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Abstract: With the widespread of blockchain technology, preserving the anonymity and confidential-
ity of transactions have become crucial. An enormous portion of blockchain research is dedicated to
the design and development of privacy protocols but not much has been achieved for proper assess-
ment of these solutions. To mitigate the gap, we have first comprehensively classified the existing
solutions based on blockchain fundamental building blocks (i.e., smart contracts, cryptography, and
hashing). Next, we investigated the evaluation criteria used for validating these techniques. The
findings depict that the majority of privacy solutions are validated based on computing resources i.e.,
memory, time, storage, throughput, etc., only, which is not sufficient. Hence, we have additionally
identified and presented various other factors that strengthen or weaken blockchain privacy. Based
on those factors, we have formulated an evaluation framework to analyze the efficiency of blockchain
privacy solutions. Further, we have introduced a concept of privacy precision that is a quantifiable
measure to empirically assess privacy efficiency in blockchains. The calculation of privacy precision
will be based on the effectiveness and strength of various privacy protecting attributes of a solution
and the associated risks. Finally, we conclude the paper with some open research challenges and
future directions. Our study can serve as a benchmark for empirical assessment of blockchain privacy.

Keywords: anonymity; confidentiality; blockchain privacy; privacy precision; smart contracts;
cryptography; privacy attributes; privacy risks

1. Introduction

The elimination of an intermediary trusted party provided by the technology of
blockchain is changing the verifiability, universal accessibility, and degree of autonomy
over tokenized digital assets of any kind, resulting in a revolution on plethora of diverse
scenarios. Introduced with the advent of Bitcoin [1], blockchains have been profusely
researched and experimented over the years for a copious set of applications. These appli-
cations include banking and finance [2], supply chain management systems [3], electronic
health records [4], Internet of Things (IoT) [5] and education [6]. Apart from disinterme-
diation, the extended flexibility of blockchain has been exploited for all these application
areas to address the issues of centralization, security, data integrity, and scalability [7].
Blockchain systems are decentralized [8] having no centralized, trusted authority for record
verification and system maintenance. These systems rather hold each peer in the network
accountable for protecting the integrity of the data and assets. Using mathematics and
computation, the authenticity of records is verified by each participant [9] in the network
before any of those are stored on the chain. The data, thereby, becomes, (i) more secure
as there is no single point of failure, (ii) more transparent as each node in the network
maintains the copy of the ledger and, (iii) more consistent as modification at any single
point will be easily detectable. Since the data integrity in blockchain networks is achieved
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through public verification and storage of the records, hence the data on a public blockchain
is readily available for anyone to download and access. As a result, a risk of privacy breach
of the user involved in a transaction exists.

Privacy can be defined as the ability of a user to seclude themselves from sharing
their confidential information and/or choose the extent of information disclosure in a
shared setting. In blockchain networks, the term “privacy” is used for two aspects, i.e.,
user privacy and data privacy of the transactions. These two types of transaction privacy
in blockchains are elaborated below:

1. User Privacy (Anonymity)

User privacy is the ability to convert the real identity of a blockchain user into some-
thing that cannot be identified, and further ensuring that the original identity also remains
unobtainable [10]. This type of privacy is more commonly known as anonymity. It conceals
the real-world identity of the user by masking the users’ real network address with a
computer-generated address.

2. Data Privacy (Confidentiality)

Hiding the contents of a transaction keeps blockchain data privacy intact. Data privacy
is also referred to as confidentiality. At the most basic level, the data contents in a transac-
tion are usually encrypted to maintain confidentiality in the network. Maintaining data
confidentiality ensures that the transaction contents are free from unauthorized accessing,
meddling and altering.

Despite all the glorious features of the blockchains, the tendency of these systems
towards privacy disclosure is a worrisome issue nowadays [11]. Some may argue that
the data on blockchain is encrypted and thus user assets are protected. However, privacy
does not only refer to the data in blockchains, it also refers to protecting identity of
participants in the network [12] as mentioned earlier. Deanonymization [13] of users in the
network is a huge privacy issue. Analyzing transaction relationships, patterns, time, and
links is possible. This creation of links between various transactions makes it convenient
to trackback to the head node and determine the identities of transaction initiator and
receiver. The details in this regard are given in [14] and are beyond the scope of this paper.
According to [15], leakage of an individual’s identity in blockchain results in disclosure
of its corresponding transaction information. Therefore, using a blockchain jeopardizes
the assets of a user by opening these to unauthorized exposure. Besides that, it is also
envisioned that in the era of quantum computing, it will be easier to decrypt the codes and
break the hashes [16] of blockchain networks.

Blockchain privacy can be achieved by strengthening the vulnerabilities of the blockchain
architectural design. The fundamental building blocks of a blockchain system include
hashing [17], cryptography [18], consensus [19] and smart contracts [20]. Each of these
building blocks tend to either strengthen or weaken the privacy of the system. In this
paper, we present a detailed description of these building blocks and their role in achieving
privacy. This will help the blockchain enthusiasts to comprehend the issue in hand at
deeper levels. Realizing the potential hazard of blockchain’s privacy issue, numerous
blockchain researchers and enthusiasts are working towards the issue. Some are digging
deeper into the causes and factors resulting in privacy breach [14,16,21,22] while others
are trying to provide a viable and universally accepted solution to the problem [23–25].
Despite the extensive research the issue persists. We argue that the reason behind the
problem persistence is a result of the following:

1. Lack of literary resources for understandability of various blockchain components
and features with respect to their effect on privacy.

2. Unavailability of a proper evaluation criteria that judges the efficiency privacy of
a solution.

3. Absence of a concrete quantifiable value to empirically assess the degree of privacy
offered by a solution.
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Hence a comprehensive awareness of the role of each blockchain component towards
privacy protection is much needed for ability to create better privacy preserving solutions.
Moreover, proper analysis mechanism of these solutions is required to accurately evaluate
the potential of each solution. Therefore, in this study, we bridge the said gap in litera-
ture by presenting a comprehensive review and solutions to the aforementioned existing
issues. To accomplish the task, we first discuss the issue of privacy in detail. Further, we
present a survey and classification of the privacy preserving solutions based on blockchain
component/feature exploited for privacy provision. To the best of our knowledge, no
manuscript has presented such classification so far. Next, we discuss the criteria and
parameters adopted by several research works to evaluate these classified privacy solutions
in blockchains. Most of the evaluations are performance based which is not sufficient
with respect to privacy. This is because a solution might be utilizing lesser computational
resources and consequently resulting in weaker privacy protection. Therefore, it is hard to
judge the strength of a solution merely based on computing resources used. Hence, we
introduce more parameters that affect the degree of privacy protection. These parameters
include various features that make privacy protection stronger, and several features that
can breach the privacy. Subsequently, we formulate a validation framework that considers
these introduced parameters to empirically analyze the potential of the privacy technique
under study. Calculation carried out based on the values of these parameters results in a
singular value ranging between 0 and 1 (with 0 being no privacy preserved and 1 being
maximum privacy preservation). We term this value as privacy precision in the formulated
framework. To essentially evaluate any solution, considering both, pros and cons is sig-
nificant. Our aspirations with this research are that it will be used as a benchmark when
assessing blockchain based privacy solutions.

1.1. Gap Analysis and Contribution

We surveyed numerous articles relating to blockchain privacy, classified privacy
protecting solutions based on the fundamental blockchain component targeted. During the
survey, we found that most of these solutions are evaluated based on the computational
performance and proof-of-concept, which is not acceptable. Therefore, research on privacy
solutions for blockchain is not progressing significantly. To bridge this gap, this research
study was carried out. The originality and contribution of this article is multifold:

1. Novel Classification of Privacy Solutions with respect to Blockchain Components

We present a novel classification of existing privacy preserving solutions in blockchain
networks based on the component involved in privacy protection. We classify the existing
solutions into the categories of hashing, cryptographic primitives and smart contracts, all of
which are significant components of blockchain functionality. To the best of our knowledge,
such a classification has yet not been presented anywhere in the literature at the time of
writing this manuscript. The purpose of this classification is to highlight the state-of-the-art
methods preserving privacy in correspondence to the fundamentals to be tuned. This will
be beneficial for the concerned individuals to make an informed decision about building a
better privacy protecting blockchain for their applications.

2. Emphasizing on Insufficiency of State-of-the-Art Privacy Evaluation Criteria for
Estimating the Potential of a Solution

We extensively studied evaluation criteria adopted in various blockchain based pri-
vacy solutions for analysis. Using the literary evidence, we show that the evaluation is
done mainly based on performance and proof of concept. However, we argue that such
analysis is not sufficient to evaluate the privacy provided by a technology merely based on
system performance, computational cost, and time and hence a proper framework with
different criteria and parameters must be introduced for the evaluation. Therefore, we
come to our third major contribution which is mentioned next.

3. Proposing Novel Framework to Empirically Evaluate Privacy Solutions (Be-
yond Performance)
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To support the argument, we further present a framework with around 10 different
criteria and sub-criteria, divided as privacy attributes and risks, that can effectively evaluate
and quantify any blockchain based privacy solution irrespective of its category. With this,
we also introduce the concept of privacy precision that is the empirical value calculated
based on the efficiency of chosen parameters. This empirical value, ranging from 0 to 1,
quantifies the degree of privacy provided by a solution.

To the best of our knowledge, none of the contributions have been published in any
study so far.

1.2. Organization of the Paper

The organization of the rest of the paper is depicted in Figure 1 for a quick glance and
elaborated as follows.

Figure 1. Organization of the paper.

In Section 2, we present related studies briefly and compare our work with existing
work in the literature. Next, in Section 3, we present various fundamental components
responsible for smooth functionality and integrity of the blockchain and highlight how
each of these components can be used to strengthen the privacy. We also present critical
analysis and comparison of the state-of-the-art blockchain privacy preserving solutions,
classified based on their structural design. Then, in Section 4, some current trends with
respect to blockchain privacy are presented. The section also highlights applications where
blockchain privacy protocols are being used. We then show how the privacy degree is
evaluated by each of these solutions and how these parameters (taken into consideration)
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are insufficient to be used as benchmark for privacy evaluation, in Section 5. Consequently,
in Section 6 we proposed a privacy evaluation framework for blockchain networks that
was designed considering all important features and risks affecting blockchain privacy.
The evaluation framework will empirically analyze any privacy protecting solution of
the blockchain networks. However, there are still a few key challenges that need to be
considered. We present those open research challenges in Section 7. Finally, we conclude
the paper in Section 8 along with some inferences derived throughout the paper.

2. Related Work

One of the most widely researched areas in the field of blockchain networks is the
domain of preserving blockchain privacy. The reason being the growing concern of several
industries and business enterprises to protect their data and trade secrets from unautho-
rized access. In this section, we first briefly discuss the importance of privacy in blockchain
networks. Next, we present the related surveys that have been conducted in past focusing
on blockchain privacy. Finally, we compare this survey with existing surveys in the domain
to highlight the significance and novelty of the research presented in this paper.

Several business enterprises and various organizations are keen on deploying the
technology for their day-to-day record keeping and business management. However, the
only hurdle they are currently facing is privacy disclosure in the blockchains. This restricts
the large scale applications of the technology [14]. Thus, a huge number of privacy solu-
tions are proposed in literature. Besides that, multiple authors are contributing towards the
evaluations of these solutions by presenting their surveys and reviews in the domain. One
such survey is presented in [21]. In this survey, the authors have classified the fundamental
techniques to preserve privacy i.e., mixing services and cryptographic primitives, and
compared them based on the type of privacy preserved in each solution. Similarly, another
article [26] broadly classified and compared cryptographic protocols in blockchain net-
works. Similar other studies were presented in [11,14,22] and more. The study presented
in this paper is novel in a way that none of these surveys classified the privacy preserving
solutions based on fundamental components of blockchain utilized. Moreover, this survey
extensively discusses the evaluation criteria for the privacy preserving solutions, which to
the best of our knowledge had not been published anywhere at the time of writing this
manuscript. Moreover, this survey also introduces a multi-factor validation framework
for appropriate evaluation of privacy preserving techniques considering all the features
and risks.

Distinguishing Factors of Related Work

We carried out a comprehensive comparison of our research work with existing
surveys. For the comparison, we identified the following criteria:

1. What is the publication year of the article? (YEAR)
2. How many citations does the article have? (CITE)
3. Whether the article is mainly centered around privacy concerns in blockchain? (PRIV-CEN)
4. If the article reviews existing cryptographic privacy techniques to retain transaction

privacy? (CRYPT)
5. If the article reviews existing smart contract-based privacy techniques to retain trans-

action privacy? (SC)
6. Does the article shed a light on how these privacy techniques are evaluated and

validated? (VAL)
7. Does the article provide sufficient information on open research challenges? (ORC)

The results of the comparison are depicted in Table 1.
From the table, it is evident that none of the existing work have focused on analyzing

the validation requirements and state-of-the-art parameters, hence it becomes extremely
important to address this limitation. Therefore, in this study we comprehensively report
the validation strategies and criteria for blockchain privacy preserving techniques.
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Table 1. A seven criteria comparison of various review articles on blockchain based privacy techniques.

Article YEAR CITE PRIV-CEN CRYPT SC VAL ORC

[21] 2019 281 Yes Yes No No Yes

[11] 2019 64 Yes Yes No No Yes

[27] 2020 12 Yes Yes No No Yes

[28] 2019 83 No No No No Yes

[14] 2020 1 Yes Yes No No Yes

[29] 2020 2 Yes Yes No No No

[30] 2020 57 Yes No No No Yes

This survey 2021 - Yes Yes Yes Yes Yes

3. Componential Classification of Blockchain Privacy Protecting Techniques

In today’s era, data is constantly being generated at a significant pace [31]. This
significant generation of data from several sources demands secure and reliable storage
and exchange systems. Usually, the data is stored on cloud servers, however, this brings
new concerns regarding data privacy, duplication and fine-grained access control [32],
to the forefront. Thus, the technology of blockchain is being explored and utilized in
various applications to investigate its effect and impact on record storage management and
communication systems.

In its simplest terms, a blockchain can be referred to as database. This is because
it is ledger that is responsible for storing data using data structure of a block [33]. The
blockchain database exists on multiple computers at the same time to reduce the risk of data
theft or loss [34]. These multiple computers or servers are called the participants, or “nodes”
of the blockchain network. The data stored in blockchain database takes the form of a
transaction. For example, if Alice wants to send a simple text message of “Hello” to Bob, it
will be communicated and stored as a transaction. This transaction will consist of sender’s
key, receiver’s key, and time stamp (i.e., the time when the transaction took place). The
authenticity of these transactions in a blockchain network is validated via cryptography,
making it an important component of the blockchain design [35]. Blockchains use two kinds
of cryptographic algorithms. The first ones lie in the category of primary cryptography
and includes asymmetric cryptography and hashing [36], whereas the second category is
secondary cryptography which deals with providing additional security and privacy to the
systems [26]. We discuss both the categories in detail later in this section.

When a transaction is initialized, it is propagated to all the participants in the network
for verification [37]. The protocols and rules of this verification must be agreed upon
by all the participants in the network. Hence, just like an ordinary agreement signed
between trading parties, a digital agreement is enforced in the blockchain. Such digital
agreements are called smart contracts [38]. Every node joining the chain, thus, provides
its consent to abide by the rules of regulation, pre-coded into these contracts. Smart
contracts [39] are responsible for provision of trust-less environment among participating
nodes, integrity of data on chain, clear communication among peers, transparency and
much more. These contracts are decentralized and immutable, so the blockchain nodes are
assured of the integrity of these contracts. Since the seamless communication of blockchain
is highly reliant on Smart Contracts, hence these can be intelligently programmed to
transfer user assets in such a way that user and data privacy are retained. Moreover,
these contracts are lightweight and require lesser computing resources as compared to
the tradition cryptographic protocols. Furthermore, when smart contracts are used in
conjunction with cryptographic schemes, they produce more promising results in terms
of preserving blockchain privacy. More details on this are given further in this section.
Another integral part of blockchain for maintaining justness of the blockchain system is
known as consensus. This essential algorithms are responsible for conserving blockchain’s
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efficiency and safety [40]. These algorithms do so by reaching a mutual agreement about
the latest state of the blockchain. Several consensus algorithms are present in literature and
can be used according to the application’s requirement. However, consensus is not directly
linked to strengthening blockchain privacy and hence is out of the scope of this paper.
Interested readers may refer to [19] for details. A depiction of blockchain components
that aid in privacy protection is illustrated in Figure 2. Blockchain fundamental building
blocks (to preserve privacy) namely, public key cryptography [41], hashing [17] and smart
contracts [42] are further elaborated in subsequent sections.

Figure 2. Blockchain components for privacy protection.

3.1. Effect of Blockchain’s Primary Cryptography on Privacy

Cryptography is a technique of data storing and transmission in a certain form such
that it is only interpretable by the intended user [43]. Besides safeguarding data from
theft and alteration, cryptography may also be used for user authentication purposes [44].
Blockchain networks highly rely on cryptography for network integrity and data sharing.
Cryptography is enforced in blockchains to accomplish the three basic information security
tasks i.e., confidentiality (or data privacy), integrity or authentication (user privacy) and
non-repudiation [45]. While it is deemed as an impeccable solution for online information
security, cryptography does not guarantee complete protection of assets. However, it is
an efficient method of shielding the data which minimizes the impact of unauthorized
penetration if it does occur.

Fundamentally, two kinds of cryptographic algorithms are used in blockchains. The
first one is known as asymmetric or public-key cryptography [46], and the second one is
called hashing [47] both of which are elaborated further in this section.

3.1.1. Public Key Cryptography/Encryption

Blockchain uses asymmetric or public key cryptography to maintain reliability of
the network. Public key cryptography uses a pair of keys, known as public and private
keys, for data encryption and decryption. Public keys are distributed among the network
participants for communication while private keys are kept private and protected from
unauthorized access [48].

A study [49] exploited asymmetric cryptography for provision of privacy in eHealth-
care system. The idea that the authors worked on was providing the medical data to
the researchers for statistical analysis while ensuring that the privacy of the patients is
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not breached. Incorporating asymmetric cryptography in blockchain networks ensures
accomplishment of two out of three information security properties, i.e., authentication
and confidentiality [50].

Blockchain Solution for User Authentication

In most platforms, a user is authenticating by entering a password before he could
utilize any of the services. This implies that if the main server of the platform is hacked, the
hacker will get access to each user’s password. Blockchain solves this problem by using
asymmetric cryptography instead. For any user to participate in blockchain network, he
must create his own pair of public and private keys. Public key is meant to be shared
among the blockchain users to enable incoming transactions whereas private key must be
kept secret.

Any transaction that is initiated by the user must be digitally signed by the user. This
signature is generated using the private key of the user [51]. This signature can be verified
by other participants using the public key of the signer. A signature generated using the
private key of a user cannot be forged by any other user as he does not have access to the
private key that generated the signature. However, the ownership of the transaction can
easily be verified by anyone knowing the public key of the user. This serves as a means of
authenticating that a certain transaction originated from a particular user, which cannot
be denied by the sender. This property of inability of denying the validity of something is
known as non-repudiation [52] in information security.

Blockchain Solution for Data Confidentiality

Using asymmetric cryptography also ensures data confidentiality or information
privacy in blockchain networks. Blockchain networks are public in nature since it is
the participants that verify communication between two parties instead of intermediary
party [53]. Hence, all the transactions from one end to the other end will be propagated
to the entire network for anyone to see. However, public–private key cryptography in
blockchain networks ensures that the data is concealed and can only be viewed by the
intended receiver. If a transaction is meant to be received and seen by user A, it must
be encrypted using public key of user A. This transaction can now only be decrypted by
the private key of user A [54], which implies that even if an adversarial user is listening
to the network, he will not be able to see the contents of the transaction. Hence the
confidentiality of the transaction contents will be intact, and data will travel across the
network very securely. Although, this emphasizes the fact that private keys should be kept
safe and guarded.

Besides maintaining information security properties, encryption has greater benefits
to offer in the domain of blockchain privacy for various applications. A number of research
articles, nowadays, are working on searching encrypted data stored in blockchain, while
preserving the privacy of the data. This technique is known as searchable encryption. This
kind of encryption is used to protect privacy and authenticity of data when enterprises
store their sensitive records in external data centers [55]. Some studies [56] use single
word searches while other advanced studies [57] present effective mechanisms to enable
multi-keyword searches on the encrypted data in blockchains. Protecting data privacy
using searchable encryption is a great concept but it is out of the scope of this manuscript
since it covers blockchain fundamental privacy issues. Interested readers may refer to [57]
for further study on the subject.

3.1.2. Hashing

Hashing is an integral component in the blockchain networks for maintaining the
network consistency and reliability. Data is run through a hashing function to generate a
kind of digital fingerprint that is essentially unique to the data file. The purpose of hashing
the data is not for concealing it, rather allowing the verification that data is pure and not
tampered with. This verification is convenient as modification of even a single character in
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the data will change the hash completely. The point of hashing is not to hide data, but to
allow verification that the data has not been tampered with in any fashion. Moreover, the
hash of a data cannot be “unhashed” or restored back into the original data. Hashing is a
method used to verify the integrity of a message or file [58].

Blockchain Solution for Data Integrity

One of the most significant and prized features of blockchains is immutability [59].
Immutability simply refers to ensuring that the records in the chain have not been tampered
with. This property of blockchain validates the integrity and truthfulness of the data in
the chain.

Blockchain transactions are grouped together and stored into blocks. The blocks
consisting of various transactions are chained together. Each block in the blockchain has
a unique identifier (i.e., hash) [60]. The hash of each block is generated using a hashing
function based on the hash of the previous block, list of transactions and time of publication
(as illustrated in Figure 3). Even a slightest change in any of these can cause the entire block
hash to be refreshed, highlighting tampering of the data. This makes it very complicated
for any adversary to modify the data as it must make changes on every node of the entire
decentralized network, which is practically impossible [61]. Thus, the integrity of the data
is kept intact.

Figure 3. Structure of block.

3.2. Effect of Blockchain’s Secondary Cryptography on Privacy

Due to public nature of blockchains, anyone can join the network at any point of time.
Permission from any centralized or intermediary authorization is not required. As a result,
bad actors can also join the network and gain access to the flow of transactions in the net-
work. These bad actors can use various tricks and techniques to breach the privacy of users
involved in various transactions. However, using secondary cryptography, it is possible
to strengthen data confidentiality, user privacy, and minimize flow of metadata across
the network [26]. Currently, the most widely used cryptographic techniques to achieve
blockchain privacy are multi-party computation, ring signatures, homomorphic encryption,
zero-knowledge proofs, and variants of all of these. In this section, we expounded the
privacy protection by cryptography.

3.2.1. Multi-Party Computation for Achieving Blockchain Privacy

Multi-Party Computation (MPC), also referred to as Secure Multi-Party Computation
(SMPC) is a privacy preserving cryptographic protocol. SMPC enables mutually distrusting
distributed parties to jointly compute an arbitrary functionality without revelation of their
own private inputs and outputs [62]. Consider a distributed environment with multiple
parties Pi where {i = 1, 2, . . . n} having private inputs xi wishing to compute an arbitrary
functionality f (x) jointly, such that f (x1, . . . , xn) = y1, . . . , yn. As soon as the computation
completes, each party Pi is required to acquire its own corresponding output y1 without
obtaining any other kind of information [63].

The basic goal of SMPC is the construction of secure protocols that allow several
mutually distrusted participants to collaborate for computation of an objective function in



Appl. Sci. 2021, 11, 7013 10 of 27

a joint fashion, using their own set of inputs. A study presented in [64] proposed an SMPC
based solution for strengthening blockchain based privacy. In this solution, the user would
store his data on the public ledger after encrypting it with his own secret key. Further, the
solution exploited the features of smart contracts to enhance the security. When a user
needs his private data in a smart contract, he decrypts the value using his key and uses
the decrypted value as its local input to the SMPC protocol. The demonstration of the idea
was presented using three parties only. Another study [65] also implemented SMPC for
better privacy protection in blockchain based application. The study claims to have 66%
more efficiency than existing solutions. However, since the claim was not backed up by
any experiments, the authenticity of the claim is questionable.

3.2.2. Homomorphic Encryption for Achieving Blockchain Privacy

Homomorphic encryption is a cryptographic technique that allows computation to
be performed on the encrypted data without accessing the secret key. The computation
results obtained are same as that of the original data. Moreover, it utilizes proxy re-
encryption technology to protect the selected ciphertext from being attacked [66]. It can
also be seen as an extended version of either symmetric-key or public-key cryptography.
In [67], homomorphic encryption was deployed to enhance blockchain security. Various
privacy and security breaching attacks, such as collision attack, primage attack and wallet
theft attacks were the motivation behind the study. The two homomorphic encryption
techniques used for the study were Goldwasser-Micali and Paillier encryption schemes [68]
for data privacy. The preliminary results presented in the study portrayed that these two
schemes had a lower processing time and greater resilience against aforementioned attacks.

3.2.3. Ring Signatures for Achieving Blockchain Privacy

Numerous kinds of signatures are present in cryptography. However, to achieve
anonymity in blockchain networks, ring signatures and its variants are used. Ring signa-
tures, introduced in 2001 [69], work on the idea of involving various network participants
to form a ring and create a signature based on the private key of ring creator and public
keys of other participants in the ring. Doing this will reveal to the verifiers that one of the
participants have signed the transaction without giving out the information of who exactly
has signed the transaction. Thereby achieving anonymity and unforgeability [70]. Ring
signatures were extended [71] to traceable ring signatures and adopted for the formation
of Ring-Coin. In this case, anyone impersonating another person in the ring to sign the
same message will risk revealing his identity immediately. This idea was further deployed
for prevention of double-spending attack in blockchain and thereby became the basis of
CryptoNote [72] with a slight modification.

A ring signature-based scheme was proposed [73] to strengthen the privacy in blockchain
networks. This work combined ring signatures with elliptic curve cryptography for privacy
enhancement. The study does not describe any experimentations performed for evaluation;
however, it gives mathematical proofs testifying that the proposed mechanism was efficient.

3.2.4. Zero-Knowledge Proofs for Achieving Blockchain Privacy

Zero-Knowledge Proofs (ZKPs) are the most widely used cryptographic methods
enabling transfer of assets across a decentralized, distributed, peer-to-peer blockchain
network with improved privacy. The objective of zero-knowledge proofs is to attest
the legitimacy of a transaction with zero knowledge offered to the verifier related to
the transaction. The notion of ZKPs involve the prover to articulate a formal proof as
an evidence of a particular assertion being true without provision of any extended and
useful information to verifying party [74]. In blockchain networks, a variant of ZKP,
known as Non-Interactive Zero-knowledge Proof (NIZK proof), is extensively utilized as it
drastically reduces communication complexity. It is not desirable to deploy the extensive
communication requirements of simple ZKPs. NIZK proofs must meet the following
three properties:
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1. Completeness: Everything that is true has a proof.
2. Soundness: Everything that can be proved is true.
3. Zero knowledge: Only the proven statement is revealed.

A commonly known application of NIZK is Zerocoin [75]. It utilizes NIZK for provi-
sion of user anonymity by involving mechanism of preventing transaction graph analysis,
i.e., breaks the traces of coins. However, it is unsuccessful in achieving so because of several
reasons including fixed coin denominations, conversion of anonymous coins into non-
anonymous before payments, and unconcealed transaction amounts. To overcome these
limitations, another application of NIZK named Zerocash [76] was introduced. Zerocash
provided data confidentiality as well as user anonymity. Additionally, transaction size and
verification time were also considerably reduced. Zerocash uses ZK-SNARKS. However,
the NIZK protocol experiences high computation outlays specially in the proof generation
phase of ZK-SNARKs protocol used in Zcash.

3.3. Effect of Smart Contracts on Privacy

Smart contracts are digital contracts consisting of rules and regulations, mutually
agreed upon by all the parties in a decentralized network [77]. They are self-executing
programs which run automatically and are tamper-proof. They are written in high-level
programming languages and allow the developers along with the users to express complex
behavioral requirements and patterns. The recent developments in the technology of
blockchain networks revived the perception and enabled the formation of smart contracts
that were originally envisioned by Szabo in 1994. Smart contracts are a significant part of
the blockchains as they ensure simple business trading among two mutually distrusting
parties without the intervention of any third intermediary. It allows disintermediation in
the blockchains which is one of the technology’s key features. Moreover, the correct use
of smart contracts can ensure added security to the blockchain transactions. However,
ensuring the correctness of the contracts is a challenging task because of the vulnerabilities
of computer programs to the faults and failures [78].

Fundamentally, much work on privacy protecting using smart contracts has yet not
been achieved in literature. However, smart contracts coupled with one or more crypto-
graphic techniques and to address the issue of blockchain privacy, have been witnessed.
One such example is presented in [23]. Particularly, Hawk [23] will automatically compile
a smart contract into a cryptographic protocol. This compiled program has two parts,
the first one deals with execution of major function, whereas the later one protects the
users. For transaction encryption and verification, Hawk uses zero-knowledge proofs.
Another smart contract based privacy solution is presented in [79]. It offers a solution to
the secrecy of smart contract execution and uses advanced cryptographic primitives to
support zero-knowledge proofs. Additionally, the data in Enigma is distributed among
various nodes unlike the conventional blockchain data storage schemes (i.e., maintaining
the copy of ledger of every node). The study in [80] utilizes Enigma protocol for privacy
preservation on hybrid blockchain platforms. It highlights the inefficacy of centralized
(off-chain) and decentralized (on-chain) platforms when implementing smart contracts
individually and proposes a hybrid approach. The authors in the study split the smart
contracts a part of which was executed on an off-chain contract and the other part was
executed on Rinkeby [81], an Ethereum test network. This concept was adopted in [82].
All the smart contract functions requiring higher computation or consisting of sensitive
information are included in the off-chain part of the contract to be signed and executed by
concerned participants only. All the unanimous agreements are done off-chain.

4. Comparative Literary Deductions of Surveyed Privacy Preserving Techniques
4.1. Comparison of Surveyed Techniques

The studies surveyed in the above subsections are compared in this section for further
analysis. We identified five criteria to contrast the privacy preserving techniques based
on exploitation of different blockchain components. These identified criteria include
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(1) component utilized, (2) underlying technique, (3) whether experiments have been
performed to validate the solution or not, (4) type of results presented (i.e., performance
based, feature based or mathematical proofs, (5) main contribution of the study and finally
(6) grade of the solution. Performance based results include parameters such as execution
time, computational complexity, memory utilized, throughput and so on, whereas feature-
based experiments include parameters such as encryption strength, type of privacy (i.e.,
anonymity or confidentiality) and other such attributes. We assign these solutions a grade
of 1–4 with 1 being the lowest grade and 4 being the highest. The grades are assigned on the
basis of four factors, i.e., construction of the protocol to preserve privacy, implementation
details provided, extensive validation of the results, and efficiency of privacy preserved.
The results of the comparison are summarized in Table 2 as follows.

Table 2. Comparative analysis of privacy preserving techniques.

Study Component Technique Experimental
Validation (Y/N) Type of Results Main Contribution Grade

[43] Primary
Cryptography

Public-Key
Cryptography Yes Performance-

Based

Direct transfer of patient centric data
between the patient and researchers,

ensuring patient anonymity
2

[83] Primary
Cryptography Hashing Yes Performance-

Based
Leveraging of blockchain in cloud data

provenance using hashing 4

[55] Secondary
Cryptography

Multi-Party
Computation Yes Performance-

Based

Execution of SMPC protocol as a part of
smart contract to protect user data

privacy in smart contracts
3

[56] Secondary
Cryptography

Multi-Party
Computation No N/A Optimization of existing SMPC protocols 1

[58] Secondary
Cryptography

Homomorphic
Encryption Yes Performance and

Feature Based

Discussion of homomorphic and
non-homomorphic encryption

techniques w.r.t privacy and highlighting
the significance of homomorphic
encryption in blockchain privacy

preservation, using
preliminary experiments

2

[64] Secondary
Cryptography Ring Signatures No Mathematical

Proofs

This work combined ring signatures
with elliptic curve cryptography for

privacy enhancement
3

[67] Secondary
Cryptography

Zero-Knowledge
Proofs Yes

Mathematical
Proofs and

Performance-
Based

Construction of decentralized
anonymous payment (DAP) schemes
enabling concealment of transaction

origin, destination and contents

4

[22] Smart Contracts – Yes Performance-
Based

Restriction of blockchain transaction
storage for public view. Instead, usage of
private smart contracts to encrypt data

4

[70] Smart Contracts – Yes Performance-
Based

Utilizes verifiable secret-sharing for
optimization of SMPC using

private contracts
3

[73] Smart Contracts – Yes Performance-
Based

Splitting of smart contracts into on and
off chain contracts to enhance privacy

and scalability of the blockchain network
2

4.2. Survey Research Methodology for Literary Deductions

The methodology adopted to conduct the survey is depicted in Figure 4. The goal
of our research is to understand intrinsic concepts of blockchain with respect to privacy
to understand the mechanisms of better privacy preserving techniques’ formulation and
appropriate evaluation. This will consequently result in wider adoption of the technol-
ogy in privacy centric applications that are currently hesitant to deploy their systems to
blockchains. Hence, the formulated research questions to achieve the study goal are:
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Figure 4. Survey methodology.

RQ1: What are the latest trends in blockchain privacy preserving solutions?

RQ2: How are blockchain privacy preserving techniques being evaluated?

RQ3: How can the evaluation of blockchain privacy preserving techniques be improved?

For this survey, we used Google Scholar and IEEE Xplore digital repositories. The
keywords used for our results were “Blockchain Privacy”, “Blockchain Privacy AND
cryptography” and “Blockchain Privacy AND Smart Contracts”. We considered the data
of past 5 years (i.e., 2017–2021) and picked up the first 300 results for our analysis. We
excluded survey articles as they were not needed for the analysis. Moreover, we excluded
manuscripts that either belonged to techniques of privacy breaching attacks or did not have
any significant contribution to the body of the knowledge. We also excluded any articles
that were not written in English language. Grey literature and duplicate articles were also
removed for the analysis. The inclusion and exclusion criteria are comprehensively depicted
in Table 3. We classified these articles based on the core mechanism of preserving privacy
i.e., cryptography, smart contracts, hybrid of both or others. The last category included
solutions that used deep learning, differential privacy, federated learning, clustering,
and other computing approaches to retain privacy in blockchain based networks. The
basic goal was to find out the blockchain based privacy preserving techniques that are
currently being researched and experimented. The results of the analysis are summarized
in subsequent sections.

Table 3. Comparative analysis of privacy preserving techniques.

Inclusion Criteria Exclusion Criteria

Articles are no more than 5 years old (i.e., published in range of 2017–2021) Survey articles on blockchain privacy
Articles must be related to blockchain privacy preserving techniques Privacy breaching attacks on blockchain networks

Articles must be written in English language Grey literature (i.e., online blogs, etc.)

4.3. Results of Literary Deductions

The results of the analysis are presented in the graph depicted in Figure 5. The graph
shows yearly distribution of articles based on blockchain privacy that were taken into
consideration, with respect to aforementioned classes.
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Figure 5. Latest trends in blockchain based privacy preserving solutions.

From the graph obtained (Figure 5), we can see most of the studies surveyed used cryp-
tography for privacy protection. The majority of these studies used simple data encryption
techniques including Attribute Based Encryption [84], Content Extraction Signature [85,86],
RSA algorithm and others. The rest of them utilized ring signatures [73,87], zero-knowledge
proofs [88,89] and other commonly known cryptographic techniques. Besides crypto-
graphic techniques, a number of studies used machine learning approaches [90,91] for pre-
serving blockchain privacy, followed by a very low number of studies exploring smart con-
tracts [92–94] for the task. Furthermore, most of the papers surveyed leveraged blockchain
privacy mechanisms into various application areas that require protecting data privacy.
These applications include ad-hoc vehicular networks [95–97], healthcare [98–101], crowd-
sourcing [102,103], e-voting [104,105] and more. Several IoT applications such as protecting
sensor data, body area networks, vehicular parking systems were also identified as poten-
tial application areas that requiring greater privacy guarantees. A pie chart depicting these
privacy centric applications found in literature is given as Figure 6.

Figure 6. Privacy centric applications in blockchain networks.

We derived a few deductions from the literary findings in this section. These findings
are elaborated below:
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Deduction 1: From Table 1, we can infer that most of the experiments were based on the per-
formance. However, stronger privacy guarantees are not directly proportional to utilization of
lesser computational resources. Hence, performance-based experimentations and results cannot be
completely relied on when considering privacy strength of a technique. This deduction is compre-
hensively studied and analyzed further in Section 5.

Deduction 2: Another deduction that was inferred from the articles studied was that the smart
contracts (despite their abundant usage in blockchains) are not largely studied for privacy pro-
tection in comparison to cryptography. Smart contracts play a major role in development of the
blockchain networks, hence exploiting their full potential will result in promising privacy protection
in blockchains.

Deduction 3: As inferred from the literary surveyed articles, healthcare record management
systems and supply chains, Internet of Things (IoT) based sensor data management systems,
financial applications, and vehicular communication networks are the topmost privacy centric
applications, followed by smart technologies, crowdsourcing, federated and deep learning data
management and so on.

5. Identification and Discussion on Evaluation Parameters and Criteria for Blockchain
Privacy Preserving Techniques

Due to the technology of blockchain having huge privacy concerns, extensive research
is being conducted into this domain. Following which, numerous privacy-preserving
solutions have been proposed in literature. In previous sections, we discussed those
solutions in detail and in this section, we investigated and presented the state-of-the-art
methods, parameters, and metrics to evaluate the degree of privacy provided by these
solutions. Numerous privacy-preserving solutions were comprehensively examined to
analyze underlying experimental infrastructure utilized for the evaluation, the evaluation
parameters used for performance analysis followed by the nature of the solution i.e., if
it is a fundamental privacy solution or applied. The fundamental solution refers to the
privacy preserving solutions that strengthen the blockchain privacy whereas the applied
solution corresponds to solutions that leverage blockchain for strengthening privacy in
other application scenarios. The findings are summarized in Table 4.

Table 4. Summary of state-of-the-art blockchain privacy evaluation parameters.

Study Experimental Infrastructure Evaluation Criteria/Parameters Fundamental/Applied

[106]

Mining Nodes: 20
Wallet Nodes: 20

Transaction Frequency: 5 s
Consensus: Proof of Work
Arduino MKR1000 32-bit
ARM Cortex-M0 + MCU

32 KB of SRAM and 256 KB of flash
Raspberry Pi Zero W with a 1 GHz single-core CPU

and 512 MB RAM

Request Processing Time
Transaction Size

Block Creation Time

Applied (Pervasive
Computing)

[107]

Programming Language: R-Programming Language
System Software: Ubuntu 18.04 LTS with GPU

Quadro P6000
RAM: 32-GB

Privacy-Level Index (Pindex)
Dissimilarity level (DISS)

Information Loss
Accuracy

FAR

Applied (Smart Power
Networks)

[108]

Three test chains, (Kylin, Jungle, Local), Blockchain,
Cloud were used.

Over 100 tests performed
Alibaba Cloud 2 core

RAM: 8 GB
Storage: 100 G

System Software: Ubuntu 16.04

Authorization Time,
Throughput vs. Delay

Time Overhead
Hash Cost Overhead

Applied (Cloud Access
Control)
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Table 4. Cont.

Study Experimental Infrastructure Evaluation Criteria/Parameters Fundamental/Applied

[25]

Programming Language: Solidity
Test net: Rinkeby (Ethereum), Geth

Processor: Intel Core i7
Clock: 2.7 GHz

RAM: 16 GB

Gas Cost
Time Overhead Fundamental

[76]

Multiple machines used for experiments.
Machine 1:

Processor: Intel Core i7-2620M Clock: 2.70 GHz
RAM: 12 GB
Machine 2:

Processor: Intel Core i7-4770 Clock: 3.40 GHz
RAM: 16 GB

Key Generation Time
Key Size

Proof Size
Block Verification Time

Transaction Latency
Block Propagation Time

Setup Time

Fundamental

[109]

System Software: Ubuntu 16.04
Processor: Intel Core i5-6200U

Clock: 2.3 GHz
RAM: 8 GB We used the Programming:

BouncyCastle’s Java library for Curve 25519

Protocol Run Time
Ring Size Fundamental

[23] Amazon EC2 r3.8xlarge Virtual Machine
RAM: 27 GB

Key Generation Time
Proving Time

Verification Time
Evaluation Key Size

Proof Size
Verifier Key Size

Fundamental

[110]

Operating System: Ubuntu 18.04
Processor: Intel Core i7

Clock: 2.9 GHz
RAM: 8 GB

Testnet: Hyperledger Caliper
Multiple Phase Experiments

Experimental Rounds/Phase: 30

Throughput
Latency

Time
Send Rate

Applied (IoT Data
Sharing in Smart Cities)

[82]
Contracts Programming: Solidity

Off-chain Signature Programming: JavaScript
Testnet: Kovan, Ethereum

Gas Cost Fundamental

From the table, it is evident that most of the evaluations are based on time, throughput,
and memory required. All these parameters are dependent on computational resources.
This means that the better the hardware machine used, the better will be the performance
of the evaluated technique. None of these parameters take into account the level of privacy
provided by a solution. When Bitcoin [15], Ring CT [109], Zerocash [76] were introduced,
each of these claimed to provide privacy protection to user identity and user assets. The
performance results given also depicted the same. However, the attacks [13,111–114] in
later studies showed the vulnerabilities in proposed solutions, which when exploited,
deanonymized the users for up to 90%. This is a highly significant number. Therefore,
that makes it remarkably clear that computational performance-based experiments and
proof-of-concept are not sufficient to judge the efficiency of a privacy preserving solution.
This implies that more factors or parameters should be considered for evaluation. Another
finding that we inferred from the survey is elaborated in deduction 4 given below:

Deduction 4: Another discovery to be highlighted here, is that most of the privacy preserving
frameworks are deployed using Ethereum [115] platform with Solidity [116] as programming
language and tested using official Ethereum test networks. This means that Ethereum is a better
platform when it comes to programming privacy related applications.
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6. Novel Framework for Empirical Evaluation of Privacy Efficiency in Blockchains
Based on Identified Parameters

Since current evaluation parameters for blockchain based privacy solutions are insuf-
ficient, hence we further surveyed the literature to find more parameters for validation.
From the survey, we found a number of essential characteristics that a blockchain based
solution shall possess. Moreover, we also found out the parameters and criteria to evaluate
those characteristics or features. Further, we also formulate a validation framework that
will efficiently verify the ability of a proposed blockchain privacy solution. This work is
loosely based on [7]. However, the problem with the study is that the study is focused
on a limited type of privacy preserving solutions i.e., related to Internet of Things (IoT)
networks. Moreover, the solution presented in the study [7] considers various parameters
based on their presence or absence, it does not account for the degree of usefulness and
efficiency of each parameter which is highly essential. Therefore, we enhanced the solution
by first removing any parameters specific to IoT applications, to facilitate diverse applica-
tions. Next, we introduce some new parameters that have greater or at least equivalent
significance in terms of privacy protection (details are mentioned later in this section).
Moreover, we also introduce some performance evaluators to evaluate the efficiency of
given parameters to assist in determining how effective a parameter is in preserving the
privacy of the given technique. Since this work is loosely based on [7], hence, the weights
taken for each of the characteristic are same as in the study. We discuss those parameters,
performance evaluators, and the corresponding framework in detail in this section.

To evaluate the solution, we will calculate privacy precision of each solution. To do
so, we divided the surveyed factors in two categories, i.e., privacy attributes and privacy
risks. Privacy attributes consist of the factors that strengthen the privacy if present in a
solution whereas privacy risks correspond to weaknesses of a solution, i.e., the risks that
the solution is vulnerable to. Next, we use these attributes and risks to analyze privacy
preserving solutions with different perspectives and collectively calculate its worth as a
numeric value. The evaluation framework is elaborated in subsequent sections.

6.1. Privacy Attributes—Parameters Strengthening the Privacy

The identified privacy attributes for our framework are shown in Table 5. Along with
the performance evaluators to validate the performance and efficiency of each attribute.

The weighting vector
→

WA represents the weights of these five attributes of the privacy
features, where:

→
WA = (w1, w2, . . . w5) = (3, 2, 2, 3, 2) (1)

Table 5. Privacy attributes.

Privacy Attributes (Ai) Total Evaluators (ET) Evaluators (Ei) Weight (Wi) Proportionality (R)

Encryption 3
Encryption Time

3
−1

Memory Utilization −1
Throughput 1

Transactional Anonymity 2
Time

2
−1

Space (Memory) −1

Pseudonymous ID 2
Key Length

2
1

Cipher Algorithm 1

Anonymity Group 1 Group Size 3 1

IP Protection 1 Percentage of nodes accessing
transaction traffic 2 −1

Max Weight 12
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The maximum privacy achievable by a solution will be,

Maximum Privacy =
5

∑
i=1

wi = 12 (2)

The privacy attributes of a solution are expressed as a privacy attribute vector
→
A where

→
A = (A1, A2, . . . , A5) (3)

Each attribute (A) has some performance evaluators (E) to quantify how good the
attribute is for preserving privacy. To calculate attribute value of each attribute, the values
of evaluators are summed up. Note that each evaluator E has a different proportionality R.
The attribute value is calculated as,

Ai =
ETi

∑
i=1

ERi
i (4)

where Ai: score of ith attribute, Ei: value obtained of the ith performance evaluator, Ri:
proportionality of the evaluator to strengthen the privacy. The value of Ri is 1 for directly
proportional and −1 for inversely proportional, ETi: total evaluators for ith attribute.

Once we have Ai for each attribute, we will normalize the obtained value between 0
and max weight of the characteristic (Wi) using the following equation,

An =
(Ai −min(d))∗(max(n)−min(n))

max(d)−min(d)
(5)

where, min(d): minimum Data Value Obtained, max(d): maximum Data Value Obtained,
min(n): minimum Range Value, max(n): maximum Range Value, An: normalized Ai.

The min(d) and max(d) values are taken as 0 and 100, respectively. Here, 0 indicates no
privacy and 100 indicates complete privacy. Moreover, the values of min(n) and max(n) will
be 0 and weight of the attribute. Substituting the values, the equation becomes,

An =
Ai ∗ wi

100
(6)

After normalized attribute values have been achieved, the normalized privacy at-
tribute vector will be: →

An = (An1, An2, . . . , An5) (7)

We will calculate the privacy weightage of each attribute by multiplying it with its
corresponding weight. Hence, we propose that the overall attribute privacy PA may be
calculated as,

PA =
→
An ·

→
WA =

5

∑
i=1

Ani × wi (8)

6.2. Privacy Risks—Parameters Breaching the Privacy

Attributes or features aiding privacy of the blockchains are not enough to validate
the efficiency of the solution. Evaluating its resilience against various well-known attacks
and risks is also essential. Hence, we surveyed the literature for potential threats towards
blockchain privacy. The identified risks for our framework are listed in Table 6.



Appl. Sci. 2021, 11, 7013 19 of 27

Table 6. Privacy risks.

Privacy Risks (Ri) Total Evaluators (ET) Evaluators (Ei) Weight (vi)

Linkability 2
Traffic Correlation

1Address Correlation

Insider Adversary 2
Data Leakage

1Data Propagation to Adversary

Performance 2
Computational Burden (Time, Storage, Clock Speed)

1Memory Issue

Scalability 1 Transactions Per Second 1

Max Weight 4

We consider each criterion to be of equal effect and give a weight of one to all of them.
For each of the risks present in the privacy solution, a negative value will be generated.

The weighting vector
→
VR represents the weights of these four risks of privacy, where:

→
VR = (v1, v2, . . . v4) = (1, 1, 1, 1) (9)

The maximum privacy risk achievable by a solution will be,

Maximum Privacy =
4

∑
i=1

vi = 4 (10)

The privacy risks of a solution are expressed as a privacy risk vector
→
R where,

→
R = (R1, R2, . . . , R4) (11)

Each risk (R) has some performance evaluators (E) to quantify how good the attribute
is for preserving privacy. To calculate risk value of each risk, the values of evaluators are
summed up. Hence the risk value is calculated as,

Ri =
ETi

∑
i=1

Ei (12)

where, Ri: score of ith attribute, Ei: value obtained of the ith performance evaluator, ETi:
total evaluators for ith attribute.

Once we have Ri for each risk, we will normalize the obtained value between 0 and
max weight of the characteristic (vi) using the following equation,

An =
(Ai −min(d))∗(max(n)−min(n))

max(d)−min(d)
(13)

where, min(d): minimum Data Value, max(d): maximum Data Value, min(n): minimum
Range Value, max(n): maximum Range Value, Rn: normalized Ri

The min(d) and max(d) values are taken as 0 and 100, respectively. Here, 0 indicates no
privacy and 100 indicates complete privacy. Moreover, the values of min(n) and max(n) will
be 0 and weight of the risk which is 1. Substituting the values, the equation becomes,

Rn =
Ri

100
(14)

After normalized attribute values have been achieved, the normalized privacy at-
tribute vector will be: →

Rn = (Rn1, Rn2, . . . , Rn4) (15)
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We will calculate the privacy weightage of each attribute by multiplying it with its
corresponding weight. Therefore, the overall attribute privacy PA will be calculated as,

PR =
→
Rn ·

→
VR =

5

∑
i=1

Rni × vi (16)

6.3. Privacy Precision

To calculate privacy precision, we first calculate the privacy resultant as,

R = PA − PR (17)

Practically a solution cannot provide all privacy features and the maximum privacy
protection is not feasible. Similarly, the maximum risk cannot be assigned to a privacy-
preserving solution. We have the minimum privacy resultant (−4) when a solution leaves
all privacy risks and has no privacy feature. In a similar fashion, the maximum privacy
resultant (12) is achieved when a solution offers all privacy features with no privacy risk. It
is worth noting that these values are based on the criteria introduced in Tables 4 and 5 and
will be changed if other criterion weighing scales are used.

We introduce privacy precision that is a quantifiable value to present the degree
of privacy provided by a solution. To calculate privacy precision, we normalize the
values of privacy resultant. Hence, using the privacy resultant, maximum and minimum
privacy values achieved, and min–max normalization [117], we can calculate the privacy
precision as,

Privacy Precision =
Privacy Resultant−min(privacy)

max(privacy)−min(privacy)
=

R− (−4)
12− (−4)

=
R+ 4

16
(18)

Thus, the final value of Privacy Precision will range from 0 to 1. The grading model
defined for the framework is shown in Table 7. Here, we define three (03) grades, namely,
poor, good and excellent. Any solution that achieves less than 0.3 precision score is termed
as poor, this is because such a low value represents that a solution either has insufficient
number of privacy features to make it strong or it is prone to privacy breaching risks. In
both the cases, solution is inefficient. For any solution that has a privacy precision of more
than 0.3 but less than 0.6, the solution is considered as a good or fair solution as it contains
moderately efficient features and has more resilience against the privacy breaching attacks.
Finally, any solution that has a privacy precision of more than 0.6, is termed as an excellent
solution. Such solutions are scalable, computationally intensive, and preserve privacy
to a greater extent. A privacy preserving solution having precision score of 1 has all the
features of privacy and no associated risks, hence it provides complete anonymity and
confidentiality in blockchain transactions.

Table 7. Privacy precision grading model.

Grading Precision Value

Poor 0 ≤ Precision ≤ 0.3

Good 0.31 ≤ Precision ≤ 0.6

Excellent 0.61 ≤ Precision ≤ 1

7. Open Research Challenges and Proposed Future Directions

In our study, we found out some open research challenges that must be considered
for wider adoption of the blockchain technology in privacy-centric applications. These
research challenges include:
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1. Challenge 1: Varying linkability requirements.

Although we proposed the existing solutions to be evaluated based on linkability
analysis, however, the linking techniques and heuristics vary from solution to solution
based on their design. Different techniques have different heuristics and methods of
linkability and deanonymization of users. This means different techniques can be assessed
differently and may yield different results. They do not have a uniform form of evaluation.

Proposed Future Direction: A comprehensive literature survey and extensive research
on uniform characteristics of blockchain based privacy solutions should be carried out for
design of a uniform linkability attack. Common heuristics and similar data will enable
justified comparison on the basis of transaction linking.

2. Challenge: Consensus Based Privacy

We classified the existing solutions based on the fundamental blockchain compo-
nent associated with enhancing the privacy. Consensus protocols are an integral part
of blockchain networks as they are responsible for maintaining integrity, validity, and
authenticity of the blockchain network. However, protecting privacy using consensus is
yet an underexplored area.

Proposed Future Direction: Research and analysis in consensus-based privacy protec-
tion is much needed to protect data eavesdropping. The effect of strengthening consensus
to preserve transaction anonymity and confidentiality should be explored. Design of some
consensus protocols that will secure privacy in blockchain combined with cryptography
and/or smart contracts is expected to yield promising results in future.

3. Challenge: Smart Contracts Exploration

Major portion of blockchain deployment and functionality is achieved through self-
executing smart contracts, hence utilizing them in an efficient way will add a layer of
privacy protection in blockchain systems. The findings of our survey as presented in
Section 3, depict that although smart contracts are widely being used for various application
scenarios, still they are comparatively underexplored in comparison to cryptographic
primitives for privacy preservation.

Proposed Future Direction: Investigating the constructs of smart contracts and using
appropriate encryption schemes will add an additional layer of privacy in blockchain
transactions. Hence, it is suggested to conduct further research and experiments using
solidity smart contracts as Ethereum and Solidity are privacy-friendly blockchain platforms.

4. Challenge 4: Designing Scalable Privacy Protocols

Various privacy preserving solutions, such as ZKSNARKS and other variants of zero-
knowledge proofs provide good privacy protection, however, it comes with a cost of higher
consumption of computational resources. Since verifying proof to approve a transaction
requires advanced mathematics, it takes longer to verify the transaction. For applications
that require a high number of transactions per minute, such as finance and banking systems,
the ZKPs tend to produce the problem of transaction scalability. A proper balance between
greater privacy preservation and provision of appropriate scalability requirements remains
an unsolved challenge to the date.

Proposed Future Direction: It is suggested to design a scalable privacy protocol that
not only preserves privacy but also does not create scalability issues in the network. For
this, the concept of zero-knowledge proofs can be taken as a starting point and some
fundamental changes in its architecture may be produced to reduce the size of proofs
thereby also retaining their efficiency. This will reduce the verification time in ZKPs.

8. Conclusions

In this study, we carried out an extensive survey relating to privacy preserving solu-
tions in blockchains. We presented classification of the solutions based on the blockchain
component for greater understandability of blockchain’s privacy strengths and vulnerabili-
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ties. This will enable blockchain engineers and researchers to design and develop better
privacy preserving solutions. Several concluding remarks derived from the study include:

• Utilization of optimum (less) computational resources is not directly proportional
to stronger privacy guarantees. Therefore, we cannot rely on performance-based
experimentations and results to analyze the potential strengths and shortcomings of
the proposed privacy preserving solution.

• A comprehensive validation framework to analyze a privacy preserving solution
from different perspectives is required and hence we proposed a novel validation
framework to accomplish the task.

• Blockchain networks intensively rely on smart contracts for smooth execution, how-
ever, they are not studied and experimented to their full potential for achieving
privacy. Therefore, we provide initial basis that will open further avenues of research
in this area.

• Ethereum test networks, and Solidity smart contracts programming are extensively
being used for development and testing of blockchain privacy preserving techniques.

We infer that this study will enable successful development, deployment, testing, and
empirical evaluation of privacy preserving techniques in blockchain networks, being a
key driving force for future development of blockchain technology and its applications in
various privacy-centric domains.
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