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Featured Application: Spatial Active Noise control.

Abstract: Spherical harmonic analysis has been a widely used approach for spatial audio processing
in recent years. Among all applications that benefit from spatial processing, spatial Active Noise
Control (ANC) remains unique with its requirement for open spherical microphone arrays to record
the residual sound field throughout the continuous region. Ideally, a low delay spherical harmonic
recording algorithm for open spherical microphone arrays is desired for real-time spatial ANC sys-
tems. Currently, frequency domain algorithms for spherical harmonic decomposition of microphone
array recordings are applied in a spatial ANC system. However, a Short Time Fourier Transform is
required, which introduces undesirable system delay for ANC systems. In this paper, we develop
a time domain spherical harmonic decomposition algorithm for the application of spatial audio
recording mainly with benefit to ANC with an open spherical microphone array. Microphone signals
are processed by a series of pre-designed finite impulse response (FIR) filters to obtain a set of time
domain spherical harmonic coefficients. The time domain coefficients contain the continuous spatial
information of the residual sound field. We corroborate the time domain algorithm with a numerical
simulation of a fourth order system, and show the proposed method to have lower delay than
existing approaches.

Keywords: spatial audio recording; spherical harmonic; time domain signal processing

1. Introduction

Spherical harmonic analysis has been widely used for spatial acoustic signal processing
for years [1]. Sound field recordings can be decomposed into a set of orthogonal spatial
basis functions and respective coefficients when an appropriately designed spherical
microphone array is used [2,3]. The spherical harmonic decomposition has the advantage
that a given sound field can be analyzed over a continuous spatial region rather than a set of
distributed points [4]. This has embraced a wide range of algorithms in three-dimensional
(3D) audio signal processing such as: sound intensity analysis [5], sound field diffusive
analysis [6], beamforming [7,8], source localization [9,10], and spatial Active Noise Control
(ANC) [11,12].

A spatial ANC system aims to reduce the unwanted acoustic noise [13] over a space
in order to create a silent zone for people. Multiple microphones are used to record
the residual noise, and multiple loudspeakers are used to generate the anti-noise field.
The recording’s accuracy of the residual sound field can highly influence the performance
of an ANC system. Furthermore, recording efficiency is also important, as ANC usually
focuses on low frequency and time-variant noise. As a result, an accurate and low latency
algorithm for residual sound field recording is desired [14].
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The sound field recording step in a spatial ANC system focuses on obtaining the
location independent spherical harmonic coefficients that represent the residual sound field
inside a region of interest. This is different to real time spherical harmonic beamforming
or directivity analysis which focuses on extracting source location information from the
spatial recording. Moreover, spatial ANC mainly focuses on reducing the sound field
inside the spherical microphone array (the region of interest). While other spatial recording
applications may focus on analysing the sound field exterior to the array. Additionally,
although most of the spatial audio applications utilize a rigid spherical array [15–17] for its
convenience to build and use, an open spherical array is considered to be more suitable
for a spatial ANC system. This is because users should be able to enter and move within
the ANC region of interest that is surrounded by the spherical microphone array [12,18].
Furthermore, there exists previous work focusing on optimising the open array for spherical
harmonic recording [19,20], and for spatial ANC systems [21]. However, we consider the
optimisation of the open microphone array design to be outside of the scope of this paper,
and instead focus on a time-domain recording algorithm.

Real-time spatial beamforming systems illustrate that applications with strict delay
requirements can highly benefit from the small latency and efficient computation of time
domain processing [22,23]. By posing the signal processing algorithm in the time domain,
system performance can be optimized with real-valued lower order filters [24], and lower
modeling delays [25]. Specifically, for a spatial ANC system, the system delay which
includes the filter group delay (signal processing algorithm), the A/D and D/A converter,
and the data processing delay, should be less than the acoustic delay from the reference
microphones to the secondary loudspeakers in order to satisfy causality [26]. Furthermore,
a longer signal processing delay slows down the convergence speed of the adaptive filtering
and may lead to an unstable system [27,28]. Therefore, it is worthwhile to consider a time
domain spherical harmonic decomposition method to achieve sound field recording with
an open spherical array for the application of spatial ANC.

Frequency domain spherical harmonic recording has been well developed with var-
ious optimised filters [29–31]. One benefit of developing the method in the frequency
domain is that the influence of the spherical Bessel zeros can be easily removed by avoiding
the estimation of the coefficients at these erroneous frequency bins [19,32–34]. However,
when we consider a time domain method, we can not simply avoid the Bessel zeros be-
cause we do not apply a Fourier Transformation to separate the Bessel zero frequency
components from the others.

Meanwhile, there are also several works relate to time domain spatial audio signal
processing. In [35], Poletti and Abhayapala give a time domain description of the free-space
Green’s function in the spherical harmonic domain. This provides a solution to decompose
the free-space channel between a loudspeaker and microphone into the time-space domain.
This work only targets the free-space Green’s function, and as a result, the method is highly
limited to the application of free space sound field reproduction. In [36], a time domain
wave field synthesis method is presented. Although an IFFT is applied to derive the time
domain solution, the work still demonstrates that time-domain wave field synthesis can
be beneficial to time-varying spatial acoustic applications. In [37], Hahn and Spors offer
a time domain representation of the spherical harmonic equation. They relate the time
domain spherical harmonic coefficients to the sound pressure, but do not include the
method of obtaining the time domain coefficients from a given recording. Time domain
beamformers are designed in [38,39] with the IFFT of spherical harmonics. These papers
show certain advantages for finite impulse response (FIR) filtering based signal processing
systems. Overall, these time domain approaches illustrate the advantages of time domain
signal processing, however, they remain unable to obtain location-independent spherical
harmonic coefficients. This makes them ill-suited for spatial ANC systems, as these
location-independent coefficients provide necessary information about the continuous
residual sound field inside the region of interest.
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In this paper, we propose a FIR filter based time domain spherical harmonic analysis
method to accurately record spatial sound fields with an open spherical microphone array
for the purpose of spatial ANC. We note that this work focuses solely on the problem of
sound field recording, and that the spatial ANC application acts purely as motivation to
our problem. Therefore, with spatial ANC in mind, the recording method prioritizes a
minimum processing delay, a bandwidth of interest (low frequencies for typical noise sce-
narios), and a practical array geometry (open sphere surrounding a quite zone). Employing
the recording method in an actual ANC system, and its evaluation, is out of the scope of
this paper. The novelty of the presented work is the investigation of time domain spherical
harmonic coefficients. These time domain coefficients match the properties of conventional
frequency domain spherical harmonic coefficients. That is, the coefficients are location
independent within the region of interest, and they represent the continuous sound field
over the space. Additionally, these coefficients are obtained in time domain, which relieves
the block processing constraint (and can do sample-by-sample processing) and results in
lower system delay. Hence, the proposed method is considered to be highly beneficial to
spatial ANC systems.

We organise the main body of this paper as follows: In Section 2 we detail the back-
ground of the frequency domain spherical harmonic algorithm for spatial sound field
recording. Additionally, we introduce the time domain equation of spherical harmonic
decomposition, while addressing the challenges of recording time domain spherical har-
monic coefficients. The filter’s design and implementation to obtain time domain spherical
harmonic coefficients is presented in Section 3, along with error analysis. Effects of trunca-
tion and filter length are shown in Section 4 via initial simulations of filter performance.
Section 5 presents simulation results for the proposed method’s estimation of spherical
harmonic coefficients, as well as sound field reconstruction performance at a point and
over space, verifying the effectiveness of the proposed theory and design. We conclude the
findings and insights gained from this work in Section 6.

2. Problem Formulation

We begin this section by reviewing the well-known frequency domain spherical
harmonic decomposition method. We then introduce the corresponding time domain
formulation, and detail the Fourier Transform relationship between the components in
the frequency domain equation and the time domain equivalent. Finally, we show the
difficulties in obtaining spherical harmonic coefficients in the time domain.

2.1. Spherical Harmonic Decomposition of Sound Field in Frequency-Space Domain

An incident sound field at any arbitrary point x = (r, θ, φ) inside a source free 3D
spherical region Ω, where r refers to the distance between the point x and the origin, θ and
φ denote elevation and azimuth angles, respectively [40], can be expressed in the frequency
domain as [1,41]

S(x, k) =
N

∑
n=0

n

∑
m=−n

αnm(k)jn(kr)Ynm(θ, φ), (1)

where order n (n ≥ 0) and mode m are integers, N = dkRe [1], k = 2π f /c is the wave
number, f is frequency, c is the speed of sound, R is the radius of Ω, αnm(k) is a set of
spherical harmonic coefficients representing the sound field inside Ω, jn(kr) is the nth order
spherical Bessel function of the first kind, Ynm(θ, φ) are the spherical harmonic functions.
For convenience, we use real spherical harmonics in this paper, given by [42]

Ynm(θ, φ) =(−1)|m|
√

2n + 1
4π

(n− |m|)!
(n + |m|)!

×
{

Pnm(cos θ) cos(mφ) m ≥ 0
Pnm(cos θ) sin(mφ) m < 0

,

(2)
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where Pnm(·) is the associated Legendre function. Real spherical harmonics have the
orthogonality property of∫ 2π

0

∫ π

0
Ynm(θ, φ)Yn′m′(θ, φ) sin θdθdφ = δnn′δmm′ . (3)

If the spherical harmonic coefficients αnm(k) are available for a sound field, then these
coefficients can fully describe the sound field over the continuous spatial region of interest.
Traditionally, when spatial harmonic processing is used to record a spatial sound field
S(x, k), it is recorded over a spherical surface of radius RQ (RQ ≥ r). The corresponding
αnm(k) are extracted by integrating (1) over the spherical surface while exploiting the
orthogonality property of Ynm(·) in (3), which gives [2]

αnm(k) =
1

jn(kr)

∫ 2π

0

∫ π

0
S(r, θ, φ, k)Ynm(θ, φ) sin θdθdφ. (4)

In practice, this integration is realized using an equivalent discrete summation of spatial
samples over the sphere.

2.2. Equivalent Spherical Harmonic Decomposition of a Sound Field in Time-Space Domain

While the frequency domain spatial sound field capture is well established as ex-
plained in Section 2.1, in this paper, our objective is to investigate the possibility of an
analogous spherical harmonic analysis in time domain. In a similar fashion to (1) and (4),
we now consider the relationship between sound pressure s(x, t) recorded by a spherical
microphone array and the time domain spherical harmonic coefficients, denoted as anm(t).
It is desirable to have these time domain coefficients anm(t) independent of the measure-
ment radius. Thus, we only need to record anm(t) to obtain the sound field over the entire
region of interest Ω. A time domain method can directly extract anm(t), thus avoiding the
Fourier transformation of signals.

As a time domain analysis is usually with real-valued components, we rewrite (1) in
the form of

S(x, k) =
N

∑
n=0

n

∑
m=−n

inαnm(k)
jn(kr)

in Ynm(θ, φ), (5)

where i =
√
−1, in order to make the inverse Fourier transform of all terms to be real.

Taking the inverse Fourier transformation of (5), we obtain

s(x, t) =
N

∑
n=0

n

∑
m=−n

anm(t) ∗ pn(t, r)Ynm(θ, φ), (6)

where ∗ denotes the convolution operation,

anm(t)
F−→ inαnm(k), (7)

where F−→ denotes the Fourier transform operator,

pn(t, r) F−→ jn(kr)
in , (8)

which is given by

pn(t, r) =
{ c

2r Pn(
tc
r ) − r

c ≤ t ≤ r
c

0 |t| > r
c

, (9)

where Pn(·) is the Legendre function. The proof of (9) is given in Appendix A. We note that
every component in (6) is real valued.

Equation (6) shows how to reconstruct the sound pressure at x = (r, θ, φ) with the
recorded time domain spherical harmonic coefficients anm(t). We consider an alternative
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time domain filter to obtain anm(t) from the recorded signals rather than taking the inverse
Fourier transform of (4) since 1/jn(kr) is unbounded when jn(kr) = 0. Note that jn(kr) as a
filter has order dependent zeros when jn(kr) = 0. As a result, 1/jn(kr) approaches infinity
at these frequencies, making it unstable to have an inverse Fourier transform. In other
words, the z-transform of pn(t, r) given in (9), has zeros on the unit circle because of Bessel
zeros, refers to a non-minimum phase system. In this case, the inverse system of pn(t, r),
with the frequency response of 1/jn(kr) is not stable. As a result, we first define

bnm(t, r) , anm(t) ∗ pn(t, r), (10)

which has a frequency response of

bnm(t, r) F−→ inαnm(k)
jn(kr)

in = αnm(k)jn(kr). (11)

Since Ynm(θ, φ) is independent to both frequency and time, bnm(t, r) can be obtained
by integrating (6) over a sphere of radius r such that

bnm(t, r) =
∫ 2π

0

∫ π

0
S(r, θ, φ, t)Ynm(θ, φ) sin(θ)dθdφ. (12)

If we regularly place Q ≥ (N + 1)2 omni-directional microphones on a sphere of
radius RQ, we can estimate the integration in (12) with a finite summation such that

bnm(t, RQ) ≈
Q

∑
q=1

S(xq, t)Ynm(θq, φq). (13)

To simplify the implementation, we sample the signals with sampling time T such
that t = νT = ν/Fs, where ν is the time index and Fs is the sampling frequency. We
rewrite (10) as

bnm(ν, RQ) = anm(ν) ∗ pn(ν, RQ)

=
Lp

∑
µ=−Lp

pn(µ, RQ)anm(ν− µ),
(14)

where

pn(ν, RQ) =

{
c

2RQ
Pn(

νc
RQ Fs

) − RQ Fs
c ≤ ν ≤ RQ Fs

c

0 |ν| > RQ Fs
c

, (15)

is a time limited function with pn(ν, r) 6= 0 when −Lp ≤ ν ≤ Lp, Lp = dRQFs/ce such that
the length of pn(ν, RQ) is 2Lp + 1.

With (14) in hand, our problem reduces to obtaining anm(ν) from the measured
bnm(ν, RQ). This is not achievable since it is an under-determined problem. We always
have 2Lp + 1 more unknowns (anm(ν)) than knowns (bnm(ν, RQ)). Moreover, this is not
practically feasible because the z-transform of pn(ν, RQ) has zeros on the unit circle, result-
ing in poles on the unit circle in its direct inverse, making the system unstable. Alternatively,
anm(ν) can be extracted from bnm(ν, RQ) using an appropriately designed filter.

In this paper, we attempt to design a filtering solution while overcoming the above
challenges. It is important to note that the Fourier transform relationship discussed in this
section were solely used to formulate the definition of the time-domain spherical harmonic
decomposition of a sound field. From this point onward, we will focus on signal processing
of the captured sound field only in the time domain.

3. Filter Design for Obtaining Time Domain Spherical Coefficients

In Section 2, we have presented a method to obtain bnm(ν, RQ) from recorded sound
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pressure S(xq, ν) with a spherical microphone array. In this section, we design a series of
FIR filters to obtain anm(ν) from given bnm(ν, RQ).

3.1. Stability of Ideal Inverse Filter

Due to the challenges mentioned in Section 2, rather than directly using (14), we
pre-design a series of filters ρn(ν, r) such that

bnm(ν, RQ) ∗ ρn(ν, RQ)

= anm(ν) ∗ pn(ν, RQ) ∗ ρn(ν, RQ) = anm(ν),
(16)

where
pn(ν, RQ) ∗ ρn(ν, RQ) ≈ δ(ν). (17)

We note here that ρn(ν, r) should be order n dependent but mode m independent, as is the
same property with pn(ν, r).

However, we can never achieve a precise δ(ν) in (17), as the energy of measured
sound pressure at the frequency bins of Bessel zeros has been filtered to zero by pn(ν, RQ).
Therefore, we refrain from designing the inverse filter at these zero positions. Instead, we
modify δ(ν) to ẑn(ν) such that its frequency response Ẑn( f ) is given by

Ẑn( f ) =
{

1 |jn(kr)| ≥ ε
0 |jn(kr)| < ε

, (18)

where ε is a small positive constant threshold which satisfies jn(kr) ≈ 0 when |jn(kr)| < ε.
For a fixed RQ, both jn(2π f RQ/c) and Ẑn( f ) can be seen as a function of f . Figure 1 shows
jn(2π f RQ/c) and Ẑn( f ) with ε = 1/40 of the first four orders of n.

(a) (b)

(c) (d)

Figure 1. The spherical Bessel function jn(2π f RQ/c) and Ẑn( f ) of order (a) n = 0, (b) n = 1,
(c) n = 2, (d) n = 3 with fmax ≈ 1360 Hz, ε = 1/40, RQ = 0.16 m and c = 343 m/s.

From Figure 1, we can see that Ẑn( f ) is a superposition of a series of rectangular
windows, meaning its inverse Fourier transformation, ẑn(ν), should be a superposition
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of sinc functions. In practice, due to inherent properties of jn(2π f RQ/c), for a given
maximum frequency fmax, the number of active spherical harmonic orders is up to N ≈
dkRQe [1]. We use the same truncation limit when designing Ẑn( f ), resulting in ẑn(ν) to be
a superposition with a finite number of sinc functions. The necessity and the influence of
this truncation on frequency fmax will be further discussed in Section 4.1.

Let us define w(n) in radian (rad), such that jn(w(n)FsRQ/c) = ε, where ε is the
positive threshold we explained in the last paragraph. Therefore, w(n) can be considered as
the edges of window in Ẑn( f ) (see Figure 1). Given the vector of [w(n)

1 , w(n)
2 , w(n)

3 , · · · ], we
can write ẑn as

ẑn(ν) =
S

∑
s=1

(w(n)
2s − w(n)

2s−1)sinc
(w(n)

2s − w(n)
2s−1

2
ν
)

× cos(
w(n)

2s + w(n)
2s−1

2
ν),

(19)

where S is the number of rectangular windows in Ẑn( f ) for − fmax ≤ f ≤ fmax. Further-
more, w(n)s are dependent on the radius of the microphone array RQ, sampling frequency
Fs and the speed of sound c, but the value of w(n)FsRQ/c remains constant for each order
n such that |jn(w(n)FsRQ/c)| = ε. The first four order of w(n) is given in Table 1 with the
highest frequency limit of fmax = 2047 Hz and sampling frequency Fs = 48, 000 Hz. Note
that for the zero-th order, we set w1 = 8.9× 10−4 to block DC component in practice.

If we have a series of concentric spherical microphone arrays with the radii of r1, r2, · · · ,
the value of w(n)Fsrq/c would be different from a single sphere model, which can be
calculated by |jn(w(n)r1/Fsc) + jn(w(n)r2/Fsc) + · · · | = ε.

Table 1. The first four order of w(n) to derive ẑn(ν) with fmax ≈ 2047 Hz, ε = 1/40, RQ = 0.16 m
and c = 343 m/s.

n (Order) w(n)
1 w(n)

2 w(n)
3 w(n)

4

0 0.0009 0.1369 0.1439 0.2680
1 0.0033 0.1957 0.2059 0.2680
2 0.0276 0.2509 0.3643 0.2680
3 0.0640 0.2680 - -

3.2. Modified Inverse Filter

Now that the design for ẑn(ν) is established, our next step is to design filters ρn(ν, RQ)
which satisfies

pn(ν, RQ) ∗ ρn(ν, RQ) = ẑn(ν). (20)

We notice in (20) that pn(ν, RQ) is a finite length vector and we would like ρn(ν, RQ) also
to be a finite length vector. However, ẑn(ν) is infinitely long with a series of sinc functions.
If we perform linear convolution of pn(ν, RQ) with ρn(ν, RQ), we would obtain a vector
with the length of 2(L + Lp) + 1 samples, where 2L + 1 is the filter length of ρn, such that
ρn(ν, RQ) has none-zero values for −L ≤ ν ≤ L. Thus, we need to truncate the infinite
length ẑn(ν) to 2(L + Lp) + 1 samples for every order of n where

zn(ν) ,
{

ẑn(ν) −(L + Lp) ≤ ν ≤ L + Lp
0 otherwise

. (21)

We can then write (20) in a finite summation form as

zn(ν) = pn(ν, RQ) ∗ ρn(ν, RQ)

=
L

∑
µ=−L

pn(ν− µ, RQ)ρn(µ, RQ).
(22)
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We rewrite (22) into matrix form
zn = Pnρn, (23)

where zn = [zn(−(L + Lp)), zn(−(L + Lp) + 1), · · · , zn((L + Lp))]T , ρn = [ρn(−L, RQ),
ρn(−L + 1, RQ), · · · , ρn(L, RQ)]

T , and Pn is the convolution matrix based on the Toeplitz
structure of pn(ν, RQ), given in (24).

Pn =

pn(−Lp, RQ) 0 . . . . . . . . . . . . 0
pn(−Lp + 1, RQ) pn(−Lp, RQ) 0 . . . . . . . . . 0

...
. . .

...
pn(Lp, RQ) . . . pn(−Lp, RQ) 0 . . . . . . 0

0 pn(Lp, RQ) . . . pn(−Lp, RQ) 0 . . . 0
...

. . .
...

0 . . . 0 pn(Lp, RQ) . . . pn(−Lp + 1, RQ) pn(−Lp, RQ)
0 . . . . . . 0 pn(Lp, RQ) . . . pn(−Lp + 1, RQ)
...

. . .
...

0 . . . . . . . . . 0 pn(Lp, RQ) pn(Lp − 1, RQ)
0 . . . . . . . . . . . . 0 pn(Lp, RQ)



. (24)

The size of matrix Pn is [2(L + Lp) + 1, 2L + 1], where we choose the filter length
2L + 1 of ρn(ν, RQ) to be significantly larger than both 2Lp + 1 and the main lobe width
of function zn(ν), to avoid Pn being ill-conditioned and minimize the error of truncating
zn(ν) into a finite length signal. The influence of choosing L will be detailed in Section 4.2.

Since (23) is an over-determined system of equations, we apply LMS method to (23)
to obtain

ρn = P+
n zn, (25)

where P+
n refers to the Moore-Penrose inverse of Pn. As a result, with (16) and (25), anm(ν)

can be estimated by

anm(ν) ≈ bnm(ν, RQ) ∗ ρn(ν, RQ)

=
( Q

∑
q=1

S(xq, t)Ynm(θq, φq)
)
∗ ρn(ν, RQ).

(26)

In this way we obtain anm(ν) while overcoming the challenges listed in Section 2.

3.3. Practical Considerations of Filter Implementation

In (26), anm(ν) is obtained by filtering bnm(ν, RQ) with ρn(ν, RQ), where we get

bnm(ν, RQ) ∗ ρn(ν, RQ) = anm(ν) ∗ zn(ν) ≈ anm(ν). (27)

Naturally anm(ν) at time index ν is only influenced by [bnm(ν − Lp, RQ), bnm(ν − Lp +
1, RQ), · · · , bnm(ν + Lp, RQ)] because of the Legendre function in pn(ν, RQ). However,
with the influence of sinc functions in zn(ν) in our proposed filters ρn(ν, RQ), we now need
the past L samples and the future L samples of bnm(ν, RQ) to obtain anm(ν) at time index ν.
For offline signal processing, L samples of zeros should be added both in the beginning
and the end of the vector of bnm before filtering it with pre-designed ρn(ν, RQ). Moreover,
an overlap of 2L + 1 samples is needed for frame based signal processing. For on-line
real time signal processing, we cannot obtain future samples of bnm(ν, RQ). As a result,
we add L samples of zeros in front of the filter ρn(ν, RQ), and create a buffer of the past
2L + 1 samples of bnm(ν, RQ). At time index ν, we obtain anm(ν − L) with the buffer
of [bnm(ν − 2L, RQ), · · · , bnm(ν, RQ)]. Thus, there is a L samples of group delay of the
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system. We further discuss and compare the group delay with frequency domain method
in Section 5.5.

3.4. Error Analysis

We define the error enm(v) as the difference between the desired time domain spher-
ical harmonic and the coefficients we obtained by the proposed method, which can be
decomposed to:

enm(v) = efilter(n, m, ν) + eposition(n, m) + etruncation(n), (28)

where efilter(n, m, ν) is filtering error introduced by ρn(ν, RQ), etruncation(n) is the truncation
error of order N, and eposition(n, m) is due to the microphones position error. The qualitative
analysis of etruncation(n) and eposition(n, m) based on the frequency domain method are
addressed in [3], where we draw a similar conclusion in time domain that with increasing
number of microphones and fixed N, etruncation(n) decreases. Meanwhile, eposition(n, m)
depends on the nature of inaccurate microphone positioning, referring to the distance
between the desired point and microphone location. We mainly focus on efilter(n, m, ν) here
as it is the main error contribution due to the proposed filtering approach.

According to (27), efilter(n, m, ν) at a specific order n and mode m can be expressed as

efilter(n, m, ν) = |anm(ν) ∗ zn(ν)− anm(ν)|
= |anm(ν) ∗ en(ν)|,

(29)

where
en(ν) , δ(ν)− zn(ν). (30)

Using (18) and (21), the Fourier transform of en(ν) is

en(ν)
F−→ En( f ) =

{
1 |jn(kr)| ≤ ε, kr < N
0 otherwise

, (31)

with the same truncation in frequency as Ẑn( f ). Thus, en(ν) can be expressed as

en(ν) =
S−1

∑
s=0

(
w(n)

2s+1 − w(n)
2s
)
sinc

(w(n)
2s+1 − w(n)

2s
2

ν
)

× cos
(w(n)

2s+1 + w(n)
2s

2
ν
)
,

(32)

where S and w(n) have the same definition as in (19) and w(n)
0 = 0.

With (29) and (32) we can quantitatively calculate the filtering error efilter(n, m, ν) intro-
duced by ρn(ν, RQ). The total error caused by filtering can be calculated by a summation
of efilter(n, m, ν) over every order of n and mode of m. As this filtering error is mainly due
to Bessel zeros, it can be reduced by limiting the highest order N of the system, where a
smaller N results in lower Bessel zeros hence a smaller efilter(n, m, ν). Also, N depends
on the highest wave number k and the radius of the microphone array RQ. By choosing
N with a pre-knowledge of the frequency limit of the input signals and RQ also helps to
minimize the filtering error efilter(n, m, ν).

4. A Filter Design Example

To provide a further understanding of the filter design process, we present a design
example of a fourth (N = 4) order spherical microphone array of RQ = 0.16 m, designed to
record the time domain spherical harmonic coefficients within the spatial region enclosed
by the array with a desired frequency band of [20, 1360] Hz. Let Fs = 48, 000 Hz and
c = 343 m/s. Before we apply the proposed method to recording signals, we first analyze
the influence of several steps in designing the proposed filter ρn(ν, RQ).
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4.1. Effect of Frequency Truncation of Zn(ν)

As audio signals are often band limited in ANC applications [14], we can have a
finite truncation on spherical harmonic decomposition with order N = dkRQe. In other
words, if we have a fixed N-th order system, the highest frequency that the system can
successfully capture is given by fmax = Nc/(2πRQ) ≈ 1360 Hz. Figure 2 shows the
frequency response of ρn(ν, RQ), refers to Φn( f , RQ), which is designed using (25) with
zn(ν) truncated at f1 = 1023.6 Hz (Figure 2a), f2 = 1364.8 Hz (Figure 2b), f3 = 2047.1 Hz
(Figure 2c), respectively. The filter length is set to be 500. To obtain the frequency response
of ρn(ν, RQ), a FFT of I = 4096 points is applied with zero padding to ρn(ν, RQ). We remind
here that zn(ν) is given by (19) in time domain, which does not rely on any frequency
domain processing.
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Figure 2. Frequency response of up to 4-th order of the pre-designed order dependent FIR filter
ρn(ν, RQ) with zn(ν) frequency truncated at (a) f1, (b) f2 (c) f3.

We observe that for a N = 4th order system, the truncation at f1 is not enough to get
an accurate frequency response of ρn(ν, RQ), as the frequency response Φn( f , RQ) begins
to decline at f1. In this case, ρn(ν, RQ) can not provide an acceptable filtering result with
signals containing higher frequency components. Truncation at both f2 and f3 can give
a satisfied frequency response when f < fmax. As the frequency range of the system is
also limited by N = dkRQe, it is not necessary to look at the frequency response when
f > fmax. So in both cases ρn(ν, RQ) can give an acceptable filtering output. As a result,
we choose to truncate zn(ν) at fmax, where 2π fmaxRQ/c = N. If the recorded signal is
known as a band limited signal where its highest frequency component is less than fmax,
an alternative choice of the frequency truncation of zn(ν) is at this highest frequency to
reduce the computation complexity. Meanwhile, if zn(ν) has been designed with a higher
frequency truncation, it can also be used in a lower order system with a lower requirement
of frequency truncation.

4.2. Choice of Filter Length of ρn(ν, RQ)

Intuitively, a longer filter often brings us less error and better performance. Figure 3
supports this idea by showing the result of ρn(ν, RQ) ∗ pn(ν, RQ)− zn(ν) with different
choices of L, which refers to the error introduced into the system by the filtering processing.
We observe that the filtering error decreases across all of the orders with a higher L. This is
due to the time truncation of zn(ν) (length of vector zn in (25)), being related to L. Thus,
a higher L leads to less information loss in the time truncation of zn(ν), hence smaller error
in ρn(ν, RQ). However, Figure 4 shows the time domain filter ρn(ν, RQ) with different
lengths. We observe that a longer filter results in a higher group delay of filtering. This
is not desirable because it leads to a higher system delay of our proposed method, while
lowering the system delay is one of the most important motivations that we develop the
proposed time domain method.
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Figure 3. Error of ρn(ν, RQ) ∗ pn(ν, RQ) with length L = (a) 25, (b) 250 (c) 2500.

0 10 20 30 40 50

Time index ( )

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

F
ilt

e
r 

A
m

p
lit

u
d

e

0
( ,R

Q
)

1
( ,R

Q
)

2
( ,R

Q
)

3
( ,R

Q
)

4
( ,R

Q
)

(a)

0 100 200 300 400 500

Time index ( )

-0.1

-0.05

0

0.05

0.1

0.15

F
ilt

e
r 

A
m

p
lit

u
d
e

0
( ,R

Q
)

1
( ,R

Q
)

2
( ,R

Q
)

3
( ,R

Q
)

4
( ,R

Q
)

(b)

0 1000 2000 3000 4000 5000

Time index ( )

-0.1

-0.05

0

0.05

0.1

0.15

F
ilt

e
r 

A
m

p
lit

u
d

e

0
( ,R

Q
)

1
( ,R

Q
)

2
( ,R

Q
)

3
( ,R

Q
)

4
( ,R

Q
)

(c)

Figure 4. Time representation of the pre-designed order dependent FIR filter ρn(ν, RQ) with length
L = (a) 25, (b) 250 (c) 2500.

As a result, we need to balance the noise tolerance, group delay, and the filtering
error when we choose L. We suggest that filter length 2L + 1 should be significantly larger
than the main lobe width of zn(ν) and 2LP + 1, the length of pn(ν, RQ), but no more than
50 times of 2LP + 1. Additionally, L should be less than the maximum tolerance of the delay
of the system. Based on these guidelines, for the current example, we choose 2L + 1 = 501.

5. Simulation Results and Analysis

In this section, we evaluate the result of the proposed algorithm for time domain
spherical harmonic analysis using a fourth order (N = 4) system. We consider 32 micro-
phones regularly placed on an open spherical array of RQ = 0.16 m, where the analysis
region of interest is inside the array. A point source is placed at [1, 2, 1] m with respect to the
origin which coincides with the origin of the microphone array. The sampling frequency is
48,000 Hz, and the filter length 2L + 1 is 501. A noise signal at 40 dB SNR is added to each
microphone to reflect thermal noise. Considering the application of the proposed method
to be spatial ANC, we construct the desired frequency band to cover the target noise band,
and construct the radius of the region to be wide enough to fit one human head.

It is difficult to validate our method in time domain directly because the coefficients
are time dependent and no ground truth has been given. Therefore, we first validate our
proposed time domain spherical harmonic coefficients in the frequency domain. Thus,
we compare the Fourier transformation of the time domain coefficients to the theoretical
frequency domain coefficients given in (4). Next, to clarify that our proposed method
has the ability to record a sound field in the region of interest in the time domain, we
reconstruct sound pressure at an arbitrary point as well as over a plane inside the region
of interest with the captured time domain spherical harmonic coefficients by (6). Finally,
the time delay of the proposed method is given.

5.1. Comparison between the Time Domain and the Frequency Domain Spherical Harmonic Coefficients

We use a narrow band signal at 1200 Hz to test if our proposed method can obtain
time domain spherical harmonic coefficients anm(ν) correctly with (26). In (11), we give the
relationship between anm(ν) and αnm(k). We compare the Fourier transformation result of
our obtained time domain spherical harmonic coefficients FT {anm(ν)} with the desired
frequency domain spherical harmonic coefficients αnm(k), obtained by Equation (4) in



Appl. Sci. 2021, 11, 1074 12 of 18

frequency domain. Fourier transformations use J = 1024 points. We do not compare
the phase of these coefficients since the group delay of the time domain method and the
frequency domain method is different. Instead, we compare the phase difference, given
by αnm(k)− αn(m−1)(k). The results of both amplitude and phase difference are shown in
Figure 5.

0 5 10 15 20 25

Order and mode Index

0

0.05

0.1

0.15

0.2

0.25

0.3
C

o
e

ff
ic

ie
n

ts
 a

m
p

lit
u

d
e

nm
(k)

FT of a
nm

( )

(a)

0 5 10 15 20 25

Order and mode index

-4

-2

0

2

4

P
h

a
s
e

 o
f 

th
e

 c
o

e
ff

ic
ie

n
ts

nm
 (k)

FT of a
nm

 ( )

(b)

Figure 5. (a) Amplitude and (b) phase difference comparison between the Fourier Transform of
the time domain spherical harmonic coefficients anm(ν) and frequency domain spherical harmonic
coefficients αnm(k) at a single frequency f = 1200 Hz.

In Figure 5 we see that there is little to no difference on both amplitude and phase
difference between the Fourier Transformed time domain coefficients and the frequency
domain coefficients over all the order and modes. Thus, our proposed time domain method
successfully obtained the time domain spherical harmonic coefficients, which can be related
to the frequency domain coefficients by Fourier transformation.

Next, we compare the coefficients over different frequencies with a wide band test
signal within the frequency limited of [20, 1300] Hz. In Figure 6, we show the comparison
of amplitude at FT{a00(ν)} and α00(k), FT{a11(ν)} and α11(k), and FT{a31(ν)} and α31(k)
over frequencies respectively while Figure 7 shows the phase difference.
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Figure 6. Amplitude comparison between the Fourier Transform of the time domain spherical
harmonic coefficients anm(ν) and frequency domain spherical harmonic coefficients αnm(k) at mode
(a) 00, (b) 11 and (c) 31 with a white Gaussian noise.

A huge error is observed in Figure 6a at the 46th frequency bin. This error is due
to that there is a Bessel zero of the zeroth order at this frequency bin (around 1072 Hz).
We see the frequency domain spherical harmonic coefficients α00(k) has a much higher
amplitude, while our proposed method suppressed the amplitude at this certain frequency
bin. Meanwhile, we can see in Figures 6 and 7 that the error at a31(ν) is higher compared to
the other two modes. As order increases, the error increases. This error can be decreased by
applying more microphones on the array. We also obtain a non-negligible error before the
30th frequency bin of the coefficients amplitude for (n, m) = (3, 1) in Figures 6c and 7c. This
error is because our time domain proposed method and conventional frequency domain
method have different processing on suppressing Bessel zeros. During the reconstruction
process, the high pass property of spherical Bessel function removes the information at this
frequency bin. Thus, this error will not influence the reconstruction of the sound field.
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Figure 7. Phase difference comparison between the Fourier Transform of the time domain spherical
harmonic coefficients anm(ν) and frequency domain spherical harmonic coefficients αnm(k) at mode
(a) 00, (b) 11 and (b) 31 with a white Gaussian noise.

5.2. Sound Pressure Comparison at a Point Of Interest

In this section, we reconstruct the sound field with the captured time domain spherical
harmonic coefficients at a point in the region of interest, and compare it with the desired
sound field at the same point of interest. We use a signal containing three frequency
components of 600 Hz, 850 Hz, and 1300 Hz. Figure 8 shows the desired sound pressure
and the reconstructed sound pressure calculated by anm(ν) at the point [−0.13, 0.07, 0.02] m
and [−0.03, 0.01, 0.1] m inside the region of interest in time domain. The desired sound field
has been manually delayed for 272 samples to match the group delay of the reconstructed
sound field, where the details of this delay will be shown in Section 5.5.
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Figure 8. Comparison between reconstructed sound pressure and desired sound pressure at the
point (a) (−0.13, 0.07, 0.02) m and (b) (−0.03, 0.01, 0.1) m.

We note here that when reconstructing the sound-field with (6), we face the problem
that at a point x = (r, θ, φ) where the radius r is very small, the filter pn(ν, r), whose
filter length dependents on rFs/c, is too short to perform efficient filtering. To overcome
this problem, we up-sample the obtained anm(ν) with a rate of RQ/r and construct cor-
responding pn(ν, r) with the same length of Lp = 2 ∗ RQFs/c + 1. We then down-sample
the resulting bnm(ν, r) with a rate of r/RQ to keep the sampling frequency consistent with
Fs. We can see that the obtained anm(ν) by our proposed method can successfully recon-
struct the sound pressure at a point inside the region of interest with a tolerable error.
This supports that our time domain coefficients contain certain spatial information of the
sound field that the sound pressure at an arbitrary point inside the region of interest can be
properly calculated with the measurements only being taken on the boundary of the region.

5.3. Sound Field Comparison over a Plane

To further evaluate our method on reconstructing sound field over space, we now
reconstruct the sound field by anm(ν) over a plane. We use a narrow band signal of
1200Hz here that the sound field in the region of interest is simple and clearly understood.
Although the sound field is reconstructed over time, a 2D plot can only show the result
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of one time index. Figure 9 shows the reconstructed sound field and the desired sound
field over the plane parallel to the x-y plane, with z = 0.02 m at t = 0.3 s. The 272 samples
group delay is manually fixed and will be discussed later in the next subsection.
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Figure 9. Comparison between (a) reconstructed sound field and (b) desired sound field at the
horizontal plane with a height of z = 0.02 m.

The white line in Figure 9 bounds the region of interest. We can see that the recon-
structed sound field inside this region in Figure 9a is roughly the same as the desired sound
field in Figure 9b. This confirms that the coefficients recorded by our proposed method are
able to capture the sound field inside the region of interest.

5.4. Sound Field Error Estimation over The Region

To evaluate the reconstructed sound field over time, we calculate the instantaneous
average squared spatial error over time, which is defined by

e(ν) , ∑Ω ‖Sr(x, ν)− Sd(x, ν)‖2

∑Ω
. (33)

Figure 10 shows how the error fluctuates with time in a tolerable range (no more than
5× 10−4) with a 900 Hz tone and a 1072 Hz tone. We have already observed in Figure 8
that the error of the sound pressure at a point of interest is proportional to the desired
sound pressure. We observe the same trend when we evaluate the error over the region that
the error increases when the sound field inside the region of interest is at peak amplitude.
We also observe in Figure 10 that the error with 1072 Hz signal is higher than 900 Hz
signal. This is due to that there is a Bessel zero of the zeroth order (j0(kr)) at 1072 Hz in
the proposed spatial ANC system. Hence, the amplitude of a00(ν) is suppressed by the
proposed method, leading to a higher error in reconstructing the sound field.
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Figure 10. Instantaneous region averaged squared spatial error of the proposed method for sound
field reconstruction over space at 900 Hz and 1072 Hz (Bessel zero).
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5.5. Processing Delay Analysis

In this section, we indicate the group delay of our method. Figure 11 shows the
desired sound pressure and the reconstructed sound pressure of a signal containing three
frequency components of [600, 850, 1300] Hz at the point [−0.13, 0.07, 0.02] m. We can
obtain from Figure 11 that the processing delay of the system is 1046− 774 = 272 samples,
which equals to L + dRQFs/ce. The L samples of the delay is from the group delay of
the proposed filter ρn(ν, RQ), while RQFs/c is the delay introducing by the Legendre
function within filter pn(ν, r) to reconstruct the sound pressure at a point with the time
domain spherical harmonic coefficients. Comparing to a conventional frequency domain
scenario with 512 frame-size and 75% of overlap Short Time Fourier transformation, which
refers to a 2048 samples of delay [43], our proposed method can significantly reduce the
processing delay.

Comparing to one of the start-of-art frequency domain spherical harmonic filter
designs [44], which states a 75 ms delay with a 900 sample long filter, our method can
achieve a 972 samples (20.25 ms with 48k Hz sampling frequency) delay with the same
length of filter. Meanwhile, as our method is processed in time domain, there is nothing to
stop us from doing a sample by sample signal processing instead of frame based signal
processing. This sample based processing considerably extends the application of spherical
harmonic analysis.
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Figure 11. Delay analysis between the desired signal and the reconstructed signal at a point inside
the region of interest.

6. Conclusions

In this paper, a time domain spherical harmonic analysis method for spatial sound
field recording over 3D space has been developed with the goal to minimize processing
delay. This favours the specific application of spatial ANC. With the proposed FIR filter
design, the time domain spherical harmonic coefficients can be obtained from the sound
pressure measurements of an open spherical microphone array. The filters are designed
based on the inverse of the Legendre function. Additionally, the filters are modified with
considerations of stability and practical implementation. We have provided simulation
results proving the validity of the proposed method.

We note that by obtaining the proposed time domain spherical harmonic coefficients,
the desired sound field can be efficiently captured and reconstructed over space. The pro-
posed time domain spherical harmonic coefficients can be related to the conventional
frequency domain coefficients, where both have the same location independent property.
The proposed method has the prominent advantage of lower delay since it is developed in
the time domain without the introduction of a Fourier transformation or inverse Fourier
transformation. Furthermore, the proposed time domain filtering method can support
sample based signal processing instead of frame based, which indicates that the frame
size can be one sample if necessary. As a result, we consider the proposed time domain
spherical harmonic analysis method to be highly suitable for a spatial ANC system where
accurate spatial recording with low delay is desired.
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The most important future work is practically introducing the proposed spatial record-
ing method to a spatial ANC system. Currently the proposed method utilizes open
spherical microphone arrays, where the difficulties of constructing this array limit the
potential applications. Hence, applying the proposed method to alternative optimised
open microphone arrays is another direction for future work.

Author Contributions: Conceptualization, H.S., T.D.A. and P.N.S.; Funding acquisition, T.D.A. and
P.N.S.; Investigation, H.S.; Methodology, H.S., T.D.A. and P.N.S.; Project administration, T.D.A.; Super-
vision, T.D.A. and P.N.S.; Validation, H.S.; Writing—original draft, H.S.; Writing—review and editing,
T.D.A. and P.N.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by Australian Research Council (ARC) grant DP180102375.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ANC Active noise control
3D Three-dimensional
IFFT Inverse fast fourier transform
FIR Finite impulse response
SNR Signal to noise ratio

Appendix A. Proof of Equation (9)

We have the Fourier relationship between the spherical Bessel function jn(kr) and the
Legendre function Pn(t) given by [45]∫ ∞

−∞
eikrt jn(kr)dk = πinPn(t). (A1)

With (A1), pn(t, r) in (8) can be express as

pn(t, r) =
c

in2πr

∫ ∞

−∞
jn(kr)e

itckr
r dkr

=

{ c
2r Pn(

tc
r ) − r

c ≤ t ≤ r
c

0 ±t > r
c

.
(A2)

This completes the prove of (9).
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