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Abstract: Image hashing-based authentication methods have been widely studied with continuous
advancements owing to the speed and memory efficiency. However, reference hash generation and
threshold setting, which are used for similarity measures between original images and corresponding
distorted version, are important but less considered by most of existing models. In this paper,
we propose an image hashing method based on multi-attack reference generation and adaptive
thresholding for image authentication. We propose to build the prior information set based on the
help of multiple virtual prior attacks, and present a multi-attack reference generation method based
on hashing clusters. The perceptual hashing algorithm was applied to the reference/queried image
to obtain the hashing codes for authentication. Furthermore, we introduce the concept of adaptive
thresholding to account for variations in hashing distance. Extensive experiments on benchmark
datasets have validated the effectiveness of our proposed method.

Keywords: reference hashing; adaptive thresholding; image authentication

1. Introduction

With the aid of sophisticated photoediting software, multimedia content authentication is
becoming increasingly prominent. Images edited by Photoshop may mislead people and cause
social crises of confidence. In recent years, image manipulation has received a lot of criticism
for its use in altering the appearance of image content to the point of making it unrealistic.
Hence, tampering detection, a scheme that identifies the integrity and authenticity of the digital
multimedia data, has emerged as an important research topic. Perceptual image hashing [1–4]
supports image content authentication by representing the semantic content in a compact signature,
which should be sensitive to content altering modifications but robust against content preserving
manipulations such as blur, noise and illumination correction [5–7].

A perceptual image hashing system generally consists of three pipeline stages: the pre-processing
stage, the hashing generation stage and the decision making stage. The major purpose of pre-processing
is to enhance the robustness of features by preventing the effects of some distortions. After that,
the reference hashes are generated and transmitted through a secure channel. For the test image,
the same perceptual hash process will apply to the queried image to be authenticated. After the
image hashing is generated, the task of image authentication can be validated by the decision making
stage. The reference hash will be compared with image hashes in the test database for content
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authentication based on the selected distance metric, such as Hamming distance. Currently the
majority of perceptual hashing algorithms for authentication application can roughly be divided
into the five categories: invariant feature transform-based methods [8–13], local feature points-based
schemes [14–23], dimension reduction-based hashing [24–29], statistical features-based hashing [30–35]
and leaning-based hashing [36–39].

For the decision making stage of perceptual hashing-based image authentication framework,
only a few studies have been devoted to the reference generation and threshold selection. For reference
hashing generation, Lv et al. [36] proposed obtaining an optimal estimate of the hash centroid using
kernel density estimation (KDE). In this method, the centroid was obtained as the value which yields
the maximum estimated distribution. Its major drawbacks are that the binary codes are obtained by
using a data independent method. Since the hashing generation is independent of the data distribution,
data independent hashing methods may not consider the characteristics of data distribution in hashing
generation. Currently, more researchers are beginning to focus on the data dependent methods with
learning for image tamper detection. Data dependent methods with learning [40–43] can be trained to
optimally fit data distributions and specific objective functions, which produce better hashing codes
to preserve the local similarity. In our previous work [44], we proposed a reference hashing method
based on clustering. This algorithm makes the observation that the hashes of the original image
actually not be the centroid of its cluster set. Therefore, how to learn the reference hashing code for
solving multimedia security problems is an important topic for current research. As for authentication
decision making, the simple way is to use threshold-based classifiers. Actually, perceptual differences
under the image manipulations are often encountered when information is provided by different
textural images. Traditional authentication tasks aim to identify the tampered results from distance
values among different image codes. In this kind of task, the threshold is regarded as a fixed
value. However, in a number of real-world cases, the objective truth cannot be identified by one
fixed threshold for any image.

In this paper, we extend our previous work [44] and propose an image hashing algorithm
framework for authentication with multi-attack reference generation and adaptive thresholding.
According to the requirement of authentication application, we propose to build the prior information
set based on the help of multiple virtual prior attacks, which is produced by applying virtual prior
distortions and attacks on the original images. Differently from the traditional image authentication
task, we address this uncertainty and introduce the concept of adaptive thresholding to account
for variations in hashing distance. The main difference here is that a different threshold value is
computed for each image. This technique provides more robustness to changes in image manipulations.
We propose a data dependent semi-supervised image authentication scheme by using an attack-specific,
adaptive threshold to generate a hashing code. This threshold tag is embedded in the hashing code
transmission which can be reliably extracted at the receiver. The framework of our algorithm is
shown in Figure 1. We firstly introduce the proposed multi-attack reference hashing algorithm.
Then, we describe how original reference images were generated for experiments. After that,
the perceptual hashing process was applied to the reference/queried image to be authenticated,
so as to obtain the hashing codes. Finally, the reference hashes were compared with queried image
hashes in the test database for content authentication.
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Figure 1. Block diagram of the proposed algorithm.

2. Problem Statement and Contributions

Authentication is an important issue of multimedia data protection; it makes possible to trace the
author of the multimedia data and to allow the determination of whether an original multimedia data
content was altered in any way from the time of its recording. The hash value is a compact abstract of
the content. We can re-generate a hash value from the received content, and compare it with the original
hash value. If they match, the content is considered as authentic. In the proposed algorithm, we aim
to compute the common hashing function hk(.) for image authentication work. Let D(., .) indicate
a decision making function for comparing two hash values. For given thresholds τ, the perceptual
image hashing for tamper detection should satisfy the following criteria. If two images x and y are
perceptually similar, their corresponding hashes need to be highly correlated, i.e., D(hk(x), hk(y)) < τ.
Otherwise, If z is the tampered image from x, we should have D(hk(x), hk(z)) > τ.

The main contributions can be summarized as follows:

(1) We propose building the prior information set based on the help of multiple virtual prior attacks,
which we did by applying virtual prior distortions and attacks to the original images. On the basis
of said prior image set we aimed to infer the clustering centroids for reference hashing generation,
which is used for a similarity measure.

(2) We effectively exploited the semi-supervised information into the perceptual image hashing
learning. Instead of determining metric distance on training results, we explored the hashing
distance for thresholding by considering the effect on different images.

(3) In order to account for variations in exacted features of different images, we took into account the
pairwise variations among different originally-received image pairs. Those adaptive thresholding
improvements maximally discriminate the malicious tampering from content-preserving
operations, leading to an excellent tamper detection rate.

3. Proposed Method

3.1. Multi-Attack Reference Hashing

Currently, most image hashing method take the original image as the reference.
However, the image hashes arising from the original image may not be the hash centroid of the
distorted copies. As shown in Figure 2a, we applied 15 classes of attacks on five original images and
represent their hashes in 2-dimensional space for both the original images and their distorted copies.
From Figure 2a, we can observe five clusters in the hashing space. From Figure 2b by zooming into
one hash cluster, we note an observation that the hashes of the original image actually may not be the
centroid of its cluster.

For l original images in the dataset, we apply V type content preserving attacks with different
types of parameter settings to generate simulated distorted copies. Let us denote the feature matrix of
attacked instances in set Ψv as Xv ∈ Rm×t. Here, v = 1, 2, ..., V, m is the dimensionality of data feature
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and t is the number of instances for attack v. Finally, we get the feature matrices for the total n instance
as X = {X1, ..., XV}, and here n = tV. Note that the feature matrices are normalized to zero-centered.

(a) multiple hash clusters (b) a single hash cluster

Figure 2. The examples of hash clusters.

By considering the total reconstruction errors of all the training objects, we have the following
minimization problem in a matrix form, which jointly exploits the information from various content
preserving multi-attack data.

J1(Ũ, X̃) = α(||X̃− ŨX||2F + β||Ũ||2F), (1)

where X̃ is the shared latent multi-attack feature representation. The matrix Ũ can be viewed as
the basis matrix, which maps the input multi-attack features onto the corresponding latent features.
Parameter α, β is a nonnegative weighting vector to balance the significance.

From the information-theoretic point of view, the variance over all data is measured, and taken as
a regularization term:

J2(Ũ) = γ||ŨX||2F, (2)

where γ is a nonnegative constant parameter.
The image reference for authentication is actually an infinite clustering problem. The reference is

usually generated based on the cluster centroid image. Therefore, we also consider keeping the cluster
structures. We formulate this objective function as:

J3(C, G) = λ||X̃− CG||2F, (3)

where C ∈ Rk×l and G ∈ {0, 1}l×n are the clustering centroid and indicator.
Finally, the formulation can be written as:

min
Ũ,X̃,C,G

α||X̃− ŨX||2F + β||Ũ||2F − γ||ŨX||2F + λ||X̃− CG||2F. (4)

Our objective function simultaneously learns the feature representations X̃ and finds the mapping
matrix Ũ, the cluster centroid C and indicator G. The iterative optimization algorithm is as follows.

Fixing all variables but optimize Ũ: The optimization problem (Equation (4)) reduces to:

min J(Ũv) = α||X̃− ŨX||2F + β||Ũ||2F − γtr(ŨXXTŨT). (5)

By setting the derivation ∂J(Ũ)
∂Ũ

=0, we have:

Ũ = X̃XT((α− γ)XXT + βI)−1. (6)

Fix all variables but optimize X̃: Similarly, we solve the following optimization problem:

min F(X̃) = α||X̃− ŨX||2F + λ||X̃− CG||2F, (7)
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which has a closed-form optimal solution:

X̃ = αŨX + λCG. (8)

Fix all variables but C and G: For the cluster centroid C and indicator G, we obtain the
following problem:

min
C,G
||X̃− CG||2F. (9)

Inspired by the optimization algorithm ADPLM (adaptive discrete proximal linear method) [45],
we initialize C = X̃GT and update C as follows:

Cp+1 = Cp − 1
µ
5 Γ(Cp), (10)

where Γ(Cp) = ||B− CG||2F + ρ||CT1||, ρ = 0.001, p = 1, 2, ...5 denote the p-th iteration.
The indicator matrix G at indices (i, j) is obtained by:

gp+1
i,j =

{
1 j = arg m

s
inH(bi, cp+1

s )

0 otherwise
, (11)

where H(bi, cs) is the distance between the i-th feature codes xi and the s-th cluster centroid cs.
After we infer the cluster centroid C and the multi-attack feature representations X̃,

the corresponding l reference images are generated. The basic idea is to compare the hashing
distances among the nearest content, preserving the attacked neighbors of each original image and
corresponding cluster centroid.

3.2. Semi-Supervised Hashing Code Learning

For the reference and received images, we use the semi-supervised learning algorithm for hashing
code generation and image authentication. Firstly, all the input image is converted to a normalized size
256× 256 by using the bi-linear interpolation. The resizing operation makes our hashing robust against
image rescaling. Then, the Gaussian low-pass filter is used to blur the resized image, which can reduce
the influences of high-frequent components on the image, such as noise contamination or filtering.
Let F(i, j) be the element in the i-th row and the j-th column of the convolution mask. It is calculated by

F(i, j) =
F(1)(x, y)

∑i ∑j F(1)(x, y)
, (12)

in which F(1)(x, y) is defined as

F(1)(x, y) = e
−(i2+j2)

2σ2 , (13)

where σ is the standard deviation of all elements in the convolution mask.
Next, the RGB color image is converted into the CIE LAB space and the image is represented by

the L component. The reason is that the L component closely matches human perception of lightness.
The RGB color image is firstly converted into the XYZ color space by the following formula:

X

Y

Z

 =


0.4125 0.3576 0.1804

0.2127 0.7152 0.0722

0.0193 0.1192 0.9502




R

G

B

 , (14)

where R, G, and B are the red, green and blue components of the color pixel. We convert it into the CIE
LAB space by the following equation:
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L = 116 f (Y/Yw)− 16

A = 500 f [(X/Xw)− f (Y/Yw)]

B = 200 f [(X/Xw)− f (Z/Zw)]

, (15)

where Xw = 0.950456, Yw = 1.0 and Zw = 1.088754 are the CIE XYZ tristimulus values of the reference
white point, and f (t) is determined by:

f (t) =

{
t1/3, if t > 0.008856

7.787t + 16/116, otherwise
. (16)

Figure 3 illustrates an example of the preprocessing.

(a) Input image (b) Resized image (c) Blurred result (d) L component

Figure 3. An example of preprocessing.

Let us say we have N images in our training set. Select L images as labeled images, L � N.
The features of a single image are expressed as x ∈ RM, where M is the extracted feature length.
The features of all images are represented as X = {x1, x2, ..., xN}, where X ∈ RM×N . The features
of labeled images are represented as X ∈ RM×L. Note that these feature matrices are normalized to
zero-centered. The goal of our algorithm is to learn hash functions that map X ∈ RM×N to a compact
representation H ∈ RK×N in a low-dimensional Hamming space, where K is the digits length. Our hash
function is defined as:

H = WTX. (17)

The hash function of a single image is defined as:

hi = WTxi. (18)

In order to learn a W that is simultaneously maximizing the empirical accuracy on the labeled
image and the variance of hash bits over all images, the empirical accuracy on the labeled image is
defined as:

P1(W) = ∑
(xi ,xj)∈S

Eijhihj − ∑
(xi ,xj)∈D

Eijhihj, (19)

where matrix E is the classification of marked image pairs, as follows:

E(i, j) =


1 (xi, xj) ∈ S
−1 (xi, xj) ∈ D
0 otherwise

, (20)

Specifically, a pair (xi, xj) ∈ S is denoted as a perceptually similar pair when the two images are
the same images or the attacked images of a same image, and a pair (xi, xj) ∈ D is denoted as
a perceptually different pair when the two images are different images or when one suffered from
malicious manipulations or perceptually significant attacks.
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Equation (19) can also be represented as:

P1(W) =
1
2

tr{(WTXn) E (WTXn)
T}. (21)

This relaxation is quite intuitive. That is, the similar images are desired to not only have the same
sign but also large projection magnitudes, while the projections for dissimilar images not only have
different signs but also are as different as possible.

Moreover, to maximize the amount of information per hash bit, we want to calculate the maximum
variance of all hash bits of all images and use it as a regularization term of the hash function.

V(W) =
N

∑
i=1

var(hi) = ∑
N

var(WTxi). (22)

Due to the indifferentiability of the above function, it is difficult to calculate its extreme value.
However, the maximum variance of the hash function is the lower bound of the scale variance of the
projected data, so the information theoretic regularization is represented as:

P2(W) =
1
2

tr{(WTX)(WTX)T}. (23)

Finally, the overall semi-supervised objective function combines the relaxed empirical fitness term
from Equation (21) and the regularization term from Equation (23).

P(W) = P1(W) + ηP2(W) =
1
2

tr{WT(XnEXn
T + ηXXT)W}, (24)

where η = 0.25 is a tradeoff parameter. The optimization problem is as follows:

max
W

P(W) s.t. WWT = I, (25)

where the constraint WWT = I makes the projection directions orthogonal. We learn the optimal
projection W that is obtained by means of eigenvalue decomposition of matrix M.

3.3. Adaptive Thresholds-Based Decision Making

To measure the similarity between hashes of original and attacked/tampered images, the metric
distance between two hashing code is calculated by:

d(h1, h2) = ‖
h1 − h2

2
√
‖h1‖‖h2‖

‖, (26)

where h1 and h2 are two image hashes. In general, the more similar the images, the smaller the
distance. The greater the difference, the greater the distance.

Then, the threshold T is defined to judge whether the image is a similar image or
a tampered image. {

Similar images pair, if (d ≤ T)

Tampered images pair, if (d > T)
. (27)

If the distance is less than a given threshold, the two images are judged as visually identical
images. Otherwise, they are judged as distinct images.

Traditional image tamper detection algorithms take a fixed value as the threshold to judge similar
images/tampered images. However, due to the different characteristics among images, some images
cannot be correctly judged by the fixed threshold value. In our adaptive thresholds algorithm, we firstly
find the maximum value for the distance value of the similar images and the minimum value for the
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distance value of the tampered images. In order to prevent the two values from being too extreme,
we set the following limits:

distmin = max(dist1) s.t. (distmin −median(dist1)) > ψ

distmax = min(dist2) s.t. distmax > ξ
, (28)

where dist1 is the distance between the similar image and the original image; dist2 is the distance
between the tampered image and the original image. ψ and ξ are two constants set experimentally.
Then, the resulting maximum and minimum values are compared with fixed thresholds:

τ̃ =


τ, if (distmin < τ < distmax)

distmax − (distmax − distmin)/3, if (distmin < distmax ≤ τ)

distmin + (distmax − distmin)/3, if (τ ≤ distmin < distmax)

(distmin + distmax)/2, otherwise

, (29)

where τ is a fixed threshold obtained experimentally, τ̃ is the adaptive threshold suitable for this image.
Then, all images have their own thresholds, which are represented as:

T̃ = [τ̃1, τ̃2, ..., τ̃n]. (30)

Finally, we put the adaptive threshold at the top of the hash code and transfer it along with the
hash code. Thus, the final hash code is represented as:

h̃i = [τ̃i, hi]. (31)

4. Experiments

4.1. Data

Our experiments were carried out on two real-world datasets. The first came from the CASIA [46],
which contains 918 image pairs, including 384 × 256 real images and corresponding distorted images
with different texture characteristics. The other one was RTD [47,48], which contains 220 real images
and corresponding distorted images with resolution 1920 × 1080.

To ensure that the images of the training set were different from the images of the testing set, we
selected 301 non-repetitive original images and their corresponding tampered images to generate 66,231
images as our training data. Furthermore, 10,000 images were randomly selected from 66,231 images
as a labeled subset. We adopted 226 repetitive original images and their corresponding set of tampered
images to determine the threshold value of each image. The remaining images in CASIA and RTD
datasets were used to test performance.

4.2. Baselines

We compared our proposed algorithm with a number of baselines. In particular, we compared
it with:

Wavelet-based image hashing [49]: It is an invariant feature transform-based method,
which develops an image hash from the various sub-bands in a wavelet decomposition of the image
and makes it convenient to transform from the space-time domain to the frequency.

SVD-based image hashing [24]: It belongs to dimension reduction-based hashing and it
uses spectral matrix invariants as embodied by singular value decomposition. The invariant
features based on matrix decomposition show good robustness against noise addition, blurring and
compressing attacks.
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RPIVD-based image hashing [30]: It incorporates ring partition and invariant vector distance into
image hashing by calculating the images statistics. The statistical information of the images includes:
mean, variance, standard deviation, kurtosis, etc.

Quaternion-based image hashing [12]: This method considers multiple features, and constructs
a quaternion image to implement a quaternion Fourier transform for hashing generation.

4.3. Perceptual Robustness

To validate the perceptual robustness of proposed algorithm, we applied twelve types of content
preserving operations: (a) Gaussian noise addition with the variance of 0.005. (b) Salt and pepper
noise addition with a density of 0.005. (c) Gaussian blurring with the standard deviation of the filter
10. (d) Circular blurring with a radius of 2. (e) Motion blurring with the amount of the linear motion
3 and the angle of the motion blurring filter 45. (f) Average filtering with filter size of 5. (g) Median
filtering with filter size of 5. (h) Wiener filtering with filter size of 5. (i) Image sharpening with the
parameter alpha of 0.49. (j) Image scaling with the percentage 1.2. (k) Illumination correction with
parameter gamma 1.18. (l) JPEG compression with quality factor 20.

We extracted the reference hashing code based on the original image (ORH) and our proposed
multi-attack reference hashing (MRH). For the content-preserving distorted images, we calculated the
corresponding distances between reference hashing codes and content-preserving images’ hashing
codes. The statistical results under different attacks are presented in Table 1. Just as shown, the hashing
distances for the four baseline methods were small enough. In our experiments, we set the threshold
τ = 0.12 to distinguish the similar images and forgery images from the CASIA dataset for the
PRIVD method. Similarly, for the other three methods, we set the thresholds as 1.2, 0.0012 and
0.008 correspondingly for their best results.

Table 1. Hashing distances under different content-preserving manipulations.

Method Manipulation
ORH MRH

Max Min Mean Max Min Mean

Gaussian noise 0.02828 0.00015 0.00197 0.02847 0.00014 0.00196
Salt&Pepper 0.01918 0.00021 0.00252 0.01918 0.00024 0.00251

Gaussian blurring 0.00038 0.00005 0.00017 0.00067 0.00006 0.00019
Circular blurring 0.00048 0.00006 0.00022 0.00069 0.00006 0.00021
Motion blurring 0.00034 0.00006 0.00015 0.00065 0.00005 0.00016

Wavelet Average filtering 0.00071 0.00007 0.00033 0.00071 0.00009 0.00030
Median filtering 0.00704 0.00006 0.00099 0.00753 0.00007 0.00099
Wiener filtering 0.00101 0.00008 0.00028 0.00087 0.00008 0.00028

Image sharpening 0.00906 0.00009 0.00115 0.00906 0.00010 0.00114
Image scaling 0.00039 0.00005 0.00013 0.00064 0.00006 0.00018

Illumination correction 0.08458 0.00447 0.02759 0.08458 0.00443 0.02757
JPEG compression 0.00143 0.00009 0.00026 0.00275 0.00013 0.00051

Gaussian noise 0.00616 0.00007 0.00031 0.00616 0.00007 0.00030
Salt&Pepper 0.00339 0.00008 0.00034 0.00338 0.00007 0.00033

Gaussian blurring 0.00017 0.00007 0.00010 0.00113 0.00007 0.00011
Circular blurring 0.00018 0.00006 0.00010 0.00114 0.00006 0.00011
Motion blurring 0.00017 0.00007 0.00010 0.00113 0.00006 0.00011

SVD Average filtering 0.00025 0.00007 0.00011 0.00111 0.00006 0.00012
Median filtering 0.00166 0.00007 0.00015 0.00190 0.00007 0.00016
Wiener filtering 0.00035 0.00005 0.00011 0.00113 0.00007 0.00012

Image sharpening 0.00104 0.00007 0.00018 0.00099 0.00007 0.00018
Image scaling 0.00016 0.00007 0.00010 0.00114 0.00007 0.00011

Illumination correction 0.00662 0.00014 0.00149 0.00674 0.00014 0.00150
JPEG compression 0.00031 0.00007 0.00010 0.00053 0.00008 0.00012
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Table 1. Cont.

Method Manipulation
ORH MRH

Max Min Mean Max Min Mean

Gaussian noise 0.25827 0.00864 0.03086 0.29081 0.01115 0.03234
Salt&Pepper 0.22855 0.01131 0.02993 0.25789 0.01191 0.03033

Gaussian blurring 0.03560 0.00411 0.01471 0.14023 0.00545 0.01786
Circular blurring 0.06126 0.00447 0.01713 0.13469 0.00565 0.01924
Motion blurring 0.03570 0.00362 0.01432 0.18510 0.00473 0.01825

RPIVD Average filtering 0.07037 0.00543 0.02109 0.20190 0.00591 0.02237
Median filtering 0.06126 0.00512 0.02234 0.18360 0.00625 0.02465
Wiener filtering 0.07156 0.00421 0.01803 0.20421 0.00581 0.02041

Image sharpening 0.06324 0.00609 0.02442 0.18283 0.00706 0.02765
Image scaling 0.03311 0.00275 0.01154 0.18233 0.00381 0.01761

Illumination correction 0.11616 0.00769 0.02864 0.20944 0.01047 0.02920
JPEG compression 0.07037 0.00543 0.02109 0.06180 0.00707 0.02155

Gaussian noise 6.97151 0.13508 0.73563 6.30302 0.11636 0.60460
Salt&Pepper 7.63719 0.16998 0.66200 7.50644 0.15073 0.63441

Gaussian blurring 0.26237 0.00513 0.02519 0.10820 0.00318 0.01449
Circular blurring 0.26529 0.00712 0.03163 0.17937 0.00460 0.02075
Motion blurring 0.26408 0.00465 0.02286 0.10729 0.00300 0.01318

QFT Average filtering 0.30154 0.00976 0.04403 0.30719 0.00760 0.03263
Median filtering 0.95120 0.03084 0.19822 0.87149 0.02706 0.19345
Wiener filtering 0.64373 0.01746 0.08046 0.68851 0.01551 0.07616

Image sharpening 6.55606 0.05188 1.52398 6.55596 0.05189 1.52398
Image scaling 0.51083 0.04031 0.10067 0.52404 0.02800 0.09827

Illumination correction 4.37001 0.27357 0.84280 4.36692 0.27348 0.84170
JPEG compression 7.55523 0.13752 1.29158 13.1816 0.13585 1.46682

4.4. Discriminative Capability

The discriminative capability of a image hashing means that visually distinct images should
have significantly different hashes. In other words, two images that are visually distinct should have
a very low probability of generating similar hashes. Here, RTD dataset consisting of 220 different
uncompressed color images was adopted to validate the discriminative capability of our proposed
multi-attack reference hashing algorithm. We first extracted reference hashing codes for all 220 images
in RTD and then calculated the hashing distance for each image with the other 219 images. Thus, we can
finally obtained 220 × (220−1)/2 = 24,090 hashing distances. Figure 4 shows the distribution of these
24,090 hashing distances between hashing pairs with varying thresholds, where the abscissa is the
hashing distance and the ordinate represents the frequency of hashing distance. It can be seen clearly
from the histogram that the proposed method has good discriminative capability. For instance, we set
τ = 0.12 as the threshold on CASIA dataset when extracting the reference hashing by RPIVD method.
The minimum value for hashing distance was 0.1389, which is above the threshold. The results show
that the multi-attack reference hashing can replace the original image-based reference hashing with
good discrimination.
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Figure 4. Distribution of hashing distances between hashing pairs with varying thresholds.

4.5. Authentication Results

As the reference hashing performance for authentication, we compared the proposed multi-attack
reference hashing (MRH) with original image-based reference hashing (ORH) on four baseline image
hashing methods, i.e., wavelet-based image hashing, SVD-based image hashing, RPIVD-based
image hashing and QFT-based image hashing, with twelve content-preserving operations. The
results are shown in Tables 2 and 3. Note that higher values indicate better performance for all
metrics. It was observed that the proposed MRH algorithm outperformed the ORH algorithm
by a clear margin, irrespective of the content preserving operation and image datasets (RTD and
CASIA). This is particularly evident for illumination correction. For instance, in contrast to original
image-based reference hashing, the multi-attack reference hashing increased the AUC of illumination
correction by 21.98% on the RTD image dataset when getting the reference hashing by wavelet,
as shown in Table 2. For the QFT approach, the multi-attack reference hashing we proposed was
more stable and outstanding than other corresponding reference hashings. Since the QFT robust
image hashing technique is used to process the three channels of the color image, the chrominance
information of the color image can be prevented from being lost and image features are more obvious.
Therefore, the robustness of the multi-attack reference hashing is more able to resist geometric attacks
and content preserving operations. For instance, the multi-attack reference hashing increased the
precision of Gaussian noise by 3.28% on the RTD image.
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Table 2. Comparisons between the original image-based reference hashing and the proposed multi-attack reference hashing (RTD dataset).

Manipulation Wavelet SVD RPIVD QFT

Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC

Original image-based reference hashing

Gaussian noise 0.6257 0.9500 0.7545 0.8442 0.8537 0.4773 0.6122 0.8501 0.8326 0.8211 0.8268 0.8991 0.8978 0.7591 0.8227 0.9241
Salt&Pepper 0.5485 0.9773 0.7026 0.8043 0.8537 0.4773 0.6122 0.8507 0.8806 0.8119 0.7449 0.9088 0.8851 0.7727 0.8252 0.9184

Gaussian blurring 1.0000 0.8727 0.9320 0.9866 1.0000 0.4409 0.6120 0.9874 1.0000 0.7465 0.8549 0.9557 1.0000 0.7227 0.8391 0.9948
Circular blurring 1.0000 0.8733 0.9346 0.9787 1.0000 0.4364 0.6076 0.9852 0.9821 0.7604 0.8571 0.9447 1.0000 0.7227 0.8391 0.9948
Motion blurring 1.0000 0.8727 0.9346 0.9787 1.0000 0.4273 0.5987 0.9868 1.0000 0.7477 0.8556 0.9572 1.0000 0.7227 0.8391 0.9949
Average filtering 1.0000 0.8864 0.9398 0.9665 1.0000 0.4318 0.6032 0.9790 0.9598 0.7661 0.8520 0.9351 1.0000 0.7227 0.8391 0.9948
Median filtering 0.6967 0.9500 0.8038 0.9012 0.9898 0.4409 0.6101 0.9544 0.9399 0.7890 0.8579 0.9212 1.0000 0.7409 0.8512 0.9721
Wiener filtering 0.9847 0.8773 0.9279 0.9713 1.0000 0.4318 0.6032 0.9822 0.9880 0.7569 0.8571 0.9427 1.0000 0.7227 0.8391 0.9950

Image sharpening 0.7178 0.9364 0.8126 0.8872 0.9709 0.4545 0.6192 0.9368 0.8980 0.8073 0.8502 0.9155 0.8851 0.8537 0.8537 0.8537
Image scaling 1.0000 0.8773 0.9346 0.9892 1.0000 0.4318 0.6032 0.9873 1.0000 0.7385 0.8496 0.9677 0.8851 0.7727 0.8252 0.9184

Illumination correction 0.5000 1.0000 0.6667 0.5593 0.5479 0.8318 0.6606 0.6754 0.9021 0.8028 0.8495 0.9073 0.6429 0.9000 0.7500 0.8498
JPEG compression 1.0000 0.4909 0.6585 0.9271 1.0000 0.4318 0.6032 0.9846 1.0000 0.3073 0.4702 0.9408 0.9273 0.6955 0.7948 0.9015

Multi-attack reference hashing

Gaussian noise 0.8345 0.5273 0.6462 0.8465 0.8462 0.3000 0.4430 0.8846 0.9600 0.3303 0.4915 0.8948 0.9279 0.8773 0.9019 0.9588
Salt&Pepper 0.7619 0.5818 0.6598 0.8046 0.9507 0.6136 0.7459 0.9263 0.9706 0.3028 0.4615 0.9057 0.9500 0.6909 0.8000 0.9355

Gaussian blurring 1.0000 0.6000 0.7500 0.9955 1.0000 0.6045 0.7535 0.9904 0.9927 0.6415 0.7794 0.9880 1.0000 0.6818 0.8108 0.9952
Circular blurring 1.0000 0.4955 0.6626 0.9811 1.0000 0.6045 0.7535 0.9904 0.9926 0.6368 0.7759 0.9870 1.0000 0.6818 0.8108 0.9953
Motion blurring 1.0000 0.4909 0.6585 0.9849 1.0000 0.6000 0.7500 0.9955 0.9855 0.6415 0.7771 0.9857 1.0000 0.6818 0.8108 0.9952
Average filtering 1.0000 0.4955 0.6626 0.9709 1.0000 0.6091 0.7571 0.9955 0.9714 0.3119 0.4722 0.9270 1.0000 0.6818 0.8108 0.9952
Median filtering 0.9590 0.5318 0.6842 0.9013 0.9926 0.6091 0.7549 0.9803 1.0000 0.3211 0.4861 0.9258 1.0000 0.6818 0.8108 0.9809
Wiener filtering 1.0000 0.4909 0.6585 0.9703 1.0000 0.6045 0.7535 0.9901 0.9854 0.6368 0.7736 0.9858 1.0000 0.6864 0.8140 0.9950

Image sharpening 0.8986 0.5636 0.6927 0.8884 1.0000 0.2864 0.4452 0.9313 0.9722 0.3211 0.4828 0.9071 0.9167 0.7000 0.7938 0.9011
Image scaling 1.0000 0.4955 0.6626 0.9828 1.0000 0.6000 0.7500 0.9955 0.9855 0.6415 0.6415 0.9868 0.9494 0.6818 0.7937 0.9607

Illumination correction 0.5046 1.0000 0.6707 0.7791 0.6376 0.8318 0.7219 0.7848 0.9714 0.3119 0.4722 0.9062 0.7500 0.7909 0.7699 0.8405
JPEG compression 1.0000 0.4909 0.6585 0.9256 1.0000 0.6045 0.7535 0.9900 1.0000 0.3073 0.4702 0.9264 0.9403 0.8591 0.8979 0.9598
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Table 3. Comparisons between original image-based reference hashing and the proposed multi-attack reference hashing (CASIA dataset).

Manipulation Wavelet SVD RPIVD QFT

Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC Precision Recall F1 AUC

Original image-based reference hashing

Gaussian noise 0.7451 0.6623 0.8010 0.7909 0.8385 0.7015 0.7639 0.8825 0.9782 0.6830 0.8044 0.9021 0.8802 0.8965 0.8883 0.9520
Salt&Pepper 0.8128 0.6481 0.7212 0.8307 0.8978 0.6983 0.7855 0.9164 0.9699 0.6329 0.7660 0.9282 0.8837 0.8856 0.8847 0.9572

Gaussian blurring 0.9694 0.5861 0.7305 0.9434 0.9937 0.6852 0.8811 0.9512 0.9502 0.6452 0.7685 0.8981 1.0000 0.8638 0.9269 0.9989
Circular blurring 0.9399 0.5959 0.7293 0.9526 0.9696 0.6939 0.8089 0.8274 0.8124 0.6856 0.7436 0.8467 1.0000 0.8638 0.9269 0.9989
Motion blurring 0.9745 0.5817 0.7285 0.9526 0.9952 0.6797 0.8078 0.9642 0.9827 0.6201 0.7604 0.9161 1.0000 0.8638 0.9269 0.9989
Average filtering 0.8786 0.6231 0.7291 0.8917 0.8728 0.7179 0.7878 0.8835 0.6562 0.7738 0.7101 0.7739 1.0000 0.8638 0.9269 0.9989
Median filtering 0.8838 0.6503 0.7307 0.8457 0.9269 0.7048 0.8007 0.9047 0.7296 0.7216 0.7256 0.8080 1.0000 0.8649 0.9276 0.9939
Wiener filtering 0.8997 0.6155 0.7309 0.9055 0.9485 0.7015 0.8065 0.9212 0.8227 0.6921 0.7539 0.8506 1.0000 0.8638 0.9269 0.9980

Image sharpening 0.7194 0.7197 0.7186 0.7878 0.8089 0.7702 0.7891 0.8656 0.6526 0.8268 0.7295 0.8014 0.6565 0.9390 0.7727 0.8653
Image scaling 0.9868 0.5719 0.7241 0.9640 0.9952 0.6808 0.8085 0.9672 0.9581 0.6234 0.7553 0.9180 1.0000 0.8627 0.9263 0.9986

Illumination correction 0.5008 0.9978 0.6669 0.6063 0.6256 0.8573 0.7233 0.7541 0.9941 0.5579 0.7147 0.9810 0.8854 0.9085 0.8968 0.9616
JPEG compression 1.0000 0.4909 0.6585 0.9271 0.9676 0.6830 0.8008 0.9580 0.9565 0.6495 0.7736 0.9076 0.7148 0.9281 0.8076 0.8861

Multi-attack reference hashing

Gaussian noise 0.7604 0.6569 0.7049 0.7993 0.8647 0.6961 0.7713 0.8902 0.9429 0.8638 0.9016 0.9578 0.9130 0.8922 0.9025 0.9646
Salt&Pepper 0.8415 0.6362 0.7246 0.8407 0.9261 0.6961 0.7948 0.9202 0.9738 0.8497 0.9075 0.9693 0.8906 0.8954 0.8930 0.9614

Gaussian blurring 1.0000 0.5664 0.7232 0.9797 1.0000 0.6634 0.7976 0.9807 0.9584 0.8046 0.8748 0.9481 1.0000 0.8758 0.9338 0.9989
Circular blurring 0.9943 0.5708 0.7253 0.9624 0.9951 0.6645 0.7969 0.9644 0.8596 0.8155 0.8370 0.9081 1.0000 0.8758 0.9338 0.9989
Motion blurring 1.0000 0.5654 0.7223 0.9800 1.0000 0.6656 0.7992 0.9857 0.9867 0.8079 0.8884 0.9618 1.0000 0.8758 0.9338 0.9989
Average filtering 0.9451 0.6002 0.7342 0.9201 0.9574 0.6852 0.7987 0.9203 0.6915 0.8328 0.7556 0.8349 1.0000 0.8758 0.9338 0.9989
Median filtering 0.7954 0.6438 0.7116 0.8366 0.9077 0.6961 0.7879 0.9038 0.7795 0.8297 0.8038 0.8851 1.0000 0.8769 0.9344 0.9958
Wiener filtering 0.9818 0.5871 0.7348 0.9369 0.9842 0.6776 0.8026 0.9542 0.8659 0.8177 0.8411 0.9195 1.0000 0.8769 0.9344 0.9984

Image sharpening 0.7271 0.7081 0.7174 0.7958 0.7901 0.7789 0.7844 0.8581 0.6722 0.9292 0.7801 0.8982 0.6579 0.9434 0.7749 0.8685
Image scaling 0.9923 0.5599 0.7159 0.9521 0.9952 0.6754 0.8047 0.9657 0.9716 0.8210 0.8899 0.9640 1.0000 0.8780 0.9350 0.9988

Illumination correction 0.5008 0.9978 0.6669 0.6043 0.6003 0.8638 0.7084 0.7389 0.9973 0.8111 0.8946 0.9915 0.8843 0.9161 0.8999 0.9649
JPEG compression 0.9925 0.5763 0.7292 0.9420 0.9779 0.6754 0.7990 0.9537 0.9720 0.8368 0.8994 0.9627 0.7145 0.9270 0.8070 0.8859
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For performance analysis, we took wavelet-based and SVD-based image hashing to extract
features and used the semi-supervised method to train W for each content-preserving manipulations.
The experimental results are summarized in Table 4. They show the probability of the true
authentication capability of the proposed method compared to the methods: wavelet-based, SVD-based
features and the corresponding semi-supervised method. Here, for the wavelet-based method, ψ = 0.02
and ξ = 0; and for SVD-based method, ψ = 0.005 and ξ = 0. The column of similar image represents
the true authentication capability of the judgment of a similar image, which indicates the robustness
of the algorithm. The column of tampering image represents the true authentication capability of
tampering image, which indicates the discrimination of the algorithm. Higher values mean better
robustness and differentiation. Only our approach selected adaptive thresholds, as other approaches
choose a fixed threshold that balances robustness and discrimination.

Table 4. Result for the probability of true authentication capability.

Method Similar Images Tampered Image

DWT 95.64% 95.81%
Semi-Supervised (DWT) 95.65% 95.78%
OUR (DWT) 96.19% 97.14%

SVD 84.97% 84.92%
Semi-Supervised (SVD) 85.12% 85.08%
OUR (SVD) 86.06% 85.46%

5. Domains of Application

With the aid of sophisticated photoediting software, multimedia content security is becoming
increasingly prominent. By using image editing tool, such as Photoshop, the counterfeiters can easily
tamper the color attribute to distort the actual meanings of images. Figure 5 shows some real examples
for image tamper. These edited images spread over the social network, which not only disturb
our daily lives, but also seriously threat our social harmony and stability. If tampered images are
extensively used in the official media, scientific discovery, and even forensic evidence, the degree
of trustworthiness will undoubtedly be reduced, thus having a serious impact on various aspects
of society.

(a)  Original image                              (b)  Forged image

Figure 5. The German-language daily tabloid, Blick, forged the flooding water to blood red,
and distributed the falsified image to news channels.

Many image hashing algorithms are widely used in image authentication, image copy
detection, digital watermarking, image quality assessment and other fields, as shown in Figure 6.
Perceptual image hashing aims to be smoothly invariant to small changes in the image (rotation,
crop, gamma correction, noise addition, adding a border). This is in contrast to cryptographic hash
functions that are designed for non-smoothness and to change entirely if any single bit changes.
Our proposed perceptual image hashing algorithm is mainly for image authentication applications.
Our technique is suitable for processing large image data, making it a valuable tool for image
authentication applications.
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Figure 6. A generic framework of image hashing and an application perspective.

6. Conclusions

In this paper, we have proposed a hashing algorithm based on multi-attack reference generation
and adaptive thresholding for image authentication. We effectively exploited simultaneously the
supervised content-preserving images and multiple attacks for feature generation and the hashing
learning. We specially take into account the pairwise variations among different originally-received
image pairs, which makes the threshold more adaptable and the value more reasonable. We performed
extensive experiments on two image datasets and compared our results with the state-of-the-art
hashing baselines. Experimental results demonstrated that the proposed method yields superior
performance. For image hashing-based authentication, a scheme with not only high computational
efficiency but also reasonable authentication performance is expected. Compared with other original
image-based reference generation, the limitation of the our work is that it is time consuming for cluster
operation. In the future work, we will design the co-regularized hashing for multiple features, which is
expected to show even better performance.
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