
applied  
sciences

Article

Estimation of Wind Turbine Angular Velocity
Remotely Found on Video Mining and Convolutional
Neural Network

Mahdi Bahaghighat 1,∗ , Qin Xin 2,∗, Seyed Ahmad Motamedi 3,
Morteza Mohammadi Zanjireh 4 and Antoine Vacavant 5

1 Department of Electrical Engineering, Engineering Faculty, Raja University, Qazvin 95834, Iran
2 Faculty of Science and Technology, University of the Faroe Islands, Tórshavn FO 100, Faroe Islands
3 Electrical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic),

Tehran 15875-4413, Iran; motamedi@aut.ac.ir
4 Computer Engineering Department, Imam Khomeini International University (IKIU), Qazvin 21333, Iran;

Zanjireh@eng.ikiu.ac.ir
5 Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France;

antoine.vacavant@uca.fr
* Correspondence: m.bahaghighat@raja.ac.ir (M.B.); qinx@setur.fo (Q.X.)

Received: 2 March 2020; Accepted: 15 April 2020; Published: 19 May 2020
����������
�������

Abstract: Today, energy issues are more important than ever. Because of the importance of
environmental concerns, clean and renewable energies such as wind power have been most welcomed
globally, especially in developing countries. Worldwide development of these technologies leads
to the use of intelligent systems for monitoring and maintenance purposes. Besides, deep learning
as a new area of machine learning is sharply developing. Its strong performance in computer
vision problems has conducted us to provide a high accuracy intelligent machine vision system
based on deep learning to estimate the wind turbine angular velocity, remotely. This velocity
along with other information such as pitch angle and yaw angle can be used to estimate the wind
farm energy production. For this purpose, we have used SSD (Single Shot Multi-Box Detector) object
detection algorithm and some specific classification methods based on DenseNet, SqueezeNet, ResNet50,
and InceptionV3 models. The results indicate that the proposed system can estimate rotational speed
with about 99.05% accuracy.

Keywords: machine vision; deep learning; object detection; image classification; remote sensing;
wind turbine; WTCM; angular velocity

1. Introduction

Energy is one of the most basic requirements in human life and has become even more important
in our advanced world. In recent years, in terms of technology, economics, and environmental issues,
renewable energy sources have been considered more than ever. Endless energy resources such as
wind and solar energies are clean and can reduce environmental impacts [1,2]. Wind energy is one
of the most important renewable energy sources and many countries are predicted to increase wind
energy portion of their whole national energy supply to about twenty percent in the next decade [1–3].
Figure 1 shows wind farms development from 2017 to 2022 in the globe [2].

Compared to steam, hydro, and gas turbines used in traditional power plants, wind turbines
(WTs) are usually operated in harsher environments and, therefore, have relatively higher failure rates.
The faults in WTs can be classified into two categories: wear-out failures and temporary random faults.
Wear-out failures are long-term and permanent events. Repairing or replacing a failed component
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needs additional costs and results in a loss of energy production. If a failed component is not identified
and repaired or replaced in appropriate time, it may cause consequent failures of other components
and even the entire WT system [4]. In [5], the authors reviewed non-destructive testing (NDT) for
wind turbine inspections. It includes several techniques such as vision inspection [6], X-ray inspection,
infrared thermography, and ultrasonic scanning that are used in different industries, to monitor the
structures of materials, components or systems without causing damage to them.

Figure 1. Cumulative wind energy market forecast by region 2018-2022 (GW) [2].

Real-time energy monitoring and its precise estimation can be very helpful for energy management
and preventing unwanted failures in the power grid. In the emerging power networks, so-called smart
grids (SGs) [6–8], advanced communication network infrastructures [8–14] along with two-way power
flows provide appropriate conditions for precise services throughout the power generation chains.
The energy exchange always requires accurate estimation of produced energy by distributed energy
generators (DGs).

Condition monitoring (CM) is widely deployed in the wind farms to ensure WT normal operation
found on detecting failures and planning for operations and maintenance services [15]. It is a practical
tool massively employed for the early event detection of faults/failures in the wind turbine farms
in order to maximize productivity and minimize downtime of the system. In order to increase
the lifetime of the WT farm and reduce the maintenance cost, well accurate predictions of system
faults and failures are needed [6,7]. In particular, in future grids, these predictions can be available
based on advanced nondestructive testing (NDT) approaches such as intelligent Vision Inspection
(VI). Integration of Sensor Networks, IoT, and industrial cameras can provide advanced structures
to apply vision inspections (VI) for fault detection/diagnosis of wind turbine such as Mechanical
Deformations, Surface Defects, Overheated Components in rotor blades, nacelles, slip rings, yaw drives,
bearings, gearbox, generators, and transformers [6,7]. Based on our best knowledge, there are not
noticeable researches that are concentrated on the integration of these methods based on video mining.
In this work, we present a powerful method for measuring the rotational speed of wind turbines that
can be used along with other information to estimate the amount of energy produced by the wind
farm [16]. Providing infrastructure requirements for our proposed system such as camera networks
and communication devices, it is also possible to benefit more vision inspection tasks and NDTs,
like those mentioned above, in just one system.This article is structured as follows:
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Related works are indicated in Section 2. In Section 3, our proposed model is presented in detail.
Then in Section 4, simulation results are discussed in detail. Finally, Section 5 concludes the article and
proposes future work.

2. Related Works

In [5], they focused on the NDT techniques applicable to Wind Turbine Condition Monitoring
and Fault Diagnosis (CMFD) of wind turbine blades (WT-CMFD), but it did not discuss what blade
failure modes or how they should be diagnosed by the NDT techniques [4]. In [17] a non-destructive
testing was used to implement fault diagnosis for wind turbine blades. Ultrasonic scanning is one of
the most favorite NDT techniques used in various industries [18,19]. It can be accomplished to find
out whether observed damages are present in a WT blade structure [20,21]. Infrared thermography or
IRT is the way to actually measure a surface heat distribution. It can be used to inspect the operational
status of all blades based on measuring the temperature difference in the laminate and adhesive joints,
which are the most critical points in their structures [22,23]. X-rays are a type of radiation called
electromagnetic waves. It can penetrate into a wide range of materials [20,21,24–26]. It is possible
to reveal materials’ structural variations by X-ray images so these can be deployed to detect defects
and faults in wind turbine component structures. For example in [20], the authors demonstrated an
effective radiographic system to inspect WT blades [20]. The sonic waves tap test can be deployed to
detect a disbond between the main spar and the skin laminate for a blade [27]. The NDT techniques
are strong enough to explore incipient defects and fault propagation monitoring. However, most of
the time, these implementations are expensive. Furthermore, NDT approaches are usually offline
and intrusive techniques. It means that NDTs require stopping the current operations of the wind
turbine for further measurements and analysis [19]. In Figure 2, some signal processing and intelligent
methods are depicted for WT-CMFD.

Figure 2. Signal processing and intelligent methods for Wind Turbine Condition Monitoring and Fault
Diagnosis (WT-CMFD) and prognosis [19].

In [28], a research was introduced to smartly detect surface cracks of wind turbine blade based on
unmanned aerial vehicles (UAVs) video stream. They used Haar-like features to detect crack regions.
They trained an extended cascading classifier with some base models such as Support Vector Machine
(SVM), LogitBoost and Decision Tree (DT) to solve this detecting problem. A comparison was
performed to evaluate the success rate of their algorithm for both identification and localization
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of cracks [28]. In [29], they introduced a system for wind turbine inspection based on a multi-copter.
The project was defined as object recognition and tracking problems. They used the Hough line
transform to implement the feature extraction module for a wind turbine. The hub positioning was
handled by an algorithm designed to identify the three-point star similarity and was tracked using the
Kalman filter [29].

On the other side, the WT is not a perfect technology and it is flawed by its special biological
impact. For example, it may pose a serious threat to some bird species and also bats [30].
Bird migrations in particular seasons may increase the risk of collision with WTs. It is an unwanted
event that also can influence wind turbine operation and impose financial losses. Therefore, it is very
important to perform real-time Vision Inspection (VI) of WTs in wide areas to avoid any collision
thread [31].

The majority of wind turbines are embedded with gear and statistical reports show that damages
due to gearbox account for at least the 20% of their unavailability time [15]. In [15], they tried to
effectively address a novel and accurate method for wind turbine gearboxes fault detection based on
both peak values and RMS of vibration signals. They presented well in their study that the overall
accuracy of each CM technique depends on the physics of failure. Their studies suggested that a
technology that benefits multiple techniques is essential for a holistic and reliable health assessment of
wind turbine components [15].

In [32], an innovative investigation of jerk data extracted directly from vibration acceleration
(VA) data of the WT gearbox was presented. The vibration magnitude can be measured by either
displacement or velocity or acceleration. In [32], the vibration acceleration (VA) data were actually
gathered. In order to do test the gearbox, several vibration accelerometers had mounted on various
locations of the drive-train system without hub and blades to measure the VA. Found on the
extracted jerk data, two important analyses can be addressed: failure identification of components and
monitoring gearbox high-speed stage vibration. In their study, the gearbox high-speed stage failures
were spotted, but some root causes could be inferred based on the pattern of data due to several
specific sensors. In addition, it only discussed the monitoring model for the high-speed stage vibration
and not for monitoring the vibration excitement of other parts of the gearbox [32].

In [33], a novel algorithm to make diagnosis of drive-train bearings damages was introduced.
Their main idea was that vibrations can be measured at the wind turbine tower instead of at the gearbox
without interrupting the WT current operation. Their main focus was to evaluate the vibrations at
the tower rather than traditional approaches that do measure at the gearbox. The gearbox usually
is located in the nacelle, which makes it hardly accessible. This provides a simpler and low-cost
alternative solution. Besides, to have high-frequency and reliable rotor angular velocity measurements
this kind of information along with the gearbox geometry are crucial to getting a precise damage
location identification [33].

The vision inspection (VI), as an NDT approach, can be an alternative to measure vibration [34].
For example, in [35], a new active sensing methodology based on the visual inspection was introduced
to determine dynamic properties of a vibrating object. They deployed high-frame-rate stereo video to
observe the 3D vibration distribution of a monitored object under undisclosed excitations. Generally,
it was proved that such algorithms could detect vibration considering the quickness and the simplicity
without human interaction. The main point is that it neither affect nor interrupt the current operation
of the WTs. This could encourage the integration of vibration monitoring system in the maintenance
regimes of WT farms, to ensure minimal downtimes and higher reliability in the future farms.

3. Proposed Model

In this section, we present our proposed algorithm to estimate the turbine blade rotational velocity.
For this purpose, a wind turbine tower in a wind turbine farm is depicted in Figure 3. In this figure,
two special objects are distinguished: hub and blade. First and foremost, we should locate the
wind turbine tower (WTT). From a morphological point of view, the hub object is the best and most
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distinctive part of a WTT for localization. Therefore, the main step is the good estimation of its position
with the highest accuracy. After finding the hub in an input image, it is time to get a sub-image at the
predefined angle and distance pairs from its center. This sub-image is then analyzed by some proposed
binary classification algorithms to determine whether a blade object is presented or not. The described
process should be performed on several consecutive video frames, then the resulting data sets should
be analyzed for a given time window to estimate the angular velocity based on gathered information.

Figure 3. The hub and a part of one blade in a sample wind turbine tower image.

3.1. Hub Object Detection

There are various problems in computer vision and image processing [36–40]. Object detection,
as one of the most applicable problems in computer vision, is the process of categorizing especial
objects such as cars, pedestrian, bicycles, traffic signs, faces, etc. [36,37]. Similar to many computer
vision tasks, related algorithms can be divided into two categories: feature-based object detection [41]
and Deep learning (DL) object detection (OD) [42]. DL is considered a special type of machine learning
(ML). Both ML and DL commence with two training and test data with a model to probe the weights
that make the model best fit the data [36,43–45]. Nowadays, deep learning has experienced a sharp
adoption rate in wide applications [7,36,44]. It can be used in emerging traffic intelligent services,
self-driving cars, image retrieval, security, sports teams analysis to generate heat maps for players,
crowd video analysis, implementation of intelligent quality control (QC) systems [36,37,45,46] for
smart manufacturing, etc.

In [47], the authors presented an innovative algorithm called Single Shot Multi-Box Detector (SSD)
to implement object detection using a single deep neural network combining regional proposals and
feature extraction. It discretizes bounding boxes output space into a set of default boxes over different
aspect ratios and scales per feature map location. This set is used and applied to the feature maps.
Since they are computed by passing an image through an image classification network, the feature
extraction for the bounding boxes can be extracted in just a single step. Scores are generated for
each object category in every of the default bounding boxes. In order to better fit the ground truth
boxes, adjustment offsets are calculated for each box. In addition, this network merges all predictions
obtained from several feature maps with divers resolutions to handle large number of objects with
various sizes. In fact, SSD strongly benefits from multi-scale feature maps, which are generated
from a backbone network such as VGG-16 [48] to detect objects having various sizes. The SSD fully
eliminates proposal generation and subsequent pixel or feature resampling stages. It also encapsulates
all computations in just one network. As a result, it is easy to train SSD and easy to integrate into
other systems. Experimental outcomes on the ILSVRC , PASCAL VOC, and COCO datasets verify that
in comparison to methods that utilize some additional object proposal steps, the SSD not only has
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competitive accuracy but also has much lower runtime while providing a consistent framework for
training and inference. Figure 4 illustrates SSD architecture [47].

Figure 4. Single Shot Multi-Box Detector (SSD) architecture [47].

Now, SSD is one of the top object detection algorithms in both aspects, accuracy and speed [49].
In [49], how to use feature maps effectively to improve the performance of the conventional SSD was
proposed and analyzed.

In this work, we deploy the special version of SSD which is called SSD7. It is a smaller 7-layer
version that can be trained from scratch relatively quickly, even with an ordinary GPU, while it is
capable enough to solve less complex object detection tasks. The idea is just to build a low-complexity
network that is fast for our purposes. Table 1 shows some primary configuration of our trained model.

The first step of our algorithm is the hub detection. We propose to use SSD7 object detection
to localize a hub object in the input image. Figure 5 depicts some selected hubs and blades from
our dataset.

Figure 5. Some selected samples of hubs and blades images at original sizes from our dataset:
hubs (front view and back view), blades ( near zones and far zones).
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Table 1. Primary configurations for SSD7.

Parameter Values Description

H 300 Height of the input images

W 480 Width of the input images

iC 3 Number of color channels of the input images

n_classes 1 Number of positive classes

Scales [0.08, 0.16, 0.32, 0.64, 0.96] An explicit list of anchor box scaling factors.

AR(aspect ratios) [0.5, 1.0, 2.0] The list of aspect ratios for the anchor boxes

Selecting the Best Object

Usually, the object detection algorithm proposes several candidates, which should be filtered to
select the best one. We define D as a set denoting all information including scores (Si), positions(xi, yi)

and bounding box dimensions (hi, wi) for all detected candidates. Therefore, we can write D as below:

D = {Di|i = 1, 2, .., N; Di = (Si, xi, yi, hi, wi)} (1)

where N is the total number of objects detected for the current image. In order to suppress weak
objects, first we should sort D regarding to object scores to get Ds:

Ds = sort(D|Si, i = 1, 2, ..N) = {Dj|j = j∗1 , j∗2 , ..., j∗N} (2)

To obtain it, we define Equation (3):

Ik = j∗k = Argmax(Si|i = 1, 2, .., N, i /∈ J∗k−1) (3)

where j∗k is the argmax for k’th iteration, and we can write Eqation (4):

J∗0 = φ, J∗1 = {J∗0 , j∗1}, J∗2 = {J∗1 , j∗2}, ..., J∗N = {1, 2, .., N} (4)

Sometimes there are some detections even with high scores while they are false positives (FPs).
In order to reject these types, we apply dimensional filtering for objects in sorted detection set Ds.
According to Equation (5), the best object (Bo) can be found by selecting the lowest amount of k,
which satisfies both conditions hj∗k

> kh × H̄ and wj∗k
> kw × W̄ :

Bo = j∗k |hj∗k
> kh × H̄ && wj∗k

> kw × w̄

f or min(k), k ∈ {1, 2, .., N}
(5)

H̄ = 1/N ×
N

∑
i=1

hi (6)

W̄ = 1/N ×
N

∑
i=1

wi (7)
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3.2. Blade and Non-Blade Binary Classification

After locating the position of the hub in the input image, the positioning information
{Ŵh, Ĥh, x̂h, ŷh} is estimated with the confidence scores. We select a random point with distance
r and angle θ relative to the hub center (x̂h, ŷh). Distance is calculated based on Equations (8)–(10):

r =
√

x2
r + y2

r (8)

xr = x̂h + kx × Ŵh, kx > 0 (9)

yr = ŷ+ky × Ĥh, ky > 0 (10)

According to Equation (11), θ is supposed to have a random uniform distribution, and it will be
selected randomly between θ1 and θ2:

fθ(θ) =

{
1/(θ2− θ1) θ1 ≤ θ ≤ θ2
0 otherwise

(11)

Based on these equations the pair (r, θ) is estimated then a sub-image named Ih is masked
at this point. Now, for the resulting image Ih, with dimensions (Wi, Hi), the blade/non-blade
classification algorithm can be run. From the morphological point of view, a blade and consequently a
random part of it are directional objects. In traditional approaches, there are a lot of methods such
as Radon transform [37,45,50] and Gabor wavelet transform (GWT) [6,51–53] that can be used for
directional pattern analysis. In our previous work [6], we applied GWT to solve the issue. However,
these approaches have deficiencies and suffer from scale and illumination variations. Therefore, in this
work, we develop our classification model based on deep neural networks [54]. To tackle this issue,
we define a binary classification problem. We propose to deploy transfer learning and fulfill the task by
fine-tuning some strong classification models such as DenseNet, SqueezeNet, ResNet50, and InceptionV3
for our developed dataset including 10,000 images with high precision. This dataset includes 5000
blade images with diverse angles (0 to 360 degrees), different thicknesses and lengths, as well as 5000
non-blade images. Some blade samples are depicted in Figure 5. In Figure 6, histograms of both height
and width of the blade images in our dataset are shown.

As said before, some of the more powerful methods are used and compared in our work.

Figure 6. Distribution of height and width for 5000 blade sub-images in our dataset.



Appl. Sci. 2020, 10, 3544 9 of 21

3.2.1. ResNet

ResNet or Residual Network is a well-known classification algorithm based on residual learning.
In general, in a deep CNN, a lot of network layers are stacked together. The training network tries
to learn features as much as possible at the end of its layers in different levels (Low/Middle/High).
However, in this method of learning, learning some features is replaced by learning some residual.
Residual can be defined as subtraction of feature learned from the input of that layer. ResNet fulfill
the task by establishing shortcut connections from one layer to some other layers. It has been proved
that residual learning is easier than training simple deep convolutional neural networks [36] and also
the problem of degrading accuracy is resolved. During these recent years, in order to solve more
complex tasks and also to improve the accuracy of classification algorithms as much as possible, there
is a rigid trend to dive into deeper and deeper networks. However, as it goes deeper, training of the
neural network becomes difficult, and as a result, the accuracy starts saturating and then degrades.
Residual Learning tries to solve both these problems [55,56]. In this paper, we deploy ResNet50 which
is a 50 layers Residual Network to solve our classification problem.

3.2.2. DenseNet

Densely Connected Convolutional Network (DenseNet) was introduced in [57]. Outstanding
results on image classification tasks are obtained by DenseNet. The idea of DenseNet is based
on the observation that if each layer is directly connected to every other layer in a feed-forward
fashion then the network will be more accurate and easier to train [58]. Due to all improvements
applied on DenseNets architecture, it has one of the lowest error rates on CIFAR/SVHN datasets [59].
Although DenseNets have several compelling advantages, they alleviate the vanishing-gradient
problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number
of parameters; they struggle to make use of more and more memory. In comparison to Wide ResNet,
DenseNet is less memory/speed-efficient. Figure 7 shows the basic structure for classification based
on DenseNets.

Figure 7. Classification based on Densely Connected Convolutional Network (DenseNet) [57].

3.2.3. InceptionV3

One example of very deep convolutional networks is InceptionV3. It is a widely-used image
recognition model that has been shown to attain greater than 78.1% accuracy on the ImageNet
dataset [56,60]. The model is the culmination of many ideas developed by multiple researchers
over the years. The model itself is made up of symmetric and asymmetric building blocks, including
convolutions, average pooling, max pooling, concats, dropouts, and fully connected layers. Batch-norm
is used extensively throughout the model and applied to activation inputs. The loss is also computed
via Softmax [60].

3.2.4. SqueezeNet

The last classification approach that is used in our work is called SqueezeNet. It benefits from
a light architecture as well as a quantitative analysis. Comparing to AlexNet, SqueezeNet can be
three times faster and 500 times smaller for the same accuracy. It deploys point-wise filters and 1× 1
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filters as a bottleneck layer in its structure [55,61]. Although it is very popular and its application
is developing [62,63], its performance for solving our problem is disappointing and not comparable
to others.

3.3. Blade Angular Velocity Estimation Method

In the last section, our blade detection approach was presented. The object detection step leads to
blade score SB that can be used for decision making between presence or absence of a blade in the k’th
frame. The final decision can be simply made by comparing SB to Sthr. If it is greater than or equal
to Sthr, it will mean that a blade has been detected in the input image. According to Equation (12),
non-zero SB(k) indicates absolutely that a blade is detected for frame index k.

SB(k) =

{
Sthr Sthr ≤ SB
0 otherwise

(12)

The procedure must be recalled for all consecutive image frames in the observation time, Tw. As a
result, all needed information for the estimation angular velocity is gathered according to Equation (13):

ST
Bw = {SB(i)|i = 1, 2, .., N}, N = Tw fs (13)

where in the last equation fS would be the frame rate of the input video in frames per second (fps).
Finally, the velocity of blade, VB, can be calculated by our proposed formula:

VB = 2π(Wi fs)
−160(RPM) (14)

where Wi is the dominant frequency of ST
Bw sequence.

4. Experimental Results

In this study, simulation results have been obtained by means of Python programming language
and TensorFlow. We deployed the NVIDIA GTX 1050 GPU with a Core i7 CPU and 16 GB DDR4 RAM
memory. As indicated earlier, we conducted our experiments using images which were captured by us
in a real wind farm.

4.1. Dataset

In our research, two types of dataset have been developed. The first type includes still images
(snapshot images), and the second one includes the video dataset. We developed two snapshot image
datasets named DB1 and DB2 along with the video dataset named DB3. DB1 includes 6000 images that
have been captured by us from different angles, distances, and backgrounds in a real wind turbine farm.
In this wind turbine farm, more than 300 WTTs exist, and on average, 20 images/WTT are available
in DB1. This dataset is used for the object detection problem (Hub detection). In addition, DB2 includes
about 10,000 snapshot images uniformly distributed in two different classes (Blade/Non-Blade) for
the second problem (Binary classification). DB2 includes 5000 blade images with diverse angles (0 to
360 degrees), different thicknesses and lengths, as well as 5000 non-blade images (please see Figure 5).
For velocity estimation, we have deployed our third dataset DB3 including 4 video files. These four
videos were captured with 30 frames per second (fps) with different distances and angles from a
shared object (a wind tower target), synchronously. Each of these includes 3600 images with 120 s
time duration. It is worth mentioning that we measured the ground truth velocity (reference rotational
speed) in a time window about 120 s (time duration of each video file) using Long Range Finder Sensor
UART(TTL) with USB RB605B 703A U81. The resolution of our B605B laser distance meter sensor was
1mm, with measuring range from 0.03 to 100 meters for constant conditions.
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4.2. Hub Object Detection

In this section, we intend to examine the result of applying the SSD7 algorithm to find the hub
object in an input image. For the learning process, the bounding box ground truth information for all
images should be created and applied to the algorithm. To handle that, we use the labelImg software [64]
to label our image dataset. For this purpose, first we created a data set including 10,000 images;
then, for convenience, we randomly sub-sampled it to have just 1000 images. Then, we augmented
all these images by labelImg to feed bounding box information to SSD7. Table 2 shows the results
of the implementation of the SSD7 algorithm on this reduced dataset. In this experiment, in order
to reduce the time overhead, the dimensions of the input images from the data are reduced to the
values (300, 480), then the algorithm is run for confidence threshold = 0.3 and Intersection Over Union
threshold (IoU) = 0.5. In the literature, there are some measurement metrics such as True Positive (TP),
True Negative (TN), False negative (FN), and False Positive (FP) that are widely used for object detection
problems [65,66]. TP indicates the total number of samples that are classified correctly. FN means the
number of samples belonging to the class set but incorrectly classified. TN represents the number of
correctly classified samples not belonging to the class set, and FP refers to the number of unclassified
samples that have been misclassified. Based on defined parameters, accuracy can be calculated using
Equation(15) [66]:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (15)

In Table 2, the results for Accuracy (ACC), and confidence mean (Conf or mAP (mean Average
Precision)) are obtained in a state where the Non-Max Suppression (NMS) [67] is also implemented.
Now, to determine the best configuration, we change the epoch value from 20 to 600. For epoch = 20,
we have some false negatives and a lot of false positives, while it increases to 60, the FPs are significantly
reduced, but the FN is very high. While the epoch is equal to 200, we have no FN with a few FPs.
After that, with the epoch incerement from 200 to 600, the results are not improved (the validation
loss and training loss for epoch = 600 are shown in Figure 8). As we can see in Table 2, the best
accuracy with the highest confidence mean is obtained for the epoch = 200 where ACC = 99.5% and
Con f = 0.6699 are satisfied. Hereafter, we consider the epoch value to be 200.

Table 2. Results of proposed hub object detection based on SSD7. Input image: [(h, w) = (300, 480)].

Epochs Val loss ACC (%) Conf (mAP)

20 3.5099 49.5 0.5119
60 2.5054 82.5 0.4949
200 1.9740 99.5 0.6699
400 2.1127 97.1 0.5368
600 2.2741 95.5 0.5170

Now, the impacts of two important parameters including con f idence thresh and IoU on accuracy
should be evaluated. For this purpose, these two parameters are changed according to Table 3, and at
each stage, the run time or Prediction Time per Image (PTPI) is calculated with ACC. Obtained results
show that for a high confidence level, the FN value will be very high (FN = 156 and 160 for confidence
thresh = 0.7 with different IoUs). For the con f idence thresh = 0.7, the ACC is obtained at 22% and 20%
when IoU = 0.50 and 0.35, respectively. In comparison, for con f idence thresh = 0.3, the accuracy is
increased sharply to 99.5%. Further reduction of the con f idence thresh from 0.3 to 0.22 can lead to
an increment on FP and consequently a decrease of ACC. In addition, the average run time for hub
detection is estimated at about 0.01594 s.
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Table 3. Evaluation of confidence threshold and Intersection Over Union threshold (IoU) impacts on
Accuracy (ACC), Prediction Time per Image (PTPI), and Conf. Input image: [(h, w) = (300, 480)].

Confidence Threshold IoU ACC (%) PTPI(sec) Conf(mAP)

0.22 0.50 99.0 0.01450 0.5561
0.22 0.35 99.0 0.01316 0.5664
0.30 0.50 99.5 0.01500 0.6699
0.38 0.50 89.5 0.01599 0.5734
0.51 0.35 64.5 0.01453 0.6466
0.51 0.50 67.5 0.01479 0.6668
0.70 0.50 22.0 0.02250 0.7435
0.70 0.35 20.0 0.01710 0.7546

Figure 8. Comparing validation loss and training loss for SSD7 object detection (epoch = 600).

In Figure 9, the effect of the changes of two parameters on ACC is well illustrated. The results
indicate that the higher the con f idence thresh, the lower the accuracy while the effect of IoU variation
on accuracy is not very noticeable. Based on achieved results, we set the con f idence thresh and IoU
values to be 0.3 and 0.50, respectively, in our work.

Figure 9. Evaluation of confidence threshold and IoU impacts on the accuracy.

In Figure 10, the results of hub object detection based on the SSD7 algorithm with con f idence
thresh = 0.21 are shown for two sample images from our dataset. In these experiments, for testing,
the NMS algorithm is not applied, so several hub objects are identified and located for just an image.
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In this figure, all objects are shown with their confidence factors, and there are neither FN nor FP.
Results indicate that almost all estimated bounding boxes are well matched to hub positions.
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Figure 10. Detection of the hub with different accuracies without NMS (Green box: Ground truth box).
(a) A near-field sample (b) A far-field sample.

In Figure 11, another example is shown where some false positives can be seen for new
sample images. False positives can be either due to the low accuracy of the algorithm or the lower
threshold for confidence. Therefore, it can be expected that with increasing con f idence thresh or
improving accuracy, this problem will be solved. In addition, it is worthy to mention that in our
simulation, in most cases, false positives exist along with the true detection. Actually, this means
that the main object can easily be discriminated by filtering false estimations. If we add NMS to the
algorithm, we can filter all estimated bounding boxes with low confidence scores. For example, in
Figure 11a the bearing box bonding with con f idence = 0.52 and in Figure 11b the bounding box with a
con f idence = 0.44 can accurately extract the actual position of the hub object.
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Finally, in Figure 12, new scenarios with false negatives are displayed for two low-quality images.
In Figure 12a,c, because of the low image quality and also the high amount of con f idence thresh,
our proposed object detection algorithm fails to detect the hub. To solve the issue, the threshold value
is reduced and adjusted to 0.3. New results in Figure 12b,d clearly indicate that true positions can be
estimated even for low-quality images. It is worth mentioning that the results of recent figures are
illustrated after the NMS.
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(a)

(b)

Figure 11. False positive detection with epoch=10, con f idence thresh=0.20, IoU=0.50 (without NMS)Figure 11. False positive detection without NMS (epoch = 10, con f idence thresh = 0.20, IoU = 0.50)
(a) The first sample (b) The second sample.
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Figure 12. Solving false negative detection problem. (a,c) False negatives with epoch=10, con f idence
thresh = 0.70, IoU = 0.50. (b,d) True positives with epoch = 10, con f idence thresh = 0.3, IoU = 0.50
(with NMS).

4.3. Blade/Non-Blade Classification

After elaborating the proposed hub object detection, we are going to evaluate the proposed
algorithm for binary categorization to identify a blade. For this purpose, as mentioned in Section 2,
we use powerful pre-trained models such as DenseNet, SqueezeNet, ResNet50, and InceptionV3. In this
work, we removed the last layer of mentioned models and added a fully connected layer with two
outputs to solve our binary classification problem. Our first experiment is conducted based on the
ReNet50 model with 10 epochs fed by 1000 images with dimension of 32× 32 pixels. The achieved
results for both accuracy and loss curves for train and test phases are shown in Figure 13. The results
indicate that ResNet50 accuracy is more than 90% after the 10th iteration.

Then, for a more complete review of the effect of various parameters on our classification accuracy,
ten experiments have been performed. In these experiments, the variable parameters are: database
size (1000 and 10, 000), image size (32× 32, 64× 64, and 480× 480), epochs (10, 20, 50, and 100) for four
selected models. The implementation results are presented in Table 4. It indicates that after the tenth
epoch, the DenseNet fine-tuned model, which is trained on our dataset with 10,000 images can achieve
the highest validation accuracy of about 0.9912 among all scenarios.
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Figure 13. Accuracy and loss graphs for ResNet50 for Blade/Non-Blade classification
(image size=32× 32, database size=1000, epoch=10)

Table 4. Comparison of four pertained classification approaches for Blade and Non-Blade binary
classification problem

Model name Database size Image size Epochs val_loss val_acc
DenseNet 10000 (32,32) 10 0.1085 0.9912
DenseNet 1000 (32,32) 10 0.7901 0.9421

SqueezeNet 1000 (32,32) 10 0.6931 0.5000
SqueezeNet 1000 (32,32) 20 0.6931 0.5030
SqueezeNet 1000 (32,32) 100 0.6931 0.5000
SqueezeNet 1000 (64,64) 10 0.6931 0.4970
SqueezeNet 1000 (480,480) 10 0.6931 0.5020

ResNet50 1000 (32,32) 10 0.2938 0.9268
InceptionV3 1000 (32,32) 10 0.1757 0.9573
InceptionV3 1000 (32,32) 100 0.2599 0.9360
InceptionV3 1000 (32,32) 50 0.1987 0.9543

Figure 13. Accuracy and loss graphs for ResNet50 for Blade/Non-Blade classification. (image size
= 32× 32, database size = 1000, epoch = 10). (a) The loss (b) The accuracy.

Table 4. Comparison of four pertained classification approaches for Blade and Non-Blade binary
classification problem.

Model Name Database Size Image Size Epochs val_loss val_acc

DenseNet 10,000 (32, 32) 10 0.1085 0.9912
DenseNet 1000 (32, 32) 10 0.7901 0.9421

SqueezeNet 1000 (32, 32) 10 0.6931 0.5000
SqueezeNet 1000 (32,32) 20 0.6931 0.5030
SqueezeNet 1000 (32, 32) 100 0.6931 0.5000
SqueezeNet 1000 (64, 64) 10 0.6931 0.4970
SqueezeNet 1000 (480, 480) 10 0.6931 0.5020

ResNet50 1000 (32, 32) 10 0.2938 0.9268
InceptionV3 1000 (32, 32) 10 0.1757 0.9573
InceptionV3 1000 (32, 32) 100 0.2599 0.9360
InceptionV3 1000 (32, 32) 50 0.1987 0.9543

4.4. Angular Velocity Estimation

We used our sample videos recorded in DB3, to evaluate the average accuracy of the angular
velocity estimation for the proposed system. Our algorithm is loaded by all these 3600 images/video
but for better visualization, obtained results for just 200 consecutive images are plotted in Figure 14.
The achieved results for different models with different precision (0.99, 0.93, 0.78, and 0.60) are
compared in this figure. In addition, in Figure 14b, the DenseNet implementation result with accuracy
= 99% is given. As we can see in this figure, our proposed method is able to extract a mono tone
and soft signal that precisely indicate the frequency of the wind turbine rotation. Table 5 makes a
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comparison between estimated wind turbine velocity (V̂B) and true one (VB) (in RPM) for our proposed
model and [6]. It clearly indicates our new algorithm can achieve about 99.05% accuracy.
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Figure 14. Final results of the wind turbine velocity estimation. (a) Comparison of different models with
different accuracies. (b) Accurate estimation of the velocity based on DenseNet with accuracy = 99%.

Table 5. Comparison of the average accuracy of the velocity estimation algorithm found on DB3.

Method VB V̂B Average Accuracy

Pearson’s correlation coefficient + Gabor Wavelet Transform [6] 68.25 50 73.26%
Proposed (Densnet + SSD7) 68.25 68.22 99.05%

5. Conclusions and Future Work

Nowadays, the generation of electric power from natural resources such as wind and solar is
of great salience due to their clean and renewable characteristics. Smart grid technology has been
targeted to respond efficiently to the increasing electric power demand on these resources. In this
study, we introduced our novel system to estimate the angular velocity of the WT based on computer
vision, deep learning, and video mining. The Single Shot MultiBox Detector (SSD) as our proposed
object detection algorithm should be run to locate the hub position. We deployed the special version
of SSD, which is called SSD7. It is a smaller 7-layer version that had been trained from scratch in
our implementations. The simulation results showed that it was capable enough to solve the object
detection tasks. As a result, the accuracy of about 99.5% achieved during the run time/Prediction
Time per Image (PTPI) was just 0.01500 s. Then, at the appropriate angle and distance from the
hub center, our proposed binary classification algorithms such as DenseNet, SqueezeNet, ResNet50,
and InceptionV3 should be deployed to distinguish between a blade and non-blade object. The results
obtained indicate that DenseNet (Densely Connected Convolutional Networks) fine-tuned model,
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which was trained on our dataset with 10,000 images, can achieve the highest validation accuracy,
about 99.12%, among all other classifiers. After executing the classification algorithm, the blade
probability is recorded for the current frame. Then, this process is repeated for all frames in a specified
time window, and it can be used to estimate the angular speed. The comparison between our proposed
model and [6] indicates that our new algorithm can achieve about 99.05% accuracy. Besides, The run
time (Prediction Time per Image (PTPI)) for SSD7 algorithm varied from 13 ms to 22 ms depending
on different conditions. The prediction time for the highest accuracy (confidence threshold = 0.30,
IoU = 0.50, ACC = 99.5%) is about 15 ms. In our study, the prediction time of the DenseNet was also
about 16 ms. Considering the video frame rate to be 30 fps, it means that inter-frame time spacing is
about 1/30 = 0.0334 s (33.4 ms). As a result, it needs 15 ms+16 ms = 31 ms for the processing time,
and it is well below the 33.4 ms as the inter-frame time spacing. This shows that our approach is
definitely practical for real world applications.

Demand response management systems need to have accurate predictions of energy power
continuously. The proposed angular velocity approach along with other information such as
pitch angle and yaw angle can be used further to estimate the wind farm energy production.
Besides, historical figures of wind power production are not accessible when a new farm is going to
generate power. Wind power is a function of weather variables, and it is likely that weather patterns
of the new station are similar to some existing operational wind farms. It will thus be interesting to
investigate how the forecast/prediction models of the existing wind farms can be adapted to generate
a prediction model for new stations. This intelligent allocation based on our predicted information may
lead to saving money in new projects, which would be the interesting research to do in future work.

The yaw system of wind turbines is the component responsible for the orientation of the wind.
Yaw mechanism is used to turn the wind turbine rotor against the wind. We are going to add the ability
to our algorithm to detect the wind turbine’s yaw angle. By comparing the estimated velocity and yaw
angle for several towers within a farm simultaneously, precise adjustment of the wind turbine can be
applied in order to maximize the wind farm electric power production. Furthermore, computer vision
based yaw angle measurement would make redundancy when system faces nacelle faults.
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