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Abstract: Speech segment detection based on gated recurrent unit (GRU) recurrent neural
networks for the Kurdish language was investigated in the present study. The novelties of the
current research are the utilization of a GRU in Kurdish speech segment detection, creation of a
unique database from the Kurdish language, and optimization of processing parameters for
Kurdish speech segmentation. This study is the first attempt to find the optimal feature parameters
of the model and to form a large Kurdish vocabulary dataset for a speech segment detection based
on consonant, vowel, and silence (C/V/S) discrimination. For this purpose, four window sizes and
three window types with three hybrid feature vector techniques were used to describe the
phoneme boundaries. Identification of the phoneme boundaries using a GRU recurrent neural
network was performed with six different classification algorithms for the C/V/S discrimination.
We have demonstrated that the GRU model has achieved outstanding speech segmentation
performance for characterizing Kurdish acoustic signals. The experimental findings of the present
study show the significance of the segment detection of speech signals by effectively utilizing
hybrid features, window sizes, window types, and classification models for Kurdish speech.

Keywords: database; deep learning; consonant/vowel/silence; segmentation; speech segment
detection

1. Introduction

Speech is a sign that contains a lot of personal information. Together with the developing
technology, a wide variety of applications are developed using the information obtained from this
speech signal. Segmentation represents a procedure of breaking down a speech signal into smaller
acoustic units. It is possible to define speech segmentation as the procedure of finding limits in a
natural spoken language between words, syllables, or phonemes [1]. In this study, Kurdish
phoneme segment detection is investigated. Speech segment detection is one of the most commonly
used technologies for recognizing spoken words and expressions and converting them into a format
that can be understood by machines, especially computers.

A phoneme, which is characterized by some distinct pertinent properties that distinguish it
from other phonemes of the language, represents a language sound element. Phonemes are
classified either as vowels or consonants. Sounds that are obtained by oscillating the vibrations
acquired with the vocal cords in the sound path are called vowels. Consonants are the sounds
produced by obstructions created to the flowing air in any position of the sound path.

In consonants, vocal cord vibrations are not important. When vocal sounds obtained with the
vibration of the vocal cords are examined in the time domain, it is observed that they have a periodic
structure, while non-vocal sounds have a non-periodic structure. All vowels and some consonants
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are vocal. This makes it difficult to distinguish between vowel phonemes and consonant phonemes
[2]. It is possible to categorize words into various types in accordance with the position of the
occurrences of vowels and consonants in them. The placement of vowels and consonants in a word
of any language is very significant for identifying various types of words [3]. The acoustic phoneme
constitutes the basis of a wide variety of the existing speech processing systems, such as medium to
large vocabulary speech recognition, speaker recognition systems, and language identification
systems [4].

The accuracy of a speech processing system highly depends on the spoken language phoneme
set and has more challenges due to alterations in the pronunciation of words due to dialects, the
speaker’s age and gender, and neighboring words. Furthermore, certain difficulties come to the
forefront during the creation of a voice database. In addition, the voice segment detection process
becomes more difficult due to factors including the toning effect and syllable stress. In this respect,
the gated recurrent unit (GRU), which is a special recurrent neural network (RNN) model, was used
to deal with these difficulties for the efficient speech segment detection. This model is now widely
used in various speech processing tasks. In Ravanelli et al. [5], GRUs were reviewed and a compact
single-gate model replacing a hyperbolic tangent with rectified linear unit activations having a
simplified architecture was suggested for the purpose of automatic speech recognition (ASR). The
long short-term memory (LSTM) and GRU were assessed for the purpose of comparing the
performances they exhibited upon a reduced Technology Entertainment Design - Laboratoire
Informatique de 1'Université du Maine (TED-LIUM) speech data set [6]. In Cernak and Tong [7], a
solution was suggested with the aim of training a phone attribute detector without phone alignment
by utilizing end-to-end phone attribute modeling on the basis of the connectionist temporal
classification. In Zheng et al. [8], general emotion features were produced in speech signals from
various angles, and an ensemble learning model was employed for the purpose of carrying out
emotion recognition tasks. The design of the expert roles of speech emotion recognition was
performed by utilizing convolutional neural networks (CNNs) and GRU. In Chen et al. [9], a
practical approach with three steps was introduced for singing voice detection on the basis of a
GRU.

Recently, speech segment detection has been addressed in a deep neural network (DNN),
CNN, and RNN models [10-12]. Franke et al. [11] examined the automatic detection of phoneme
boundaries in audio recordings using deep bidirectional LSTMs. The first experiments operated on
Texas Instruments Massachusetts Institute of Technology (TIMIT) and BUCKEYE datasets
containing an American English language speech corpus and then a Basaa dataset containing a
Bantu language speech corpus. An Fl-score of 77 with a tolerance of 20 ms was achieved with the
above-mentioned method. In Wang et al. [12], it is reported that GRU forget gate activations in
trained recurrent acoustic neural networks correlate very well with phoneme boundaries in speech
activation, which ensures the validation of numerous approaches to speech recognition and other
sequence modeling problems, including recurrent networks. This study uses a TIMIT corpus. The
GRU can take temporal context into account. Therefore, it should exhibit a better performance in
comparison with conventional machine learning techniques [13]. Alternatively, LSTM is a slightly
more complex structure variation of the GRU [14]. The GRU ensures the control of the information
flow, similar to the LSTM unit, but without a need to utilize a memory unit. It only provides the
exposure of the complete hidden content without any control. The GRU has a simpler structure
compared to standard LSTM models, and its popularity is gradually increasing. Therefore, it is
preferable for this study. Lee et al. [15] suggested phoneme segmentation by utilizing cross-entropy
loss with connectionist temporal classification loss in deep speech architecture for the purpose of
performing speech synthesis. In order to assess the suggested method, female Korean speech found
in the Speech Information Technology & Industry Promotion Center (SITEC) speech database was
utilized. The suggested method ensured the improvement in the quality of phoneme segmentation
since it could provide the model with a higher number of non-blank classes or force the setting of a
blank class to a non-blank class. The experimental findings demonstrated that a decrease of more
than 20% occurred in the boundary error. In Graves and Schmidhuber [16], a comparison of a
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bidirectional LSTM with other neural network architectures for the purpose of framewise phoneme
classification on the TIMIT speech database was made. In the past, speech segment detection has
been addressed in different conventional models. In Weinstein et al. [17], the development of a
system to conduct the acoustic—phonetic analysis of continuous speech was performed with the aim
of serving as a part of an automatic speech understanding system. In Leung et al. [18], a segmental
approach was employed for the purpose of phonetic recognition. Multi-layer perceptrons were
utilized to detect and classify phonemes for a segmental framework. In Ali et al. [19], the acoustic
and phonetic properties of the American English stop consonants were examined. In Natarajan and
Jothilakshmi [20], the segmentation of the continuous speech into smaller speech units was
performed, and every unit was classified as a consonant or vowel by utilizing the formant
frequencies and support vector machines (SVMs). It is reported that the Gaussian kernel yielded
higher accuracy in comparison with the other kernels utilized. In Ades [21], differences between
vowels and consonants and between speech and nonspeech with regard to the context range in
which they are set were explained. Identification, discrimination, and delayed recognition tests, in
which the discrimination of vowels and consonants was performed at various levels, were explained
regarding the higher range of the vowel series over the consonant series and the tasks” memory
demands. In Ooyen et al. [22], two tests with vowels and consonants as the targets of phoneme
detection in real words were performed. In the first test, the comparison of two comparatively
distinct vowels with two confusable stop consonants was performed. In the second test, the
comparison of two comparatively distinct vowels with the semivowels corresponding to them was
carried out. The two tests demonstrated that the detection of English vowels was difficult in
comparison with stop consonants but easy in comparison with semivowels. A novel method to
segment phonemes by utilizing multilayer perceptron (MLP) was suggested in Suh and Lee [23]. The
suggested segmenter’s structure includes three parts, i.e., a preprocessor, an MLP-based phoneme
segmenter, and a postprocessor. The pre-processor utilized feature parameters for every speech
frame in accordance with the acoustic phonetic information. The MLP-based phoneme segmenter
was utilized for the purpose of learning the ability to determine the boundaries in question and
segment continuous speech into corresponding phonemes. In post-processing, the positions of the
phoneme boundaries were decided by utilizing the MLP output. The best performance of phoneme
segmentation was found to be approximately 87% with an accuracy of 15 ms.

In recent years, more researchers have effectively combined CNN and RNN models [24]. These
models were applied to different speech processing tasks to improve the accuracy [25-29]. In
general, it is beneficial to use CNN and RNN methods together. Therefore, in our work we used
this model.

This paper presents an extensive and first study for finding optimal feature parameter sets by
using the GRU for Kurdish speech segment detection. Also, it is the first time speech detection has
been developed for the Kurdish language. The effects of varying hybrid features, window type,
window size, and different classification methods were investigated for Kurdish speech segment
detection. The identified optimal parameter features were analyzed using a novel Kurdish speech
dataset collected from a television broadcast.

Kurdish represents the language that is spoken by an estimated seventeen million speakers in
Turkey, Armenia, Syria, Azerbaijan, Iran, and Iraq. It is the most widely spoken language in Middle
East after Arabic, Turkish, and Persian. Therefore, the speech segment detection study to be
conducted on Kurdish is important.

2. Materials and Methods

Kurdish sound samples were collected from both males and females. Prior to phoneme
segmentation, the continuous speech signal was segmented into words.

The phoneme segment detection of the spoken language has mainly focused on utilizing
short-time energy and short-time zero crossing rate (ZCR) features. Since errors cause a low
accuracy in speech segment detection, an effective algorithm should be used for the segment
detection of the Kurdish speech at different speaking speeds. The mel frequency cepstral coefficient



Appl. Sci. 2020, 10, 1273 4 of 23

(MFCC) is known to mimic human hearing system [30]. MFCC coefficients are orthogonal to each
other and the mel filter bank also models the perceptions of the human ear system, and it yields
better results in comparison with other feature extraction methods. Therefore, we used a hybrid
feature vectors of the voice samples. Evaluation and comparison of the system performance were
performed on the basis of energy, ZCR, and MFCC along with its first- and second-order derivatives.
Thus, we used three types of hybrid feature vectors: energy, ZCR, and MFCC (EZMFCC); energy,
ZCR, and delta-MFCC (EZDMFCC); and energy, ZCR, and delta-delta-MFCC (EZDDMFCC).
Hybrid feature vectors were extracted using Hamming, Hanning, and rectangular windowing with
20, 25, 30, and 35 ms window sizes of the speech segment to see the effect of the different window
types and window sizes with GRU training on the classification performance of the classifiers. For
classification, convolutional neural network (CNN), multilayer perceptron (MLP), and the standard
classifiers naive Bayes, random forest (RF), support vector machine (SVM), and k-nearest neighbors
(k-NN) were used. Here, the details regarding the Kurdish speech corpus preparation and
implementation of the segment detection architecture are explained. For this operation, the PRAAT
6.0.49 tool [31], MATLAB R2018a (MathWorks, Natick, MA 01760-2098, USA), Keras Library [32],
Weka 3.9.3 [33], and WekaDeeplearning4;j [34] are used.

2.1. Kurdish Phoneme Set and Its Properties

Kurdish is part of the Western Iranian group of the Indo-Iranian branch of the Indo-European
language family. It is considerably similar to European languages, such as French, English, Russian,
and German. Nevertheless, Kurdish is most similar to Persian among the European languages.
However, both languages have a completely unique vocabulary, morphological structures, phonetic
properties, and grammatical structures [35]. Based on Latin letters, Kurdish consists of thirty-one
phonemes, including twenty-three consonants and eight vowels. Five vowels of Kurdish are
accepted as long vowels (/a/, /€/, /i/, /Q/, /o/), and the other three are accepted as short vowels (/e/, /i/,
/u/). Despite the fact that they are generally named as long and short vowels, vowels are presently
differentiated according to the position of articulation. There are a total of twenty-three consonants,
including six labial consonants (/b/, /t/, /m/, /p/, /v/, /w/), seven fronto-palatal and dental consonants
(/d/, N/, I/, [x], Is/, [t/), five palatal consonants (/c/, /¢/, /jl, /s/, /y/), and five anterior palatal and
laryngeal consonants (/g/, /k/, /h/, /q/, /x/). In this paper, we detected phonemes consisting of the
silent, eight vowels, and twenty-three consonants. The phonemes of Kurdish are presented in Table
1, in which Kurdish letters, International Phonetic Alphabet (IPA) notations, and phonetic
descriptions are given [35-37].

2.2. Speech Dataset

In this study, a novel Kurdish dataset was created and used. The speech corpus was a collection
of speech recordings from Turkish Radio and the Television Corporation (TRT) Ntice news channel.
For this study, the speech corpus was selected from different Kurdish sources, such as education
news, culture news, art news, economy news, health news, and political news. The collected Kurdish
voice samples of sentences and clauses of different lengths were taken from four male and three
female speakers in the age group of 20-45 years. The speech sentences contained CV (consonant-
vowel), VC (vowel-consonant), CVC (consonant-vowel-consonant), CCV (consonant—consonant—
vowel), CVCC (consonant-vowel-consonant—consonant) and CCVCC (consonant—consonant—
vowel-consonant—consonant) as different types of words. The recordings were performed in a quiet
setting using a high-quality (low noise) desktop microphone at a sampling frequency of 44,100 Hz
with 16-bit quantization and a mono-channel. Speech data were stored in the “wav” format. The
whole speech corpus was randomly split into two parts: 66% for training, and the remaining 33% for
testing the system.

The phoneme segment detection method was implemented on the continuous Kurdish speech
containing almost 6819 phonemes in total. Table 2 and Table 3 present the dataset of phonemes from
male and female speakers, respectively.
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Table 1. Phonemes of the Kurdish language [35-37].

Kurdish Letter IPA

Phonetic Description

a
b
C

= a0 T o058 38 —~ ®x® — Rk T 0 -~ O

W »n

N< X $ < ¢

[a]
[b]
[d3]
[t/
[t/h]
[d]
[ae]
[e]
[e]
[o]
[f]
[g]
[h]
[h]
[i]
[i]
(3]
(k]
[kh]
(1]
[m]
[n]
[o]
[p]
[ph]
[ql
[r]
[<]
[s]
Ul
[t]
[th]
[v]
[u]
[v]
[w]
[x]
[j1
[z]

Open, back, unrounded vowel
Bilabial voiced stop
Palatal voiced affricate
Palatal voiceless unaspirated affricate
Palatal voiceless aspirated affricate
Alveo-dental voiced stop
Near-open, front, unrounded vowel
Open-mid, front, unrounded vowel
Close-mid, front, unrounded vowel
Mid-central unrounded vowel
Labiodental voiceless fricative
Velar voiced stop
Glottal fricative
Pharyngeal fricative
Short, central, unrounded vowel
Close, front, unrounded vowel
Post-alveolar voiced fricative
Velar voiceless unaspirated stop
Velar voiceless aspirated stop
Alveo-dental lateral
Bilabial nasal stop
Alveo-dental nasal stop
Close-mid, back, rounded vowel
Bilabial voiceless unaspirated stop
Bilabial voiceless aspirated stop
Uvular voiceless stop
Alveolar trill
Alveolar flap
Alveolar voiceless fricative
Post-alveolar voiceless fricative

Alveo-dental voiceless unaspirated stop

Alveo-dental voiceless aspirated stop

Near-close, slightly centralized rounded vowel

Close, back, rounded vowel
Labiodental voiced fricative
Bilabial approximant
Velar voiceless fricative
Palatal approximant
Alveolar voiced fricative

Table 2. Dataset from male speakers.

Male Speakers Phonemes Vowel Phonemes Consonant Phonemes
Male 1 1332 583 749
Male 2 1096 469 627
Male3 1100 462 638
Male4 327 146 181
Total 3855 1660 2195

5 of 23
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Table 3. Dataset from female speakers.

Female Speakers Phonemes Vowel Phonemes Consonant Phonemes

Female 1 780 326 454
Female 2 1410 615 795
Female3 774 341 433

Total 2964 1282 1682

2.3. Proposed Model

In this study, the focus was placed on the recently suggested gated recurrent unit (GRU)-based
model, the research on which had not been conducted for Kurdish speech before this study. The
RNN was customized for speech segment detection based on the discrimination between
consonants, vowels, and silence. Figure 1 shows the general steps of the proposed architecture for
the Kurdish C/V/S speech segment detection.

Train

Gender Frame Blocking Hybrid Feature

Dataset Detection & Windowing Extraction

— 3 Train with
Test GRU

Hybrid Feature

Vectors

Figure 1. Flow chart of the proposed system. GRU: gated recurrent unit.

The training dataset contained C/V/S speech data that was tagged manually. The gender
detection step identified the gender of a speaker from these tagged speech signals. In the frame
blocking and windowing step, the tagged speech signals were segmented into small duration blocks
of 20, 25, 30, and 35 ms known as frames. After that, each frame was multiplied with a Hamming,
Hanning, or rectangular window function. In the hybrid feature extraction step, each windowed
frame feature was obtained using “energy, ZCR, MFCC (EZMFCC)” or “energy, ZCR, D-MFCC
(EZDMFCC)” or “energy, ZCR, DD-MFCC (EZDDMFCC)” techniques. In the hybrid feature vectors
step, 15-, 28-, or 41-dimensional hybrid feature vectors were generated per frame. In the training
with the GRU step, each different dimensional hybrid feature vectors were given to the GRU for
learning a C/V/S pattern. The GRU computation was performed by the gated recurrent unit, which
modulates information inside the unit without having a separate memory cell. It combines the
“forget gate” and “input gate” into a single “update gate” and has an additional “reset gate.”

A GRU network accepts an input sequence x = (x1; ... ; xt). Each x: represents a hybrid feature
frame vector during the training process. The hybrid feature frame vector training set is introduced
into the network as a GRU block series.

Each j.GRU block was computed in evolutionary terms based on the following equations in an
iterative way from t=1to T.

At time ¢, the activation of the j.GRU output is the h,’.GRU unit.

The activation h,’ of the GRU at time ¢ is a linear interpolation between the previous activation

ht_lj and the candidate activation fltj are represented in Equations (1) and (2):
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fltj = tanh(W - [r/ = hy_y?, %)), (1)

where 7,/ refers to a set of reset gates, and * refers to an element-wise multiplication.

| N @)
h) = (1 =2z )hey + 27k

The update gate z,/ decides how much of an update of its activation the unit performs and
checks how much the past state must mean at the moment. There will be active reset gates 7 in units
having short-term dependencies, while there are active update gates z in units having long-term
dependencies. The update gates are given as Equation (3):

2] = o(Wyx, + Uzht—1))j' )
In case of the off reset gate (r,/ = 0), it ensures that the unit forgets the past. This is similar to
allowing the unit to read the first symbol of an input sequence, where ¢ is the sigmoid function.

W, is the weight vector for the update gate, and W, is the weight vector for the reset gate.
The reset gate is computed using Equation (4):

n) = a(Wox, +rhe_1)/. 4)

Hybrid feature frame vectors were utilized by GRU blocks in order to strongly match C/V/S
patterns. Figure 2 describes the proposed GRU-trained model.

i i Trained Feature
Trained Feature Trained Feature > 3
Vectors: ® Vectorsz ® Vectorss ©

GRU —Frame1 ® GRU —Frame2 GRU —Framen *)

[ GRU H GRU ]—) %[ GRU ]

A A
Frame1 ¥ Frame2 ® Frames )
Frames Hybrid Feature Vectors with Times
Inputs x(t) x(t) x(t)

Figure 2. Proposed GRU-based framework.

The GRU-based trained feature vectors are used by CNN, MLP, naive Bayes, SVM, random
forest, and k-NN classifiers in the testing step.

2.3.1. Created Tagged Speech

First, the voice data obtained in this study were subjected to a Wiener filter as a preprocessing
step to eliminate noises from environmental factors and microphone noises [38]. The Wiener filter is
a method performed in frequency space, where y(n) is a noisy speech signal that is expressed using
Equation (5):
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y(m) =x(n) +v(n), ®)

where x(n) is the clean signal, v(n) is the white Gaussian noise, and # is the discrete time variable.
The error signal (ex(n)) between the clean speech sample at time n and its estimate can be
defined using Equation (6):

ex(n) £ x, —h'y(n), ()

where the superscript T denotes the transpose of a vector or a matrix. h is a Finite Impulse Response
(FIR) filter of length L and its transpose is given in Equation (7).

h" =[hohy .., hyq )] (7)

y is a vector containing the most recent samples of the observation signal y(1) and its transpose is
given in Equation (8).

y' =lym), ... yn-1),y(n-L+1)] ®)

The Wiener filter coefficients are obtained by minimizing the average squared error expressed
by eZ(n).

To create a dataset and assign an appropriate speech class (C/V/S) to each speech signal, every
speech sentence should have an associated phoneme-level segmentation.

In this work, to create a reference dataset, manual segmentation methods were used. For this
purpose, the “Pratt” package was used as a major tool. Every speech sentence was carefully
examined and labeled manually using the selected tool. After labeling was completed, a tagged
speech label file was created.

The manual segmentation method is considered to exhibit more accurate performance in
comparison with automatic segmentation [39-41]. Therefore, manual segmentation was employed
to create the unique labeled Kurdish dataset to be used in other studies in the future.

The phoneme segmentation is represented in Figure 3. In this figure, a sample annotated speech
waveform and its spectrogram representing the Kurdish sentence “Bivir G hingekén din” spoken by
an adult female are shown.

(a)
I ‘ !‘,;',;lll ! [ n """"""""""""""""""
(b) u *: ‘ v
W :
# |b|i] v ]i]| r |0l hffn|c¢c|e] k |é| n |d|i|n| # [Phonemes
(¢) — - L1 L1 L1
= bivir 0| hin cekén din | # [Words

Figure 3. Speech waveform (a); spectrogram (b) and phonemes and words segmentation (c) of the
Kurdish sentence.

2.3.2. Gender Detection

The short-time autocorrelation and average magnitude difference function (AMDF) was used
collectively by assigning some weightage factor and setting a threshold based on the fact that males
have a lower fundamental frequency of approximately 120 Hz compared to a female fundamental
frequency of approximately 200 Hz [42].

2.3.3. Frame Blocking and Windowing
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The speech signals were processed efficiently between short-time periods of 20 to 35 ms since
distinctive features of sound signals were stable only within short periods of time. The speech data
was divided into short periods of time intervals frame by frame.

Windowing was applied to framed speech signals. The purpose of this step was to eliminate
discontinuities at the beginning and end of each frame [43]. This operation can be accomplished
using a function that is called the window function. The most commonly used windowing functions
are the Hamming, Hanning, and rectangular windowing techniques [44,45]. Windowing examples
with these functions for 20 ms speech recorded from a female speaker are illustrated in Figure 4.

(a) 882 Samples(20 ms) Speech Frame
T T T T T T T T
o 01f |'1. f' (-
S oosf|| ), | I
— (wh. v A o [wae M A |
= ob/|h ! ( VAT Ny, It [/ L,J__v_.v\.\_\v:.v,\_\\.J___] |.||1| .'II | :
E 0056 ||IIJI V I ! | | 'll.,‘l '.: v , , ||“|| .I'I . . l'.fl'
0 0.002 0.004 0006 0008 0.01 0.012 0014 0016 0018 002
Time (s)
i 882 Samples(20 ms) Hamming Window
T T T — T —T T T T
L) o
'E_OB- i -
_____----I- I I 1 I 1 1 1 : —

0
0 0.002 0.004 0006 0008 001 0012 0014 0016 0018 0.02

Time (s)
882 Samples(20 ms) Hamming Windowed Speech Frame
T T T T T T | T T T
P 0.1 r|.
S 005 f . || n
E- 0 F s e e, '| | “'I"w‘ " S A j\(‘\f,' 'Llﬂl ."I ”'.I AN e A
| v | | '}
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0 0.002 0.004 0006 0008 0.01 0012 0014 0016 0018 002

Time (s)
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Figure 4. Examples of (a) Hamming, (b) Hanning, and (c) rectangular windows.
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A windowing operation is simply the multiplication of the speech data and windowing
function for each data frame. For the purpose of performance analysis, three window functions were
implemented and the corresponding outputs are indicated.

2.3.4. Hybrid Feature Extraction

1. Short-Time Signal Energy

Short-time energy represents the dominant and most natural characteristic utilized. From a
physical aspect, energy constitutes a measure of how much signal there is at any moment. The
calculation of a signal’s energy is generally performed on a short-term basis as a result of windowing
the signal at a specific time, squaring samples, and obtaining the average [46—48]. The square root of
the signal’s energy is known as the root mean square (RMS) value. The short-time energy function
(Ep) of a speech frame having length N is described in Equation (9):

1 [ee]
E, = N Z [x(m)wn —m)]?. 9)

m=—oo

The RMS energy (Eyrums)) of the frame in question can be presented as in Equation (10):

Ensy = | ). [x(mwm—m)J2, (10)

m=—oo

where x(m) denotes the discrete-time audio signal, n is the time index of the short-time energy, and
w(m) denotes the window function.

2. Short-Time Zero Crossing Rate

The ZCR denotes the number of times speech samples alter the algebraic sign in a specific
frame. The rate indicating the occurrence of zero crossings represents a simple measure of the
signal’s frequency content. It is also a measure of the number of times in a particular time
interval/frame when the amplitude of speech signals passes through a zero value [46-48].

The short-time zero crossing (Z,) of a speech frame and sgn[x(n)] are described in Equations
(11) and (12), respectively:

1 o
Zu=3 ), Isgnx(n=m)] = sgnlx(n = m = )] jwom), a1
Where:
sgnlx(] = {_7500 = %

and w(m) refers to a window with length n, given in the equation.
3.  Mel Frequency Cepstral Coefficient (MFCC)

MECC is one of the most widely used and most effective feature extraction methods in most
speech processing systems. One of its significant advantages is that the same words are not affected
too much by changes that occur during vocalization.

MEFCC imitates the perception of human ears and is calculated by using a fast Fourier transform
(FFT), which is a fast algorithm used to implement the discrete Fourier transforms. The discrete
Fourier transform (DFT) is expressed as in Equation (13) for an N-sample frame:

N-1

2mjkn
f(n):Zyke‘—z’v 0<n<N-1, ®)
k=0
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where f(n) denotes the DFT, n is the sample index, and y refers to the signal windowing results.

Since the human hearing system perceives frequency values up to 1 kHz linearly and frequency
values higher than 1 kHz logarithmically, there was a need for a unit that takes the hearing system as
a model [49]. This unit is called the Mel frequency, where linear frequency values are converted into
Mel frequency values using Equation (14), where “f” refers to the frequency in Hz, and “Mel ( f)”
refers to the Mel frequency:

Mel(f) = 2595 x log (1 + 7%)' )

Finally, the Mel spectrum, of which the logarithm has been taken, is converted back to the time
domain.

Delta-MFCC (D-MFCC) and the delta-delta-MFCC (DD-MFCC) are the first-order and the
second-order derivatives of the MFCC, respectively [50]. D-MFCC and DD-MFCC are also known
under the name of differential and acceleration coefficients.

The D-MFCC coefficients are calculated using Equation (15):

d. = Zg=1 0(crro — Cr—p)
t 2%9_, 62 ’

(10)

where d: refers to the delta coefficient at time ¢, calculated with regard to the corresponding static
coefficients ct-o to ct+o, and © refers to the size of the delta window.
The DD-MFCC coefficients are computed by taking derivative of Equation (15).

2.3.5. Gated Recurrent Unit Recurrent Neural Networks

The gated recurrent unit (GRU) represents a kind of recurrent neural network. The GRU offers
comparable performance and is significantly faster to compute. The network learns how to use its
gates to protect its memory such that it is able to make longer-term predictions [51].

Figure 5 describes the architecture of a recurrent neural network, where x: and St denote an
input and hidden units for a given time step, respectively, at time ¢. O is the output at step t. U, W,
and V are weight vectors for inputs, hidden layers, and outputs, respectively. The GRU recurrent
neural network is illustrated in Figure 6, where z and r represent the update and reset gate vectors,
respectively. hand % are the activation and the candidate activation. The update and reset gates
ensure that the cell memory is not taken over by tracking short-term dependencies. This means that
we have dedicated mechanisms for when the hidden state should be updated and when it should be
reset. The decision on what information is thrown away or kept in the cell is made by the sigmoid
layer.
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Figure 5. The architecture of recurrent neural networks [51].
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Figure 6. The architecture of a GRU recurrent neural network [51].

2.3.6. Artificial Neural Network (ANN)

1. Multilayer Perceptron (MLP)

A multilayer perceptron is a thinking structure that is formed by connecting neurons to each
other with synaptic connections, which is inspired by the human brain and has a learning algorithm,

similar to neural networks in biological systems. An MLP represents a feed-forward artificial neural

network (ANN) model, which maps sets of input data onto a set of suitable outputs. Figure 7

presents the architecture of MLP. An MLP contains multiple layers of nodes in a directed graph,

with every layer completely connected to the following one. Apart from the input nodes, every node
constitutes a neuron, or a processing element, with a nonlinear activation function. The MLP uses a
supervised learning technique that is called back-propagation in order to train the network [52].

2. Convolutional Neural Network (CNN).



Appl. Sci. 2020, 10, 1273 14 of 23

Deep learning is generally applied by utilizing the neural network architecture. With deep
learning, the model learns and abstracts the relevant information automatically as the data passes
through the network. The term “deep” denotes the number of layers in the network, i.e., the higher
the number of layers is, the deeper the network is. Layers are interconnected through nodes, or
neurons, with every hidden layer by utilizing the previous layer’s output as its input.

The most popular deep learning network is a convolutional neural network (CNN, or
ConvNet). The CNN includes an input layer, an output layer, and several hidden layers.
Convolution, activation or using a rectified linear unit (ReLU), and pooling represent the three most
frequent layers. The above-mentioned operations are performed repeatedly over tens or hundreds of
layers, with every layer learning for the purpose of detecting various features in the input data [53].
Figure 8 shows the general framework of convolution neural networks (CNNs).

Input
Layer

Output
Layer

Hidden Layers

Figure 7. The architecture of a multilayer perceptron (MLP) [53].

Input Convolution 1 Pooling 1 Convolution 2 Pooling 2 Fully Conected ~ Output

Layer Layers Layer

Figure 8. The architecture framework of a convolutional neural network [53].

3. Results and Discussion

In this study, we used three types of hybrid feature vectors. The first type of hybrid feature
vector comprises EZMFCC parameters. The second type of hybrid feature vector comprises
EZDMEFCC parameters. The third type of hybrid feature vector comprises EZDDMFCC parameters.
The above-mentioned types of hybrid features were extracted for each 20, 25, 30, and 35 ms window
duration using the Hamming, Hanning, and rectangular windowing functions. All these parameters
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were used at the feature extraction stage in the speech segment detection. The hybrid feature
extraction process produced hybrid feature vectors, which were introduced as an input into the GRU
system for learning a pattern and finding an optimal solution for each speech category (C/V/S). After
the GRU was trained with the training set, an optimal hybrid feature parameter was found using the
EZDDMEFCC. Different experiments have been conducted for the C/V/S segment detection with
different classifier models. The most common classifier models are CNN, MLP, naive Bayes, SVM,
random forest, and k-NN. For the k-NN, the parameter “k” was set to 3. For the MLP, the number of
hidden neurons suggested by the empirical selection was 10, 20, 30, 40, and 50 hidden neurons,
which were trained separately, and the performance of every neuron was assessed. For the CNN,
two convolutional layers with 20 and 100 feature maps with 5 x 5 patch sizes and 2 x 2 max pooling,
respectively, were used.

Weka was utilized for obtaining classification accuracies. Accuracy was taken as the
performance measure when counting the number of correct C/V/S speech segment detections. The
accuracy function was calculated using Equation 16:

A ~ TP + TN
ey = P Y FP+FN+ TN’

(11)

where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative,
respectively.

Table 4-6 present the accuracy results obtained with the proposed GRU-based training method
for male speakers, while Table 7-9 present the accuracy results obtained with the proposed
GRU-based training method for female speakers.

3.1. Results of the Analysis of the Hybrid Features with GRU-Based Training

According to the results presented in the tables, the best accuracy was obtained using
EZDDMECC for all window types, window sizes, classification methods, and speaker gender. This
might be due to the number of novel features existing in EZDDMFCC as a result of double
derivation of the MFCC. The feature dimension of EZDDMFCC was higher than the others.
However, it took longer time to compute, as seen in Table 10.

3.2. Results of the Analysis of the Window Size with GRU-Based Training

The experiment conducted on 20 ms, 25 ms, 30 ms, and 35 ms of speech segments gave the
maximum performance accuracies of 97.60%, 96.38%, 96.60%, and 97.12%, respectively, for male
speakers, and the maximum performance accuracies of 95.30%, 95.09%, 95.03%, and 95.63%,
respectively, for female speakers. According to the results, the effect of window size on the accuracy
was insignificant. However, a window size of 20 ms performed slightly better than the others.
Actually, performance of the window size depended on the nature of the speech signal.

3.3. Results of the Analysis of the Window Type with GRU-Based Training

The results based on three different window types gave the highest accuracy values of 97.25%
for the Hamming windows, 97.04% for the Hanning windows, and 97.60% for the rectangular
windows for male speakers, and 95.10% for the Hamming windows, 95.63% for the Hanning
windows, and 95.30% for the rectangular windows for female speakers. According to the results, the
effect of the window type on the accuracy was insignificant.

3.4. Results of the Analysis of the Classification Model with GRU-Based Training

According to the results, the CNN showed a relatively high classification performance (97.60%
for male and 95.63% for female speakers) compared to others.
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Table 4. Performance accuracy for male speakers based on GRU+EZMFCC.

16 of 23

Windows Classification Type and Performance (%)
Type Size (ms) CNN MLP Naive Bayes SVM Random Forest k-NN
20 92.60 84.57 74.37 83.14 85.56 84.94
Hamming 25 9211 84.19 74.63 82.91 86.36 85.42
30 92.04 84.54 73.80 82.93 86.41 84.08
35 92.59 84.12 74.66 83.36 86.37 84.43
20 92.59 84.40 74.51 83.16 85.41 84.50
Hanning 25 92.40 84.38 74.61 83.14 86.10 84.89
30 92.18 85.11 74.48 83.20 86.36 84.72
35 92.80 85.38 74.51 83.38 87.10 83.42
20 92.05 85.24 73.80 83.30 85.63 84.49
Rectangular 25 92.24 85.26 74.70 83.38 86.25 83.70
30 92.44 8541 74.01 83.66 86.43 83.64
35 92.85 8432 74.12 83.33 86.56 83.42
Table 5. Performance accuracy for male speakers based on GRU+EZDMFCC.
Windows Classification Type and Performance (%)
Type Size (ms) CNN MLP Naive Bayes SVM Random Forest k-NN
20 93.98 88.52 77.76 85.20 89.23 86.71
Hamming 25 94.71 88.37 78.49 85.44 88.28 85.01
30 94.44 8851 77.24 86.15 88.38 84.58
35 94.00 87.65 77.71 86.03 89.14 84.17
20 93.33 88.08 77.75 86.39 88.35 86.19
Hanning 25 94.00 87.72 78.22 86.30 88.89 87.03
30 94.55 88.63 77.29 85.01 88.09 86.79
35 9421 87.70 77.01 85.47 88.23 86.29
20 94.61 86.97 77.35 85.55 88.82 85.18
Rectangular 25 93.74 88.05 77.73 86.19 88.43 84.54
30 93.79 88.13 77.08 84.62 87.62 84.61
35 94.18 87.23 77.55 84.03 88.12 85.31
Table 6. Performance accuracy for male speakers based on GRU+EZDDMEFCC.
Windows Classification Type and Performance (%)
Type Size (ms) CNN MLP Naive Bayes SVM Random Forest k-NN
20 97.25 91.14 82.20 89.06 93.53 90.38
Hamming 25 95.77 92.05 82.28 90.32 92.14 90.44
30 96.53 92.36 81.30 89.80 93.19 90.87
35 9712 91.28 82.45 89.29 92.70 90.10
20 97.04 92.65 81.80 89.81 93.74 90.49
Hanning 25 96.18 92.76 81.65 89.63 93.55 91.52
30 96.60 92.13 80.28 89.04 92.00 90.24
35 96.69 91.05 80.30 90.13 91.87 89.64
20 97.60 91.94 82.71 88.88 92.32 91.12
Rectangular 25 96.38 92.42 81.73 89.37 93.15 90.23
30 96.22 92.08 81.45 88.17 92.03 90.61
35 95.98 92.32 81.38 88.85 92.32 90.33
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Table 7. Performance accuracy for female speakers based on GRU+EZMFCC.

Windows Classification Type and Performance (%)
Type Size (ms) CNN MLP Naive Bayes SVM Random Forest k-NN
20 91.61 83.86 71.01 81.57 85.08 84.35
Hamming 25 91.11 82.34 72.11 81.43 84.97 83.22
30 91.20 83.18 72.76 80.91 84.13 84.43
35 91.14 82.12 72.93 80.79 84.11 83.07
20 91.00 82.10 71.58 80.1306 84.76 84.32
Hanning 25 91.34 82.70 71.19 80.7541 86.30 85.14
30 91.66 82.03 72.77 81.2109 85.14 84.22
35 91.31 82.10 71.91 80.9700 86.02 83.36
20 91.22 82.16 71.02 80.8215 86.12 85.54
25 91.01 82.30 71.46 80.6337 85.00 85.47

Rectangular

30 9141 8257 72.18 81.0198 84.22 84.72
35 91.60 83.70 72.29 80.9412 84.16 83.71

Table 8. Performance accuracy for female speakers based on GRU+EZDMFCC.

Windows Classification Type and Performance (%)
Type Size (ms) CNN MLP Naive Bayes SVM Random Forest k-NN
20 93.14 85.79 73.28 84.54 88.29 87.40
Hamming 25 93.37 8731 73.44 85.63 88.41 85.64
30 92.15 86.76 74.12 84.52 88.70 86.81
35 93.50 87.61 74.59 84.25 89.57 86.26
20 93.01 85.28 74.25 84.31 90.45 87.52
Hanning 25 93.30 86.39 74.02 84.29 88.07 86.89
30 93.08 87.20 73.20 84.51 88.42 86.18
35 92.51 87.28 73.57 84.44 89.90 86.87
20 9226 87.11 74.18 84.25 88.57 87.83
Rectangular 25 93.18 86.04 74.15 84.34 90.20 87.63
30 93.88 86.57 74.82 84.56 89.27 87.60
35 93.52 86.13 74.64 85.32 88.82 86.47

Table 9. Performance accuracy for female speakers based on GRU+EZDDMFCC.

Windows Classification Type and Performance (%)
Type Size (ms) CNN MLP Naive Bayes SVM Random Forest k-NN
20 95.10 91.30 75.51 86.29 92.20 91.16
Hamming 25 95.09 90.61 78.84 86.17 92.36 91.27
30 95.03 90.87 77.21 86.94 91.44 91.35
35 94.67 90.12 77.54 86.75 91.78 91.41
20 94.82 89.48 78.31 86.01 92.12 91.64
Hanning 25 94.31 91.85 76.33 87.20 91.05 92.30
30 9493 91.70 77.82 86.76 92.80 91.54
35 95.63 90.62 77.77 86.10 92.44 91.30
20 95.30 91.47 78.60 87.27 92.30 91.30
25 94.16 90.56 79.80 87.05 92.49 92.20

Rectangular

30 94.14 91.57 78.01 87.37 91.33 91.73

35 95.056 91.13 77.12 87.53 92.70 92.17
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Figures 9-11 show the accuracy results obtained with and without the proposed GRU-based
training method for different hybrid features, window sizes, and window types. Only the CNN was
employed as a classifier since it outperformed the others. The results demonstrate that the best
performance was achieved with EZDDMFCC (Figure 10). According to the accuracy values
presented in Figure 10, the best performances for male and female speakers were obtained with the
GRU rectangular window with a size of 20 ms and Hanning window with a size of 35 ms,
respectively.

Algorithms were implemented on a PC with an Intel Core i3-2367M processor, a 4 GB memory
size, and a 1.40 GHz clock speed. Table 10 summarizes the computational times of the implemented
algorithms.

In this respect, it is possible to state that: computational complexity/accuracy of the EZMFCC <
computational complexity/accuracy of the EZDMFCC < computational complexity/accuracy of the
EZDDMECC.

Table 10. Computational times (in seconds) for male speakers based on a 20-ms Hamming window
with GRU. CNN: Convolutional neural network; MLP: Multilayer perceptron; SVM: Support vector
machine; k-NN: k nearest neighbor; EZMFCC: energy, zero crossing rate (ZCR), and MFCC;
EZDMEFCC: energy, ZCR, and delta-MFCC; EZDDMECC: energy, ZCR, and delta-delta-MFCC

Classification Types EZMFCC EZDMFCC EZDDMFCC

CNN 25.50 43.73 67.66
MLP 25.25 43.26 65.82
Naive Bayes 25.20 43.21 64,81
SVM 25.21 43.22 64.83
Random Forest 25.25 43.28 64.89
k-NN 25.20 43.20 64.80
Energy+ ZCR+ MFCC
93
92
£ o1
g 90
2 89
28
a7 r = o - - 3 .y = 3 ) .
20ms/M [ 25ms/M | 30ms/M 35ms/M 20ms/F 25ms/F | 30ms/F | 33ms/F
m Hamming 51 91 9145 91.21 90.04 89.98 90.88 89.09
m Hanning 91.23 91.34 91.08 921 90.25 90.13 90.15 8954
mRetangubr | 91.23 91.13 91.01 91.65 8946 89.59 8954 29.09
m Hamming 926 92.11 92.04 92.59 91.61 91.11 912 91.14
m Hanning 92,59 924 92.18 928 91 91.34 9166 91.31
mRetanpubr | 9205 9224 9244 92.85 91.22 91.01 9141 916

Figure 9. EZMFCC accuracy results without GRU-based training (no dotted bars) and with
GRU-based training (dotted bars) using a CNN classifier for male (M) and female (F) speakers.
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Energy + ZCR +D-MFCC
85
&4
_ 93
£ 02
E 91
= 90
= B9
BB
BY
20ms /M| 25ms/M |[30ms/M | 35ms/M | 20ms/F | 25ms/F | 30ms/F | 35 ms/F
m Hamming 93 93 9332 9311 9138 9181 90.98 90.29
B Hanning 93.88 93.12 93.68 93.46 80.76 50.81 91.57 91.58
mRectangular 83.13 93.02 929 8346 9128 50.04 80.35 9118
= Hamming 5488 8471 0444 84 8314 8337 8215 835
3 Hanning 8433 o4 8455 0421 93.01 93.3 93.08 9251
mRectangular 8461 5374 8379 5418 89226 93.18 03 BB 8352

Figure 10. EZDMFCC accuracy results without GRU-based training (no dotted bars) and with
GRU-based training (dotted bars) using a CNN classifier for male (M) and female (F) speakers.

Energy +ZCR +DD-MFCC
98
a7
96
g 95
zos
E 93
E 92
91
S0
89 1
20ms/ M 25ms/ M 30ms/ M 35ms/ M 20ms/F 25ms/ F 30ms/F 35ms/F
® Hamming 96 95 95.24 95377 92.46 9224 93.4 92.56
B Hanning 95.34 59476 9561 59548 93.74 92.57 592.45 52.08
B Rectangular 95.02 95 95.35 94388 9254 92.35 9217 92.87
M Hamming 97.25 95.77 968.53 97.12 951 95.09 95.03 94.67
B Hanning 97.04 96.18 96.6 96.69 94382 9431 9493 95.63
W Rectangular 976 96.38 96.22 96.98 953 9416 S94.14 95.05

Figure 11. EZDDMFCC accuracy results without GRU-based training (no dotted bars) and with
GRU-based training (dotted bars) using a CNN classifier for male (M) and female (F) speakers.

In this study we used various combination parameters, and the models are summarized in
Table 11.

Table 11. Feature parameter sets and models.

GRU Based Training Model
Male and Female

Hybrid Features Classification Types 20 H;;n II;I(I;g 35 | 20 Hzasnn;I;g 35 | 20Re;t5an§1;1ar35
CNN VA A AN
MLP N e L L e e
EZMECC Naive Bayes S N N N A A A Y
SVM S e R e N N A
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Random Forest
k-NN
CNN
MLP

Naive Bayes
SVM

Random Forest
k-NN
CNN
MLP

Naive Bayes
SVM

Random Forest

k-NN

EZDMFCC

EZDDMEFCC

2 2 2 2 2 2|2 2 2 2 2 2|2 2
<L 2 2 2 2 2|2 2 2 2 2 2|2 2
2 2 2 2 2 2|2 2 2 2 2 2 (2 2
2. 2 2 2 2 2|2 2 2 2 2 2|2 2
2.2 2 2 2 2|2 2 2 2 2 2 (2 2
2 2 2 2 2 2|2 2 2 2 2 2|2 2
2 2 2 2 2 2|2 2 2 2 2 2|2 2
2 2 2 2 2 2|2 2 2 2 2 2|2 2
2 2 2 2 2 2|2 2 2 2 2 2|2 2
2L 2 2 2 2 2|2 2 2 2 2 2|2 2
2 2 2 2 2 2|2 2 2 2 2 2|2 2
2.2 2 2 2 2|2 2 2 2 2 2|2 2

No GRU Based Training Model
Male and Female

Hamming Hanning Rectangular
20 25 30 35[20 25 30 35[/20 25 30 35

Hybrid Features Classification Types

EZMFCC R e N A
EZDMFCC CNN R N A A B R
EZDDMECC N T S R S A A T

Various studies have been carried out to investigate speech segmentation. However, although
there are studies conducted with standard datasets created by various universities and institutions
in different languages, no comprehensive study to determine the optimum feature parameters based
on the GRU for Kurdish speech segment detection has been encountered. The Kurdish vocabulary
dataset, which was derived from TRT Kurdi Niige news speech signals, was used to train the
classifier with GRU recurrent neural networks.

In this study the automatic detection of the C/V/S phoneme segmentation method used for the
continuous Kurdish speech segmentation was discussed. The results demonstrate that the suggested
method yields promising results for identifying the optimal set of feature parameters for the Kurdish
language classifier. According to the obtained analysis results, it was observed that the selection of
feature extraction methods and the selection of classifier models in male and female speakers were
the two main factors affecting the performance of the Kurdish C/V/S speech detection system. For
male voices, the optimal choice was the use of the rectangular window with a window size of 20 ms
with EZDDMEFCC feature parameters and the CNN classifier. For female voices, the optimal choice
was the use of the Hanning window with a window size of 35 ms with EZDDMFCC feature
parameters and the CNN classifier. We saw better performances for the male class with respect to
female. We do not think that the difference in the performances was caused by the imbalance of the
two classes. It may be attributed to the difference in the speaking style of female speakers.

As a result, it was observed that as the number of novel features increased, the success rate
increased for female and male speakers. The windowing time and windowing techniques had an
insignificant and similar contribution. The results demonstrate that CNN deep learning classifiers
achieved higher classification performance compared to MLP and standard classifiers.

4. Conclusions

In this study, speech segment detection for the Kurdish language and a unique related dataset
were developed. Performances of Kurdish speech segment detection with and without GRU were
evaluated for different parameters, including window type, window size, and hybrid feature
vectors. Extensive research to identify the optimal set of feature parameters and the effect of the
analysis based on GRU recurrent neural networks was undertaken. It was shown that the Kurdish
speech segment detection with GRU recurrent neural networks achieved the best performance. In
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this study, we achieved promising classification accuracy for Kurdish speech segment detection by
optimizing processing parameters. The current study may be extended for the purpose of building a
speech recognition system based on the individual consonant/vowel unit. In the future, we also aim
to further enhance the mentioned results by using different deep learning algorithms, such as LSTM
and their bidirectional variants.
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