for patterns to launch its attack [13,110]. In a non-network side-

channel attack, the continuous transmission of the electromagnetic waves delivers private 

information about the status of the node or the owner of it, even though the node or device is not 

transmitting information [76,123]. 

Eavesdropping and interference: The wireless communication channel is very vulnerable to this 

attack as most IoT nodes and devices communicate wirelessly. The attacker can interfere and 

eavesdrop on the transmitted information fairly easily over the wireless channel since this is 

broadcast transmission in nature and for this reason it is challenging to trace [13,102,109,110]. This is 

considered a passive attack as the attacker does not do anything besides listening. In the case of 

eavesdropping against RFID tags, the attacker intercepts the communications over the RF channel to 

sniff messages and perform some traffic analysis to extract some sensitive information [15,76]. 

RF interference on RFIDs: The attacker sends noise signal to cause interference with the RFID to 

obstruct it from performing its normal functions [110,111,124]. Once the noise signal interferes with 

the radio frequency signal, communication between nodes becomes very difficult, which could 

partially disable the network and ultimately lead to DoS [100,104,110,111]. 

Sleep deprivation/sleep denial attacks: The battery lifetime of most IoT nodes or devices is very 

limited. To extend the lifetime of an IoT node or device, they are programmed to go into sleep mode 

in order to save energy. In this attack, the node is prevented from going into sleep mode so that it 

drains its resources in the shortest time possible. Due to the fast consumption of its resources, the 

battery, by keeping the node awake, this will result in a shutdown state of the IoT node or device 

[13,15,100,104,111,125]. 

Tag Cloning or spoofing attacks against RFID tags: The attacker copies the target victim’s RFID 

tags information into another RFID tag, which is replicating another genuine tag. This is 

accomplished by capturing the communications between the RFID tag and its reader or physical 

tampering [76,104,126,127]. The attacker will copy information from the compromised RFID tag and 

copy it into another RFID tag as described in Figure 5 below. This information can be the Identifier 

(ID) or Electronic Product Code (EPC), which is a serial number that is broadcasted and can be read 

by any within range reader, or key for memory access [127]. The purpose is to mislead the reader, 

which gives the attacker access to sensitive information by RFID impersonation [76,104,126,127]. 

According to [16], the reader cannot recognize the difference between a genuine RFID tag and a 

compromised RFID tag. 
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Figure 5. Tag cloning attack. 

Tracking attacks against RFID tags: Since these tags are usually unprotected, anyone can read 

them. This provides the attacker with a wealth of tracking information about objects or individuals. 

This becomes more dangerous when this tag is tied to sensitive personal information [76,128,129]. 

Tracking information about individuals could be related to their movement, financial transactions 

and social communications by fixed readers that reads all passing by RFID tags. This date will then 

be correlated to come up with a pattern [129]. This is a major concern and threat to people’s privacy. 

In the case of objects, this might cause dangerous and chaotic situations when infrastructure relies on 

RFIDs that might lead to a Denial of Service (DoS) attack. 

6.2. Network Layer Attacks 

One of the main functions of this layer is to transmit information. The main challenge is to keep 

the network available and functional. Moreover, the wireless links are susceptible to different security 

threats [13]. 

DoS attacks: This attack can drain IoT resources to the point that a device becomes unavailable and 

cannot provide services [15,16]. This attack can take different forms at different layers of the IoT 

architecture. At the network layer, it can overwhelm the network by generating an enormous amount of 

traffic, as shown in Figure 6 below, or attack the IoT network protocols, which leads to the unavailability 

of an IoT device or system [15,16]. This includes many attacks, such as SYN flood, UDP flood, ping of 

death, etc. [13,104]. One of the main threats is leaking unencrypted information about the user [16]. 

 

Figure 6. Attacker floods the victim with traffic in a DoS attack. 
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Spoofing attacks: The attacker uses spoofing attacks to spread malicious information through 

the IoT system [104]. IoT spoofing includes IP spoofing [130], where the attacker spoofs an IP address 

of a genuine node or device in the IoT system to gain access to the system. This allows the attacker to 

send contaminated data that appears to be from legitimate node or device. In RFID, spoofing is when 

the attacker uses legitimate spoof RFID tag information and spread data through the system that 

appears to be from a genuine RFID tag to execute harmful or illegal activity [13,102,103,110,131]. This 

is achieved by targeting the RFID signal. The attacker then uses this tag information to transmit its 

own data [132] as if it were the original owner of the spoofed tag id [133], which allows the attacker 

to gain access to the system [100,104,111]. 

Selective forwarding: In this attack, the attacker targets a victim by either dropping some or all 

packets destined to a certain IoT node or delay the forwarding of packets [13,102,109]. This attack can 

disrupt communications between different parties in the IoT system by causing DoS by selectively 

forwarding packets [134]. 

Packet replication attack: The attacker retransmits/replays previously received packets to the entire 

network or to a cluster of nodes in the IoT system, which will drastically degrade the performance of 

the system due to the overuse and consumption of resources such as power, memory and bandwidth 

[76,109]. This is considered as one of three different attacks of injecting fraudulent packets. 

Man in the middle attack: This is a real time attack where the attacker places itself between two 

IoT devices or nodes using a malicious device [16,135]. By being in the middle of communications 

between two different entities, the attacker gains access to the traffic being communicated between 

the two victims’ devices. This attack infringes the privacy, integrity and confidentiality of information 

being exchanged between the two victims [13,15,16,102,111,136]. This attack can be launched 

remotely by employing the communications protocols used in IoT system [71,100,104]. 

Sinkhole attacks: In this attack, a compromised IoT node or device broadcast false metrics about 

its capabilities to its neighboring nodes in order to attract these nodes to use it as a forwarding node 

(next hop) in their routing path [137]. The compromised node or device will attract so much traffic to 

it, then it drops these packets or inspect it and gain access to sensitive information 

[13,16,102,104,111,138]. In a Wireless Sensor Network (WSN), all packets generated from WSN nodes 

are redirected to the same sink point where they are later dropped instead of being forwarded to their 

destination [139]. This is carried out by the malicious node announcing fake preeminent routes using 

different metrics, such as having optimal bandwidth, minimum delay, shortest path, etc. 

[100,109,111]. 

Routing information attacks: Such attacks targets the routing protocols employed in IoT systems. 

Routing information is modified to cause routing loops, dropping packets, increase latency [104], 

forward false information or result in network segmentation [13,102,104,111,140]. Routing protocols at 

the network layer are vulnerable to impersonation, spoofing, and routing attacks [104,110,141]. The 

attacker might use this attack to drop, redirect, spoof or send misleading error messages throughout 

the system. There are many types of routing attacks, such as altering (change the routing information), 

Wormhole, Sybil attack, Black hole, Gray hole, and Hello flood [134,142,143] all described below. 

Address Resolution Protocol (ARP), Domain Name System (DNS) poisoning and Internet Control 

Message Protocol (ICMP) redirect are redirection attacks against the network layer and are carried out 

to disrupt the communications between two devices in the IoT system [76,100,109,110]. 

Wormhole attacks: In this attack, two malicious IoT nodes or devices are placed in two far away 

locations throughout the IoT system with one hop private link in between them which is exclusively 

used by the attacker. Through the false one hop transmission link (a wormhole tunnel) between the two 

malicious nodes or devices, many IoT devices will choose the malicious devices or nodes as a next hop 

in their routing path [13,102,109,144]. In other words, this attack will record messages from one 

geographic zone and replay it in another geographic zone [144]. Once there is an amount of traffic 

flowing through the tunnel between the two malicious nodes, the attacker can drop or delay the traffic 

which can be very critical and have serious consequences in case of critical mission applications. This 

attack can be carried out by either compromising an IoT device which is known as in-band wormhole 

or through out-of-band wormhole when high-gain directional antenna is used [144]. 
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Sybil attacks: The attacker compromises an IoT device that can pretend to have many genuine 

identities in the IoT system and imitate them [16,104,145,146]. Having different identities, the 

compromised device (Sybil device) sends fabricated information to its neighboring devices. In 

addition, routes that include the Sybil device as a forwarding node could be deceived that many 

routes are available when there is only one route available where all traffic transmitted will go. This 

can lead to different attacks, such as a DoS or jamming attack [13,111]. In a sybil attack, sybil nodes 

with fraudulent identities are added or used which could outnumber the genuine nodes in the 

network [76]. An example of this attack would be a voting system where a malicious node claims the 

identity of many nodes and impersonates them to vote on their behalf [147]. 

Black hole attack: A malicious node is inserted in the network and advertises wrong routing 

information to its neighboring nodes that it has the shortest path to the destination [142]. Upon 

receiving the packets, the malicious node either processes or drops the packets [76,109]. In a gray hole 

attack, the malicious node drops some selected packets. The attacker captures packets at one site in 

the network and then tunnels them to a different site [76,142]. In a hello flood attack [76,134,148], the 

attacker inserts a malicious node with high transmission radius and then uses it to broadcast the hello 

message to nodes within the transmission range claiming to be their neighbor. This could be used to 

launch other attacks [76]. 

RFID unauthorized access: Due to the absence of an RFID tag authentication process (i.e., no 

standardized secure authentication procedure) and accessibility, these tags are vulnerable to attacks 

and are easy target to manipulate [100,104,111]. The information contained in the tag can easily be 

modified, or deleted by the attacker [13,104,149,150]. 

Sniffing attack: The attacker uses certain tools, applications or devices to capture traffic on the 

network and perform analysis to carry out an actual attack [16]. 

Traffic analysis attacks: Due to the wireless medium characteristics in IoT, which mainly relies 

on RFID technology, the attacker analyzes the traffic using a sniffing tool to get confidential 

information [15,16,119,151]. This is usually the initial step in launching the actual attack. This type of 

reconnaissance might include port scanning, vulnerability scanning and network sniffing 

[100,104,111,152]. In addition, this attack can be used on encrypted traffic. The more of the traffic that 

is captured and analyzed, the more that can be extracted from the packets captured [16]. 

6.3. Application Layer Attacks 

The role of the application layer is to assist in providing on-demand services to the user. The 

layer also processes data from the network layer. This layer is mainly vulnerable to software attacks 

(i.e., the exploitation of vulnerabilities in programs or application layer protocols) and lifetime 

permissions [13,16]. These attacks target accessing sensitive information of IoT users, which leads to 

violations of data confidentiality and users’ privacy. 

Phishing attack: The attacker uses infected email or phishing website, as shown in Figure 7 below 

to get users’ private information (i.e., authentication credentials) such as ID and password 

[16,100,104,111,153]. The attacker gains access to sensitive information such as login credentials once 

the victim accesses their email account [16]. 
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Figure 7. An attacker tricks the victim in a phishing attack. 

Malicious virus/worm/trojan horse, spyware: IoT applications suffer from vulnerabilities to 

malware that can replicate and disseminate on its own which is considered to be one of the most 

challenging attacks to the IoT system [104]. Once the attacker succeeds in infecting the IoT 

application, s/he will intrude into the system and gain access to sensitive confidential information 

[102,111]. In addition, malicious software can infect the system, which could lead to DoS, tampering 

with or stealing data [100,108,111]. 

Malicious scripts: These scripts contaminate the application by adding or modifying the 

software in order to purposely cause harm to the IoT system and its functionality [104]. An attacker 

achieves his goal when the victim tries to access a service on the internet since IoT applications are 

all internet based. The attacker can send a malicious script to the user when the latter requests a 

service from the internet. Executing an ActiveX script by the user might give the attacker an access 

to the system [100,106,111] Examples of such scripts are Java attack applets and ActiveX scripts. The 

attacker can access confidential data or cause the system to crash [104]. 

XMPPilot attack: The attacker uses the command line tool XMPPilot to launch an attack against 

the XMPP connection established between client and server. The attack prevents the encryption of 

communications on the client side. This enables the attacker to monitor the communications [118]. 

Denial of service: Attackers can gain access to the application layer and confidential sensitive 

information in a database as a result of DoS or DDoS, which will cause service unavailability 

[7,100,111,120,153]. 

Software vulnerabilities: Software vulnerabilities are still considered a main threat since 

software engineers and developers do not consider writing secure code because of an absence of 

standardization to do so. This enables attackers to launch attacks such as buffer overflows, as 

explained below, for example, to redirect the execution to malicious code [7,16,100,122]. 

Code injection: The attacker exploits some vulnerabilities in the programs. The main aim of code 

injection is to get credentials, expose the confidentiality data, gain access to the system, steal data, or 

propagate worms to infect other IoT devices in the system. HTML and script injections are the most 

common types of code injection [7,16,153]. 

Buffer overflow: The attacker takes advantage of vulnerabilities in the program to carry out the 

attack as most programs have some security issues related to pre-allocated memory. The attacker 

writes a piece of code that is larger than the fixed pre-allocated memory size for a certain program. 

The consequences are modifying other information stored in other memory locations, interruption of 

program control flow and redirecting the control of the program to run malicious code redirecting 
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the stack pointer. Many mechanisms exist to launch the attack, such as string buffer overflow, heap 

or stack overflow, and integer overflow [16]. 

Data aggregation distortion: the attacker modifies the data collected by a node and forwards it to the 

base station. So, the base station will gather false information about the observed surroundings [100,109]. 

Sensitive Data Permission/Manipulation: The attack exploits the vulnerabilities in IoT design 

flaws and, in particular, in the permission model to control applications [16]. The main target of this 

attack is based on communications between smart devices and smart applications. In this scenario, 

the smart device sends sensitive data to the application where the latter monitors the smart device 

[16]. This might have serious consequences on users and violate their privacy. 

Clock Skewing: The attacker desynchronizes the IoT devices’ clocks by generating bogus timing 

information. This causes victims’ devices to be out of sync with the aggregation nodes [100,109]. 

Data leakage: An attacker, by exploiting vulnerabilities in the IoT application or service, is able 

to access sensitive and confidential data [7]. 

Authentication and Authorization: At the time of writing this paper, there is no standardized 

authentication mechanism for IoT devices. Therefore, no authentication mechanism exists to fit all 

kinds of IoT devices requirements [16]. For example, when updating an application, the attacker 

might use the update to inject a harmful payload to gain access to an IoT device or have control over 

the IoT device or system [16]. 

6.4. Impact of Attacks on Security Objectives 

Attacks may affect the security objectives of Confidentiality, Integrity, and Availability (the CIA 

triad). The potential impact of the loss of one of these three security objectives is defined in NIST’s 

publication FIPS 199 [24]: 

 Low: limited effect on operations, assets, or individuals 

 Moderate (Mod): serious effect on operations, assets, or individuals 

 High: severe or catastrophic effect on operations, assets or individuals 

 Not applicable: only applies to Confidentiality 

The potential impact may vary due to the context in which an attack occurs. In Table 7, we 

consider the potential impact of select attacks on the CIA triad for user information depending on the 

general type of device at which the attacks are directed. In one case, the attacks are directed at a smart 

light bulb, in the other, at a smart health monitor; the difference in applications can make a difference 

in the severity of the impact [25]. 

Table 7. Potential impact of attacks on Confidentiality, Integrity and Availability. 

Sample Attacks 

Potential Impact on Confidentiality of User 

Information 

Potential Impact on Integrity of 

User Information 

Potential Impact on 

Availability of User 

Information 

Smart Home 

Heating Control 
Smart Health Monitor 

Smart Home 

Heating 

Control 

Smart Health 

Monitor 

Smart Home 

Heating 

Control 

Smart Health 

Monitor 

RFID tag 

tracking 
Low/Mod Low/Mod Low Low/Mod Low Low/Mod 

Denial of Service 

(DoS) 
Low Low/Mod Low Low Low Mod/High 

Man in the 

Middle 
Low/Mod Low/Mod Low Mod/High Low Mod/High 

Traffic analysis Low/Mod Low/Mod Low Low Low Low/Mod 

Phishing Low/Mod Low/Mod Low Low/Mod Low Low 

Malicious 

virus/worm 
Low/Mod Low/Mod Low Low/Mod Low Mod/High 
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7. Mitigation and Countermeasures 

Mitigation and countermeasures against threats and attacks may be developed for and directed 

at each layer of the IoT architecture, but they may also be considered more broadly across multiple 

layers, as summarized in Figure 8, and described in detail below. 

7.1. Functionality Trade-Offs 

Because of the limited resources present on IoT devices, trade-offs must be made between 

functionality and device capabilities on all respective IoT layers [26–28]. In order to best manage these 

functionality trade-offs while maintaining the greatest level of security, certain architectures can be 

adapted. This includes the “Event Driven Architecture” (EDA) Model, or alternatively the “Event 

Driven Adaptive Security Model” (EDAS). Because of the nature of IoT devices, adaptive security 

models tend to be strongest for creating a functionality trade-off architecture, but also must be 

balanced with system capabilities [154]. 

7.2. Physical Security 

Physical Layer-directed security can primarily be mitigated by the physical security of device 

design. Individual device components should not be interchangeable, for example [155]. Techniques 

that provide anonymity, such as the “Zero-Knowledge” technique [156] or “K-anonymity” technique 

[157], mitigate physical layer security risks by hiding sensitive information such as location and 

address [26]. Physical security also goes hand-in-hand with chosen protocols; the assessment of 

device and program needs alongside connection protocols assists in determining functionality and 

risk trade-offs [158]. For example, RFID is more vulnerable to tracking, while WiFi is more vulnerable 

to eavesdropping [27]. Physical security can also simultaneously mitigate threats in other layers. The 

interlocking nature of functional elements in IoT means that a more secure physical environment 

results in more secure application and processing layers. Some studies have proposed this through 

SIM-based authentication alongside key agreements, or suggesting a lack of direct device to device 

communication at all [159]. Some research has indicated that malware can be detected physically as 

well as in software; this has been considered through “path delay testing”, “temperature analysis”, 

and “power based analysis” [158]. 

7.3. Risk Assessment 

Dynamic risk assessment techniques provide confidentiality and assist in avoiding security 

breaches, especially on the physical layer [100]. Risk assessment can also mitigate vulnerability on 

the application layer alongside preexisting architectures [26,160]. 
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Figure 8. Mitigation and countermeasures across a wide spectrum. 

7.4. Network Protections 

Network protections such as routing security through pathing algorithms and security aware 

ad-hoc routing (SAR) can prevent attacks from adversaries by adding security measurements to 

packets [161] and applying confidentiality toward sensor nodes in IoT systems [26,162]. Network 

security options also exist on the application layer, particularly in protocols used for communication 

security; this is derivative of the wireless communication used at the top level. For example, protocols 

with TCP-based transport can use TLS/SSL for security to mitigate eavesdropping or man-in-the-

middle attacks, while UDP-based transport systems can use DTLS [27]. Some studies have suggested 

a methodology of securing networks through non-routable TCP/IP addressing, a stark contrast to the 

typical network computing done elsewhere. The application of such prevents data traffic from being 

maliciously intercepted by sniffing or injected into by man-in-the-middle attacks [159]. Further 

network protections can be achieved through communication protocols which support M2M 

communication, such as AMQP or MQTT. The protocol used is dependent on the needs of the system; 

AMQP assures reliability by guaranteeing delivery, while MQTT is best on limited-memory devices 

that require a “publish-subscribe” architecture for data transfer. Furthermore, it has been proposed 

that moving from IPv4 to IPv6 for IoT devices can help with improved network security by more 

specific identification, especially due to the mass deployment of these devices versus non-IoT 

computational counterparts [30]. Alternatively, it has been proposed to eliminate modern paradigms 

and opt for a peer-to-peer networking protocol [163]. 

7.5. Key Distribution 

As much as encryption and cryptographic techniques are vital for the security of all data 

transfers, key distribution minimizes cyberattack risks and can function within lightweight 

frameworks [34]. Key distribution techniques are dependent on the form of cryptography deployed 

by other aspects of the individual device as well as by the wider IoT ecosystem. These must be paired 

alongside processing power. Some forms of pre-distributed keys can provide greater security and 

less processing power, but may result in reverse engineering risks. Certain studies have shown 

hybrid encryption systems can be paired alongside key distribution systems to mitigate such risks, 

however [36,164]. Key administration is another element that goes hand-in-hand with key 

distribution. Key administration must be considered alongside secure routing systems and detection 

systems trilaterally. Safe key distribution methodologies can minimize protection risks in 
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cryptographic frameworks [40,165]. Key distribution systems should also only be arranged in IoT 

networks in which pre-authentication make sense; otherwise, key distribution schemes can demand 

resources from IoT devices without proportionally secure returns [36,166]. 

7.6. Cryptography and Encryption 

In order to avoid tampering and ensure the confidentiality, privacy, and integrity of data 

transactions, data between devices must be encrypted. There is a debate as to whether symmetric or 

asymmetric encryption is preferred, but generally because of device limitations, algorithms which 

consume less power are preferred. Algorithms such as RSA have been applied with success in the 

past, encryption, combined with authentication, can also help prevent illegal access to nodes [29]. 

Cryptographic hash mechanisms are used to check data integrity for data transmission between 

nodes and detection of errors on the network layer [31]. Homomorphic encryption is often used 

within the processing layer as a secure measure of data transmission, but requires high computing 

power. Encryption, in general, can be applied to overcome various interception or sniffing style of 

cyberattacks, as well as circumvent otherwise exploitable side-channel attacks [26,167]. Furthermore, 

encryption can be applied in various forms, and should be designed and allocated according to device 

resources and functionality. The balance of functionality and processing power in a device should be 

equivalent to the framework of cryptography used within it, as well as the risk assessment of using 

said device in its respective setting [36,168]. The use of shared key cryptography for secure 

communication reduces the overhead for IoT gateways, which compared is important due to lower 

power consumption capabilities [34]. While symmetric key and/or public key cryptography suites 

provide better security than alternatives, their high-power consumption is often a challenge. 

However, lightweight alternative frameworks can provide similar security standards on minimal 

hardware, on which additional research has been conducted [41,168,169]. Some studies have shown 

that Hybrid encryption models are the best for securing information robustness and confidentiality 

in data exchanges at optimal speeds, without having to sacrifice power consumption [8,57]. Service 

Level Agreements (SLA) can be used to provide data encryption within the processing layer [30]. 

Since many encryption suites are compromised because of misconfiguration or user error, it is 

important to deploy accurate user configurations in addition to cryptographic systems for security 

[28]. Since devices are not heterodox, deployed encryption standards can differ between devices. 

Devices that communicate with each other should optimally use the same cryptographic suites. 

Alternatively, a standardized cryptographic method would eliminate many of the risks arising from 

device heterodoxy [42]. Multi-factor cryptographic schemes are best suited for larger networks with 

vital security applications, such as in smart cities or healthcare systems [166]. 

7.7. Digital Signatures 

Digital signatures, encapsulated often in hybrid encryption technique models, are one specific 

cryptographic technique used in heterogeneous deployments to prevent cyberattacks and ensure both 

the integrity and confidentiality of transmitted data. These techniques require lower processing speeds 

than algorithms such as AES, and also faster processing speeds than RSA [164]. Digital signatures can 

also be deployed as a measure of warding off “puppet attacks.’’ However, certain forms of digital 

signatures are dependent on the routing protocols used by individual IoT devices [170]. 

7.8. Processing Protocols 

Protocols in the processing layer, such as “Fragmentation redundancy” scattering, minimize 

data theft by splitting and allocating data into fragments between a cloud and a direct transfer 

between devices [26]. End-to-end data protection frameworks are best suited for transmissions that 

happen in this layer as well for assuring the security of data during its life cycle between devices. 

Service Level Agreements can be implemented to ensure protections for sensitive data, and also to 

reduce DoS attacks [30]. 
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7.9. Application Security 

Application layer security, through Access Control Lists, can moderate traffic by whitelisting or 

blacklisting both incoming and outgoing requests [26,36]. Similar to physical layer selections, the 

assessment of protocols used in the application layer can help to balance risk with functionality. 

Bluetooth leaves open the risk of “bluejacking”, for example, so applications built around Bluetooth 

should not be created in a way that their functionality lends themselves to this risk outweighing the 

functionality of the device [27]. Proper access control helps ensure confidentiality, while 

authentication in the application layer helps ensure integrity. “Service Level Agreement[s] (SLA)” 

and “Virtual Machine Monitor[s] (VMM)” are processes deployed in the application layer alongside 

Intrusion Detection Systems in order to achieve availability and protect data during downtime or 

malicious attacks [30]. Data loss prevention systems can also be implemented within IoT networks in 

order to prevent data theft [28,36]. 

7.10. Patching 

Regular updates to software and firmware on IoT devices can help to mitigate vulnerabilities 

and lower risks associated with individual devices. However, this is often left to user responsibility, 

as auto-patching software must be balanced alongside other security measures against available 

system resources [28,30]. 

7.11. Intrusion and Threat Detection 

Intrusion Detection Systems (IDS) secure ecosystems by producing alarms when detecting 

threats that either are hostile, suspicious, or uncertain within the application layer [26,36,159,171]. 

The application of intrusion and threat detection can be used to quell vulnerabilities that are not 

picked up upon by active defensive systems or firewalls; since anomalies are recorded, logs can be 

traced to malicious or suspicious activities. For this reason, it is important for threat detection systems 

to transcend all IoT layers; threat detection must include “physical damages, attacks, malicious codes, 

vulnerabilities, [and] misuses” [172]. Because of the often small storage on IoT devices, best practice 

is for security warnings from these systems to be forwarded to a secondary source, such as over email, 

SMS, or logs on a remote cloud [172]. There are two popularly used types of IDS for IoT devices, 

“Host-based Intrusion Detection Systems (HIDS)” and “Network-based Intrusion Detection Systems 

(NIDS)”. They typically are deployed for securing the network layer, but can also run on the 

application layer depending on the needs of the device [30]. In a general sense, most well-known 

forms of network attacks can be prevented by an IDS, which include brute forcing, DDoS attacks, and 

malware requests [28]. If nuances in security as distinguished by sensors can be detected by threat 

detection systems, then systems can be stated to be more secure on the physical layer [40]. Due to the 

sheer diversity of the IoT ecosystem, some studies have recommended the introduction of adaptive 

intrusion systems to better combat against vulnerabilities arising from a heterogeneous environment. 

This has been recommended through the notion of using machine learning techniques as opposed to 

matching threats to database records [36,173]. 

7.12. Antivirus/Firewall 

Web application scanners can help identify threats, especially when deployed alongside 

firewalls for detecting potential attackers. Firewalls, when deployed alongside ACLs, can block 

unauthorized access and assist in packet filtration on the application layer. Antivirus software can 

also work on this layer to detect and mitigate known threats, vulnerabilities, and cyberattacks from 

a database, but must be balanced with computational power for the device they are stored on [26]. 

Since Antivirus software and firewalls are not universal, they are best paired alongside IDS and/or 

Honeypot detection software in order to best mitigate attacks [28,30,171]. 
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7.13. Blockchain 

Some studies have proposed blockchain as a multi-layer solution for securing IoT networks. 

Blockchain networks can be deployed in either centralized or decentralized models, with their own 

weaknesses and strengths. The former is better for processing large data transfers from 

heterogeneous devices, while the latter is better for flexibility and real-time services. Blockchain can 

help standardized transactions among different forms of devices, as well as increase trust factors 

between heterodox communications or device functionalities which cross-communicate. Proposed 

blockchain techniques ensure an increased level of security through global trust and universal 

identification, standardized and high-level authentication, contextual privacy, and exponential 

mitigation against high-level attackers without an exponential increase in capabilities, which 

diminish IoT flexibility [32,33]. 

7.14. Honeypot Detection 

Honeypot detection is another form of intrusion and/or threat detection based on system and 

network architecture. Instead of simply logging vulnerabilities or attacks, honeypot detection helps 

prevent attacks by the presentation of a separate zone outside of the typical scope of the network, 

such as in a “DMZ”; in this approach, vulnerabilities can still be detected and logged without putting 

the rest of the IoT network at larger risk [26,172]. Because honeypot detection systems do not need to 

be stored within the device itself, but just on the same network, they can act as a tool for measuring 

the dynamic nature of threats and preventing intrusion without burdening system resources [174]. 

7.15. Standardization 

The lack of universal standards for IoT devices has resulted in a largely heterodox field, which 

has spawned a complexity for developing cross-device security methods. Researchers [43,44] have 

suggested that the standardization of security protocols would be one form of mitigating risks which 

spawn from device nuances [36,41]. In lieu of a lack of standardization, some studies have suggested 

a lack of device to device communication at all to prevent cross-device communication vulnerabilities 

from arising [159]. Standardization is most important on the network layer rather than the physical 

layer. Standardized protocols ensure a safe and simplified ecosystem for cross-device 

communications [30,36]. Just as the standardization of protocols for home and professional 

computing helped create a more secure world wide web, research has shown that a foundational 

standardization of protocols helps ensure an “interoperability” of security between IoT devices 

[40,42,45]. Software-defined networking (SDN) has also been proposed as an alternative to hardware 

standardization, which ensures a similarly secure return with a greater level of manufacturing and 

performance flexibility [175]. 

7.16. Traffic Filtering 

Filtering traffic signals between IoT devices on the physical layer, even without IDS or threat 

detection on software-based layers, is one form of securing IoT networks and preventing malicious 

signals or cross-communications. Depending on the filter, this is also one way of implementing 

security despite a lack of device standardization [30]. Traffic filtering employed alongside an IDS can 

result in a significant decrease in malicious attacks, as well as general lessened risks within an IoT 

ecosystem [28]. 

7.17. End-to-End and Point-to-Point Security 

End-to-end security mitigates risks in any wireless communication between devices, regardless 

of the protocol used; however, different suites must be applied depending on the protocol(s) used 

within respective layers [34]. Similarly, point-to-point connectivity solutions, which may take the 

form of IPSec VPNs or MPLS, provide similar security as end-to-end, but with greater power 

consumption needs [30,159]. It has also been noted that one critical strength of end-to-end security 

trust models is the circumvention of tertiary vulnerabilities. As cloud-reliant systems are only as 
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secure as the remote systems facilitating processes and security, end-to-end security systems 

circumvent security risks proposed by such [176]. End-to-end security has also been proposed as a 

form of maintaining data integrity and privacy within a peer-to-peer networking system, although it 

is not inherently dependent on that form of networking architecture [163]. 

7.18. Authentication 

Secure authentication is important for risk mitigation across all layers. On the physical layer, 

device authentication and identification must take place before signals are sent or received [35]. 

Authentication mechanisms prevent illegal access to data on sensor nodes in the network layer. The 

most common type of attack on this layer are DoS attacks, which authentication can assist in 

preventing [26]. Furthermore, authentication techniques can be deployed in a variety of ways, 

depending on the needs of the device and device application(s); these are usually, in best practice, 

deployed alongside access controls [36]. Various forms of authentication can be done through key 

exchanges, username/password (login) systems, or unique techniques such as “Identity 

Authentication and Capability-based Access Control (IACAC)” [37]. Furthermore, Message 

Authentication Codes used for device authentication can help prevent man-in-the-middle attacks 

[13]. An issue often pointed to for authentication is the heterodoxy of the IoT ecosystem; while some 

research has suggested standardization for this, authentication can still be achieved through methods 

such as cryptography suite-based access control, or a multitude of other formats. However, this 

heterodoxy means that devices which are not homogeneous and require safeguarded authentication 

should not be used within the same network [36,41]. Different forms of authentication are 

implemented at different layers, with respective security nuances based on such. Physical 

authentication can be achieved versus RFID-based identity authentication, whereas application 

authentication can be achieved through prior mentioned forms of authentication such as login or key 

exchanges. In comparison to these forms of authentication, physical authentication can help secure 

software layers additionally, but software layers cannot secure physical layers bi-directionally [177]. 

Applying authentication methods into sensor nodes of IoT devices is required in order to prevent 

malicious attacks; some studies have suggested that this is best achieved through symmetric 

cryptography suites. Furthermore, authentication should be setup in a distributive form, so users and 

nodes can only ever be authenticated to aspects that access needs to directly be attained. This can be 

done, for example, through Attribute-Based Access Control (ABAC); studies such as [30] propose 

that ABAC is most suitable over other access control methods because it requires minimal resources, 

is based on attribute instead of user, and uses randomized values per-session [30]. ABAC could 

potentially be used as a defense against man-in-the-middle, sniffing, replay, and node capture attacks 

[30]. Devices that connect to cloud servers and “control” devices are most in need of forms of user 

authentication, as well as input validation [28]. Authentication can also be deployed as a way of 

circumventing spoofing attacks on geospatial data [178]. Multi-factor authentication can ensure a 

high layer of security, but at the cost of flexibility of capabilities. In highly sensitive environments 

however, this trade-off is important to consider [166]. 

Another promising method for access control, which has been proposed within the sphere of 

IoT, has been NoSQL authentication. NoSQL provides performance, flexibility, and scalability for 

handling high data volumes, and has already found a place within the data storage and analysis 

layer(s) of the Internet of Things [93]. Using NoSQL as a framework for authentication within the 

Internet of Things is thus intuitive, especially because of the aforementioned need for implementation 

of access controls. Studies such as [93] have shown that NoSQL datastores can be used to implement 

access controls. In the past, using NoSQL for this purpose has been subject to criticism, as NoSQL 

datastores suffer from poor data protection; the aforementioned study [93] proposes a fix to this, and 

thus a possible springboard for IoT systems, by the integration of “fine-grained access controls” 

(FGAC). FGAC has previously been used in other systems, such as social networks and service and 

mobile applications [93]. The usage of FGAC allows for straightforward enforcement mechanisms 

and policy encoding, which suit the access control needs of IoT devices. [93] 
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7.19. Trust Establishment 

Third parties are often introduced for trust establishment techniques, such as third-party-based 

key exchanges, or certification. In order to do this, devices must be able to access third parties 

typically, or have these trust stores built into their architecture by default. Trust stores help with 

safeguarding uniform transactions and preventing untrusted communications and attacks, but, 

depending on their implementation, must also be balanced with reverse engineering risks, or the 

need for constant remote authentication [34]. Trust establishment is best used alongside 

authentication frameworks or mechanisms in order to prevent trust tampering. This goes hand in 

hand with key distribution; best practices show that unique device IDs and distributive permissions 

are best practices [13,30]. 

7.20. Active Defense 

In contrast to antivirus or firewallesque software, “deep packet inspection” has been proposed 

as a method of real-time detection of abnormal data or behavior. This type of behavior often indicates 

malicious activity; this behavior could be contrasted with IDS systems, but done directly as traffic is 

received or sent, rather than within a separate software process [159]. Active defense can be 

considered the primary segment of defense architecture and can encapsulate a number of other 

mechanisms, such as backup, authentication, access control, and encryption; however, this is based 

on both the needs and capabilities of the device. As active defense cannot inherently prevent all forms 

of threats, but generally known or up-front ones instead, it is important to be coupled with other 

mitigation tactics [172]. Active defense techniques are most important for devices with remote 

connections, such as to cloud servers, and are best deployed alongside antivirus, IDS, and firewalls, 

as a system administrator would otherwise secure a non-IoT computational network [28]. 

7.21. Location-Based Data Security 

GPS spoofing occurs as an attack within the network layer. Techniques such as the “GPS 

Location Technique” [179] have been used to successfully mitigate location-based system attacks [26]. 

In order to counter spoofing, techniques that match identity and location to service requests can be 

deployed [176]. Authentication, as well as geo-spatial validation, can be deployed in order to combat 

most vital spoofing attacks [178]. 

8. Open Research Ideas 

Current open areas of research into Internet of Things have primarily been focused on 

addressing countermeasures for recognized security and usability flaws. More broadly, this has 

included topics such as security, scalability, and standardization, as described in Figure 9. Research 

has been focused on areas of improvement surveyed for application in fields such as smart 

environments (such as cities), and healthcare. As such, there has been an emphasis on the 

aforementioned importance of universalized security paradigms and standardization of device 

operations [27,42,180]. This has manifested in studies over proposed architectures and protocols; 

although there has not been a consensus on this, some proposals have been shown to be more 

recurrent than others, such as structural decentralization [181] and involvement of blockchain 

[32,33,163,182]. 

Architectural Internet of Things research has primarily been divided into two fields from a wider 

pool of options, three-layer architecture and SoA-based architecture [180]. However, alternate 

architectural frameworks have been drafted and proposed as a result of distinct perspective issues in 

individual layers, such as the physical and network layers. These new architectures have largely been 

driven by a secure desire for standardization, especially within the field of research itself, due to 

dissonance in research resulting from industry fragmentation [183]. 
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Figure 9. Open research areas. 

The lack of standardization within the field has created a vacuum for large-scale deployability. 

Because of the “multidisciplinary” nature of the field, research has demanded a universal, 

international standardization for Internet of Things protocols and communications [27,184]. 

Standardization, however, has proved to be a regulatory challenge, because of the mass variation of 

both consumer and industrial needs within the field internationally, as operations which result from 

legal and physical challenges, as shown for example by the impact of 5G technology, as well as the 

recent trend of technology-focused digital legislature, such as the European GDPR [35]. 

The relationship between the wider Internet and the Internet of Things has remained a tenuous 

topic for both security and functionality reasons. Open research has been done into the development 

of Web-based APIs for the purpose of devices securely accessing the web for functional reasons [185] 

as well as theoretical implementation of TCP as a transport-layer protocol, based on past historical 

applications of such in the field [186]. While this research exists, there has yet to be a generalized 

consensus on the usability of such in a wider scope. This, of course, relates back to the issue of lack 

of standardization, as the development and applicable testing of protocols and other proposals are 

predicated on their ability to be universally deployed, which is not currently viable without a 

consensus within the field [30,187]. 

Similarly, lack of standardization is also an issue that has pervaded studies into security 

improvements. However, it has not had as critical of an effect, due to many security proposals being 

intrinsically proposed in a vacuum for mitigating threats within certain architectures, or as a response 

to certain externalities [187]. Authentication, for example, has remained an open area of research; 

consensus agrees that authentication must be utilized in any secure Internet of Things architecture, 

but individual application of such has differed. Some open-ended papers have proposed protocols 

for key management schemes to strengthen resilience against cyber attacks [45,166,188]. Other 

research has taken a more generalized approach, surveying threats (which have shown to be more 

widely agreed upon) and proposing hybrid encryption schemes to protect against both data theft and 

hijacking [189]. However, besides standardized practices, other challenges are proposed for Internet 

of Things devices compared to more traditional computing; balancing security alongside energy 

consumption and available resources, for example, has remained a large problem, due to the 

complexities of stronger encryption competing with available system resources [158,187,189]. 

Looking to balance such attributes, studies have shown a sharp contrast in proposed solutions; some 

have proposed authentication through continuous authorization, or authentication based on direct 
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user interaction [189]. Other studies have taken the route of providing security through cloud, or “fog 

computing” solutions [183]. Many studies, however, have incorporated security concerns into 

architectural proposals; this, typically, has intersected with proposals for Blockchain and 

decentralization [32,33,163,181,182]. Going back to Section 3 and in particular discussing access c, 

many approaches have been proposed to provide control access 

The usage of “fog computing” as a proposed solution has spurred a diverse sector of research 

[190]. The term itself, “fog computing”, refers to a computing architecture which extends cloud 

computing methodology through employing peer entry nodes as middle-men between 

communicative devices and cloud networks. Some studies focus on more peer-to-peer based 

implementations, while others treat fog-computing as a layer in otherwise traditional cloud-

computing architectures [190]. “Fog computing” has competed against cloud-computing within IoT 

spheres by providing similar security benefits but with overcoming many of the challenges cloud-

computing otherwise faces, such as “latency requirements” or “bandwidth” or “resource” 

“constraints” [190]. Similar to cloud-computing, it allows for external and on-demand access to 

additional computing resources and virtual infrastructures with remote deployability and 

management [190]. As this is an open field of research, however, exact implementations of fog 

computing are not fully agreed upon. Many of the considered benefits have overlapped between 

studies, but implementations have widely varied. Some studies, for example, believe that Blockchain 

should be used to foster fog computing paradigms [191], while others believe that fog computing 

should simply act as a middleware-type framework for otherwise traditional cloud computing 

methods [192]. The exact architecture is also highly debated between studies [190,192,193]; some 

focus on optimized architecture for real time performance [190,192], while others are focused more 

on synchronization between nodes [193]. Others acknowledge the need for both synchronization and 

real-time efforts, but instead focus on adjacent implementations, such as sensor virtualizations [190]. 

While both Blockchain and decentralized architectures (generally, peer-to-peer or end-to-end) 

are fairly common, even within such proposals, there is a large distinction between papers as to 

theoretical implementation of such, and little case study or proof of concept within the field, due to 

the inherent large scale of such proposals [187]. Blockchain is often used as a means of proposing 

trust-based systems for ensuring integrity and non-repudiation [182]. Proposals have been more 

uniform among peer-to-peer studies, generally focusing on challenging the status quo by providing 

decentralized solutions based on improving scalability and privacy [176]. Most of these proposals 

have discussed forms of end-to-end encryption in tandem, but there are disagreements stemming 

from such, for example, how to distribute keys, or how to ensure standardization within a 

decentralized system across different hardware, manufacturers, and applications [159,176,180]. 

Other research has been conducted on scalability, which also intersects with proposals of 

standardization and security. Solutions regarding IPv6 for the further scalability of device 

connectivity has been proposed [194] but has yet to manifest as proof of concept with tangible results 

outside of theory. The scalability of the Internet of Things has remained an open topic, since, while it 

relies on standardization, it is also immediately striking as relevant technology is rolled out to 

consumer and industrial causes [187]. 

9. Conclusions 

IoT is exponentially becoming part of our daily lives to increase efficiency, provide unlimited 

services, to increase the quality of life, and provide convenience via connecting different technologies, 

devices, and applications. As the number of IoT devices increases and adopted in different domains 

and applications, the number of threats and enormous security and privacy risks increase, creating 

an Internet of Vulnerabilities (IoV). 

In this survey paper, we perform an in-depth systematic, comprehensive review and taxonomy 

of the state of the art and urgent security and privacy concerns that most matter to IoT. First, we 

present an overview of IoT, its underlying technologies and its limitations, approaches, as well as 

applications of IoT in different domains. Then, we follow that up with the coverage of previous 

diverse and significant similar related work that has been done for the past few years and the 
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contribution of each work. Moreover, we explain the need for security in the context of IoT and why 

it is different from other systems due to its different applications’ heterogeneity. In addition, we 

explore the most recent IoT security frameworks that address security and privacy concerns in IoT 

and propose a solution to maintain security and give more opportunities for IoT to become an integral 

part of different domains and fully embraced. 

Moreover, the paper investigates attacks, threats and vulnerabilities and provides classification 

of them based on the severity and impact according to NIST’s FIPS 199 definitions on the violation of 

Confidentiality, Integrity and Availability (CIA), which, to the best of our knowledge, is a unique 

contribution of this work and the first article to describe attacks, threats and vulnerabilities based on 

this criterion. Furthermore, we provide a multi-faceted approach to the mitigation of, and 

countermeasures to, these security concerns. 

Finally, we discuss several current research challenges associated with IoT ecosystem that need 

further research and investigation in order for IoT to be fully adopted from convenience to mission-

critical applications 
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