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Abstract: The processing of facial images is an important task, because it is required for a large
number of real-world applications. As deep-learning models evolve, they require a huge number
of images for training. In reality, however, the number of images available is limited. Generative
adversarial networks (GANs) have thus been utilized for database augmentation, but they suffer
from unstable training, low visual quality, and a lack of diversity. In this paper, we propose an
auto-encoder-based GAN with an enhanced network structure and training scheme for Database
(DB) augmentation and image synthesis. Our generator and decoder are divided into two separate
modules that each take input vectors for low-level and high-level features; these input vectors affect all
layers within the generator and decoder. The effectiveness of the proposed method is demonstrated
by comparing it with baseline methods. In addition, we introduce a new scheme that can combine
two existing images without the need for extra networks based on the auto-encoder structure of the
discriminator in our model. We add a novel double-constraint loss to make the encoded latent vectors
equal to the input vectors.

Keywords: generative models; GAN (Generative adversarial networks); facial image; generation;
database augmentation; synthesis

1. Introduction

In the last few years, deep neural networks (DNNs) have been successfully applied to a range
of computer vision tasks, including classification [1–3], detection [4–6], segmentation [7,8], and
information fusion [9,10]. However, because data augmentation is essential for the effective training of
DNNs, and because there are numerous image-to-image translation and information fusion problems
that need to be overcome, deep generative models have received significant attention. In this field,
research on facial datasets has been particularly active, because they have a large number of real-world
applications, such as facial classification and the opening of closed eyes in photos. Despite this increase
in research interest, implementing generative models remains challenging because the process required
to generate realistic images from low-level to high-level information is complex.

Since Goodfellow et al. [11] first proposed the generative adversarial network (GAN), which is
based on adversarial learning between two networks, a generator and a discriminator, many GAN
models have demonstrated excellent performance in terms of their photo-realistic output. The key
principle underlying the use of a GAN is to ensure that the probability distribution of the generated
data is close to that of the real data via the adversarial training of the generator and discriminator.
In the early stages of training, the generator may generate poor-quality images; thus, the discriminator
can easily distinguish between real and fake samples. As the generator learns more during training,
its output becomes more photo-realistic and the discriminator finds it more difficult to distinguish
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between real and fake samples. When the training reaches convergence, the generator can generate
realistic but fake images. However, many GAN models suffer from instability during the training
process, leading to problems such as mode collapse and the lack of diversity.

BEGAN [12] is an auto-encoder-based GAN model with an auto-encoder architecture as the
discriminator. Unlike many existing GAN models [11,13,14] that attempt to directly match the real
data distribution, this model seeks to match the loss distribution of the auto-encoder. The BEGAN
developers introduced an equilibrium hyperparameter to maintain the balance between the generator
and the discriminator. It makes it possible for a user to control the visual quality and diversity of
an image by changing the parameters. However, it suffers from the trade-off between diversity and
quality, is subject to mode collapse, and occasionally fails to generate high-quality images during the
training phase.

StyleGAN [15] can generate photo-realistic output images using a style-based generator that
considers the scale-specific characteristics of the generated image. Each layer in the StyleGAN generator
consists of several convolutional layers and adaptive instance normalization (AdaIN) [16] layers.
The AdaIN layers utilize latent vectors as input and then utilize their information with an affine
transform. In addition, StyleGAN can perform style mixing, in which an image generated using two
different latent vectors has both characteristics. However, StyleGAN generates an image from noise;
thus, it cannot mix two existing images; i.e., it does not take existing images as input. Synthesizing two
existing images using the model requires the training of an additional network that can encode real
images into the latent space of StyleGAN.

Motivated by StyleGAN, we propose a generator that takes two latent vectors as input based on
the scale-specific role of each layer in the generator. The front layers are involved in the creation of
high-level features such as the overall shape of the face, while the back layers are involved in lower-level
features such as hair color and the microstructure. Our discriminator is trained to reconstruct only real
images, and its decoder has the same structure as the generator. This divided structure of the generator
and decoder that utilize different latent vectors to assign scale-specific roles in image generation
improves the visual quality of the image.

We also adopt a training technique that differs from that used in the conventional BEGAN model.
The instability of GANs usually occurs when generating high-resolution images; thus, we adopt the
progressive growth concept for the generator and discriminator introduced in [17]. The size of a
generated image at the beginning of the training process is small, but it becomes twice the size after
several epochs. This training scheme reduces instability and consequently improves the visual quality
of the output images.

In addition to generating images using random vectors, we also propose a method to synthesize
two existing images by exploiting the auto-encoder structure of our discriminator. The encoder of
discriminator learns to encode both real and fake samples during the training process; thus, it does
not need to train an additional model. However, in order for the decoder or generator to combine
real images, the encoded latent space of the real images should be similar to that of the fake images.
To guarantee this, we propose the novel double-constraint loss function, which constrains the latent
vectors of encoded real images. Therefore, the images are combined when the decoder decodes an
image using the latent vectors obtained from the different images in an unsupervised manner.

This paper is structured as follows. Section 2 presents the theoretical background and provides a
detailed description of the proposed model. We then demonstrate the superiority of our model by
qualitatively and quantitatively comparing it to conventional models [12,18] in Section 3. Concluding
remarks are presented in Section 4.

2. Proposed Method

This section describes our proposed model in detail by first introducing the BEGAN baseline
model with a brief explanation of the auto-encoder-based GAN and then outlining the structure of our
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proposed model and its training strategy. Subsequently, we introduce a method for combining facial
images using our model.

2.1. BEGAN Baseline Model

Conventional GANs have a generator and a discriminator; the generator creates fake images,
whereas the discriminator receives both real and fake images as input and attempts to distinguish
them. The goal of a GAN is to match the probability distribution of the fake samples generated by
the generator to that of the real samples. Therefore, the output of the discriminator is essentially a
probability score, and this is fed into the loss function. However, BEGAN has a discriminator with an
auto-encoder structure, meaning that the output of the discriminator is an image of the same size as
the input.

Auto-encoder-based GAN models can be optimized by reducing the Wasserstein distance
between the reconstruction loss distributions of the real and fake images rather than their sample
distributions directly [12,19]. The discriminator attempts to reconstruct only real images, but the
generator attempts to produce an image that can be accurately reconstructed by the discriminator.
Therefore, the reconstruction performance of the discriminator is crucial for the generator to be
able to produce high-quality output. If the decoder within the discriminator produces poor-quality
images when reconstructing the input, the generator could easily fool the discriminator with those
poor-quality images.

Berthelot et al. [12] introduced the hyperparameter γ ∈ [0, 1] to maintain the balance between
generator and discriminator loss, defined as

γ =
E [L(G(z))]
E [L(x)]

, (1)

where L(·) denotes the L1 or L2 reconstruction error from the auto-encoder; i.e., the discriminator. E(·)
denotes expectation operator. G(z) denotes a fake image from the generator and x denotes a real image.
This ratio (γ) enables users to control the balance between the visual quality and diversity of the output
images. If γ is low, the model focuses more on reducing the reconstruction loss of the real images; i.e.,
the auto-encoding ability of the discriminator increases. This leads to higher visual quality and lower
diversity. However, BEGAN has limitations in terms of visual quality and diversity due to the inherent
structure of the generator, the lack of reconstruction ability in the discriminator, and unstable training.

2.2. The Proposed Model

2.2.1. Network Architecture

We propose the novel auto-encoder-based GAN architecture illustrated in Figure 1. Our generator
takes two latent vectors and consists of several blocks, with each block handling a specific resolution.
The latent vectors are fed into each block and transformed by the affine transformation layer. We use
an AdaIN [16] layer that stylizes feature maps with information from the affine transformation layer.
We divide the generator into front and back modules, with the front module generating feature maps
of a relatively low resolution (32 × 32) and the back module generating the final output image. z1 is
fed into the front module, and z2 is fed into the back module, meaning z1 is associated with the overall
structure of the image (e.g., the shape or appearance of the face), whereas z2 is associated with the
details of the image (e.g., the microcharacteristics of the face or hair color). The bottom of Figure 1
presents the details of each block. Initially, the input features are upscaled, and there are three sets of
Conv-ELU-AdaIN layers. As mentioned above, the AdaIN layer normalizes the features and matches
them to new statistics (i.e., the mean and variance from the affine transformation layer). AdaIN is
formulated as

AdaIN(x, y) = σ(y)
(

x− µ(x)
σ(x)

)
+ µ(y), (2)
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where x denotes the feature map, and the new mean and variance (σ(y) and µ(y), respectively) are
calculated by affine transformation with the input latent vectors. Because of the scale-specific role of
each layer, the visual quality of the output images is improved.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 11 
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Figure 1. Overview of the proposed model, consisting of two networks; generator and discriminator.
The generator takes two input vectors and generates a fake image. The discriminator takes a real or
fake image and it is learned to reconstruct only real sample (Top). There are AdaIN layers which stylize
feature maps with transformed input vector after convolutional layer in each block of the generator
(Left bottom). The encoder down-samples input image to two latent vectors with convolutional layers
and down sampling layers (Right bottom).

The discriminator of our model has an auto-encoder structure that consists of an encoder and a
decoder. The encoder takes a real or fake image as input and encodes it as two latent vectors z∗1 and z∗2 of
the same size as z1 and z2 respectively. The decoder then decodes the image with z∗1 and z∗2. Because the
decoder has the same structure as the generator, z∗1 and z∗2 affect different scale-specific characteristics.

2.2.2. Objective Function

A fake image generated from the input vector z1, z2 can be expressed as G(z1, z2). The goal of the
discriminator is to distinguish real image x from fake image G(z1, z2). Therefore, the discriminator
attempts to reconstruct x only, not G(z1, z2). On the other hand, the generator attempts to produce an
image that can be reconstructed well by the discriminator. As a result of the adversarial training of
the generator and the discriminator, the output images from the generator become more realistic to
deceive the discriminator. In other words, the generator is trained to reduce the Wasserstein distance
between the loss distributions of real and fake samples in the auto-encoder. The adversarial loss of the
generator and discriminator can be expressed as

LD = L(x;θD) − ktL(G(zD;θG);θD),

kt+1 = kt − λk(γL(x) − L(G(zG)) f or each step t,
(3)

and
LG = L(G(zD;θG);θD), (4)
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where L(·) denotes the L1 loss from the auto-encoder, and kt is the parameter that controls the proportion
of generator and discriminator loss introduced in BEGAN. This is required because the discriminator
cannot achieve a suitable reconstruction quality at the beginning of training. At this time, kt has a
value close to zero and gradually increases as training progresses.

As mentioned in Section 2.2.1, z1 and z2 are both involved in the generation of different scale-specific
areas. To apply this principle to the decoder, we add a novel constraint on the encoded latent vectors,
referred to as double-constraint loss. It includes the difference between the input vector and the
encoded vector as defined by

Ldc = ‖z1 − z∗1‖1 + ‖z2 − z∗2‖1,

[z∗1 z∗2] = Enc(G(z1, z2)),
(5)

where Enc(·) denotes the output of the encoder. The double-constraint loss is designed to stabilize
training because the inputs of the generator and decoder would be similar. It can also be extended to
the synthesis of existing images because real samples are mapped to a space similar to the latent space
of the input. Hence, the generator loss can be modified as

LG = L(G(zD;θG);θD) + α · Ldc, (6)

where hyperparameter α represents a weighting factor for the double-constraint loss.

2.2.3. Training Scheme

Unstable training is a major concern when using GANs, and it can occasionally result in mode
collapse or low-quality output. In auto-encoder-based GAN models in particular, the reconstruction
performance of the discriminator is a decisive factor in establishing the visual quality of an output
image. However, excellent reconstruction performance cannot be guaranteed because the importance
of the reconstruction error for a real image decreases as kt increases, as can be seen in Equation
(3). Training a discriminator on relatively large images (e.g., 128 × 128) is slow and difficult, and kt

becomes larger because the discriminator does not effectively function as an auto-encoder. Motivated
by PGGAN [17], our model attempts to overcome this problem by starting the training process with
low-resolution images. In other words, the size of the training images increases as training progresses
(Figure 2). When the size of an image is larger, new layers are added to both the generator and
discriminator to adjust the size of the input and output correctly. While PGGAN starts training with
4 × 4 images, our model begins with 32 × 32 images because our model performs sufficiently without
threatening stability when generating images with sizes of 32 × 32 or lower, thereby reducing the
training time. After a few epochs of training, the size of the training images is doubled, and new layers
are added to the generator, encoder, and decoder while maintaining the weights in the conventional
layers. By progressively training the generator and the discriminator in this manner, our model
achieves better reconstruction performance than when kt remains constant. Because the discriminator
is trained to some extent in the previous stage, the training process becomes more stable and the visual
quality is higher than when training with 128 × 128 images directly. In addition, the layers of the
generator and the decoder can accurately reflect the spatial properties of their input.
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32 × 32 image in the first stage, and the size of the training images is doubled in the next stage.

2.2.4. Facial Synthesis Method

In addition to generating images from random noise, as with other unsupervised GANs, our
model can also be used to synthesize two images. StyleGAN introduced style mixing, which exploits
two or more input vectors, but it was used on only random noise input, not existing images. To mix
two existing images, an additional encoder needs to be trained to map the images onto the latent space
of the input. However, our model does not require an additional network because our discriminator
already has an encoder. By taking advantage of the auto-encoder structure of our discriminator, we
present a method for mixing existing images. The encoder encodes an input image as two latent vectors,
and they are exploited in different layers of the decoder. Reconstruction occurs when the decoder uses
the two latent vectors from a single image. However, if the decoder exploits a combination of the two
latent vectors from two different images, the output of the decoder is a mixed image.

Let X and Y denote the two images to be mixed; the output of the encoder when the input is X
and Y can be expressed as

[z∗X1
z∗X2

]= Enc(X), [z∗Y1
z∗Y2

]
= Enc(Y). (7)

If the decoder decodes the image using z∗X1
and z∗X2

, it reconstructs X, and if it uses z∗Y1
and z∗Y2

, it
reconstructs Y; i.e.,

X∗ = Dec
(
z∗X1

, z∗X2

)
→ Reconstruction o f X, (8)

Y∗ = Dec
(
z∗Y1

, z∗Y2

)
→ Reconstruction o f Y, (9)

where X∗ and Y∗ denote the reconstructed images of X and Y, respectively, and Dec(.) denotes our
decoder. To synthesize X and Y, the decoder needs to take the latent vectors from the two images as
input. A mixed image of X and Y is acquired by exploiting a combination of the latent vectors from the
two images (e.g., z∗X1

and z∗Y2
), as illustrated in Figure 3. The two blue boxes in Figure 3 represent the

two parts of the decoder; i.e., one is involved in generating a 32 × 32 feature map from a given latent
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vector, and the other is involved in generating a 128 × 128 image from a given 32 × 32 feature map.
Therefore, the synthesis process can be expressed as

IX,Y = Dec
(
z∗X1

, z∗Y2

)
→ Synthesis o f X and Y, (10)

where IX,Y is an image that has the structural or coarse-scale characteristics of X and the details or
fine-scale characteristics of Y.
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3. Experimental Results

In this section, we first explain our experimental setup and then present qualitative and quantitative
comparisons of the performance of our model with those of other auto-encoder-based models.

3.1. Experimental Setup

We used the CelebFaces Attributes (CelebA) dataset (Figure 4) [20], which consists of 202,599 facial
images of celebrities cropped to 178 × 218. We cropped each image further to 170 × 170, and then
resized them to 128 × 128. For progressive training, we downsampled the images to 32 × 32 and used
them in the first stage. The height and width of each training image were doubled every five training
epochs. In our experiments, the coefficients of the objective functions in Equations (3) and (6) were set
to γ = 0.5 and α = 0.1. We used the ADAM [21] solver with β1 = 0.5 and β2 = 0.999, and the learning
rate was set initially to 0.0005. L1 loss was adopted as the loss function for the auto-encoder. All other
parameters were the same as in BEGAN. We used Tensorflow with cuDNN as the deep-learning
framework and an NVIDIA GTX 1080Ti graphics card.
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3.2. Qualitative Results

We conducted qualitative analysis by comparing the output of our model with those of two
other auto-encoder-based GAN models, BEGAN [12] and BEGAN-CS [18]. BEGAN-CS adds a latent
constraint to BEGAN. The results are shown in Figure 5. The columns (a) to (c) represent 5, 10, and
15 epochs, respectively, while each row represents the qualitative results from the compared methods.
The output images are produced by the generator and the input vectors are sampled randomly from a
Gaussian distribution. It should be noted that the output of our model in (a) (5 epochs) has a lower
resolution than the other models because of the progressive learning strategy it employs. The visual
quality of the images improves as training progresses in all three models. However, the results from
BEGAN contain some artifacts, such as checkerboard patterns, while BEGAN-CS produces blurred and
unstructured facial images (Figure 5d). Once the size of the training images is increased, our model
produces similar visual quality in Figure 5b and clearer images than the other models after 15 epochs
(Figure 5c,d).
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3.3. Quantitative Results

It is difficult to verify the diversity of output images using several images. Therefore, we conducted
quantitative experiments using the Fréchet inception distance (FID) [22]. The FID score can be used to
measure the quality and diversity of images. The FID score is calculated using Equation (11):

FID = ‖µx − µy‖
2
2 + Tr

(
Σx + Σy − 2

(
ΣxΣy

) 1
2

)
, (11)

where x and y denote the image sets x and y. In our experiments, x and y consist of real images and
fake images, respectively. Because the FID score considers the mean (µ) and variance (Σ) of the images,
it can represent the visual quality and diversity of the images. If the two sets of images have a similar
probability distribution, the FID score is low (Equation (11)). Therefore, lower FID scores are better
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when comparing GAN models. We measured the FID score based on 5000 real samples and 5000 fake
samples in epoch 15 for each model. The results are summarized in Table 1.

Table 1. Visual quality in terms of the Fréchet inception distance (FID) score, where a lower score
is better.

BEGAN BEGAN-CS Style-AEGAN (ours)

FID 47.93± 1.18 50.31± 1.01 41.88± 1.08

Our model produces the best results. As a result, our model can be seen as superior in terms of
image quality and diversity.

3.4. Facial Synthesis Results

We test the synthesis of facial images using our model as described in Section 3.4. In Figure 6, the
right-most image in each row represents the synthesis output of the two left-side images. The front
module of our decoder takes a latent vector encoded from the left image, and the back module takes
a latent vector from the right image. The output image has the characteristics of both images but
different scale-specific features. In other words, the output has the coarse-scale characteristics of the
first image (e.g., the overall structures or locations of facial attributes) and the fine-scale features of the
second image (e.g., the eyes or the skin color). Note that facial synthesis is achieved without requiring
additional information, such as binary attribute labels for each image.
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4. Conclusions

In this paper, we proposed an enhanced GAN model for unsupervised facial image generation
and synthesis. To overcome the limitations of GAN models (particularly auto-encoder-based models),
we first introduced an enhanced generator and discriminator structure. Our generator and decoder
utilize two input vectors, and every block reflects the information from the input vectors with adaptive
instance normalization layers. Each layer plays a role in producing scale-specific components of the
facial image. We also applied a progressive learning method to the proposed auto-encoder-based model,
in which the training process was divided into several stages depending on the size of the training
image. Consequently, our model can both generate and synthesize facial images via an auto-encoder
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structure. Our model can generate arbitrary images because it also takes noise as input and synthesizes
two existing images using an encoder and decoder within the discriminator. Therefore, it does not
require additional training to encode existing images or a pre-trained network. We demonstrated that
the visual quality and diversity of the output images were higher than those of the baseline models
using both qualitative and quantitative analysis. Additionally, we presented a method for synthesizing
two existing images by exploiting the auto-encoder structure of the discriminator. Our model did not
need to train a subnetwork that could encode the images for mixing. All of the networks in our model
were trained in an end-to-end manner without the labeling of the images. In future research, we will
further investigate this novel method from a variety of perspectives to enhance the visual quality of
the output images and to ensure stable training for large-scale image generation. Furthermore, we
will extend our model for use in not only unsupervised generation tasks but also conditional image
generation or synthesis tasks, such as image-to-image translation.
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