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Featured Application: In this paper, a multi-scale ResNet is proposed for hyperspectral image
classification, which can be applied in biohazard detection, agriculture, wasteland fire tracking,
and environmental science.

Abstract: Hyperspectral imaging (HSI) contains abundant spectrums as well as spatial information,
providing a great basis for classification in the field of remote sensing. In this paper, to make full use
of HSI information, we combined spectral and spatial information into a two-dimension image in a
particular order by extracting a data cube and unfolding it. Prior to the step of combining, principle
component analysis (PCA) is utilized to decrease the dimensions of HSI so as to reduce computational
cost. Moreover, the classification block used during the experiment is a convolutional neural network
(CNN). Instead of using traditionally fixed-size kernels in CNN, we leverage a multi-scale kernel in
the first convolutional layer so that it can scale to the receptive field . To attain higher classification
accuracy with deeper layers, residual blocks are also applied to the network. Extensive experiments
on the datasets from Pavia University and Salinas demonstrate that the proposed method significantly
improves the accuracy in HSI classification.

Keywords: hyperspectral image; spectral-spatial fusion; principle component analysis;
multi-scale kernel; residual networks

1. Introduction

Hyperspectral image classification plays one of the most fundamental and important roles
in remote sensing. It uses computers and other tools to quickly classify each pixel in an image
into different classes, so as to achieve the ground observation and object recognition. Unlike a
two-dimensional color image, Hyperspectral imaging (HSI) is a three-dimensional data cube with
hundreds of narrow and continuous spectral bands, providing great potential for the subsequent
information extraction [1,2]. In HSI, each spectral band is an ordinary two-dimensional image, and
each pixel almost corresponds to a continuous spectral curve. The spectral curves of each land-cover
class vary due to their different reflectance to light of various frequencies, which means that HSI
classification assigns a specific set of categories to each pixel based on its spectral information [3].

However, the high dimension of HSI easily leads to the problem of the curse of dimensionality,
which increases the complexity of calculation and decreases the accuracy of classification. In addition,
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HSI data usually contains a small number of labelled samples and the sample distribution is not
balanced, easily resulting in an overfitting problem for the class with fewer samples. Due to the
inherent characteristics of hyperspectral images, HSI classification is facing great difficulties. Various
methods have been proposed to classify HSI, such as the K-nearest neighbor (KNN) algorithm [4],
partial least squares-discriminant analysis (PLS-DA) [5], discriminant analysis (DA) or soft independent
modeling of class analogy (SIMCA) [6], random forest (RF) [7], support vector machine (SVM) [8,9],
and extreme learning machine (ELM) [10]. However, most of these traditional algorithms encounter
the “curse of dimensionality”. Various methods have been developed to deal with HSI classification
problems [11–24]. In recent years, many research results in image classification have been obtained
with deep learning methods, especially convolutional neural networks. These exciting results
demonstrate its powerful feature extraction capabilities in computer vision competition, which brings
great opportunities for the development of HSI classification [25]. In 2015, Hu et al. [26] trained
a one-dimensional CNN to directly classify a pixel of a hyperspectral image and obtained 92.56%
accuracy on the dataset from Pavia University. The architecture of the network was very simple, with
only five layers. In 2016, a contextual deep CNN was used to classify HSI by Hyungtae et al. [27],
which obtained 94.06% accuracy in the same dataset. In 2017, Kussul et al. used one-dimensional and
two-dimensional CNNs to classify crops, and they concluded that the effect of two-dimensional CNN
was better than one-dimensional CNN [28]. Recently, classification methods based on spectral–spatial
methods have made great progress in HSI classification, showing that they have higher classification
accuracy, such as the methods proposed in the papers [29–32]. Although these methods above, based
on spectral information classification, can classify HSI effectively, most of them did not consider either
dimension reduction of data or spatial information in HSI, likely leading to many noisy points in the
classification maps and heavy computation.

In a similar way, in this paper, we introduce a novel classification algorithm based on
two-dimensional CNN that combines spectral and spatial features. The main contributions of this
paper are listed below.

1. To reduce the correlation between HSI spectral bands and the amount of computation,
the principle component analysis (PCA) method is used to preprocess the HSI data.

2. Spatial and spectral features are combined ahead of feeding into the classification model.
3. To fully extract the most important information and reduce the risk of overfitting, multi-scale

kernels are applied to the first convolutional layer.
4. To protect the integrity of information and deepen the network, residual blocks are added to

the network.

2. Related Works

2.1. CNN for Classification

The first convolutional neural network (CNN) so called LeNet-5 [33] consists of only five layers.
With the recent advent of large scale image databases, the network becomes relatively deeper and wider.
Hence, The feature extraction ability of networks has been enhanced dramatically from the original
LeNet [33], to VGG-16 [34], to GoogleNet [35], to residual networks (ResNets), which have surpassed
100 layers [36], and to wide-residual networks [37]. The ResNets introduce the skip-connection
layer, which creates shorter paths between earlier and later layers, to avoid the problems of gradient
vanishing and feature propagation emergence caused by a very deep network.

2.2. Hyperspectral Image Classification

Most existing methods deal with the classification of hyperspectral images according to the
conventional paradigm of pattern recognition, which is built on complex hand crafted features
and shallow trainable classifiers, such as support vector machines (SVM) [38] and neural networks
(NN) [39]. However, due to the high diversity of depicted materials, they are highly reliant on
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domain knowledge to determine which features are important for the classification task. A large
number of deep learning models, capable of automatically discovering and learning semantic features,
have been developed to tackle HSI classification problems [24,40–43]. Chen et al. [40] introduced
the concept of deep learning into hyperspectral data classification for the first time. Chen et al. [41]
employed several convolutional and pooling layers to extract deep features from HSIs, which are
nonlinear, discriminant, and invariant. Ran et al. [42] proposed a spatial pixel pair feature that
better exploits both the spatial/contextual information and spectral information for HSI classification.
In [24], the image was firstly segmented into different homogeneous parts, called superpixels. Then a
superpixel-based multitask learning framework was proposed for hyperspectral image classification.
Mou et al. [43] proposed a novel recurrent neural network(RNN) model that can effectively analyze
hyperspectral pixels as sequential data and then determine information categories via network
reasoning. These approaches normally require large scale datasets whose size should be proportional
to the number of parameters used by the network to avoid overfitting.

Unlike these deep learning-based approaches, we first reduce the computation by decreasing the
dimensions of HSI with PCA. Then, a multi-scale network is proposed to expand the receptive filed
and automatically capture spectral and spatial feature. Finally, we fuse the features and feed into the
CNN model.

3. The Proposed Method

3.1. Data Preprocessing

As mentioned above, HSI has high dimensions and the data among adjacent spectral bands have
strong correlations. If the raw data are trained directly, it may cause unnecessary calculation and even
reduce the accuracy and speed of classification. Therefore, the PCA method [44,45] is used to reduce
the dimensions of HSI. During the experiment processing on extensively-used datasets of HSI, the first
25 principle components are selected, which remains at least 99% of the initial information. In HSI,
the spectral information is connected with the reflectance properties of each pixel on each spectral band.
Differently, the spatial information is derived by considering its neighborhood pixels [29]. Therefore,
in this paper, spectral and spatial information are combined as samples. For the sake of brevity, we
call the samples combined with spatial and spectral information, SS Images. The sample generation
process is shown in Figure 1.
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Figure 1. The procedure of sampling, where w, h, and c represent the width, height, and the number
of bands in original image, respectively, and cr represents the number of components retained after
principle component analysis (PCA). One sample combined with spatial and spectral information
(called an SS Image) belongs to a class.

The detailed sampling procedure is described as the following.

1. After PCA is conducted, we assume that a labelled pixel pi,j at location of (i, j) is selected as a
sample, and labeled as the class of li,j.

2. Then, we center on pixel pi,j, increase the rows and columns from (i− 2, j− 2) to (i + 2, j + 2)
respectively, and capture an area of 5× 5 to form a three-dimensional cube of 5× 5× cr.
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3. Finally, the three-dimensional cube is unfolded by extracting the spectral band values of each
pixel to form a row vector from left to right and from top to bottom, thus a 25× cr image is formed
as shown in Figure 2, which combine spectral and spatial information as an input, denoted as xi,j.
A sample of di,j, an SS Image, is formed as di,j = (xi,j, li,j).

4. Repeat steps (1–3), and we can form the dataset D = {di,j, i = 1, 2, ..., w, j = 1, 2, ..., h}.

Figure 2. The process of spectral–spatial fusion to form a sample, where cr is assumed to be 25.

3.2. Network Architecture

This part describes in detail the architecture of the network, the model used in the experiments.
Except for the input layer, the model is comprised of 12 layers, all of which contain trainable parameters,
as shown in Figure 3 . All convolution layers use the same convolution operation, so that more
information of the image can be retained. For convenience, let Cx, Sx, and Fx denote convolutional
layers, sub-sampling layers, and fully-connected layers, respectively, where x is the index of each layer.
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Figure 3. The overall architecture of the proposed Multi-scale ResNet network. Concat is the operator
of concatenating feature maps produced by C1.

Layer C1 is a multi-scale kernel convolutional layer which can expand to the receptive filed.
The convolution operation is carried out with convolution kernel of the size of 1× 1, 3× 3, and 5× 5.
Each convolution module has 4 kernels and the output feature maps are concatenated after they pass
through a rectified linear unit (ReLU) function.

Layer S2 is a max pooling layer with 12 feature maps. Since the 2× 2 receptive fields do not
overlap, the number of rows and columns of the feature map in S2 is half of the feature map in C1.

Layers C3–C9 are convolutional layers with 3× 3 kernels. Two residual blocks are added to the
network which can attain higher classification accuracy with deeper layers. The last convolutional
layer C9 outputs 32 feature maps.
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Layer F10 and layer F11 are fully-connected layers with 120 and 84 units, respectively. To decrease
the risk of overfitting, the dropout method is conducted.

The last layer F12 is also a fully connected layer, which is also the output layer of the
model. The number of neuron units are related to the number of classes. Since it implements a
multi-classification task, Softmax regression is used in this layer.

3.3. Loss Function

Considering the huge distinction in the number of each category, the dice coefficient was used as
the loss function. The dice coefficient is used to compare the similarity of two batches of data, usually
for binary image segmentation, i.e., when the label is binary. The dice coefficient results in a value of 0
to 1, where 1 indicates an exact match.

D = 1− 2|X ∩Y|
|X|+ |Y| . (1)

The network predictions pi, which contain k dimension, are processed through a soft-max layer
which outputs the probability of each pixel to belong to different classes. Parameter k is the number
of classes. According to the dice coefficient, we propose an objective function. The loss function is
defined as the following:

L = 1− 2 ∑N
i pigi

∑N
i pi

2 + ∑N
i gi

2
(2)

where pi is the output score and gi is the ground true label score. N stands for the number of pixels.

4. Experiment Results and Analysis

We evaluate the performance of the proposed method on two datasets from Pavia University and
Salinas. The Pavia University dataset contains 103 bands, which covers the wavelength from 430 nm
to 860 nm. It has 610× 340 pixels and nine classes to be classified. The Salinas dataset contains 204
bands, which covers the wavelength from 400 to 2500 nm with 512× 217 pixels and has 16 classes.
Four commonly used performance metrics are utilized to evaluate the model: overall accuracy (OA),
average accuracy (AA), kappa coefficient, and testing time. In the experiment, we randomly selected
200 samples per class as training sets (as shown in Tables 1 and 2), and the rest of the samples for
testing sets. All the experiments were conducted using Python 3.6 on a computer with an 11G GPU.

Table 1. The number of training samples of the Pavia University dataset.

No. Classes Total Samples Training Samples

1 Asphalt 6631 200
2 Meadows 18,649 200
3 Gravel 2099 200
4 Trees 3064 200
5 Painted metal sheets 1345 200
6 Bare Soil 5029 200
7 Bitumen 1330 200
8 Self-blocking bricks 3682 200
9 Shadows 947 200

Total 42776 1800

4.1. How Many Components Should Be Remained?

To test how many principal components should remain, we tested on the two datasets mentioned
above. For the Pavia University dataset, the number of principal component components retained
changes from 1 to 103, and for the Salinas data set, the number of principal component components
retained changes from 1 to 204. The corresponding run time and overall accuracy are shown in Figure 4.
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Table 2. The number of training samples of the Salinas dataset.

No. Classes Total Samples Train Samples

1 Brocoli green weeds 1 2009 200
2 Brocoli green weeds 2 3726 200
3 Fallow 1976 200
4 Fallow rough plow 1394 200
5 Fallow smooth 2678 200
6 Stubble 3959 200
7 Celery 3579 200
8 Grapes untrained 11,271 200
9 Soil vinyard develop 6203 200

10 Corn senesced green weeds 3278 200
11 Lettuce romaine 4wk 1068 200
12 Lettuce romaine 5wk 1927 200
13 Lettuce romaine 6wk 916 200
14 Lettuce romaine 7wk 1070 200
15 Vinyard untrained 7268 200
16 Vinyard vertical trellis 1807 200

Total 54,129 3200

(a) Overall accuracy (b) Testing time

Figure 4. The overall accuracy (a) and testing time (b) affected by the number of components remained
after PCA.

As can be seen from Figure 4, in the Salinas data set, when the number of components is less than
25, the more principal components that are retained, the higher the overall accuracy is that can be
obtained. While in the data set of Pavia University, when the number of components is less than 15,
the more principal component components that are retained, the higher the overall accuracy. However,
from then on, the accuracy did not improve with an increase in the number of components. This is
because these components have retained the information more than 99%. However, as the retained
components increase, the testing time increases linearly. To balance time and efficiency, we set the
number of components to 25 for the rest of experiments. Of course, the number can also be calculated
automatically, for example, the number of reserved components can be determined automatically by
requiring more than 99% of the information to be retained.

4.2. The Effect of the Cube Size

To demonstrate the effect of the extracted cube size in terms of overall accuracy of spectral–spatial
method based on PCA, during the experiment, 3× 3× 9, 4× 4× 16, and 5× 5× 25 cube data are
extracted respectively and in each class, we selected 200 of samples randomly as training sets. The OA
plot of the two datasets over the entire sample is shown in Figure 5. From Figure 5, we learn that
the overall accuracy increases in both datasets with the increased cube size. This is because more
contextual information, including spatial and spectral information, can be acquired with the increased
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cube size. In the experiment, both datasets achieve above 96% classification accuracy when the cube
size is 5× 5× 25.

Figure 5. Effect of the size of cube for the Salinas and Pavia University datasets on the
spectral–spatial method.

4.3. How the Multi-Scale Affects the Classification

In order to test the influence of the multi-scale convolutional kernel, we conducted six sets of
experiments. In these experiments, the cube size is set to 5× 5× 25. The first three experiments are
convolution kernels with only one scale, whose convolution kernels are 1*1@12, 3*3@12 and 5*5@1
respectively. The fourth and fifth are the combination of two scale convolutional kernels, which are
respectively the concatenation of 1*1@6+3*3@6, and the concatenation of 3*3@6+5*5@6. The sixth
experiment is a concatenation of three scale convolution kernels: 1*1@4+3*3@4+5*5@4, as shown in
Figure 6. Detailed results of the experiments are shown in Table 3.

Table 3. The accuracy affected by multi-scale kernels. Overall accuracy (OA), average accuracy (AA).
The best results are highlighted in bold.

Datasets Kernels Training Time Testing Time OA AA Kappa

Pavia
University

1*1@12 26.40 7.32 0.963604 0.956682 0.951763
3*3@12 26.15 7.23 0.978551 0.97294 0.971562
5*5@12 26.23 7.30 0.97834 0.966848 0.971356

1*1@6+3*3@6 26.93 7.45 0.978551 0.97294 0.971562
3*3@6+5*5@6 26.84 7.48 0.978995 0.968616 0.972227

1*1@4+3*3@4+5*5@4 27.57 7.49 0.986153 0.983208 0.981648

Salinas

1*1@12 25.96 8.95 0.957255 0.982387 0.952307
3*3@12 26.13 9.04 0.965719 0.982829 0.961777
5*5@12 26.12 9.27 0.964592 0.983698 0.96056

1*1@6+3*3@6 26.63 9.17 0.971393 0.986391 0.968131
3*3@6+5*5@6 27.04 9.28 0.974165 0.98662 0.971259

1*1@4+3*3@4+5*5@4 27.61 9.53 0.975608 0.986853 0.972731
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Figure 6. Different kernels in the first convolutional layer of the CNN model, in which the symbol of
‘+’ represents for concatenation. (a): Convolution kernels are 1*1@12; (b): Concatenation of the two
scale convolution kernels of 1*1@6+3*3@6; (c): Concatenation of the three scale convolution kernels of
1*1@4+3*3@4+5*5@4.

As can be seen from Table 3, the best results highlighted in bold were obtained by the last group
while combining three scale convolution kernels. This is because multiple scales can get both local and
global information.

We also plotted convergence curves with different kernels, as shown in Figure 7. The multi-scale
kernel model can make the training convergence more stable in both the datasets.

(a) Pavia University (b) Salinas

Figure 7. The convergence by different kernels. (a) Tested on the Pavia University dataset, (b) tested
on the Salinas dataset.

4.4. The Performance of Classification on the Salinas and Pavia University Datasets

In this part, the three methods based on spectral, spectral + PCA, and spectral–spatial + PCA are
compared. Among them, the method based on spectral does not carry out PCA preprocessing on the
original hyperspectral image, but only normalization. Therefore, each pixel contains all the spectral
information of the original image, and such a pixel containing all the original spectral information
is taken as a sample. For the method based on spectral + PCA, PCA preprocessing is carried out
after normalization, and then the first cr principal components are selected to reconstruct the image.
When extracting the pixel, it does not consider the information of the neighborhood pixel, so each
pixel only contains cr components of the pixel. In this experiment, cr is set to 25. Spectral–spatial +
PCA is the method proposed in this paper.

The label maps of ground truth were shown in Figures 8a and 9a and the classification maps were
shown in Figures 8b–d and 9b–d. It has to be mentioned that the black background pixels were not
considered for our classification purpose. The classification results including OA, AA, Kappa, and time
were displayed in Tables 4 and 5, and the best results for each category are highlighted in bold.

Space spectral combination method based on PCA: This method is proposed in this paper.
Firstly, PCA dimension reduction is carried out on the original hyperspectral image, and then the
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information of the target pixel and all pixels in its neighborhood are extracted as sample data for
training and classification.

Tables 4 and 5 show that the proposed method almost obtains optimal performance across
all categories, and it also displays the best classification performance compared with the other two
methods in terms of OA, AA, and Kappa. The proposed method is about 6% to 12% higher than the
other two methods in both datasets in terms of OA, showing a great improvement in HSI classification.
Considering AA, the method proposed is about 4.3% to 12%, higher than the other two methods in
both datasets. We can see classification accuracy from the kappa coefficient. The proposed method
outperforms the other two methods. Moreover, the proposed method has 100% classification accuracy
in class 1, 2, 3, and 6 in the Salinas dataset and in class 5 in the Pavia University dataset. Visually,
as shown in Figures 8 and 9, the noisy points are greatly decreased in spectral–spatial based on PCA
method. The reason why the proposed method can make such a great improvement is that it can
compensate the insufficient of spectral information only by utilizing the spatial dependence of pixels.

(a) Label map (b) Method based on
spectral

(c) Method based on
spectral + PCA

(d) Method based on
spectral–spatial + PCA

Figure 8. Classification maps for the Salinas dataset. (a) Label map; (b) method based on spectral;
(c) method based on spectral + PCA; (d) method based on spectral–spatial + PCA.
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(a) Label map (b) Method based on
spectral

(c) Method based on
spectral + PCA

(d) Method based on
spectral–spatial + PCA

Figure 9. Classification maps for the Pavia University dataset. (a) Label map; (b) method based on
spectral; (c) method based on spectral + PCA; (d) method based on spectral–spatial + PCA.

Table 4. Classification results of the Salinas dataset, including classification accuracies for every class,
AA, OA, Kappa, and Time obtained by methods based on spectral, spectral + PCA and spectral–spatial
+ PCA. The best results are highlighted in bold.

Class Spectral Spectral + PCA Spectral-Spatial + PCA

1 96.17 99.75 100.00
2 99.81 99.87 100.00
3 99.75 96.96 100.00
4 99.21 99.21 99.93
5 98.36 98.32 98.58
6 99.77 99.70 100.00
7 99.64 99.61 99.80
8 70.00 87.19 91.40
9 99.03 99.15 99.97
10 93.90 92.01 97.28
11 95.97 98.97 99.81
12 99.74 96.16 99.95
13 98.47 99.56 99.67
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Table 4. Cont.

Class Spectral Spectral + PCA Spectral-Spatial + PCA

14 98.97 96.92 98.97
15 70.50 57,31 88.80
16 99.11 99.28 99.78

OA 88.84 90.48 96.41

AA 93.73 91.15 98.09

Kappa 87.61 89.38 96.01

Time (s) 2.3799 1.3771 5.0755

Table 5. Classification results of the Pavia University dataset, including classification accuracies for
every class, AA, OA, Kappa, and Time obtained by methods based on spectral, spectral + PCA and
spectral–spatial + PCA. The best results are highlighted in bold.

Class Spectral Spectral + PCA Spectral-Spatial + PCA

1 83.74 81.81 97.45
2 85.81 83.67 98.47
3 80.32 77.23 97.33
4 95.43 93.37 98.43
5 99.78 99.48 100.00
6 84.67 87.55 98.91
7 94.43 90.90 99.47
8 82.16 85.17 92.42
9 100.00 99.89 99.89

OA 86.48 85.43 97.89

AA 84.19 83.58 95.57

Kappa 82.46 81.18 97.22

Time (s) 1.3992 1.0734 4.2585

4.5. The Influence between the Number of Training Samples and the Classification

During the experiment, we changed the number of training samples to study the effects on the
classification performance for various methods. Here, we set the parameters as same as used in
Section 4.4. In each experiment, 50, 100, 150, and 200 samples are chosen randomly in each class
as training sets, and the rest were set to be testing sets. The overall accuracy plots under different
conditions are shown in Figure 10. As shown in Figure 10, in most cases, when the percentage of
training samples increases, the overall accuracy also increases. Furthermore, the proposed method
achieves about 93% classification accuracy in both datasets by using only 50 of samples in each class,
which is higher than the other two methods when using 200 samples. Therefore, it can be said that the
spectral–spatial method based on PCA uses less samples to obtain higher classification accuracy.
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Figure 10. Effect of the number of training samples for the Salinas and Pavia University datasets in the
spectral–spatial method. Sa and Pa represent the Salinas and Pavia University datasets respectively. S,
S-P and S-S represent for methods based on spectral, spectral + PCA and spectral–spatial + PCA.

4.6. Comparison of other Proposed Methods

To verify the feasibility of the proposed method, we compare some other CNN-based methods
proposed in recent years on the Salinas and Pavia University datasets, including the methods CNN
in [26], CNN-PPF in [46] and CD-CNN in [47]. The architecture of the classifier, proposed by Hu et al.,
comprises an input layer, the convolutional layer, the max poolinglayer, the fully-connected layer,
and the output layer with weights [26]. In paper of Wei et al., a pixel-pair method was proposed
to markedly increase such a number. This will enable the advantages provided by CNN to be used
as much as possible. For testing pixels, the trained CNN classifies the pairs of pixels created by
combining the central pixel with each surrounding pixel, and then determines the final label through
voting strategy [46]. In the paper by Lee et al. [47], a deep CNN, which was deeper and wider than
any other deep network for HSI classification was described. Different from methods in CNN-based
hyperspectral image classification, the proposed network—a contextual deep CNN—can best explore
local contextual interactions, by jointly utilizing local spatial-spectral relationships of neighboring
individual pixel vectors. By using a multi-scale convolution filter bank as the initial component of
the proposed CNN pipeline, the joint development of spatial-temporal spectral information can be
achieved. After that, the original spatial and spectral feature maps obtained from the multi-scale filter
bank are combined together to form a joint spatial–spectral feature map that represents abundant
spectral and spatial properties of the hyperspectral image. The joint feature map is then fed through a
fully convolutional network that eventually predicts the corresponding label of each pixel vector.

In this experiment, 50, 100, 150, and 200 training samples for each class are set respectively.
The overall accuracy is shown in Table 6. As it can be seen in the Table, when the number of training
samples increases, the overall accuracy also increases. In the case of the same number of training
samples, it is clear that the proposed method almost always outperforms other three methods.

Table 6. Overall accuracy (%) versus different numbers of training samples per class for different
methods. The best results are highlighted in bold.

Datasets Methods
Numbers of Training Samples

50 100 150 200

CNN [26] 89.20 89.58 89.60 89.72
Salinas CNN-PPF [46] 92.15 93.88 93.84 94.80

CD-CNN [47] 82.74 98.58 - 95.42
Proposed method 92.18 93.77 95.02 96.41

CNN [26] 86.39 88.53 90.89 92.27
Pavia CNN-PPF [46] 88.14 93.35 94.97 96.48

University CD-CNN [47] 92.19 93.35 - 96.73
Proposed method 94.34 96.25 97.64 97.89
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We can see from the overall accuracy of the Salinas dataset, with 50 training samples in each
category, the overall accuracy of the proposed method is 92.18%. The overall accuracy resulting from
the method proposed is 9.44%, higher than the lowest one. With 100 training samples in each category,
the overall accuracy of the proposed method is not the maximum. With 150 training samples in each
category, the overall accuracy of the proposed method is 95.02%. The overall accuracy resulting from
the method proposed is 5.42%, higher than the lowest one. With 200 training samples in each category,
the overall accuracy of the proposed method is 96.41%. The overall accuracy resulting from the method
proposed is 6.69%, higher than the lowest one.

We can see from the overall accuracy of the Pavia University dataset with 50 training samples in
each category, the overall accuracy of the proposed method is 94.34%. The overall accuracy resulting
from the method proposed is 7.95%, higher than the lowest one. With 100 training samples in each
category, the overall accuracy of the proposed method is 96.25%. The overall accuracy resulting from
the method proposed is 7.72%, higher than the lowest one. With 150 training samples in each category,
the overall accuracy of the proposed method is 97.64%. The overall accuracy resulting from the method
proposed is 6.75%, higher than the lowest one. With 200 training samples in each category, the overall
accuracy of the proposed method is 97.89%. The overall accuracy resulting from the method proposed
is 5.62%, higher than the lowest one.

The proposed method shows higher classification accuracy on Pavia University dataset as well as
Salinas datasets.

5. Conclusions

In this paper, we proposed a novel multi-scale kernel CNN with residual blocks based on
PCA using spectral–spatial information for hyperspectral image classification. To reduce redundant
spectral information, PCA is used in data preprocessing. Moreover, to improve the classification
performance we combined spectral–spatial information by extracting a data cube and unfolding it into
a two-dimensional. The classification block used in this paper is a multi-scale kernel CNN which can
effectively extract the most important information from the HSI pixels. In particular, using multi-scale
kernels can expand the receptive field and thus reduce the risk of overfitting. To make the network go
deeper, two residual blocks were applied to the network. Experimental results reveal that the proposed
method outperforms the method using spectral information only, and other methods proposed based
on CNN in recent years, in terms of overall accuracy assessment.
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