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Abstract: When the dynamic characteristics of a bridge structure are analyzed though Hilbert-
Huang transform (HHT), the noise contained in the bridge dynamic monitoring data may seriously
affect the performance of the first natural frequency identification. A time-frequency analysis
method that integrates wavelet threshold denoising and HHT is proposed to overcome this
deficiency. The denoising effect of the experimental analysis on the simulated noisy signals proves
the effectiveness of the proposed method. This method is used to perform denoising pre-processing
on the dynamic monitoring data of Sutong Bridge, and the denoised results of different methods
are compared and analyzed. Then, the best denoising data are selected as the input data of Hilbert
spectrum analysis to identify the structural first natural frequency of the bridge. The results indicate
that the wavelet-empirical mode decomposition (EMD) method effectively reduces the interference
of random noise and eliminates useless intrinsic modal function (IMF) components, and the
excellent properties of the signal evaluation index after denoising make the method suitable for
processing non-stationary signals with noise. When Hilbert spectrum analysis is applied to the
denoised data, the first natural frequency of the bridge structure can be identified clearly and is
consistent with the theoretical calculation. The proposed method can effectively determine the
natural vibration characteristics of the bridge structure.

Keywords: Hilbert-Huang transform (HHT); empirical mode decomposition (EMD); wavelet
threshold denoising; dynamic characteristic; first natural frequency

1. Introduction

Affected by ambient excitation and traffic loads, the complex structure of long-span bridges may
have internal and non-linear responses that influence the health of bridge structures. The analysis of
the dynamic characteristics of bridge structures under various conditions through the health
monitoring of large bridges is essential to the construction and safe operation of bridges. As an
important parameter reflecting the dynamic characteristics of bridge structures, the main vibration
frequency has become the focus of attention in bridge monitoring. Many studies have showed that
the modal frequencies of different structures and their changes reflect the health state of a bridge
structure [1-8]. The accelerometers, optical fibers, piezoelectric sensors, and intelligent materials
attached to important components of a bridge structure can monitor their local natural frequency
characteristics [1-9]. However, the displacement deformation characteristics are difficult to
determine [9-11]. Although total station (even robotic total station), 3D laser scanners, close-range
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photogrammetry equipment, and the Global Navigation Satellite System (GNSS) have been adopted
to monitor the deformation information of bridges, their respective shortcomings limit their wider
application [10-13]. Nakamura [14] used GNSS technology in 1998 to monitor the dynamic
deformation of a suspension bridge with a main span of 720 m and verified that the vibration
displacement and main frequency of the main beam under wind load were consistent with the results
of the wind tunnel experiments and finite element calculations. Given that GNSS monitoring can
provide long-term, continuous, high-frequency, and dynamic displacement information and extract
dynamic frequencies from it, GNSS technology has become an important means of bridge health
monitoring and is widely used in the safety monitoring of bridge structures [15-19].

GNSS dynamic observation data often contain considerable noise due to the interference of
external environmental factors, such as multipath effects, and noise-containing GNSS signals usually
exhibit nonlinearity and non-stationarity. Thus, exploring the abundant structural health information
hidden in GNSS monitoring signals is crucial. Domestic and foreign scholars have conducted studies
on non-stationary signal processing methods, such as short-time Fourier transform, wavelet
transform, and the Wigner-Ville distribution [20-24]. Although short-time Fourier and wavelet
transform can analyze the time-frequency characteristics of non-stationary noise-containing signals,
these methods on non-stationary signals may lead to the phenomenon of false components due to the
limitation imposed by the uncertainty principle. In addition, the selection of the Fourier window and
wavelet basis functions entails high subjectivity, which limits the utilization scope of the two methods
to some extent [25]. Hilbert-Huang transform (HHT) is an adaptive local time-frequency analysis
method proposed by Huang et al. in 1998; HHT is composed of empirical mode decomposition
(EMD) and the Hilbert transform (HT) [26]. The method carries out blind adaptive decomposition in
accordance with the signal itself and separates the non-stationary signal into several intrinsic mode
functions (IMF) according to the frequency content (from high to low frequency). On this basis, HT
is implemented on each IMF component to explore its spectral characteristics [26]. However, due to
the influence of noise and signal discontinuity, the mode-mixing problem often occurs when EMD is
applied to the decomposition of non-stationary noise-containing signals. This may result in
interference on the EMD decomposition results and the subsequent results of Hilbert spectrum
analysis; consequently, effective physical information may not be accurately determined [27,28]. Xu
et al. [29] improved the HHT method, applied it to the processing of the GNSS monitoring data of
Baishazhou Yangtze River Bridge in Wuhan, and verified the effectiveness and rationality of this
method when used for modal parameters” identification from non-stationary vibration signals.

With regard to the development of EMD-related algorithms, Wu et al. [30] proposed a noise-
assisted data analysis method called ensemble empirical mode decomposition (EEMD), which
suppresses the mode mixing problem of EMD by adding white noise to the initial data many times.
However, the performance of the EEMD algorithm depends largely on the noise amplitude and the
number of trials. The IMFs generated by EEMD become highly polluted and even yield pseudo-
components when noises with inappropriate amplitudes are added and the number of trials is
changed inappropriately [31]. Furthermore, the time required by EEMD-related algorithms may
increase when the number of trails is increased [32].

On the basis of the remarkable effect of noise when the HHT method is applied to non-stationary
data and in consideration of the excellent time-frequency localization properties in the field of
filtering and denoising, a time-frequency analysis method based on the combination of wavelet
threshold denoising and HHT is proposed in this study. The GNSS dynamic monitoring data of
Sutong Bridge are adopted as the study object, to identify the first natural frequency of the bridge
structure. The implementation process is presented.

The method implements noise reduction preprocessing on the dynamic monitoring data to
obtain reduced decomposition layers in the EMD decomposition process and decrease the marginal
effects on the quality of useful signal decomposition. The vibration component is reconstructed
according to the correlation of each component and subsequently serves as input data for Hilbert
spectral analysis to identify the first natural frequency of the bridge structure. The denoising effect of
the experimental analysis on simulated noisy signals proves the effectiveness of the proposed
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method. The application analysis results of real bridge monitoring data indicate that the proposed
method can highlight the dynamic characteristics of bridge structure vibration signals in noisy
environments and effectively identify the first natural frequency, which is conducive to the scientific
evaluation of the safety status of the bridge structure.

2. Basic Principle of HHT

Hilbert spectrum analysis is performed using HHT from the non-stationary signal. The HHT-
based time-frequency analysis method consists of two main steps: (1) multi-scale decomposition,
which is implemented on non-stationary signals using the EMD method and whose result is a series
of IMFs, and (2) HT, which is performed on each IMF component represented in the joint time-
frequency domain. Then, the Hilbert spectrum of the signal is acquired. The steps of EMD method
[26-28] are as follows:

1) The extreme points of non-stationary signal x(t) are fitted using the cubic spline function
mentioned in [26] to obtain the upper and lower envelopes of the signal. The mean is calculated as:

m (1) = (e () + e, (1)) /2. 1)

2) The remainder is calculated as:

(1) =x()—m(t). @)

Afterwards, whether £, () satisfies the definition of IMF is determined [26]. If the definition is

satisfied, then /,(¢) is the first IMF component and denoted as:

G (0)=h (). 3)

where /,, (¢) is the value of /,(¢) after the k" iteration. Otherwise, iterative calculation continues
until the condition mentioned in [26] is met.
3) ¢ (t) is separated from x(t) . Then, a differential signal with the high-frequency

components removed is obtained as follows:
() =x()=¢(0). @)

4) The preceding steps are repeated many times by taking X,(¢) (the latter counterpart is

recorded as X, (7)) as a new signal [26], and the individual IMF components are decomposed
sequentially. The decomposition process terminates when residual signal X is a monotonic
function. Then, x (l‘) is decomposed into n IMF components and one remainder through the above-

mentioned method.
x()=D c(t)+r,(0). )
i=1

The decomposition process shown above indicates that the EMD model separates the non-
stationary signal into several intrinsic mode functions, which are all stationary or stationary-trended

signals (i.e., it is an adaptive signal decomposition method). The obtained ¢;(¢) indicates that the
original signal is decomposed into components with different frequency scales. 7, (f) is the tendency

part, and the decomposition result is related only to the original signal.

HT is carried out on each IMF /,(¢) decomposed from Equation (2) as follows:

=~ 20 g ©®)

Ty > t—7
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The analytic signal is constructed as:
2(0) = h(0) + jh(0) = 4, (e’ )
The amplitude function is obtained as:

a,(t) =2 (1) +h2 (1) . ®)

Furthermore, the instantaneous frequency is described as:

1 1 do(t)
fi)=—a)=——x—"—=. 9)
2 27 dt
Therefore,
n . n il o d
x(t)=ReY a, (e =Re q, (t)e’I o (10)
i=1 =1
where Re is the real part of the original signal, and residual function 7,(f) can be ignored.
Equation (10) is the Hilbert spectrum, which is recorded as:
n [, (0)d
H(w,t)= ReZai (t)ejj o (11)
i=1
The Hilbert marginal spectrum is defined as:
T
hw) = jo H(w,t)dt. (12)

where T represents the total length of the signal, H (®,?) indicates that the signal amplitude varies
with the change in time and frequency within the entire frequency range, and /(@) shows that the
signal amplitude varies with the change in frequency. When the energy of a certain frequency appears
in H (a), t ) or h(a)) , the vibration wave of this frequency appears. Thus, the Hilbert marginal

spectrum can accurately reflect the actual frequency component of the signal. The flow of non-
stationary data processing using the HHT method is shown in Figure 1.

Inputlth(e Hilbert time spectrum,
signal y(») marginal spectrum

A
Set k=n-1,h(t)=y(®)

! ;

A A
Determine the Hilbert
local extreme Transform
point of A«(t)

!

EXtrE_:\Ct the | IMF1 | | TMF2 | | | | IMle
details A« X X y y

If it meets
the definition
of IMF?

Yes

Figure 1. Flowchart of the HHT algorithm.
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3. Time-Frequency Analysis Method Based on Wavelet Threshold Denoising and HHT

In real engineering applications, the dynamic observation data collected from the GNSS receiver
may contain many components aside from the vibration signals from the bridge structure itself, and
the data may also contain interference from environmental noise. Therefore, the signal-to-noise ratio
(SNR) is relatively low, which greatly affects the recognition accuracy of the main vibration
frequency. Only by filtering out noise effectively can useful information and reasonable and reliable
conclusions be obtained. For the EMD method, the modal aliasing phenomenon may occur due to
intermittent events and the interaction between signals, resulting in incomplete decomposition. The
number of decomposition layers from the EMD decomposition process and the margin effect on
signal analysis must be reduced via denoising pre-processing to improve the accuracy and timeliness
of signal feature extraction.

3.1. Wavelet Threshold Denoising

The wavelet threshold method is popular in signal denoising, whose basic idea is to denoise the
non-stationary signal as follows: Firstly, multi-scale decomposition is performed on the noise-
containing signal. Secondly, an appropriate threshold function is selected to threshold the wavelet
coefficients. Lastly, the inverse wavelet transform is used to reconstruct each signal and achieve
denoising. If signal f{t) is a square integrable function, then the wavelet transform of f{(t) is the inner

product of the signal and wavelet function ¥/, ():

@by = Fwa)=ldl: [r D @r. (13)

where a represents the scale factor, b represents the translation or displacement factor, a,b < R,

and the conjugate function of ¥ is denoted as ;17 Wavelet transform analyzes signal by scaling
and shifting the position of W/(f). Thus, the wavelet transform results possess good time- and

frequency- domain localities when the wavelet function is selected properly. Selecting the
appropriate threshold function in the practical application of wavelet threshold denoising is
extremely important because it minimizes the noise in noisy data and preserves the local
characteristics of the effective signal. Although hard and soft threshold denoising methods are widely
used in data filtering, they still have shortcomings. The works in [25-29] proved that the semi-
threshold function shown in Equation (14) may obtain good denoising results.

0 |d| <2,
T, (d)= sgn(d)wﬂg <|d|<c4, - (14)
d |d|>cCa,

where A, is the Bayesshrink thresholding, 4, =0, / Oy, and C is a constant that usually has a

value greater than one. The threshold function has continuity and high-order conductivity. It
overcomes the discontinuity and oscillation problems of the signal reconstructed from the hard
threshold function and addresses the deficiency that although the soft threshold function is
continuous, the denoising results need to be subtracted from the threshold; systematic deviation
exists when the coefficient exceeds the threshold.

3.2. Time-Frequency Analysis Method Combining Wavelet Threshold Denoising and HHT

Although the wavelet threshold method can eliminate white noise in the original signal, the
noise reduction preprocessing may not sufficiently eliminate the interference of noise in practical
applications due to the noise interference of many different properties. Therefore, the IMF correlation
must be adopted for appropriate post-processing, and it may improve the recognition accuracy of the
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main vibration frequency. The denoising method based on wavelet threshold denoising and EMD is
called the wavelet-EMD method, and its specific steps are as follows:

1) Wavelet threshold denoising: To eliminate the influence of noise, the original noise-containing
non-stationary signal X(¢) is decomposed by the wavelet threshold, and the signal is reconstructed
according to the energy of the decomposed frequency band. The denoising signal that eliminates
interference noise is then obtained. This denoising process via the wavelet threshold can decrease the
influence of high-frequency noise and the decomposition layers of EMD. Hence, it may provide a
relatively “clean” input signal for EMD.

2) Multi-scale EMD is carried out on the denoised signal X(#) processed by the wavelet

threshold denoising method to obtain the IMF components of the denoised signal, ¢,,c,,--,c,.

3) The correlation value of each IMF component is calculated to identify the vibration component
of the bridge structure.

For the decomposition results of large-scale building dynamic observation data, the high-
frequency parts of the IMF component are generally dominated by noise, and the low-frequency part
is dominated by the vibration signal. The investigation of the decomposition results of EMD indicates
that several components have little energy after decomposition and cannot represent the original
signal, which is not conducive to analyzing the spectral characteristics of the signal. To identify the
effective vibration component easily, the component correlation p©, according to the correlation

between each component and the original signal is defined to distinguish the effective IMF
component from the unwanted IMF component.

_ q(0)s@)
P = [ci(t)zs(l)z 1o :

where ¢,(t) represents the i IMF component of the signal and s,() represents the corresponding

(15)

residual signal. The residual signal corresponding to the it component is obtained as:
5;(1) = x(1) = ¢, (1). (16)

where X(f) represents the original signal. The definition implies that the correlation of the IMF
components reflects the correlation of each component with the original signal and can be used to
identify components with different physical meanings.

4) Reconstruction of the vibration component. The decomposed components are selected based
on the correlation value and actuquaal demand. The useless IMF component is eliminated, and the
effective IMF component is used for reconstruction to obtain the denoised vibration signal.

The flow of time-frequency analysis via the wavelet-EMD method is shown in Figure 2.

Selectlon of
Noise-containing wavelet .| Thresholding of
Signal x(?) threshold | wavelet coefficients
function

.

The denoised Rg??gzt;?gcgsln
vibration signal (denoised signal)
A

)
Recor?strug:tlon of Calculation Of Adaptive
vibration . .

the correlation decomposition
component -« - .

. L value of each on the denoised

selecting efficient IMF component signal using EMD

IMF components P 9 9

Figure 2. Flowchart of the wavelet-EMD denoising method.
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The quality of denoising performance is the key to evaluating the advantages and disadvantages
of a denoising algorithm in practical applications. Therefore, an objective denoising performance
evaluation index must be selected. Similar to the evaluation index of image denoising [33], the root
mean squared error (RMSE) and SNR are usually chosen for such an evaluation. RMSE and SNR are
expressed as follows:

RMSE = [ [(+(0) -y} / N (17)

SNR =10l0glY.*(0) / Y [(x(0) - ¥, (1)

where (i) isthe denoised signal, x(i) isthe original signal that serves as the standard signal, and
N is the length of the signal. RMSE reflects the proximity of the denoised signal to the original signal.
The smaller the value is, the more obvious the obtained filtering effect is. Meanwhile, SNR reflects
the ratio between the denoised and the noisy signal, and its value symbolism is contrary to that of
RMSE. With regard to the denoising the bridge GNSS dynamic observation data, the pre-processing
of dynamic data must retain the useful signal as much as possible whilst removing the noise to the
greatest extent. Thus, the two evaluation indicators must be considered together when evaluating the
denoising effect of non-stationary signals. That is, the RSME of the denoised and original signals and
the SNR of the filtered signal should meet the requirements.

3.3. Comparative Analysis of the Denoising Effect on Simulation Signals

Several commonly used standard analogue signals, such as the blocks, bumps, Doppler, and
heavy sine signal, were selected for a simulation analysis, which aimed to verify the performance of
the proposed denoising method and examine the effective suppression of the modal aliasing
phenomenon in the traditional EMD method. The denoising performance of the proposed method
was compared with that of wavelet denoising and EMD methods. The two evaluation indicators were
used to evaluate the denoising performance of the four methods quantitatively.

Classic simulation signals were generated by the Wnoise function in MATLAB 2014b. These
signals had the same sampling length and different SNR. Their waveforms (SNR were all 4 dB) are
shown in Figure 3.

=
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_10 [ [ L r L Id I [ L
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Heavy sine Doppler gy mps

Figure 3. Waveforms of the simulation signals containing noise.

Figures 4-6 indicate that all of the methods had certain filtering and denoising effects. However,
identifying which method performed better than the others was difficult. The RMSE and SNR of the
three methods are calculated and listed in Table 1.



Appl. Sci. 2020, 10, 3605 8 of 19

= 10 T T T T T T ! T
s 0 -
B 10 r r L r L r [ r [
0 200 400 600 800 1000 1200 1400 1600 1800 2000
z 10 T T T T T T T T T
g op——— e T e T T N
CE -10 [ [ L L L L L [ L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
5 2.0 T T T T T T ! T !
2 0
8 2.0 r r r r r r r r r
o 0 200 400 600 800 1000 1200 1400 1600 1800 2000
= 10 T T T T T T T T T
> 0 i
g .10 r r r r r r r r
= 0 200 400 600 800 1000 1200 1400 1600 1800 2000

-

Figure 4. Results of wavelet denoising (the original signal SNR: 4dB).

= 10 T T T T T T T T T
g 0 W
E - 10 I [ [ [ [ [ [ I [
0 200 400 600 800 1000 1200 1400 1600 1800 2000
'3 10 T T T T T T T T T
E O A N T e N I
A 10 I r [ r r r r r r
0 200 400 600 800 1000 1200 1400 1600 1800 2000
5 2.0 T T T T T T T T T
B 0P A AP W I el
5 20 [ r t r r r t r t
o 0 200 400 600 800 1000 1200 1400 1600 1800 2000
E 10 13 L L L L L L L L
% -10 [ r r i r r r [ r
T 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Figure 5. Results of EMD denoising (the original signal SNR: 4dB).
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Figure 6. Results of wavelet-EMD denoising (the original signal SNR: 4dB).

Table 1. Denoising results from the different methods.

.. Blocks signal Bumps signal Doppler signal Heavy signal
Denoisingmethods SR RMSE __SNR __ RMSE___SNR___ RMSE __SNR _ RMSE
Noisy signal 11.593 - 8.855 - 7.403 - 6.357 -

Wavelet denoising 20.035 0.855 15.872 0.455 15.896 0.354 14.156 0.558
EMD denoising 21.065 0.413 16.828 0.448 14.017 0.417 15.384 0.491
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Wavelet-EMD 21.428 0.362 18.147 0.362 20.548 0.252 19.285 0.328

Table 1 indicates that each method performed well to a certain degree in terms of the denoising
effect on the simulation signals. Overall, the denoising effect of the wavelet denoising method was
not as good as that of EMD and was inferior to that of wavelet-EMD. The wavelet-EMD method
performed well not only in the evaluation indicator SNR, but also in RMSE, thereby satisfying the
demands mentioned in Section 3.2.

To investigate this issue further, noisy signals with different SNRs (i.e., 6, 2 and —2dB) were
analyzed in the same manner as above. The wavelet functions for the comparative analysis used the
db8 function and the semi-soft threshold method. The waveforms of the denoising results from the
different methods were omitted to save space; only the denoising effect indicators after processing
are listed in Table 2.

Table 2. Denoising results from the different methods on signals with different SNR.

Signal .. Blocks signal Bumps signal Doppler signal Heavy signal
sNR  Denoisingmethods — o e R RMSE  SNR _ RMSE SNR _ RMSE
Noisy signal 15.573 - 15.467 - 13.403 - 12.357 -
6 dB Wavelet denoising 19.038 0.578 16.872 0.655 15.896 0.454 14.156 0.558
EMD denoising 21.372 0.316 17.538 0.888 16.017 0.316 15.354 0.491
Wavelet-EMD 20.819 0.376 18.147 0.369 17.643 0.202 16.069 0.343
Noisy signal 6.593 - 5.855 - 4.403 - 4.357 -
2 dB Wavelet denoising 11.168 0.555 10.364 0.462 9.764 0.409 9.156 0.306
EMD denoising 12.083 0.413 10.905 0.491 10.375 0.438 7.874 0.492
Wavelet-EMD 13.575 0.362 12.643 0.359 12.871 0.252 9.018 0.330
Noisy signal -2.451 - -3.855 - -4.313 - -5.357 -
2dB Wavelet denoising 5.035 0.455 6.872 0.563 6.831 0.684 3.876 0.678
EMD denoising 6.362 0.417 5.828 0.431 7.707 0.586 4.321 0.529
Wavelet-EMD 7.352 0.335 8.847 0.369 9.353 0.309 6.963 0.338

Table 2 together with Table 1 show that the denoising effect of the different methods was verified
again. Several conditions were inapplicable to the blocks signal. The denoising effect varied with the
SNR of the noisy signal. The wavelet-EMD method exhibited good adaptability, and its denoising
effect had little correlation with the noise intensity of the noisy signal. In particular, even when the
SNR of the noisy signal was relatively low, the denoising result from the wavelet-EMD method was
smooth, and the method could still denoise effectively. The superiority of the proposed algorithm
was proven again.

4. Application Analysis

Sutong Bridge, which is in the lower reaches of Yangtze River, is a steel box girder cable-stayed
bridge with double towers and double cables. Its main span is 1088 m long, and its main tower is
300.4 m high. Sutong Bridge ranked second amongst similar-type bridges in the world at the time of
its completion. Evaluating the stage line shape, force, and safety of the bridge structure and
determining the safety status of the bridge structure under environmental excitation conditions are
vital. An all-weather dynamic geometric monitoring system based on GNSS technology had been
established to monitor the geometry and structural state of towers and beams continuously and in
real-time, to analyze the construction status, and to avoid unfavorable construction conditions [16].
The GNSS monitoring points were set synchronously according to the needs of construction control
and monitoring during the installation process of the steel box girder. The overall layout of the
monitoring points is shown in Figure 7.
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Figure 7. Layout of the GNSS monitoring points on Sutong Bridge.

The experimental data were obtained from the monitoring of a point on Sutong Bridge under a
normal construction environment on May 1, 2007; the weather condition was good; the altitude cut-
off angle of the satellites was set to 15°; and the continuous observation in the dynamic observation
mode lasted for approximately 3 h. Given that the natural frequency of long-span bridges usually
falls within the range of 0-2 Hz, the monitoring sequence with the frequency range of 0-5 Hz could
be identified when the sampling frequency of the GPS receiver was set to 10 Hz according to the
Nyquist sampling theorem of signal processing. This identified range satisfied the requirements of
first natural frequency identification. The GNSS dynamic observation data included the vibration
signal of the bridge structure under environmental excitation and accidental errors, such as the
multipath effect, because of the influence of the construction and the natural environment. Therefore,
the rich bridge structure health information embedded in GNSS monitoring signals must be mined.
The observation sequences of the monitoring point in the x (lateral) and y (longitudinal) directions
lasting for 1 h were selected to identify the first natural frequency of the bridge structure using the
proposed method and to analyze the dynamic characteristics of the bridge structure. The obtained
coordinate sequence was transformed from a geodetic coordinate system into a bridge axis coordinate
system by using the same method as that in [11]. The time history curve of the averaged data from
the GNSS monitoring point is shown in Figure 8. The accuracy analysis of the observation sequence
in [16] indicated that the horizontal and vertical mean square errors in the entire time period were

m,=14.72 mm and m, =+3.26 mm. These values implied that no large gross errors existed

amongst the observation values, and the accuracy of the GNSS dynamic observation data was reliable
and suitable for dynamic frequency extraction.

1o | | — Time series of Xdirection
10— R T Time series of Ydirection
E 5t ‘ | e ,,,,,,,,,,,,,,,,
- o
) TL'N“” T TR
PRI
K] S S — LI A
-15

0 600 1200 1800 2400 3000 3600
Time/s

Figure 8. Time series diagram of the original observation data.

4.1. Comparative Analysis of the Denoised Results

Figure 8 shows the observation sequence of a monitoring point on the bridge in horizontal and
vertical directions, but the vibration characteristics of the bridge structure cannot be determined
visually. Under the interference of factors such as noise, the accuracy and effect of the identification
of the first natural frequency of the bridge structure may be influenced if the original observation
data were directly used for the dynamic characteristic analysis. Therefore, performing denoising pre-
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processing on the original observation sequence was necessary to improve the accuracy of identifying
the first natural frequency. In the experiment, the wavelet-EMD denoising method based on wavelet
threshold denoising and the EMD method were used to denoise the observation sequence in the
horizontal and vertical directions in Figure 8. The results were compared with those of hard, soft, and
semi-threshold wavelet denoising (the wavelet function selects the Sym wavelet, and the
decomposition layer selected four layers; the wavelet-EMD method used the semi-threshold
function). The results of the four denoising methods are shown in Figure 9, where H-Wavelet
represents hard threshold denoising, S-Wavelet represents soft threshold denoising, I-Wavelet
represents half threshold denoising, and WE represents wavelet-EMD denoising. Figure 9a shows
the denoising results in the horizontal direction obtained using the four methods, and Figure 9b
shows the denoising results in the vertical direction derived with the four methods.

12, 12 12 12
6 H-Wavelet S-Wavelet o H-Wavelet o S-Wavelet
6
0| 0 0 0|
£ £
£ 6 6 g 6 6
2 1 2 4 1
§ "% 1200 2400 3600'% 1200 2400 oo & 0 1200 2400 3600'% 1200 2400 3600
3 12 12 3 12 12,
& I-Wavele & I-Wavelef
a 6 6 % 6 6
a 0 2 9 0
-6 -6 -6 -6|
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Figure 9. Comparison of denoising results from four methods in the time domain: (a) horizontal
direction and (b) vertical direction. H-Wavelet represents hard threshold denoising, S-Wavelet
represents soft threshold denoising, I-Wavelet represents half threshold denoising, and WE
represents wavelet-EMD denoising

Figure 9 shows that the wavelet-EMD method obtained a large reduction in Gaussian white
noise in the horizontal and vertical directions compared with the three other methods. The signal
denoised by the wavelet-EMD method also filtered out most of the invalid IMF components, which
could highlight the original signal information. The SNR and RMSE of the denoised signal and the
linear correlation coefficient between the denoised signal and the original observation sequence were
calculated to evaluate the denoising performance of the four methods quantitatively. Table 3 shows
a comparison of the denoising performance of the four methods in the horizontal and vertical
directions.

Table 3. Results of the four denoising methods in the horizontal and vertical directions.

Denoising methods Horizontal direction Vertical direction
SNR RMSE (mm) R SNR RMSE (mm) R
H-Wavelet 8.434 3.609 0.938 8.704 0.689 0.928
S-Wavelet 8.856 3.019 0951 8.387 0.784 0.920
I-Wavelet 10.082 2.169 0.962 9.186 0.369 0.953
Wavelet-EMD 11.134 1.904 0.971 10.246 0.365 0.965

A comparative analysis of Figure 9 and Table 3 indicates that all four denoising methods played
a certain denoising role, but the denoising effects differed slightly in different directions. In the
comparison of the H-Wavelet and S-Wavelet methods, the three evaluation indexes indicated that the
H-Wavelet method had a better denoising effect in the horizontal direction, whereas the S-Wavelet
denoising method had a better denoising effect in the vertical direction. The wavelet-EMD method
exerted a stable denoising effect in both directions. The method had a lower RMSE of the denoised
signal and a higher SNR than the three methods, thus suppressing the noise effectively. This result
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proved that wavelet-EMD achieved the best denoising effect amongst the four methods. In addition,
the linear correlation coefficient between the denoised and original observed signals in Table 3
indicated that the correlation between the signal denoised by the H-Wavelet method and the original
signal was the weakest; the correlation between the denoised signal using the wavelet-EMD method
and the original signal was the strongest, which also reflected the good denoising performance of the
wavelet-EMD method. The spectral values of the signals in the horizontal and vertical observation
sequences denoised by the four methods were calculated to compare the methods’ denoising
performance further. The results are shown in Figure 10.
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Figure 10. Comparison of denoising results from the four methods in the frequency domain: (a)
horizontal direction and (b) vertical direction.

The comparative analysis of the spectral values of the denoised signals from the four methods
in Figure 10 (a) and (b) indicated that the main frequencies of the observed sequences filtered by the
four methods were prominent, which meant that these methods played a certain role in noise
inhibition. However, the noise spectrum power of the denoised signal via the H-Wavelet and S-
Wavelet methods was relatively large, and the frequency of the noise still filled the entire frequency
band. The noise spectrum power of the denoised signal via the I-Wavelet method was reduced to a
certain extent, and the noise spectrum power was the smallest in the case of the wavelet-EMD
method. Noise was suppressed well in the high-frequency band greater than 2 Hz, indicating that the
method effectively removed the interference of noise. Thus, the denoised data obtained by the
wavelet-EMD method served as the input data of the Hilbert spectrum analysis in this study to extract
the first natural frequency of the bridge structure.

4.2. First Natural Frequency Identification from the Denoised Results

Given that the HT method was sensitive to errors during spectral analysis, the accuracy of
Hilbert spectrum analysis could be improved to some extent if the quality of the original observation
data were improved by appropriate data preprocessing methods. Therefore, the “clean” monitoring
sequence after denoising that served as the input data was vital for the identification of the main
vibration frequency of the bridge structure, which was why noise reduction pre-processing of the
dynamic observation data was performed in Section 4.1. In this section, the Hilbert spectrum analysis
is performed on the observed data sequence after denoising, and the vibration frequencies of the
bridge structure in the horizontal and vertical directions are identified. Meanwhile, the identification
value in this study and the empirical calculation value must be compared to determine the health
and structural safety status of the bridge, which would verify the reliability and accuracy of the first
natural frequency identification result.

The EMD process was implemented on the original noise-containing observation sequence in
the horizontal direction of the bridge, then on the denoised signal via the wavelet-EMD method. The
purpose was to verify that the time-frequency analysis method based on wavelet threshold denoising
and HHT could effectively extract the first natural frequency of the bridge structure under a noisy
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environment and that the dynamic characteristic analysis was feasible. Each IMF and the remainder
in the time- and frequency-domains are shown in Figures 11 and 12 (S represents a noisy observation
sequence in the horizontal direction and S(W-E) represents the denoised signal using the Wavelet-
EMD method), and the correlation values of the respective IMF components were calculated
simultaneously and shown in Figures 13 and 14.
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Figure 11. Decomposition result of the noisy observation sequence in the horizontal direction using
EMD.
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Figure 13. Correlation values of respective IMF components from the noisy observation sequence.
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Figure 14. Correlation values of respective IMF components from the denoised signal.

A comparative analysis of Figures 11 and 13 indicates that the frequencies of IMF1 and IMF2
components obtained from the EMD method before denoising were distributed in a disorderly
manner, and the correlation value of the component was low. IMF1 and IMF2 were high-frequency
noise components according to the global and high distribution of the accidental error. Figure 12
shows that the high-frequency noise in the original observation sequence was suppressed effectively
via wavelet-EMD denoising, and the number of decomposition layers of EMD was decreased. Given
that the natural frequency of a long-span bridge structure is low, which is generally in the range of
0.1-1 Hz [29], the correlation values of the first three IMF components of the denoised signal were
high, and those of the last two IMF components were low (Figure 14). Therefore, invalid trend
components IMF4 and IMF5 may be removed from the denoised signal, and effective components
IMF1-IMF3 were selected for reconstruction to obtain the vibration component of the bridge
structure.

The Hilbert time spectrum and the marginal spectrum of the bridge structure were obtained via
Hilbert spectral transformation from the reconstructed vibration components and are shown in
Figures 15 and 16, respectively. The results proved that the Hilbert marginal spectrum could
accurately reflect the main frequency with the actual physical component. Similarly, multi-scale
decomposition was performed on the observation data of the bridge in the vertical direction denoised
by the wavelet-EMD method, and the correlation value was calculated. Then, the effective vibration
components were selected for reconstruction. Finally, the Hilbert time spectrum and marginal
spectrum of the bridge structure in the vertical direction were calculated and shown in Figures 17
and 18, respectively.
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Figures 15 and 17 show the time-frequency spectrum of the vibration component of the bridge
structure in the horizontal and vertical directions, respectively. A clear line existed between 0 and 0.2
Hz in each figure, and the maximum dominant frequencies were 0.153 and 0.139 Hz, respectively.
Figures 16 and 18 show the marginal spectrum of the vibration component of the bridge structure in
the horizontal and vertical directions, respectively. An amplitude extremum existed in each marginal
spectrum image, and 0.153 and 0.139 Hz corresponded to the two main frequency lines in Figures 15
and 17, respectively. Comparison and analysis of the four graphs indicated that the vibration
frequencies of the bridge in the horizontal and vertical directions were 0.153 and 0.139 Hz,
respectively.

However, the reliability and precision of the first natural frequency identification results based
on time-frequency analysis methods are often difficult to ensure in practical applications. The
parameter values identified in this study must be compared with those of other different methods.
The theoretical calculation value of the bending natural vibration frequency of Sutong Bridge in the
horizontal direction was 0.145 Hz according to the theoretical and empirical calculation methods of
the dynamic characteristics of long-span bridges [34-36], and the value of the vertical direction was
0.133 Hz. A comparison of the identification results with the theoretical calculations showed that the
relative errors of the bridge structure in horizontal and vertical directions were 5.52% and 4.67%,
respectively, and the statistical results are shown in Table 4.

Table 4. Horizontal and vertical frequencies of the bridge structure and its amplitude.

. . Measured frequency Theoretical . o .
Direction (H2) calculation (Hz) Relative error (%) Amplitude (mm)
Horizontal 0.153 0.145 5.52 4.50
Vertical 0.139 0.133 4.67 1.02

Table 4 shows that the amplitude of the main frequency of the bridge in the horizontal direction
(4.50 mm) was significantly larger than that in the longitudinal direction (1.02 mm), and the main
frequency in the vertical direction of the bridge was not as prominent as the horizontal one. This
result indicated that under environment excitation conditions, the loads, such as the construction
environment and wind, exerted a larger influence on the longitudinal direction of the bridge.
Similarly, analysis of the observation data from the monitoring points in other periods indicated that
the first natural frequency was the same in horizontal and vertical directions, except for a slight
difference in amplitude. This result indicated that the wavelet-EMD method was used to denoise the
original observation data firstly. Then, Hilbert spectrum analysis was performed on the denoised
data to obtain the accurate first natural frequency of the bridge structure. This scheme had high
identification accuracy and could be used for dynamic characteristic extraction of bridge structures.

5. Conclusions

With the GNSS dynamic monitoring data of Sutong Bridge as the study object and in
consideration of the low precision of first natural frequency identification due to noise interference
caused by HHT processing of non-stationary signals, this study proposed a time-frequency analysis
method based on the combination of wavelet threshold denoising and HHT. This method was
applied to the analysis of the dynamic characteristics of a bridge structure. The conclusions were as
follows:

1) The proposed wavelet-EMD method suppressed high-frequency noise effectively, decreased
the decomposition layers of EMD, and reduced the margin effects on the quality of effective signal
decomposition. The SNR and linear correlation coefficient of the denoised signal were the largest,
and RMSE was the smallest. The method had a stable denoising effect in the horizontal and vertical
directions.

2) The Hilbert spectrum analysis of the denoised data clearly reflected the spectral value of the
bridge structure, and the numerical results agreed well with the theoretical calculations. The relative
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errors of the natural frequency identification in the horizontal and vertical directions were 5.52% and
4.67%, respectively, which meant that the natural vibration characteristics of the bridge structure
were identified effectively.

Abbreviations
HHT Hilbert-Huang transform
EMD Empirical mode decomposition
wavelet-EMD  Wavelet-empirical mode decomposition
IMF Intrinsic modal component
GNSS Global Navigation Satellite System
HT Hilbert transform
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