
applied
sciences

Review

A Review on the Service Virtualisation and Its Structural Pillars

Zeinab Farahmandpour *, Mehdi Seyedmahmoudian and Alex Stojcevski

����������
�������

Citation: Farahmandpour, Z.;

Seyedmahmoudian, M.; Stojcevski, A.

A Review on the Service

Virtualisation and Its Structural

Pillars. Appl. Sci. 2021, 11, 2381.

https://doi.org/10.3390/app11052381

Academic Editor: Andrea Borghesi

Received: 6 February 2021

Accepted: 26 February 2021

Published: 8 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Software and Electrical Engineering, Faculty of Science Engineering and Technology,
Hawthorn Campus, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
mseyedmahmoudian@swin.edu.au (M.S.); astojcevski@swin.edu.au (A.S.)
* Correspondence: zfarahmandpour@swin.edu.au

Abstract: Continuous delivery is an industry software development approach that aims to reduce
the delivery time of software and increase the quality assurance within a short development cycle.
The fast delivery and improved quality require continuous testing of the developed software service.
Testing services are complicated and costly and postponed to the end of development due to unavail-
ability of the requisite services. Therefore, an empirical approach that has been utilised to overcome
these challenges is to automate software testing by virtualising the requisite services’ behaviour
for the system being tested. Service virtualisation involves analysing the behaviour of software
services to uncover their external behaviour in order to generate a light-weight executable model of
the requisite services. There are different research areas which can be used to create such a virtual
model of services from network interactions or service execution logs, including message format
extraction, inferring control model, data model and multi-service dependencies. This paper reviews
the state-of-the-art of how these areas have been used in automating the service virtualisation to
make available the required environment for testing software. This paper provides a review of the
relevant research within these four fields by carrying out a structured study on about 80 research
works. These studies were then categorised according to their functional context as, extracting the
message format, control model, data model and multi-service dependencies that can be employed
to automate the service virtualisation activity. Based on our knowledge, this is the first structural
review paper in service virtualisation fields.

Keywords: service virtualisation; message format; control model; data model; multi-service depen-
dencies

1. Introduction

Recently, software systems have been structured as several different components
which communicate to accomplish software tasks. Due to some limitations, testing of
these components may end up very costly or time-consuming. One of the limitations is
the unavailability of other internal or external requisite components for testing any of
components. This limitation can lead to a delay in the delivery of the components to the
time when all of them are developed. This example illustrates one of the situations when
all the requisite components are from one vendor. Using different vendors for the requisite
components can cause the problem of testing to be even more severe.

Continuous delivery is one of the approaches in software engineering to deliver higher
quality software faster [1]. Embracing continuous delivery reduces the integration cost
which makes the continuous integration plausible. Continuous integration requires the
continuous testing of the components every time they are either developed or changed. For
the continuous testing of each component, all the requisite components need to be present
regardless of their development status.

Several approaches aimed to provide the required components and environments
ready for testing each component. The first approach is the commonly used mock objects
such as stubs [2,3]. The server-side interactive behaviour of each requisite component is

Appl. Sci. 2021, 11, 2381. https://doi.org/10.3390/app11052381 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11052381
https://doi.org/10.3390/app11052381
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11052381
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/5/2381?type=check_update&version=2

Appl. Sci. 2021, 11, 2381 2 of 26

simulated in this approach by coding them in specific languages. This manual coding
needs to be repeated every time each component is being modified.

Virtual machines tools such as VirtualBox and VMW are are the second commonly
used approach which aims to provide a platform to install multiple server systems [4].
This approach requires the availability of the server systems to be installed on the virtual
machines, which may not be accessible in some situations. The need for the real service
resource for the installation causes the method to suffer from scalability issues, which limits
the number of systems that can be installed on one system.

Another approach to alleviating the high system resource demand in hardware virtu-
alisation is container technologies such as Docker [5]. In comparison to other hardware
virtualisation approaches, this solution requires fewer system resources and provides pro-
tected portions of the operating system; therefore, it can set up a lighter testing environment
with higher scalability. However, this method still suffers from scalability limitations.

Service emulation [6,7] is a slightly recent approach which tries to replace each requi-
site component with its behaviour estimation. This estimation is meant to be executable
and very light-weight. This solution is used to target a specific component’s characteristics
for the specific quality test and ignore the rest. Emulating each component in this approach
requires the functionality information of each component and an expert’s manual configu-
ration. The components’ functionality information may not be available in components
with intricate behaviour.

To alleviate some of the service emulation limitations, the idea of service virtualisation
(SV) [8] was proposed. SV aims to get information about components’ behaviour directly
from their network interactions. By utilising tools such as Wireshark [9], this method
can record the components’ network interactions. Then, instead of human experts, it
aims at using machine learning techniques to drive light-weight executable component
models [3,8,10–12]. Record-and-replay technique is another term used for the SV solution.
This is because, in responding to a live request, the proposed SV tries to find the most similar
request from those that have been recorded before and substitute some of its response
fields to make it compatible with the new request. Figure 1 visualises the record-and-
replay concept.

Figure 1. Record and replay approach.

The referenced SV solutions cover some simple stateless protocols that do not require
more than the current request to generate an accurate response message. To accommodate
stateful protocols—when the response message requires not only the current request but
also the previous relevant messages—there are a few methods proposed by Enişer and
Sen [13] and Farahmandpour et al. [14,15]. However, the long short-term memory (LSTM)

Appl. Sci. 2021, 11, 2381 3 of 26

based method presented by Enişer and Sen to cover stateful protocols needs a long time
and lots of resources to train.

These were the research efforts that directly contributed to the development and
improvements of SV approaches. In contrast to the limited number of solutions within the
SV field, there is a huge body of work that indirectly contributes to this area of the research.
As a result, the rest of this paper provides an overview of different research efforts that
can directly or indirectly contribute to the software virtualisation solution in a component
based structure.

2. Related Work

Discovering or mining software/service behaviour turned into an area of focus in
several domains of software engineering. As a result, several efforts have been devoted
to the advancement of techniques to fulfill this. Software behaviour mining is concerned
with the discovery of message formats, control, data and multi-service dependency facets
of software services from their execution logs or network interactions.

Service virtualisation provides a promising way to provision a realistic testing envi-
ronment by modelling the approximate interactive behaviour of individual real software
systems. Modelling of services can be derived using the service descriptions [6,7] or other
automatic techniques [16] as a black-box approach. This black-box without looking into
the service implementation or description by analysing the recorded interaction traces can
achieve a similar outcome. Automatic service virtualisation includes analysing service
interaction traces and deriving executable models for the services without requiring any
knowledge about the services or their protocol message format. This process can lead to
the emulation of a much wider range of protocols and services. This paper surveys existing
methods of discovering models from a requisite service interacting with the service under
the test (SUT). These methods analyse the SUT’s interaction traces and take into account
the dependencies and mutual impacts between their traces.

SUT is interacting with the requisite service by sending and receiving network mes-
sages. The goal is to emulate/replicate the requisite service to generate the same messages,
as is generated by the requisite service in response to the request messages sent by the
SUT in a real environment. The generated response messages in virtual service need to
satisfy three different aspects to be considered similar to a real service. The first aspect is
the format of the messages, the second is having the same header information, and the
third is containing the payload as expected. Virtualising requisite services can help with
testing the SUT without connecting to the real requisite service and without the effort of
specifying service descriptions.

The aim of virtualising a service is modelling the interactive behaviour of enterprise
software systems to enable mimicking their run-time properties. Software services or com-
ponents cooperate with each other through sending or receiving messages, regularly with
the assumption that one service sends a request to other services, looking to receive a re-
sponse (or multiple responses) in a short time period. Functional behaviours of virtualised
services need to be precise as the service’s characteristics [7].

There are four key aspects that need to be considered in order to mimic the full
interactive behaviour of the requisite service. Firstly, the structure of messages have to be
well-formed and adhere to their format in the protocol as they are generated by the actual
requisite service, secondly, generating protocol-conformant header information [16]. This
means sending service response messages that contain acceptable and expected header
information such as response types. Thirdly, generating payload-conformant messages
indicates that the content of the response message generated has to be identical with the
actual payload. Last but not least is the multi-service dependencies which focus on control
and data model dependencies between distributed services and try to incorporate them
into the service’s behaviour.

As a result, the relevant literature is classified into four different areas, i.e., message
format is discussed in Section 3, control model (temporal ordering) which is explained in

Appl. Sci. 2021, 11, 2381 4 of 26

Section 4, the data model will be reviewed in Section 5, and multi-service dependencies
explained in Section 6. In the following sections, we introduce and analyse each area
in detail.

3. Message Format

The message format is defined by the structural rules of forming the messages and
their contents in a service’s interaction protocol or interface description. Every protocol may
define several types of messages with each having its particular format. Understanding
the protocol’s message format is crucial to mimic each service’s behaviour. Some of the
researchers extract the key parts of messages and their offsets, which indicate their location
from the start of the message, while others extract the full structure of messages. As
Figure 2 shows, each message consists of a header and payload. Each header and payload
can later be divided into their relevant bytes of information and tagged separately. This
section starts with the research dedicated to discovering partial message format and then
continues reviewing work focused on inferring the whole message format.

Figure 2. Message and its structural format.

3.1. Partial Message Format

Methods in this category try to find the most relevant, dynamic and structural parts of
the messages. Catcher [17] can be considered as one of the elementary methods that works
as a search engine, looking in system interaction traces for the message fields with the
semantic descriptions and contents specified by the user. It finds their offsets and lengths
and generates scripts using an entropy weighted sequence alignment algorithm. It was
tested on text-based message protocols and could work with variable length protocols.

The basic idea presented by Trifilò et al. [18] is that a few protocol message fields
capture the protocol’s logic. To extract these parts, the proposed method used the variance
of the distribution of the variances (VDV) to identify and extract all related features in a
fixed-length binary protocol message format. Others such as Roleplayer [19] compares two
manually selected instances of the same dialogue and aligns the bytes using Needleman–
Wunsch sequence alignment algorithm [20] and defining fields inside the protocol byte
stream. The method uses heuristics to assign semantic values and interpretation to the
various fields such as IP addresses and hostnames adopted in the message exchange and
works on fixed-length binary protocols.

Du et al. [21] and Versteeg et al. [22] use position weighted entropy analysis as an
extension to the Needleman–Wunsch sequence alignment algorithm to identify parts of
the request messages containing the operation type and some other structural information.
While Versteeg et al. [22] extracted the message format by comparing all recorded request
messages, Du et al. [12,21,23] used the visual assessment of (cluster) Tendency or VAT and
Bond Energy Algorithm or BEA for visually clustering algorithms to first separate different
types of requests and then extract request prototypes using Clustalw and entropy-based
positional weighting in each cluster, to improve the accuracy of extracted formats. Clustalw
utilises a progressive multiple sequence alignment technique to improve their format
extraction by first aligning the most similar sequences out of two messages which have the

Appl. Sci. 2021, 11, 2381 5 of 26

best alignment score. Their method semi-automatically clusters similar messages in the
same cluster and can be applied to variable-length, binary and text-based protocols.

Prospex [24] automatically identifies and clusters different message types, not merely
on the basis of their structure, but also in regard to the impact of each message on the
server’s behaviour. To study the application while processing arriving messages, the
method used dynamic data tainting. The resulted execution traces uncover the activities
conducted on data that was received from the network. It clusters messages to differ-
ent types using k Partitioning Around Medoids (PAM) method (estimate k with Dunn
index) [24] and derives a generalised message format for each cluster in the form of a
tree of fields with attached semantics through merging the format of the messages in
each cluster. It uses three types of similarity features in this process. Input similarity
captures similarity in the order and values of the fields in the messages by using the
Needleman–Wunsch sequence alignment algorithm. Application execution similarity col-
lects information regarding the executed code fragments, libraries, and system calls of
the server while processing a message. Impact similarity captures the actions such as the
output and file system activity of the server in response to the incoming message. It can be
applied to both binary and text-based protocols but needs access to the server’s system
calls and execution logs. Table 1 shows a summary of different methods in partial messages
format extraction.

Table 1. Different approaches of partial message format extraction.

Method Specification Remarks

Catcher [17] Searching to find offset and length message
fields of interaction traces in the system

User is required to specify the semantic
descriptions and contents Works with variable

length protocols Tested on DNS, HTTP,
MSN protocols

Trifilò et al. [18]
Extracting a few protocol message fields using

variance of the distribution of the
variances (VDV)

Works on fixed-length binary protocol Tested
on ARP, DHCP, TCP, Kademlia

Roleplayer [19]
Defining fields inside the protocol byte stream
by comparing two manually selected instances

of the same dialogue and align the bytes

Works on fixed-length binary protocols, uses
heuristics to assign semantic values and

interpretation to the various fields. Tested on
NFS, FTP and CIFS/SMB protocols

Du et al. [21] Finding message’s structural fields using
position weighted entropy analysis

Works on Binary and textual. Tested on IMS,
LDAP, SOAP, Twitter(REST) protocols

Versteeg et al. [22]

Extracting the request message format
Clustering messages using VAT and BEA

based on message types before using Clustalw
and position weighted entropy analysis

Visual clustering by User Works in
variable-length, binary and text-based

protocols.Tested on IMS, LDAP, SOAP, Twitter

Prospex [24] Deriving a generalised message format for
each cluster in the form of a tree of fields

Using message structure and the impact of
each message on the server’s behaviour using
execution traces using k Partitioning Around
Medoids method. Tested on Agobot, SMTP,

SMB, SIP

3.2. Full Message Format

A number of efforts try to infer the whole structure of messages using iterative
clustering. Others try to capture the order of the message fields in addition to their
structures as a state machine.

Discoverer [25] has been developed to automatically infer the protocol message for-
mats of an application using tokenisation and iterative clustering methods. It starts with
tokenisation and initial clustering of the messages based on their token patterns. Then, it

Appl. Sci. 2021, 11, 2381 6 of 26

utilises recursive clustering in a left-to-right scan and uses the identified values of format
distinguisher fields (the value of this field serves to differentiate the format of the subse-
quent part of the message) to divide the clusters into sub-clusters automatically. Then, it
uses a type-based sequence alignment method that compares the field structure of two
inferred message formats to extract the message structures in each cluster and merge
similar message formats. To mitigate over-classification, it also uses type-based sequence
alignment to merge similar formats from different clusters into a single one. It can be
applied to binary, text-based and variable-length protocols.

ScriptGen [26] utilises iterative clustering and multiple alignment techniques to extract
the format of protocols. It uses Protocol Informatics (PI) taken from [27] to perform
multiple alignments on a set of protocol samples and automatically cluster messages
to different types of semantically equivalent messages. Then, ScriptGen uses a Region
Analysis algorithm to search for frequent values and types in the messages of each cluster on
a byte-by-byte basis to identify regions with frequent values and create new microclusters.

PRISMA [28] is another method that uses tokenisation, two-step clustering and statis-
tical analysis to extract message templates. A template is described as the structure of a
message comprising of tokens and fields sequence. Part-based and position-based cluster-
ing is used to cluster messages into different message types. For the clustering purpose,
it considers each message as a vector of n-grams (text-based protocols) or tokens (binary
protocols) and keeps tokens which are statistically significant and independent. To extract
the templates of each message type, it leverages all the tokens and groups the messages in
each cluster based on their number of tokens. Next, in each group, it looks for recurring
tokens, identifies constant and variable tokens, and records them as the message template.

Luo et al. [29] presented a method to improve clustering the messages, which later
leads to better message format extraction using Latent Dirichlet Allocation. This approach
considers a message as a mixture of n-grams. Then, it removes the unimportant n-grams in
defining message types using term frequency–inverse document frequency (TF-IDF). score.
Later, it describes each type as a different distribution of n-grams. The method applies the
n-gram distributions to measure the similarity of messages. Based on the similarity values,
it clusters messages and further extracts message formats.

P-token [30] has been proposed by Jiang et al. to extract protocol message formats
from raw network traces. It improves the format extraction by considering keywords’
positions as meta-information in tokenising the messages. Then, it clusters messages based
on their extracted keywords and later extracts a format per cluster. However that P-token
outperforms the existing methods significantly, but it cannot cope with protocols with
complex structure formats.

Jiang et al. [31] presented a method to improve the P-token technique. The new
method aims to better extract the message format of protocols relative to the previous
naïve P-token [30]. It consists of three main steps; (1) keyword identification, (2) message
clustering, and (3) format extraction. In the first step, it uses two criteria to identify the
keywords. The same type of messages have common keywords that can be identified
through frequency analysis of tokens. The keyword appearance position in the messages is
relatively fixed. In the second step, the method separates the messages that have similar
keyword sequence homogeneity and puts them into a cluster. It starts with vectorising
messages based on the frequency of appearing the identified positional keywords and then
clustering the message vectors based on a two-level hierarchical clustering method using
the density peaks clustering algorithm. In the third step, in each cluster, they infer common
keyword patterns as message formats in the form of regular expressions from each cluster.

A number of further research efforts extract message formats in the form of finite state
machines. Predator [32] uses iterative clustering to build language models in the form
of a Markov model from the network traces. It splits samples into pairs of requests and
corresponding responses. Then, it clusters request messages using iterative k-medoids
and TF-IDF features and uses cosine similarity as a distance metric [33]. It then infers k

Appl. Sci. 2021, 11, 2381 7 of 26

responses Markov models for the corresponding clusters. The proposed technique operates
for variable-length field binary protocols.

Wang et al. [34] used tokenisation and filtering to infer a finite state machine (FSM)
representation of the protocol language for binary, text-based and variable-length protocols.
After tokenisation of the messages, it uses the Jaccard Index to filter infrequent tokens
and identify frequent tokens as keywords. Then, the protocol language FSM is inferred,
which at this stage accepts all types of input messages. The Moore reduction procedure is
employed to generalise the inferred FSM by removing nodes with a frequency lower than
a threshold and merging nodes with the same message type.

To complement or update a protocol specification, Antunes et al. [35] try to identify
new message formats and add them to the protocol language FSM. First, they utilise a
set of predefined regular expressions in the protocol specification to derive the FSM of
message formats. Then, they consider each text-based message as a sequence of tokens
and identify new messages not covered by the given protocol specification, i.e., those that
the existing FSM fail to parse, then adding them as an extension to the FSM and finally
minimise the extensions using the ReverX technique.

The method proposed by Goo et al. [36] is fully automatic, which extracts syntax,
semantics, and FSM of a chosen protocol. To get clear protocol syntax, they introduced
three format types as field formats, message format, and flow format plus four field format
types to obtain protocol syntax clearly. To derive such formats, they presented a method
called hierarchical CSP and recursive CSP. To start with, it infers well-trimmed message
formats and then maps the input messages into a limited number of message formats.

Table 2 shows a summary of different methods introduced to extract full message format.

Table 2. Different approaches of full message format extraction.

Method Specification Remarks

Discoverer [25]

Infer the protocol message formats of an
application using tokenisation and recursive

clustering and type-based sequence
alignment methods

Works on binary, text-based and variable-length
protocols. Tested on HTTP,RPC,

CIFS/SMB protocols

ScriptGen [26] Iterative clustering and multiple
alignment techniques Tested on SMB, IM protocols

PRISMA [28] Tokenisation, two-step clustering and
statistical analysis

Works on binary and textual protocols. Tested on
SIP, DNS and FTP

Luo et al. [29] Latent Dirichlet Allocation to improve clustering
considers a message as a mixture of n-grams Tested on FTP, CoAP, XMPP

P-token [30] Clustering messages based on their extracted
keywords and later extracts a format per cluster

Considering keywords’ positions as
meta-information tokenising the

messages/cannot cope with protocols with
complex structure formats Tested on SOAP,

LDAP, IMS and RESTful

improved
P-token [31]

Keyword identification, message clustering,
format extraction Tested on SOAP, LDAP, IMS and RESTful

Predator [32]
Iterative clustering to build language models in

the form of a Markov model from the
network traces

Works on stateless protocols

Wang et al. [34] Tokenisation and filtering to infer a finite state
machine (FSM)

Works on binary, text-based and variable-length
protocols. Tested on ARP, SMTP

Antunes et al. [35] To complement or update a protocol specification
Utilising a set of predefined regular expressions
in the protocol specification to derive the FSM of
message formats. Tested on IETF(FTP) protocol

Goo et al. [36] Extracting syntax, semantics, and FSM of a
chosen protocol

Works on binary and textual Tested on
HTTP, DNS

Appl. Sci. 2021, 11, 2381 8 of 26

3.3. Summary

The related work surveyed above extracts the message structures used in a protocol.
Some of them such as Du et al. [12,21,23], Cui et al. [19] and Comparetti et al. [24] cluster
the messages based on their type in one cluster, and keep one common message as the
template for the type. Then, they try to find the most important and dynamic parts of
the messages that need to be changed in a new message using iterative clustering and/or
statistical analysis such as frequency/entropy, TF/IDF, server’s behaviour such as executed
code fragments, library, system calls, output and file system activity, etc.

Others such as Cui et al. [25], Leita et al. [26], Krueger et al. [28], Small et al. [32],
Wang et al. [34] and Jiang et al. [30,31] go further and try to infer the whole structure of the
messages, field by field, using iterative clustering and statistical analysis of the messages to
find the structures for each cluster. In addition, Small et al. [32] and Wang et al. [34] infer
one FSM for each cluster. The existing binary message format extraction methods rarely
extract the hierarchical structure of messages where the dependencies between different
fields in a message are identified. In addition, some of them are designed to extract the
structure of messages that have fixed-length fields and cannot work on protocols with the
variable length fields or complex structures.

4. Control Model

This section discusses existing methods for extracting the temporal ordering or control
model of services from their logs. These methods analyse the network interactions of
service with other services or its internal execution logs as the only external recorded
documents of the system’s behaviour and extracts the service’s temporal behaviour in
the form of a state machine. Following the state machine in these approaches, the next
behaviour of the system is determined based on the previous behaviour of the system
from the start of the session/interaction to the current point. Some other methods use
deep learning methods to infer the next message or legitimate fields and values. The
resulting control model for the service helps to identify the type of response messages for
the incoming request messages.

4.1. Inferring Control Models from Network Interaction Logs

The following studies try to infer the protocol model of software systems from different
network interaction logs such as tcpdump file, etc. The methods try to extract the temporal
order of message occurrences in the logs.

Some of the existing methods first construct a finite state machine (FSM) of the protocol,
from the raw traces without pre-processing the messages or prior knowledge about the
structure or type of the messages. Instead, they try to identify the equivalent states by
comparing different messages to generalise the inferred model. ScriptGen [26] generates a
FSM which includes all the messages of the traces. Each edge in the FSM is for a request
message and each node for a response message. In order to generalise and abstract the FSM,
it uses macro-clustering and micro-clustering to identify semantically similar messages. It
uses the Protocol Informatics (PI) method on the request messages of outgoing edges of
each node, to identify the major classes of messages (macro-clustering). Then, it proposes
the Region Analysis algorithm to produce microclusters. To generate a script, it then infers
dependencies between the client messages and corresponding server responses by using
Random Regions analysis.

Leita et al. [37] improved ScriptGen and proposed new algorithms to emulate the
behaviour of systems under attack by handling two distinct types of dependencies as
intra and inter-protocol dependencies. Their method also introduces a new proxying
algorithm to tunnel to a real server and proxy the live traffic between the real server and
its attackers up-to-date and adjust the current state machines model. For Intra-protocol
dependencies, it uses two techniques, generating links and consolidating them, to handle
content dependencies. Link generation analyses each conversation separately and makes
optimistic estimates on the content dependencies that might be correct or coincidental

Appl. Sci. 2021, 11, 2381 9 of 26

matches. Consolidation makes use of the statistical variability to consolidate the proposals
produced by link generation. Inter-protocol dependencies such as session interleaving
and exploiting, generate connections in the interaction of several TCP sessions. The
causality between identified sessions is emulated by using a signalling method between
their state machines.

Prospex was introduced [24] to automatically extract a protocol specification as state
machines in the absence of any prior protocol knowledge. It infers a state machine that
models the message types sent and received by first building an initial deterministic finite-
state automaton (DFA) from the observed traces utilising the inferred message format. Then,
it extracts prerequisite message types for each state and uses domain-specific heuristics
to label states as identical (states with similar application conditions) and minimise and
generalise the DFA by applying the Exbar algorithm. Exbar [38] is an exact algorithm for
minimal consistent DFA inference.

The rest of this section discusses methods that first cluster messages and identify
different types of messages or assume that they have access to the operation code (opcode
or message type). Then, they consider opcodes of the messages as representatives of
messages and try to model the order of their occurrences as an FSM. Network Protocol
Reverse Engineering (NPRE) [18] has been proposed to automatically create a protocol
state machine of the peers involved in the communication. The nodes in the FSM represent
different messages with different values of the relevant fields. It starts with building the
initial state machine where each sending or receiving of a message leads to changing the
state. Then, the initial state machine is compared with network traces by using a sliding
window of three and the state machine is split where it causes a non-existing sequence of
three messages. As the last step, it parses the traces with the state machine and keeps the
transitions visited at least once.

PRISMA [28] method infers a protocol state machine using the Markov model to
determine message ordering of the network traffic. First, it discovers discriminating
features of the messages using sub-strings of fixed length n (n-gram)/token and statistical
test-driven methods to reduce the extracted n-grams that are less frequent. Then, it
groups messages into different types using part-based or position-based clustering. Next,
it infers the minimised Markov model of the sequence of messages in sessions where
the state represents a message type. Lastly, it generates the templates for the messages
associated with each state of the Markov model and derives information flow rules between
different states.

A scalable framework that infers protocol specifications in the form of FSMs without
any prior information was presented by Yong et al. [34]. The protocol keywords are
identified before the finite state construction to improve the framework’s efficiency. It
constructs two FSMs: Language FSM or L-FSM for the protocol language and Session FSM
or S-FSM to show protocol sessions’ state transitions. Nodes in the S-FSM are states, and
transitions are different types of messages assigned to one path of L-FSM. The initial FSM
stores all input sessions. At the generalisation step, the states with the same language
type are merged into one state node, and the associated transition paths are updated. The
framework was tested to extract the protocol information of both binary and text protocols.

SpecMiner [10] automatically extracts the temporal behavioural model from interac-
tion traces. It assumes that all message types are identified. To improve the precision of the
initially mined finite state automata (FSA), it uses a heuristic-driven generalisation method,
which considers loop, cycle, multi-loop and intra-trace state merging to generalise a derived
FSA and minimise over-generalisation. SpecMiner achieves better results compared to the
existing FSA-based specification miners such as k-tail [39] and Synoptic [40]. In addition, it
applies the Ullman–Hopcroft minimisation algorithm to merge the generalised traces, to
allow a state merge without changing the FSA properties.

Antunes et al. [35] presented an automatic method to complete an available protocol
specification, with potential extensions as implied in interaction traces. Their method
analyses the contents of the message in the network traces and makes use of the former

Appl. Sci. 2021, 11, 2381 10 of 26

specification version. After extracting the FSM of the protocol language (message format),
it parses message traces and, for every new message, adds a new transition and a new
state as an extension to the existing protocol FSM model. For generalising the protocol
extensions, their method uses the ReverX method to compact the extensions. Their method
is limited to application-level text-based protocols.

Aichernig et al. [41] employed a long short-term memory (LSTM) neural network
technique to infer a model for any legitimate network protocol. Their method uses a
neural network with two hidden layers, each with 128 neurons in each layer. It embeds the
messages in a 64-dimensional continuous space. The model can process large vocabularies
successfully, allowing the consideration of more complex protocols and more detailed
abstractions. It takes prefixes of random length and lets the model predict the next message.

A deep learning-based approach is proposed in [42] to develop an effective and
flexible Network Intrusion Detection System (NIDS) by employing self-taught learning
(STL) [43], a deep learning-based technique that uses sparse coding to construct higher-level
features using unlabelled data. A sparse auto-encoder and softmax regression classification
based NIDS was implemented to learn normal/anomaly behaviour. It identifies important
features (fields and values) and ranks them using deep learning to classify traffic as normal
or attack. The deep learning structure learns the true model of the network in the training
phases, and the test phase can recognise the traces that deviate from that model.

The basic idea of Arafat et al. [44] is to infer the service’s state models to enhance
the playback in virtualised services. It has three phases as analysis, model inference and
run-time. It defines an event as a specific/unique request-response message type pair and
event series as the sequences of events related to specific service at the analysis phase.
Then, at the model inference phase, it infers the state model of each service from its event
sequences using k-tail (K = 0). The run-time phase, upon receiving a request, uses the
inferred state model and its current state of the service to specify the response type. Then,
it synthesises response message by dynamic substitution of the nearest matching request
type among the interactions. However, this research has improved state of the art of current
service virtualisation (opaque SV), in considering the contextual information in generating
the type of the response message, but it does not consider the contextual information in
generating response content.

Kobayashi et al. [45] proposed a technique for extracting contextual information
in network logs by integrating a graph-based causal inference algorithm and a pruning
method on the basis of both the layer-2 and layer-3 network topology domain knowledge
along with log events’ functional layers. The proposed method applied to a set of log data
illustrated that the pruning method reduces processing time and detects more relevant
troubleshooting information compared to the available methods.

Table 3 shows a summary of the introduced methods that infer control model from
network logs.

Table 3. Different approaches of inferring control model from network logs.

Method Specification Remarks

ScriptGen [26] Generating a FSM includes all the messages of
the traces

Using macro and micro-clustering to identify
semantically similar messages. Tested on

SMB, IM

Leita et al. [37]

Using several instances of the same attack, to
automatically retrieve the semantically

important fields from intra-protocol and
inter-protocol dependencies vital for the client

and server’s conversation

Improving script Gen No heuristics

Prospex [24] Automatically extract a protocol specification
as state machines Tested on Agobot, SMTP and SMB, SIP

Appl. Sci. 2021, 11, 2381 11 of 26

Table 3. Cont.

Method Specification Remarks

Trifilò et al. [18] Creating a protocol state machine
Works on fixed-length binary protocol

message format. Tested on ARP, DHCP, TCP
and Kademlia

PRISMA [28]
Inferring a protocol state machine using the

Markov model todetermine message ordering
ofthe network traffic

Tested on SIP, DNS and FTP

Yong et al. [34]
Constructing two FSMs:L-FSM for the
protocol language and S-FSM to show

protocol sessions’ state transitions

Works on binary and text protocol
Protocol.keywords are identified before

thefinite state construction Tested onARP
and SMTP

SpecMiner [10]
Extracting the temporal behavioural model
from interaction traces Generalise a derived

FSA and minimises over-generalisation

Assuming all message types are identified.
Tested on CVS client Amazon-EC2,

StringTokenizer, ZipOutput-Stream datasets

Antunes et al. [35]
Taking advantage of previously

defined/inferred protocols to complete
the specifications

Integrating the rules and message formats
from different extensions into a single

specification. Cannot identify the obsolete
types and specifications. Tested on IETF

protocol (FTP)

Poster [41]
Using neural network language models with

embedding is able to estimate
the conformance

Adapting methods from language modelling
for dealing with large vocabularies and

unseen data. Tested on nqsb-TLS

Javaid et al. [42]
Using Self-taught deep learning a sparse

auto-encoder and softmax regression based
network for intrusion detection system

Works offline. Tested on NSL-KDD
Cup dataset

Arafat et al. [44]
Extracting a request-response FSM then

identifies the general relationships
between/across message payload fields

Improving Opaque SV. Tested on LDAP,
SOAP, Twitter and Googlebooks

Kobayashi et al.
[45]

Extracting contextual information in network
logs using graph-based causal inference

pruning and domain knowledge

Tested on backbone network logs, obtained
from SINET4

4.2. Inferring Control Models from Program Internal Interactions Logs

Some of the related work uses process execution traces to discover a set of temporal
rules with statistically significance and then generates automata using the mined rules to
minimise imprecise process generalisations. Others infer finite state automata from the
execution log and then try to generalise and abstract the model.

Process mining [46] is a service mining technique. It aims to discover, monitor and
enhance real-world business processes by extracting event logs’ knowledge available
through recording activities inside services or interactions between services. Process
mining has achieved a good state in mining the behaviour of services by inferring temporal
models from the logs.

A semi-automatic, end-to-end approach was presented by Lu et al. [47] for analysing
event data in a relational database of an ERP system for uncommon executions. It identifies
an artifact-centric process model explaining the business objects, their life cycles and how
the different objects interact through their life cycles. Using the CreateTraceMapping
algorithm, it can obtain generic artifact types. It discovers and classifies interactions
between artifacts into strong, weak and invalid artifact type-level interactions (ARTIs). It
uses a graph with nodes as artifact instances and edges as relations, to identify strong ARTIs
through a depth-first-search of the graph. Indirect ARTIs considered as weak that made by

Appl. Sci. 2021, 11, 2381 12 of 26

merging two ARTIs who share the same child. The paper discovers all interactions and
separate frequent interactions as the main flow by using different classification methods
from infrequent interactions as outliers.

A dynamic approach to infer temporal characteristics automatically from execution
traces on the basis of a set of property pattern templates is presented by Yang and Evans [48].
The main contribution of the work is proposing a set of additions to the response property
pattern (the cause–effect relationships between two abstract events) and an algorithm
that can automatically deduce the strictest patterns that are satisfied by a set of events
with a given scope. The method starts with instrumenting a program and executing it
with multiple test suites. Then, it instantiates candidate temporal property patterns and
calculates the satisfaction ratio table for each candidate pattern on the basis of the execution
traces. Next, it infers the strongest pattern satisfied by each set of events and adds scope
limitation for each pattern. The final validation of the inferred patterns is done by the user.

Steering [49] is a framework to discover temporal properties automatically in the
structure of future and past-time temporal rules to steer the generation of FSA. It first
processes the execution traces to learn a set of temporal rules which are statistically signifi-
cant. It considers temporal rules with precondition events having the support of 20% and
post-condition events having the confidence of 100%. In the automata learning phase, it
generates automata utilising the rules extracted to minimise inaccurate generalisations. It
avoids overgeneralisation through incrementally refining the initial automaton, i.e., merg-
ing likely equivalent states only if it does not violate any temporal properties inferred. To
check the refined FSA against temporal properties, it presents two algorithms called “Sound
and complete” and “Sound and incomplete” that can be chosen based on the trade-off
between performance and accuracy. Their technique increases the precision of the classic
k-tail method [39] without loss of recall.

Synoptic [40] is another approach that uses invariants to improve the precision of the
inferred temporal model. It infers the model as a directed graph where states are operation
types and edges are valid invocations. In addition to the temporal rules used by Steering
(i.e., pre (a always precedes b) and post (a always followed by b)), it uses an additional
invariant, i.e., (a never followed by b). This extra invariant leads to the derivation of better
models in comparison to the Steering method because it can identify counter-examples.
Then, it applies a hybrid refinement and coarsening algorithm named BisimH to search the
models’ space and merge partitions using k-tail-equivalence with k = 0 and those which do
not violate the satisfied invariants.

SpecForge [50], an automated specification mining approach, takes advantage of
four existing FSA-based specification miners such as k-tail [39], Contractor++, SEKT and
TEMI [51] in order to get a better result. SpecForge disintegrates FSAs that are built by
available miners into simple constraints using a set of six constraint templates. It then
extracts common constraints among the inferred FSAs. The three additional temporal
constraints (compared to Synoptic [40]) are (a always immediately followed by b), (a never
immediately followed by b), and (a always immediately preceded by b). It then removes
the outlier constraints and combines the remaining constraints back together into a single
FSA by considering intersection over the selected constraints from different FSAs.

A system interaction log may be extremely large to analyse, consequently, defining
a stopping criterion to specify “enough” traces have been seen, [52] could be considered
as a solution. Statistical analysing of the log can be used to reduce the computation cost
substantially while maintaining very reliable results by calculating statistical guarantees.
Instead of analysing the entire log, it samples events by applying statistical log analysis to
address scalability in behavioural log mining algorithms.

To derive a rich semantic meaning and process-specific features, Nguyen et al. [53]
present logs as a heterogeneous information network (HIN), a directed graph containing
multiple nodes and edge types. They propose SeqPathSim, a meta path-based measure of
similarity for HIN to cluster traces. The SeqPathSim uses the rich semantic relationship
between nodes captured by PathSim and the sequential similarity between traces captured

Appl. Sci. 2021, 11, 2381 13 of 26

by an edit-distance based method. They also use an optimisation approach to propose a
new dimension reduction method to mitigate the efficiency limitations of an edit-distance
based method. The optimisation function maximises both topical similarity and process
model-based relationships between events of the same dimension by using an objective
function and bottom-up greedy approximation. In addition, to address computational
scalability of the logs, it combines the event similarity with the regularisation of a process
model structure.

Lo et al. proposed SMArTIC [49], which is an architecture for mining software
specification with a trace filtering and clustering approach to enhance the accuracy, validity
and scalability of specification miners before inferring the finite state machine. It filters
traces by pruning erroneous traces and transforms them into regular expressions using
Sequitur. Then, it clusters traces using k-medoid, to determine the number of clusters
K, and the sequence alignment method in order to localise inaccuracies and reduce over-
generalisation in learning. Next, it constructs PFSA using Sk-string for each cluster and
finally merges the generated PFSA of all clusters.

The method presented by Jong [54] is complementary to the static software architecture
reconstruction approaches, which provides insight into the actual concurrent behaviour of
software by visualising the system execution log. The visualisation approach consists of
two parts: the hierarchical architecture model (HIM) and process models created from these
interactions. HIM contains a visualisation of the components of a system, their structure
and interactions derived from software execution data.

A summary of the introduced methods of inferring control model from program
internal interaction logs is shown in Table 4.

Table 4. Different approaches of inferring control models from program internal interactions logs.

Method Specification Remarks

Aalst et al. [46]
Discovering, monitoring and enhancing real-world
business process by extracting event log activities

inside or between services
-

Lu et al. [47]
A semi automatic, end-to-end approach to

artifact-centric process models from a relational
data source

Manual steps required. Tested on Order To Cash in
SAP, Project Administration in Oracle

Yang and Evans [48]
A dynamic approach to automatically infer a

program’s temporal properties based on a set of
property pattern templates

Difficulty in handling a large number of events,
longer executions and more complex thread

interactions. Tested on a proprietary Java program

Steering [49]
A steering mechanism to refine the state merging
strategy in FSA using the statistically significant

temporal properties from traces

Tested on X11 Windowing Library, CVS Client,
WebSphere Business Processes

Synoptic [40]

Inferring the model as a directed graph using an
additional invariant, then uses hybrid refinement

and coarsening algorithm to search the models’
space and merge partitions

Identifying counter-examples. Providing
interactive models helping in more complete

understanding of their systems

SpecForge [50]

Using four existing FSA-based specification miners
to build FSAs and then extracting common
constraints among the inferred FSAs and

combining them back together into a single FSA

Tested on execution traces of 10 programs,
5 programs from DaCapo benchmark

Busany and Maoz [52] Statistical analysing of the log to specify stopping
criterion for enough number of traces

Reducing the computational cost substantially
while maintaining reliable results

Nguyen, et al. [53]
A meta path-based similarity measure in better

clustering traces and a new dimension reduction
method for high dimensional logs

Tested on BPIC’13, RECEIPT, BANK datasets

Jong [54]
Visualising concurrent behaviour of logs in two

parts: hierarchical architecture model and
process models

Tested on JabRef execution log

Appl. Sci. 2021, 11, 2381 14 of 26

4.3. Summary

Some of the approaches reviewed in this section extract a temporal behavioural
model of a system as temporal invariants from their network interactions or internal
execution logs or both of them. They use different temporal patterns to capture the
system’s behaviour, including always occurrence, immediate occurrence, non-occurrence,
etc. Each of the statistically significant constraints are kept as building blocks of FSA
and others are considered as outliers. Moreover, most of the papers discussed consider
the inferred invariants in the global scope, i.e., the whole event trace needs to match the
inferred constraints. There is also an example that defines a local region as the scope of the
extracted pattern.

Existing studies try to mine and model services’ behaviour in the form of FSA based
on two types of approaches. The first group, Comparetti et al. [24], Leita et al. [26,37],
Wang et al. [34], Trifilò et al. [18], Antunes [35], and Kabir and Hun [10] build an FSA
model from the logs (raw/pre-processed) and then try to abstract and generalize the model
based on some heuristics or clustering methods. While Beschastnikh et al. [40], Yang and
Evans [48], Lo et al. [49], and Le et al. [50] first infer invariants and refine them based on
statistical techniques and then construct FSA. The papers tried to use a variety of methods
to refine the FSA. They can be summarised as incrementally refining and merging likely
equivalent states without violating the satisfied invariants, using counter-examples to split
and refine the model, using domain-specific heuristics to identify similar states to merge,
and bottom-up methods such as intra-trace refinement, which starts merging from each
cluster of similar traces up to merging between different clusters called inter-trace merging.

As we can see, the existing literature infers a service’s temporal model based on its
interaction behaviour with one service, without incorporating different types of depen-
dencies to generate all the message payload required to virtualise a service’s behaviour.
One service’s behaviour may be affected in different ways by another requisite service.
Therefore, we need to expand the existing methods to consider the services’ mutual impacts
on each other in generating both exact service response message types and their contents.

5. Data Models

This section surveys research efforts related to inferring data models from logged data.
In some studies, data models are referred as data invariants. This section also reviews
studies that add the inferred data models/data invariants to the temporal/control model.

The data invariants can help better understand software behaviour. Data dependency
between two services can be considered at different levels of granularities. Intra-protocol
data dependency are ones that concern data dependency between messages of one protocol.
For example, at a more granular level, data dependency between the data fields of a
request message and those of its corresponding response message are one type of inter-
message dependency and part of the intra-protocol dependency. Such inter-message data
dependency can help formulate a response message for a corresponding request message.
We note that most of them utilise clustering to differentiate between different pairs of
request–response messages.

Predator [34] generates dynamic responses to the real-time incoming requests. It uses
the iterative k-medoids algorithm and TF/IDF (Term Frequency/Inverse Document Fre-
quency) cosine similarity as a distance metric to cluster pairs of requests and corresponding
responses based on their requests. Then, it builds the request and response models for each
medoid in the form of Markov models. The response language models are trained with
the corresponding requests to find contextual dependency between data fields using the
Needleman–Wunsch string alignment algorithm.

Another work that tries to discover data dependency between request and response
messages is Du et al. [12,21,23], which uses BEA and visual assessment of (Cluster)
tendency or VAT clustering algorithms to cluster the recorded messages. They use centre-
only or whole cluster approaches to compare the incoming request to find the nearest
cluster (type) request to use for corresponding response generation. The symmetric and

Appl. Sci. 2021, 11, 2381 15 of 26

dynamic fields of its corresponding response, which were identified using the Needleman–
Wunsch byte stream alignment algorithm, are replaced with the corresponding fields from
the request message. Roleplayer [19] uses the Needleman–Wunsch sequence alignment
algorithm to check and relate two dialogue instances of the same type, finds dynamic fields,
and determines which fields need to be changed to successfully replay one side of the
session. The sample dialogues and dynamic fields discovered are used to generate the script
for replaying (as client or server) dialogues with the same flow as the training samples.

In another attempt to extract data dependency at different granularity levels,
Ernst et al. [55] presented Daikon, a dynamic technique for discovering data-driven invari-
ants from execution traces. The technique executes a program on a set of inputs and extracts
the invariants from the captured variable traces. Daikon’s aim is to extract invariants over
any variable, invariants over a single numeric variable, invariants over three numeric vari-
ables, invariants over a single sequence variable, invariants over two sequence variables,
invariants over a sequence, and a numeric variable. The data relationships that Daikon
tries to extract are linear relationships between invariants, comparison, range limit, order-
ing comparison, constant values, membership, etc. The method also computes invariant
confidences to identify non-coincidental invariants. It analyses scalability problems such
as invariant identification time and accuracy as a function of test suites and instrumented
program points.

Combining different perspectives to create complete process models was discussed
by van der Aalst [56]. First, his method obtains an event log to create or discover a
process model. It considers control flow as the starting point and tries to connect events
in the log to activities in the model. After that, it extends the model by adding either
organisational/resource perspective, time perspective or case/data perspective.

Lorenzoli et al. [57] presented the GK-tail to combine data model and control model.
It uses Daikon [55] to extract the constraints on data values and infers EFSM (extended
FSM) by labelling FSM edges with data value conditions. It models the interaction between
data values and component interactions and generates a behaviour model of the software
system from interaction traces. It uses three merging/subsumption criteria to make the
model more effective, compact and generalised, even when it does not have access to such
data to mine the behavioural models. It consists of four steps (1) merging input-equal
traces, (2) generating predicates related to traces using Daikon, (3) creating an initial EFSM
and (4) merging equivalent states to obtain the final EFSM.

GK-tail+ [58] infers guarded finite state machines from the execution traces of object-
oriented programs. In comparison to GK-tail, it postpones the extraction of the data model
constraints until after the generalisation of the FSM. It substantially reduces the GK-tail’s
inference time while producing guarded finite state machines with recall and comparability.
Its four steps are: (1) merging traces, (2) generating the Initial FSM, (3) merging the states
and (4) generating constraints using Daikon.

One promising technique presented by Qin et al. [59] named Context-based Multi-
Invariant Detection (CoMID), which improves the true-positive while reducing the false-
positive rates of detected abnormal states in Daikon. CoMID effectively and robustly detects
abnormal states, distinguishes different contexts for invariants based on the contextual
similarity of execution traces and makes them context-aware. CoMID consists of two steps:
context-based trace grouping technique which clusters execution traces collected from
different iterations in a program’s execution based on the similarities of corresponding
contexts between each pair of execution traces. The second step is multi-invariant detection
which conducts ensemble evaluation of multiple invariants only based on the execution
traces in each group to detect abnormal states.

To address stateful services, Enişer and Sen [13,60] suggested three different methods
of creating responses for each request. To generate each response field, their first method
uses classification to assign each request and its previous messages to a class of potential
values. This method views the fields’ values as categorical data and utilises a classifier to
assign the request and historical messages to one of the categories. Their second method

Appl. Sci. 2021, 11, 2381 16 of 26

uses a sequence-to-sequence technique and employs a specific RNN structure, comprising
of two LSTM networks [61]. To generate each categorical response field, their third method
uses a model inference technique called MINT [62]. MINT is used to deduce flexible and
deterministic guarded extended finite state machines (EFSM) which uses random data-
classifiers to deduce data invariants for creating the guard variables and combining the
states. The RNN takes considerable time for training which explain the usage of GPUs in
their work. This method cannot incorporate long-term information into consideration.

To improve the Enişer and Sen methods, in generating numerical response fields as well
as incorporating long-term dependencies, CSV was proposed by Farahmandpour et al. [14].
CSV focused on generating the accurate numeric values of the service response in stateful
as well as stateless protocols. CSV operates in two modes of offline and playback. CSV
treats each numeric response field of each request type separately. In the offline mode,
for each numeric field in the response, it finds a model that more accurately generates its
values. It also finds out the suitable response template, the machine learning model to
apply, and the relevant number of historical messages to generate an accurate numeric
value for each numeric field. Despite its success, it has some limitations. First, it needs
the relevant data to each incoming request in playback mode to exist in the training set.
In addition, its current version cannot cover the protocols with interactions containing
error messages and requests with more than one response type. In addition, it requires
a medium-size data set for training the machine learning models which may not exist in
commercial applications.

In another attempt, Farahmandpour et al. [15] to complement their recent work in
generating categorical fields in service responses, proposed a method that identifies the
request fields that can be used to drive the value of each categorical field based on those
that acquire minimum conditional entropy and called them predictor set. Then, the method
finds a value for the categorical response field from all the categorical response fields’
values in the historical messages that have the highest joint probability distribution with
the predictor values. The proposed method improves existing research by increasing
accuracy and reducing complexity and works for both stateless and stateful protocols. It
has some limitations such as it cannot incorporate more than one influential message type
in generating the categorical fields.

Different methods of inferring data model are summarised in Table 5.

Table 5. Different approaches of data model inference.

Method Specification Remarks

Predator [34]

Clusters pairs of requests and corresponding
responses based on their request. It builds the
request and response models for each medoid

in the form of a Markov model. Responses
are trained with their requests to find

contextual dependency between data fields

Finding contextual dependency using a
Needleman–Wunsch string

alignment algorithm

Opaque SV [12,21,23] Similar to Predator excluding Markov models
and using different clustering methods -

Roleplayer [19]

Defining fields inside the protocol byte
stream by comparing two manually selected

instances of the same dialogue and align
the bytes

Works on fixed-length binary protocols uses
heuristics to assign semantic values and

interpretation to the various fields

Daikon [55] Extracting data relationships from
execution traces -

Aalst [56] Combining different perspectives to create
complete process -

Appl. Sci. 2021, 11, 2381 17 of 26

Table 5. Cont.

Method Specification Remarks

GK-tail [57]
A method to combine data model extracted
using Daikon and control model in the form

of EFSM
-

GK-tail+ [58] Inferring guarded finite state machines from
the execution traces

Postponing the extraction of the data model
constraints until after the generalisation of

the FSM

CoMID [59] Context-based trace clustering technique and
then detect abnormal states in each cluster -

Enişer and Sen [13,60] Using a sequence-to-sequence technique
employs LSTM networks Cannot retain long-term information

CSV [14] Generating numerical response fields using
machine learning

Incorporating the long term dependencies
and improving the accuracy

Farahmandpour et al.
[15]

Generating categorical fields in service
responses using conditional entropy and joint

probability distribution

Improve accuracy and reduces complexity
of the existing techniques

Summary

Despite the advancement in the inference of the temporal model (control model), few
researchers have addressed the problem of discovering data models. The above attempts
tried to combine control models and some data invariant models in order to improve the
inferred behavioural model. However, the coverage of the inferred data model in terms of
the complexity of the model, the type, and the number of parameters are limited and can
only reflect a limited range of data types and data dependency in the real environment.
There remains a need to design and develop a more comprehensive dependency extraction
method, which uses different methods of dependency discovery and different levels of
complexity to infer complex data dependency models that describe the inter-dependency
between systems.

6. Multi-Service Dependency

Looking to find the relevant work in other areas, such as multi-service dependency
which could possibly be used to extract more complex dependency between services that
can influence service behaviour has resulted in the following insights. As an example
shown in Figure 3 taken from [63], we can see different dependencies that can influence
the behaviour of service S3.

Figure 3. Multi-service dependency between different services [63].

Appl. Sci. 2021, 11, 2381 18 of 26

To extract the multi-service dependency model of distributed services, and get the total
ordering of the events, the first step is the synchronisation of the services’ clock. In [64],
Lamport examined the concept of one event happening before another in a distributed
system and defined a partial ordering of the events. To synchronise a system of logical
clocks, a distributed algorithm was introduced, which also can be used to totally order
the events. Lamport then derived a bound on how far out of the synchrony the clock
can become.

We categorise the related work below based on the type of data that they use to
investigate the dependencies. Some of the studies use network-level data, some use
application-level data, and others utilise both of them. Depending on criteria such as
test goals, needs, and systems and resources access level, different methods are followed.
Based on the captured data, they extract dependencies between distributed systems or
components at different levels of granularities, and, in most cases, build a dependency
graph to show the dependencies, their strength and direction of influence.

6.1. Network Level Data

Some studies attempt to extract dependencies between distributed services compo-
nents from network level data. The hypothesis of Aiello et al. [65] is that the behaviour of a
collection of hosts are regular and structured. This regular structure can be illuminated
and utilised to form models that later become the basis of management policies. The
paper defines a community of interests (COI) as a collection of the interacting hosts and
introduces two concepts, popularity and frequency, to capture the distribution of the set
size and the stability of COI for each host and core COI over time. By using the in-out
degree of connections between each host and other hosts, the server client roles of the hosts
are identified. For a set of monitored hosts over time, they define the network anomalies as
the deviations from the common COI size distribution.

Leslie Graph [66] is an abstraction method that discovers network dependencies
for network management. The edges in the Leslie Graph describe the complex inter-
dependencies and nodes represent networks, hosts and application components. It utilises
two approaches to discover dependencies using the low-level packet correlation: Constella-
tion is a distributed method and AND (Analysis of Network Dependencies) is a centralised
approach. The Constellation method extracts the sending and receiving patterns of each
node in a time period. It tries to model the correlation between services using the activity
patterns of their sending/receiving channels in a different window of time by using classi-
fication methods such as Naive Bayes classifiers and Noisy-OR models. The AND method
adds a centralised engine to aggregate and generalises the dependencies in the Leslie
Graph by considering long-time processing on all the hosts to obtain better accuracy. Note
that the Leslie Graph can express different granularities of dependencies for an activity.

Orion [67] discovers enterprise service and application dependencies using packet
headers (e.g., in IP, UDP, and TCP) and timing information from the network traffic.
Chen et al. [67] proposed a novel analysis technique based on delay spikes, to identify
dependent systems through finding typical spikes in their delay distributions. It uses
Fast Fourier Transform (FFT) with delay distribution, service and client aggregation, noise
filtering with Kaiser window and spike detection, to extract and improve dependency
discovery in a significant manner.

Oliner et al. [68] proposed a method to infer the influences among components
in a system. The method constructs Structure-of-Influence Graphs (SIGs), where the
nodes are components and edges represent the strength, temporal ordering, and delay of
correlations between components. It abstracts components as anomaly signals, calculates
components’ normalised cross-correlation and enables noise-robust modelling of diverse
systems. SIG is constructed in four steps: (1) identifying the information to be examined
from each component, (2) measuring the system’s behaviour during actual operation as
anomaly signals, (3) computing the pairwise cross-correlation between all components’

Appl. Sci. 2021, 11, 2381 19 of 26

anomaly signals to identify the delay and the strength of correlations, and (4) constructing
a SIG graph.

Discovering the behaviour of services and their interactions in the enterprise environ-
ment demands the power to carry the relationship between service interaction messages
into process instances. Guabtni et al. [69] provided a lightweight approach that identifies
relevant sequences with the equality of two messages’ attributes founded on message
indexation and aggregation in order to build a size-efficient Aggregated Correlation Graph
(ACG). ACG is a weighted and directed graph created by processing one-by-one messages
which are sorted by their total ordering in the interaction log of a service. The ACG graph
shows all the ways messages match and relate in the interaction log, not merely for dis-
parate message pairs but also for sequences of messages related to processing instances.
The graph utilises user-defined heuristics to assist the experts in effectively identifying the
most frequent executed processes from their sequences of correlation conditions.

Motahari-Nezhad et al. [70] examined event correlations for business processes
through the interactions of a set of Web services. They proposed heuristics and algorithms
to discover correlated sets of events and empower users to manage it toward interesting
process views and set up the discovered process views within a process map. The paper
introduces an abstraction algorithm and a tool for semi-automated correlation of process
events from the correlations between messages (key-based correlation, reference-based
correlation or both). Their approach starts with an event log, and then it discovers instances
by correlation condition discovery. The correlation condition discovery starts with atomic
conditions and goes to composite conditions. Then, it prunes non-interesting conditions
using non-interestingness criteria, user input and feedback. The next step is to find part
of/subsumption relationships between process views and then generate the process map
and refinement leveraging user information. The report on experiments shows the viability
and efficiency of their approach.

Novotny et al. [63] proposed a new dynamic dependency discovery method designed
for dependencies among the components of service-oriented software applications hosted
in a mobile ad hoc network (MANET). The method uses dynamic snapshots of dependency
relationships identified while observing the service interactions. It discovers inter-service
dependencies through activity patterns of the output channel of one service and the input
channel of the other services in a time window. Intra-service dependencies are inferred by
examining the input and output channel of one service in a time window. Dependent data
are collected and aggregated locally and taken to central locations based on the specific
condition where it is required. The approach allows engineers to have a trade-off between
accuracy and cost.

Zhang et al. [71] provided an expandable and precise technique of detecting service-
level dependency in an enterprise network. This method needs neither application modifi-
cation nor software installation on corresponding machines. Based on incoming network
messages, it distinguishes messages with five tuples (source IP and port, destination IP and
port, and protocol) in common, aggregates the identified messages to form transactions
linked to individual hosts, and determines delay distributions between services sought
from or in response to the individual hosts. Based on the delay distributions, the system
makes a distinction between independent service and dependent service pairs and subse-
quently builds dependency graphs that contain dependency relationships between services
from the client and server viewpoint.

The approach proposed by Cai and Thain [72], which analyse the dynamics of the
distributed systems and predicts impacts of one system call propagated both within and
across process boundaries where components communicate via socket-based message
passing. The approach called DISTIA, which partially orders the distributed method-
execution events, then infers causality from the ordered events by utilising the happens-
before relation and later exploiting message-passing semantics. DISTIA offers quick results
independent of the message-type specification or well-defined inter-component interfaces.

Appl. Sci. 2021, 11, 2381 20 of 26

Different methods of inferring multi-service dependency from network data are
summarised in Table 6.

Table 6. Different approaches of multi-service dependency from Network data.

Method Specification Remarks

Aiello et al. [65]
Extracting dependencies between distributed
services components using two concepts of

popularity and frequency
-

Leslie Graph [66]

Discovering different granularities of
dependencies for network management,

using distributed (the sending and receiving
patterns) and centralised approaches

The Leslie Graph is not stable across long
time-periods and may show a dependency

on servers no longer in use

Orion [67]
Identifying dependent systems through

finding typical spikes in their
delay distributions

It requires a large number of statistical
samples to reliably extract service

dependencies. It may miss dependencies
that rarely occur

Oliner et al. [68]

Modelling the strength and temporal
ordering of influence between components by

constructing constructs Structure-of-
Influence Graphs and enables noise-robust

modelling of diverse systems

Abstracting components as anomaly
signals, calculates components’ normalised

cross-correlation

Guabtni et al. [69]
An approach based on message indexation
and aggregation to generate a size-efficient

Aggregated Correlation Graph
-

Motahari-Nezhad et al.
[70]

A tool for semi-automated correlation of
process events from the correlations between

messages (key-based correlation,
reference-based correlation or both)

For long logs that are correlated, it finds a
correlation between all pairs of correlated

messages, which requires a long amount of
time and high space complexity of the

computing graph

Novotny et al. [63]

Dynamic component dependency discovery.
It discovers inter-service and intra-service

dependencies through activity patterns of the
output and input channels and of the services

in a time window

The method does not require stable
dependence relationships, or large amounts

of evidence data over long periods

Zhang et al. [71]

Finding independent service and dependent
service based on the delay distributions of the

network messages the system makes a
distinction between pairs and subsequently

builds dependency graphs

-

DISTIA [72]
Predicting impacts of one system call both
within and across all processes by partially
ordering the distributed method-execution

-

6.2. Application Level Data

The work that will be discussed in this section utilises application-level data to identify
the dependent services/components in a distributed environment. Lou et al. [73] proposed
a technique to identify dependencies between a set of distributed components out of
system execution console logs. It first parses each log message into its keys and parameters.
Next, it finds dependent log key pairs belonging to different components by exploiting the
co-occurrence analysis of the keys and their corresponding parameters. Later, it uses the

Appl. Sci. 2021, 11, 2381 21 of 26

Bayesian decision theory to determine the dependency direction of each dependent log
key pair. To remove false positive detection, it applies time delay consistency additionally.

Beschastnikh et al. [74] presented the CSight (for “concurrency insight”) tool for
inferring Communicating FSM (CFSM) models from the execution traces of the concurrent
and distributed systems. A CFSM is a set of pre-process FSMs that interact over first-in-
first-out (FIFO) channels. CSight uses the ShiVector2 tool to automatically compute and
insert vector timestamps into logs of concurrent systems. Then, it mines invariants based
on such heuristics as “always followed by”, “never followed by” and “always precedes an
event instance”, and creates a concrete FSM. It abstracts the concrete FSM into an initial
abstract FSM (AFSM) using a first-k-in-channels partitioning strategy and then converts
an AFSM into a CFSM. Next, it checks the CFSM to satisfy the valid invariants using the
McScM model checker and refines the model using counter-example guided abstraction
refinement (CEGAR) to remove the invariant’s counter-examples.

NetCheck [75] automatically collects sequences of network system invocations of
the application hosts to diagnosis network problems in complex applications. NetCheck
diagnoses by (1) ordering the distributed input trace sets, and (2) employing a network
model to specify deviation points in the ordered execution where the traces differ from
anticipated network semantics. It starts with collecting run-time traces with standard
black-box tracing tools, such as strace [75]. Then, it orders the syscalls using a heuristic
algorithm and syscall priorities, originated from the POSIX syscalls dependency graph.
To confirm the ordering, it imitates the highest priority call using the network model. It
conducts a diagnosis by analysing the model simulation state and each simulation error on
the basis of a set of rules and detects deviations from the expected network model.

Popova et al. [76] proposed a series of methods to discover artifact-centric process
models captured in the guard-stage-milestone (GSM) notation, starting from raw logs
consisting of a flat collection of event records. It extracts lifecycle models of several
artifacts that are related to each other in the form of 1-to-n and m-to-n fashion. It discovers
relationships between entities, starting by extracting the event table, finding candidate
keys, designating a primary key per entity, clustering tables into entities and identifying
foreign keys. Then, it discovers artifacts by identifying entity precedence relations and
designating artifact types. The presented methods are implemented as a package for ProM,
a generic open-source framework for process mining.

CloudScout [77] automatically identifies dependent service components and facilitates
latency reduction for networked and distributed applications. It collects, normalises and
filters monitored data such as the number of TCP/UDP connections and resource usage
measures (e.g., CPU, memory, I/O, and network usage). It computes the distance between
each service component pairs and clusters the service components to identify service
dependencies. It calculates service distance by classifying the state of a service component
as one of three possible states as dormant, stable, or active, and develops an iEntropy
technique to specify each resource metric’s weight in the service distance calculation. Then,
an enhanced hierarchical and iterative K-means clustering algorithm, called HiKM, is used
to cluster dependent services.

To automatically infer the run-time distributed state properties of the distributed
systems in a general setting where clocks are not synchronised, Grant et al. [78] proposed
Dinv. Their method utilises static and dynamic program analyses to deduce relations
between different nodes’ variables which can imply the correctness of the developed
systems. Dinv can be seen as an automated analysis technique which first identifies the
distributed state. Second, it instruments the state and records the system at run-time.
Third, it combines the recorded run-time using three different strategies, and fourth it
uses the combined log to infer likely distributed state invariants. Dinv uses real-time
snapshots to check the invariants at run-time by introducing lightweight probabilistic
assertion mechanism.

Table 7 shows a summary of different methods of inferring multi-service dependency
from application level data.

Appl. Sci. 2021, 11, 2381 22 of 26

Table 7. Different approaches of multi-service dependency from application level data.

Method Specification Remarks

CSight [74]
Inferring communicating FSM models from
the execution traces of the concurrent and

distributed systems

It requires repeated executions of each
single task in the log file

NetCheck [75]
Ordering the distributed input trace sets, and

employing a network model to specify
deviation points in the ordered execution

It does not track causality in a systematic
manner, the identified root cause and
proposed repair may not be accurate

Popova et al. [76]
Discovering artifact-centric process models

captured in the guard-stage-milestone
notation, starting from raw logs

Needs an expert to specify artifacts as well
as a single instance notion within

each artifact

CloudScout [77] Identifies dependent service components Sensitive to aberrant data measurements

Dinv. [78]

Using static and dynamic program analyses to
deduce relations between distributed systems
variables which can imply the correctness of

the developed systems

Focusing only on traces as one type data. It
infers likely invariants since it is a dynamic

and only considers a finite set of
system behaviours

6.3. Using Both Network and Application-Level Data

Macroscope [79] takes advantage of both network and application-level data to extract
dependencies between networked services/components. It automatically extracts the
dependencies of networked applications using application-level data such as application
ID, process ID, along with network-level data, to construct application-service dependency
graphs at different levels of granularity. It separates dependencies into static dependencies
that are more frequent and transient dependencies that are less frequent and uses a two-
step algorithm to identify them. At the first step, it classifies applications into one of two
types: it merely generates connections produced from static dependencies, or it generates
connections from both static dependencies and transient relations. The second step takes
data from the applications with connections appearing from both static dependencies and
transient relations, and makes use of usage frequency information to distinguish them. In
addition, it extracts different levels of dependencies between application and services such
as application-level dependency, application instance and service instance dependencies,
using different collections of data.

6.4. Summary

As we can see, the discussed methods try to extract the dependencies between dis-
tributed services or components. Some of them use network-level data, which use send-
ing/receiving patterns in a time period, packet header data like (e.g., IP, port, protocol),
delay distribution of the traffic, cross-correlation of data, equality of the attributes (key-
based correlation) and reference-based correlation. Others leverage application-level data
such as application ID and process ID, monitored data (e.g., resource usage, TCP/UDP con-
nection number), and temporal dependency between the execution of systems, which allow
them to have a better understanding of the systems’ behaviour and their dependencies.

The existing approaches try to extract simple explicit dependencies (i.e., dependencies
between services with their direct traffic between them). Latent dependencies (where
the dependencies cannot be identified at first glance and need mathematical calculation
to discover) and implicit dependencies (data dependencies between distributed services
without access to their traffic or through their traffic with other services) have only been
covered in a very limited sense. For example, Oliner et al. [68] extracted part of latent
dependencies using cross-correlation, but their effort only considers linear dependencies
for the services that communicate directly in terms of sending and receiving messages. In
general, each existing method tries to discover only one part of the simple dependencies
in the real service’s traffic. Little attention has been paid to the selection of multiple and

Appl. Sci. 2021, 11, 2381 23 of 26

complex dependency functions that can identify latent dependencies or a combination of
several dependencies. A major focus in existing service dependency discovery efforts has
been on how to identify data-dependent services rather than incorporating their effects
on the system’s behaviour. In general, there remains a need for efficient and systematic
approaches that can cover all types of data dependencies between services and their mutual
impacts on each other.

7. Conclusions

Message format extraction, control model, data model and multi-service dependencies
are four vast areas of active research whose combination as well as individual areas have
been getting the researchers’ attention for different research purposes. This paper focused
on surveying the research efforts based on these four areas to promote service virtualisation.
We believe that this study provides the first valuable overview of the state of the art to
service virtualisation and its functional requirements, which is beneficial for researchers
who are keen to comprehend this research area to leverage or contribute to the field.

Service virtualisation’s success highly relies on these four discussed research areas.
This paper shows that each area has had its progress and improvements throughout time.
However, several gaps for enhancement remained open:

• Method to extract the hierarchical and complex structure of messages with fixed and
variable length fields;

• Expanding the existing methods to consider the services’ mutual impacts on each
other in generating both exact service response message types and their contents;

• Developing a more comprehensive dependency extraction method, to discover com-
plex data dependency models that describe the inter-dependency between systems;

• An efficient and systematic approach that can discover data dependencies be-
tween more than two services and their mutual impacts of each pair on the rest of
systems’ behaviour.

As this field gets more attention, we expect to see more levels of sophistication in all
four areas. To assist and enhance the previous methods, the significance of using automatic
machine learning and AI methods in all four areas became apparent not only as creating
yet another approach but also as a way to promote the real-world industry solution.

Author Contributions: Conceptualization, Z.F.; methodology, Z.F.; software, Z.F.; validation, Z.F.;
formal analysis, Z.F.; investigation, Z.F.; resources, Z.F.; visualization, Z.F. and M.S., writing—original
draft preparation, Z.F. and M.S.; writing—review and editing, Z.F. and M.S.; supervision, M.S. and
A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the Australian Research Council Linkage Project
Grant No. LP150100892.

Data Availability Statement: the study did not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Humble, J.; Farley, D. Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation; Pearson

Education: Boston, MA, USA, 2010.
2. Mackinnon, T.; Freeman, S.; Craig, P. Endo-testing: Unit testing with mock objects. In Extreme Programming Examined; Succi, G.,

Marchesi, M., Eds.; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 2001; pp. 287–301.
3. Spadini, D.; Aniche, M.; Bruntink, M.; Bacchelli, A. To Mock or Not to Mock? An Empirical Study on Mocking Practices.

In Proceedings of the 14th International Conference on Mining Software Repositories, Buenos Aires, Argentina, 20–21 May 2017;
pp. 402–412.

4. Li, P. Selecting and using virtualization solutions: Our experiences with VMware and VirtualBox. J. Comput. Sci. Coll. 2010, 25,
11–17.

5. Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2014, 2.

Appl. Sci. 2021, 11, 2381 24 of 26

6. Hine, C.; Schneider, J.G.; Han, J.; Versteeg, S. Scalable Emulation of Enterprise Systems. In Proceedings of the 20th Australian
Software Engineering Conference (ASWEC 2009), Gold Coast, Australia, 14–17 April 2009; Fidge, C., Ed.; IEEE Computer Society
Press: Gold Coast, Australia, 2009; pp. 142–151.

7. Hine, C. Emulating Enterprise Software Environments. Ph.D. Thesis, Faculty of Science, Engineering and Technology, Swinburne
University of Technology, Melbourne, Australia, 2012.

8. Michelsen, J.; English, J. What is service virtualization? In Service Virtualization; Springer: New York, NY, USA, 2012; pp. 27–35.
9. Orebaugh, A.; Ramirez, G.; Beale, J. Wireshark & Ethereal Network Protocol Analyzer Toolkit; Elsevier: Amsterdam, The Netherlands,

2006.
10. Kabir, M.A.; Han, J.; Hossain, M.A.; Versteeg, S. SpecMiner: Heuristic-based mining of service behavioral models from interaction

traces. Future Gener. Comput. Syst. 2020, 117, 59–71. [CrossRef]
11. Du, M.; Schneider, J.G.; Hine, C.; Grundy, J.; Versteeg, S. Generating service models by trace subsequence substitution.

In Proceedings of the 9th international ACM Sigsoft Conference on Quality of Software Architectures, Vancouver, BC, Canada,
17–21 June 2013; Koziolek, A., Nord, R., Eds.; ACM: Vancouver, BC, Canada, 2013; pp. 123–132.

12. Versteeg, S.; Du, M.; Schneider, J.G.; Grundy, J.; Han, J.; Goyal, M. Opaque Service Virtualisation: A Practical Tool for Emulating
Endpoint Systems. In Proceedings of the 2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C), Austin, TX, USA, 14–22 May 2016; pp. 202–211.

13. Enişer, H.F.; Sen, A. Testing service oriented architectures using stateful service visualization via machine learning. In Proceedings
of the 13th International Workshop on Automation of Software Test, Gothenburg, Sweden, 28–29 May 2018; ACM: Gothenburg,
Sweden, 2018; pp. 9–15.

14. Farahmandpour, Z.; Seyedmahmoudian, M.; Stojcevski, A.; Moser, I.; Schneider, J.G. Cognitive Service Virtualisation: A New
Machine Learning-Based Virtualisation to Generate Numeric Values. Sensors 2020, 20, 5664. [CrossRef]

15. Farahmandpour, Z.; Seyedmahmoudian, M.; Stojcevski, A. New Service Virtualisation Approach to Generate the Categorical
Fields in the Service Response. Sensors 2020, 20, 6776. [CrossRef]

16. Du, M. Opaque Response Generation Enabling Automatic Creation of Virtual Services for Service Virtualisation. Ph.D. Thesis,
Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia, 2016.

17. Yu, Z.; Huang, Y.; Guo, S.; Zhou, B.; Ren, H. Extracting Information from Unknown Protocols On CampusNet. In Proceedings
of the 2007 First IEEE International Symposium on Information Technologies and Applications in Education, Kunming, China,
23–25 November 2007; pp. 535–539. [CrossRef]

18. Trifilò, A.; Burschka, S.; Biersack, E. Traffic to protocol reverse engineering. In Proceedings of the 2009 IEEE Symposium on
Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009; pp. 1–8. [CrossRef]

19. Cui, W.; Paxson, V.; Weaver, N.; Katz, R.H. Protocol-Independent Adaptive Replay of Application Dialog; NDSS: San Diego, CA, USA,
2006.

20. Needleman, S.B.; Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two
proteins. Mol. Biol. 1970, 48, 443–453. [CrossRef]

21. Du, M.; Versteeg, S.; Schneider, J.G.; Grundy, J.C.; Han, J. From Network Traces to System Responses: Opaquely Emulating
Software Services. arXiv 2015, arXiv:1510.01421.

22. Versteeg, S.; Du, M.; Schneider, J.G.; Grundy, J.; Han, J. Enhanced Playback of Automated Service Emulation Models Using
Entropy Analysis. In Proceedings of the 2016 IEEE/ACM International Workshop on Continuous Software Evolution and
Delivery (CSED), Austin, TX, USA, 14–15 May 2016; pp. 49–55. [CrossRef]

23. Du, M.; Versteeg, S.; Schneider, J.G.; Han, J.; Grundy, J. Interaction Traces Mining for Efficient System Responses Generation.
SIGSOFT Softw. Eng. Notes 2015, 40, 1–8. [CrossRef]

24. Comparetti, P.M.; Wondracek, G.; Kruegel, C.; Kirda, E. Prospex: Protocol Specification Extraction. In Proceedings of the 2009
30th IEEE Symposium on Security and Privacy, Oakland, CA, USA, 17–20 May 2009; pp. 110–125. [CrossRef]

25. Cui, W.; Kannan, J.; Wang, H.J. Discoverer: Automatic Protocol Reverse Engineering from Network Traces. In Proceedings of the
USENIX Security Symposium, Boston, MA, USA, 6–10 August 2007; pp. 1–14.

26. Leita., C.; Mermoud, K.; Dacier, M. ScriptGen: An automated script generation tool for Honeyd. In Proceedings of the 21st
Annual Computer Security Applications Conference (ACSAC’05), Tucson, Arizona, 5–9 December 2005; pp. 12–214. [CrossRef]

27. Beddoe, M.A. Network protocol analysis using bioinformatics algorithms. Toorcon 2004. Available online: https://raw.
githubusercontent.com/wiki/unmarshal/protocol-informatics/pi.pdf (accessed on 20 January 2021).

28. Krueger, T.; Gascon, H.; Krämer, N.; Rieck, K. Learning Stateful Models for Network Honeypots. In Proceedings of the 5th ACM
Workshop on Security and Artificial Intelligence, Sheraton Raleigh, NC, USA, 19 October 2012; ACM: New York, NY, USA, 2012;
pp. 37–48. [CrossRef]

29. Luo, X.; Chen, D.; Wang, Y.; Xie, P. A type-aware approach to message clustering for protocol reverse engineering. Sensors 2019,
19, 716. [CrossRef]

30. Jiang, J.; Versteeg, S.; Han, J.; Hossain, M.A.; Schneider, J.G.; Farahmandpour, Z. P-Gram: Positional N-Gram for the Clustering of
Machine-Generated Messages. IEEE Access 2019, 7, 88504–88516. [CrossRef]

31. Jiang, J.; Versteeg, S.; Han, J.; Hossain, M.A.; Schneider, J.G. A positional keyword-based approach to inferring fine-grained
message formats. Future Gener. Comput. Syst. 2020, 102, 369–381. [CrossRef]

http://doi.org/10.1016/j.future.2020.10.033
http://dx.doi.org/10.3390/s20195664
http://dx.doi.org/10.3390/s20236776
http://dx.doi.org/10.1109/ISITAE.2007.4409343
http://dx.doi.org/10.1109/CISDA.2009.5356565
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1109/CSED.2016.018
http://dx.doi.org/10.1145/2693208.2693221
http://dx.doi.org/10.1109/SP.2009.14
http://dx.doi.org/10.1109/CSAC.2005.49
https://raw.githubusercontent.com/wiki/unmarshal/protocol-informatics/pi.pdf
https://raw.githubusercontent.com/wiki/unmarshal/protocol-informatics/pi.pdf
http://dx.doi.org/10.1145/2381896.2381904
http://dx.doi.org/10.3390/s19030716
http://dx.doi.org/10.1109/ACCESS.2019.2924928
http://dx.doi.org/10.1016/j.future.2019.08.011

Appl. Sci. 2021, 11, 2381 25 of 26

32. Small, S.; Mason, J.; Monrose, F.; Provos, N.; Stubblefield, A. To Catch a Predator: A Natural Language Approach for Eliciting
Malicious Payloads. In Proceedings of the USENIX Security Symposium, San Jose, CA, USA, 28 July–1 August 2008; pp. 171–184.

33. Tata, S.; Patel, J.M. Estimating the selectivity of tf-idf based cosine similarity predicates. ACM Sigmod Rec. 2007, 36, 7–12.
[CrossRef]

34. Wang, Y.; Zhang, N.; Wu, Y.m.; Su, B.b. Protocol Specification Inference Based on Keywords Identification. In Advanced Data
Mining and Applications; Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W., Eds.; Springer: Berlin/Heidelberg, Germany,
2013; pp. 443–454.

35. Antunes, J.A.; Neves, N. Automatically Complementing Protocol Specifications from Network Traces. In Proceedings of the
13th European Workshop on Dependable Computing, Pisa, Italy, 11–12 May 2011; ACM: New York, NY, USA, 2011; pp. 87–92.
[CrossRef]

36. Goo, Y.H.; Shim, K.S.; Lee, M.S.; Kim, M.S. Protocol specification extraction based on contiguous sequential pattern algorithm.
IEEE Access 2019, 7, 36057–36074. [CrossRef]

37. Leita, C.; Dacier, M.; Massicotte, F. Automatic Handling of Protocol Dependencies and Reaction to 0-Day Attacks with ScriptGen
Based Honeypots. In Recent Advances in Intrusion Detection; Zamboni, D., Kruegel, C., Eds.; Springer: Berlin/Heidelberg, Germany,
2006; pp. 185–205.

38. Lang, K.J. Faster Algorithms for Finding Minimal Consistent DFAs; Technical Report for NEC Research Institute: Pronceton, NJ, USA,
December 1999.

39. Biermann, A.W.; Feldman, J.A. On the Synthesis of Finite-State Machines from Samples of Their Behavior. IEEE Trans. Comput.
1972, 100, 592–597. [CrossRef]

40. Beschastnikh, I.; Abrahamson, J.; Brun, Y.; Ernst, M.D. Synoptic: Studying Logged Behavior with Inferred Models. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, Szeged,
Hungary, 5–9 September 2011; ACM: New York, NY, USA, 2011; pp. 448–451. [CrossRef]

41. Aichernig, B.; Bloem, R.; Pernkopf, F.; Röck, F.; Schrank, T.; Tappler, M. Learning Models of a Network Protocol using Neural
Network Language Models. In Proceedings of the IEEE Symposium on Security and Privacy (SP 2016), San Jose, CA, USA,
22–26 May 2016.

42. Javaid, A.; Niyaz, Q.; Sun, W.; Alam, M. A deep learning approach for network intrusion detection system. In Proceedings of the
9th EAI International Conference on Bio-inspired Information and Communications Technologies (Formerly BIONETICS), ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), New York, NY, USA, 3–5 December
2015; pp. 21–26.

43. Raina, R.; Battle, A.; Lee, H.; Packer, B.; Ng, A.Y. Self-taught Learning: Transfer Learning from Unlabeled Data. In Proceedings of
the 24th International Conference on Machine Learning, New York, NY, USA, 1 January 2007; ACM: New York, NY, USA, 2007;
pp. 759–766. [CrossRef]

44. Hossain, M.A. Discovering Context Dependent Service Models for Stateful Service Virtualization. Ph.D. Thesis, Faculty of
Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia, 2020.

45. Kobayashi, S.; Otomo, K.; Fukuda, K. Causal analysis of network logs with layered protocols and topology knowledge.
In Proceedings of the 2019 15th International Conference on Network and Service Management (CNSM), Halifax, NS, Canada,
21–25 October 2019; pp. 1–9.

46. Van der Aalst, W. Service Mining: Using Process Mining to Discover, Check, and Improve Service Behavior. IEEE Trans. Serv.
Comput. 2013, 6, 525–535. [CrossRef]

47. Lu, X.; Nagelkerke, M.; van de Wiel, D.; Fahland, D. Discovering Interacting Artifacts from ERP Systems. IEEE Trans. Serv.
Comput. 2015, 8, 861–873. [CrossRef]

48. Yang, J.; Evans, D. Dynamically Inferring Temporal Properties. In Proceedings of the 5th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, New York, NY, USA, June 2004; pp. 23–28. [CrossRef]

49. Lo, D.; Mariani, L.; Pezzè, M. Automatic Steering of Behavioral Model Inference. In Proceedings of the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Amsterdam, The Netherlands, 24–28 August 2009; ACM: New York, NY, USA, 2009; pp. 345–354. [CrossRef]

50. Le, T.D.B.; Le, X.B.D.; Lo, D.; Beschastnikh, I. Synergizing Specification Miners through Model Fissions and Fusions (T). In
Proceedings of the 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), Lincoln, NE, USA,
9–13 November 2015; pp. 115–125. [CrossRef]

51. Krka, I.; Brun, Y.; Medvidovic, N. Automatic Mining of Specifications from Invocation Traces and Method Invariants. In
Proceedings of the 22th ACM SIGSOFT International Symposium on Foundations of Software Engineering, Hong Kong, China,
16–22 November 2014; ACM: New York, NY, USA, 2014; pp. 178–189. [CrossRef]

52. Busany, N.; Maoz, S. Behavioral Log Analysis with Statistical Guarantees. In Proceedings of the 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), Austin, TX, USA, 14–22 May 2016; pp. 877–887. [CrossRef]

53. Nguyen, P.; Slominski, A.; Muthusamy, V.; Ishakian, V.; Nahrstedt, K. Process Trace Clustering: A Heterogeneous Information
Network Approach. In Proceedings of the 2016 SIAM International Conference on Data Mining, Miami, FL, USA, 5–7 May 2016;
pp. 279–287. [CrossRef]

54. De Jong, T. From Package to Process: Dynamic Software Architecture Reconstruction Using Process Mining. Master’s Thesis,
Business Informatics, Faculty of Science, Utrecht University, Utrecht, The Netherlands, 2019.

http://dx.doi.org/10.1145/1328854.1328855
http://dx.doi.org/10.1145/1978582.1978601
http://dx.doi.org/10.1109/ACCESS.2019.2905353
http://dx.doi.org/10.1109/TC.1972.5009015
http://dx.doi.org/10.1145/2025113.2025188
http://dx.doi.org/10.1145/1273496.1273592
http://dx.doi.org/10.1109/TSC.2012.25
http://dx.doi.org/10.1109/TSC.2015.2474358
http://dx.doi.org/10.1145/996821.996832
http://dx.doi.org/10.1145/1595696.1595761
http://dx.doi.org/10.1109/ASE.2015.83
http://dx.doi.org/10.1145/2635868.2635890
http://dx.doi.org/10.1145/2884781.2884805
http://dx.doi.org/10.1137/1.9781611974348.32

Appl. Sci. 2021, 11, 2381 26 of 26

55. Ernst, M.D.; Cockrell, J.; Griswold, W.G.; Notkin, D. Dynamically discovering likely program invariants to support program
evolution. IEEE Trans. Softw. Eng. 2001, 27, 99–123. [CrossRef]

56. Van der Aalst, W. Data Science in Action. In Process Mining: Data Science in Action; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 3–23. [CrossRef]

57. Lorenzoli, D.; Mariani, L.; Pezzè, M. Automatic Generation of Software Behavioral Models. In Proceedings of the 30th
International Conference on Software Engineering, Leipzig, Germany, 10–18 May 2008; ACM: New York, NY, USA, 2008;
pp. 501–510. [CrossRef]

58. Mariani, L.; Pezzè, M.; Santoro, M. GK-Tail+ An Efficient Approach to Learn Software Models. IEEE Trans. Softw. Eng. 2017,
43, 715–738. [CrossRef]

59. Qin, Y.; Xie, T.; Xu, C.; Astorga, A.; Lu, J. CoMID: Context-Based Multiinvariant Detection for Monitoring Cyber-Physical
Software. IEEE Trans. Reliab. 2019, 69, 106–123. [CrossRef]

60. Enişer, H.F.; Sen, A. Virtualization of stateful services via machine learning. Softw. Qual. J. 2020, 28, 283–306. [CrossRef]
61. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. In

Proceedings of the Deep Learning and Representation Learning Workshop, Montreal, QC, Canada, 12 December 2014.
62. Walkinshaw, N.; Taylor, R.; Derrick, J. Inferring extended finite state machine models from software executions. Empir. Softw.

Eng. 2016, 21, 811–853. [CrossRef]
63. Novotny, P.; Ko, B.J.; Wolf, A.L. On-Demand Discovery of Software Service Dependencies in MANETs. IEEE Trans. Netw. Serv.

Manag. 2015, 12, 278–292. [CrossRef]
64. Lamport, L. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 1978, 21, 558–565. [CrossRef]
65. Aiello, W.; Kalmanek, C.; McDaniel, P.; Sen, S.; Spatscheck, O.; Van der Merwe, J. Analysis of Communities of Interest in Data

Networks. In Passive and Active Network Measurement; Dovrolis, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 83–96.
66. Bahl, V.; Black, R.; Chandra, R.; Kandula, S.; Li, L.; MacCormick, J.; Maltz, D.; Mortier, R.; Wawrzoniak, M. Discovering

Dependencies for Network Management. In Fifth Workshop on Hot Topics in Networks (HotNets-V); Association for Computing
Machinery, Inc.: Irvine, CA, USA, 2006.

67. Chen, X.; Zhang, M.; Mao, Z.M.; Bahl, P. Automating Network Application Dependency Discovery: Experiences, Limitations,
and New Solutions. In Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation, San Diego,
CA, USA, 8–10 December 2008; USENIX Association: Berkeley, CA, USA, 2008; pp. 117–130.

68. Oliner, A.J.; Kulkarni, A.V.; Aiken, A. Using correlated surprise to infer shared influence. In Proceedings of the 2010 IEEE/IFIP
International Conference on Dependable Systems Networks (DSN), Chicago, IL, USA, 28 June–1 July 2010; pp. 191–200. [CrossRef]

69. Guabtni, A.; Motahari-Nezhad, H.R.; Benatallah, B. Using Graph Aggregation for Service Interaction Message Correlation.
In Advanced Information Systems Engineering; Mouratidis, H., Rolland, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 642–656.

70. Motahari-Nezhad, H.R.; Saint-Paul, R.; Casati, F.; Benatallah, B. Event Correlation for Process Discovery from Web Service
Interaction Logs. VLDB J. 2011, 20, 417–444. [CrossRef]

71. Zhang, M.; Chen, X.; Bahl, P. Service Dependency Discovery in Enterprise Networks. U.S. Patent 8,954,550, 10 February 2015.
72. Cai, H.; Thain, D. DistIA: A cost-effective dynamic impact analysis for distributed programs. In Proceedings of the 2016 31st

IEEE/ACM International Conference on Automated Software Engineering (ASE), Singapore, 3–7 September 2016; pp. 344–355.
73. Lou, J.G.; Fu, Q.; Wang, Y.; Li, J. Mining Dependency in Distributed Systems Through Unstructured Logs Analysis. SIGOPS Oper.

Syst. Rev. 2010, 44, 91–99. [CrossRef]
74. Beschastnikh, I.; Brun, Y.; Ernst, M.D.; Krishnamurthy, A. Inferring Models of Concurrent Systems from Logs of Their Behavior

with CSight. In Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31 May–7 June
2014; ACM: New York, NY, USA, 2014; pp. 468–479. [CrossRef]

75. Zhuang, Y.; Gessiou, E.; Portzer, S.; Fund, F.; Muhammad, M.; Beschastnikh, I.; Cappos, J. NetCheck: Network Diagnoses from
Blackbox Traces. In Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14),
Seattle, WA, USA, 2–4 April 2014; USENIX Association: Seattle, WA, USA, 2014; pp. 115–128.

76. Popova, V.; Fahland, D.; Dumas, M. Artifact Lifecycle Discovery. Int. J. Coop. Inf. Syst. 2015, 24, 1550001. [CrossRef]
77. Yin, J.; Zhao, X.; Tang, Y.; Zhi, C.; Chen, Z.; Wu, Z. CloudScout: A Non-Intrusive Approach to Service Dependency Discovery.

IEEE Trans. Parallel Distrib. Syst. 2017, 28, 1271–1284. [CrossRef]
78. Grant, S.; Cech, H.; Beschastnikh, I. Inferring and asserting distributed system invariants. In Proceedings of the 40th International

Conference on Software Engineering, Gothenburg, Sweden, 27 May–3 June 2018; pp. 1149–1159.
79. Popa, L.; Chun, B.G.; Stoica, I.; Chandrashekar, J.; Taft, N. Macroscope: End-point Approach to Networked Application

Dependency Discovery. In Proceedings of the 5th International Conference on Emerging Networking Experiments and
Technologies, Rome, Italy, 1–4 December 2009; ACM: New York, NY, USA, 2009; pp. 229–240. [CrossRef]

http://dx.doi.org/10.1109/32.908957
http://dx.doi.org/10.1007/978-3-662-49851-4_1
http://dx.doi.org/10.1145/1368088.1368157
http://dx.doi.org/10.1109/TSE.2016.2623623
http://dx.doi.org/10.1109/TR.2019.2933324
http://dx.doi.org/10.1007/s11219-019-09468-z
http://dx.doi.org/10.1007/s10664-015-9367-7
http://dx.doi.org/10.1109/TNSM.2015.2410693
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1109/DSN.2010.5544921
http://dx.doi.org/10.1007/s00778-010-0203-9
http://dx.doi.org/10.1145/1740390.1740411
http://dx.doi.org/10.1145/2568225.2568246
http://dx.doi.org/10.1142/S021884301550001X
http://dx.doi.org/10.1109/TPDS.2016.2619715
http://dx.doi.org/10.1145/1658939.1658966

	Introduction
	Related Work
	Message Format
	Partial Message Format
	Full Message Format
	Summary

	Control Model
	Inferring Control Models from Network Interaction Logs
	Inferring Control Models from Program Internal Interactions Logs
	Summary

	Data Models
	Multi-Service Dependency
	Network Level Data
	Application Level Data
	Using Both Network and Application-Level Data
	Summary

	Conclusions
	References

