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Abstract: Over the last decade, Unmanned Aerial Vehicles (UAVs), also known as drones, have been
broadly utilized in various agricultural fields, such as crop management, crop monitoring, seed
sowing, and pesticide spraying. Nonetheless, autonomy is still a crucial limitation faced by the
Internet of Things (IoT) UAV systems, especially when used as sprayer UAVs, where data needs to be
captured and preprocessed for robust real-time obstacle detection and collision avoidance. Moreover,
because of the objective and operational difference between general UAVs and sprayer UAVs, not
every obstacle detection and collision avoidance method will be sufficient for sprayer UAVs. In this
regard, this article seeks to review the most relevant developments on all correlated branches of the
obstacle avoidance scenarios for agricultural sprayer UAVs, including a UAV sprayer’s structural
details. Furthermore, the most relevant open challenges for current UAV sprayer solutions are
enumerated, thus paving the way for future researchers to define a roadmap for devising new-
generation, affordable autonomous sprayer UAV solutions. Agricultural UAV sprayers require
data-intensive algorithms for the processing of the images acquired, and expertise in the field of
autonomous flight is usually needed. The present study concludes that UAV sprayers are still facing
obstacle detection challenges due to their dynamic operating and loading conditions.

Keywords: agricultural sprayer UAVs; Internet of Things; obstacles on farmland; operation pattern;
obstacle detection; collision avoidance; path planning; spray coverage

1. Introduction

The integration of Unmanned Aerial Vehicles (UAVs) with IoT (Internet of Things)
devices, such as embedded sensors and communication elements, for agricultural operations
is growing at a significantly faster pace than expected [1,2]. These IoT devices greatly enhance
the capabilities of UAVs and enable UAVs to be used in a wide range of agricultural crop
management operations, including field mapping [3,4], plant-stress detection [5,6], biomass
estimation [7,8], weed management [9,10], inventory counting [11], etc.

Moreover, disease and pest control are mostly achieved by applying different chemical
elements using different distribution systems [12,13]. Among these distribution systems,
manual air-pressure and battery-powered backpack sprayers constitute the leading spray-
ing equipment [14–16]. Because of the toxicity of manual spraying to human health, sprayer
UAVs integrated with IoT devices have been deployed to replace the crude and noneffective
manual spraying methods [17–19]. These kinds of IoT sprayer UAVs are expected to revo-
lutionize agronomy, finishing tasks in hours instead of days, reducing human intervention
from pest outbreak, balancing pest deposition on crops, being environmentally friendly,
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promising significant cost reduction, and increasing crop yield [20,21]. However, in order
for IoT sprayer UAVs to be able to perform these tasks, they demand certain characteristics
that differ significantly from other applications [22–35]. For instance, pesticide spraying
with a manned UAV, especially at night or dark, mainly relies on the observation and
judgement of a human pilot. Since the judgement of a manned pilot is often prone to a
larger error margin, the fundamental objectives of the operation (which is precise spraying)
may not be achieved, and the procedure may at the same time be hazardous. To mitigate
this limitation, autonomous sprayer UAVs have been widely employed.

Nonetheless, during sprayer UAV maneuvering in such unfavorable environments,
the presence of obstacles, such as heavy-duty tools, mobile vehicles, and robots, have to
be considered in order to avoid collisions [36], while still maintaining “precise spraying”
and “safety” of the UAV. The fundamental task of the sprayer UAV, thus, becomes that of
“intelligent technology operation”, whereby the UAV identifies the obstacles autonomously
and finishes the specified collision avoidance actions with a smooth maneuver. In other
words, the sprayer UAV system should autonomously and efficiently avoid all types of
obstacles in the flight path, ensure spray coverage, prevent accidents caused by heavy
load oscillation, avoid autonomous flight catastrophes, and efficiently reduce the loss of
property and human fatality.

How to effectively perform the abovementioned task is mainly dependent on the
obstacle detection and collision avoidance algorithms incorporated into the sprayer UAV
system. Hence, this article seeks to analyze the latest developments on all correlated
branches of the obstacle avoidance scenarios of agricultural sprayer UAVs and includes the
following main contributions.

1. The most relevant obstacle detection and collision avoidance techniques are reviewed
and discussed, as well as their application perspective with agricultural sprayer UAVs.

2. The latest path planning algorithms that are used in agricultural UAVs and the
structural challenge of sprayer UAVs are described.

3. The operational pattern, detection sensors, obstacles in agricultural farmlands, and
control architecture for collision avoidance are thoroughly highlighted to pave the
way for future researchers to design their own agricultural sprayer UAV systems.

4. The core open challenges and recent technical limitations associated with agricultural
sprayer UAVs are enumerated.

The rest of this article is organized as follows. Section 1.1 introduces the general back-
ground and related work on obstacle detection and collision avoidance of UAVs. Section 2
analyses the constraints of agricultural sprayer UAVs. A review of the operational pattern
and the general spraying architecture of sprayer UAVs, including farmland obstacles, is
also presented in this section. In Section 3, details of the various obstacle detection and
collision avoidance algorithms, including the various sensing techniques, are presented.
Finally, Section 4 highlights the currently open challenges, and the conclusion remark is
presented in Section 5.

1.1. General Background and Related Work

According to Sedighi et al. [37], obstacle avoidance and navigation problems can
be separated into two main parts: global path planning and local collision avoidance.
Global path planning creates a set of waypoints, from an initial starting point to a goal
point, and maneuver around obstacles in a working space, whiles local collision avoidance
creates waypoint tasks, and uses local sensing as a local goal for obstacle avoidance [38].
These obstacle avoidance techniques employ sophisticated algorithms, including the graph
technique [14], heuristic search technique [39], and potential fields technique [40]. For this
review, autonomy-level techniques specific to agricultural UAVs are analyzed, in which
the sprayer UAV should be able to perform both path planning and obstacle detection in
order to avoid collisions during navigation.

Early works on collision avoidance focused on “static obstacles”, in which the au-
tonomous system senses its environment to avoid stationary obstacles [41,42] and difficult
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situations using path planning techniques [43] and various other algorithms, such as
decision trees [44]. In view of this, static obstacles can further be categorized as either
“single static obstacle” or “multiple static obstacles”. For the “single static obstacle”, the
collision cone technique by Chakravarthy and Ghose [45], velocity obstacle approach by
Fiorini and Shiller [46], radar-assisted collision guidance strategy (RACAGS) by Ajith
Kumar and Ghose [47], and cross-entropy by Olivares-Mendez et al. [48] are examples of
the collision avoidance methods. On the other hand, the Mixed-Integer Linear Program
(MILP) approach by Richards and How [49], visibility graph method by Lozano-Pérez
and Wesley [42], modified Grossberg Neural Network (GNN) by Wang, et al. [50], and
ellipsoidal bounding box method by Park and Baek [51] are some examples of “multiple
static obstacles” avoidance techniques.

In the case of obstacle avoidance methods for UAVs, numerous reviews and surveys
have been conducted either for general UAVs or for specified fixed-wing or multirotor
UAVs. Mukhtar et al. [52] presented a systematic review of sensors and vision-based
methods for vehicle detection and tracking for collision avoidance systems in the context of
on-road driving. Rybus [53] also presented an interesting survey, where the focus on space
robotics and the major challenges of collision-free trajectory planning for manipulators
mounted on large orbital structures, small satellites, and space robots that navigate in
proximity to large orbital structures were presented. Lu et al. [54] presented a review
of the vision-based methods for positioning and mapping, including obstacle avoidance
and path planning. Regarding the use of deep learning (DL) approaches for robotic
solutions, Shabbir and Anwer [55] presented a survey on the use of DL techniques for
robotic perception, including robotic control and exploration, as well as robotic navigation
and autonomous driving.

However, there are only a few articles on the usage of agricultural sprayer UAVs. For
instance, Faiçal et al. [56] analyzed the effect of the number of communication messages
between UAVs and the WSN (wireless sensor network). They concluded that the wastage
of pesticides and fertilizers could be significantly minimized, if feedback information from
the sensors is utilized to adjust the routes. Bae and Koo [57] also analyzed the effectiveness
a roll-balanced helicopter, and how the balancing behavior of the designed helicopter can
result in left–right balanced spray patterns. Giles and Billing [58] have also evaluated the
economic and technical feasibility of the deployment of the RMAX helicopter (Yamaha
Motor Co. Ltd, Iwata, Shizuoka, Japan) in the spraying of the commercial vineyards.

Nonetheless, because of the complexity of manual flying, autonomous flying has to be
taken into consideration for obstacle detection and collision avoidance in the operations of
sprayer UAVs, where autonomous navigation is a must. This is the focus of this review.

2. Constraints and Challenges of Agricultural Sprayer UAV

The main objective of a sprayer UAV is to spray the maximum farming area, to have an
adequate spraying coverage and good droplet deposition. However, when spraying, there
are some constraints within the agricultural field that have to be taken into consideration.
These include (a) field shapes; (b) different weather conditions; and (c) obstacles in the
field [59]. Other spraying performance constraints are inherent of the sprayer UAV itself,
and these include (a) the liquid load, which will eventually decrease; (b) liquid capacity or
vehicle weight; (c) battery/fuel capacity; (d) vehicle type; and (e) spray pressure [24,60,61].
For the purpose of brevity, the basic diagram of the agricultural sprayer UAV is shown
in Figure 1.
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Figure 1. Agricultural sprayer UAV (Quadrotor).

For the sprayer UAV to be able to perform within the abovementioned constraints,
some significant farmland spraying issues have to be considered, and these “spraying
issues” are highlighted in the subsequent sections.

2.1. Challenges

A manually flown UAV needs an expert pilot for flying, which may lead to low
machinery expertise and thus a decrease in spraying efficiency. Because of human error,
autonomous sprayer UAVs are becoming more popular. Similar to agricultural autonomous
vehicles, the autonomous sprayer UAV also follows a coverage route plan. Numerous
studies have been conducted on route planning for agricultural field coverage. Some route
planning research focus on different geometrical field shapes [62–65], while others have
been done without the concern of the geometry of the field [66–69]. A typical path planning
structure is shown in Figure 2.

Figure 2. (a) Path plan without considering geometry [67]; (b) path plan considering geometry [63].
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Torres et al. [70] proposed an algorithm of path planning from a 2D image for opti-
mizing battery consumption. Using satellite imagery, other path-planning methods also
have been constructed, which focus on coverage plans without larger obstacles visible
from satellite [71–73]. Zhang et al. [74] also developed a path-planning method excluding
obstacle circles for crop protection UAVs using satellite imagery. Figure 3 shows the filtered
path plan excluding the visible satellite obstacles.
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2.2. Liquid Load and Sloshing

As is well known, the agricultural sprayer UAV carries a liquid tank, and that liquid
tank has three possible situations: (a) the liquid level continuously decreases during flight;
(b) vehicle flight movement changes the angle of the vehicle as well as the tank; and (c) the
tank liquid create slosh on changing direction. The first situation is that the decreasing
level of liquid continuously changes the tank’s center of gravity.

Second, the flight’s activity changes the tank’s angle, which also changes the center
of gravity of the liquid tank. Khorsandi, Ayers, Freeland, and Wang [75] have shown
how a tilted tank changes the center of gravity, which is shown in Figure 4. The third
situation, which is the liquid sloshing, is related to the liquid level, tank tilt angle, and
velocity [76–78].
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Figure 4. Liquid shift and center of gravity (CG1, CG2) position [75].

In Figure 5, the sloshing impact inside a tank has been shown with a 30% filling rate
which was experimented by Li Xi [79]. He did the experiment specifically for sprayer
UAV’s liquid sloshing and has shown that the inner horizontal and vertical grille can
effectively reduce tank liquid sloshing and the oscillation of the sprayer UAV’s tank. In the
literature, several works have been conducted to reduce big liquid tankers’ slosh [80–84].
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2.3. Obstacles on Farmland

Due to geographical position and seasonal changes, the agricultural sector faces
uncontrollable weather changes such as strong wind, drought, freezing wind, fog, etc. Thus,
for the same geographical position, the agricultural UAV faces different situations, and
may change its flight parameters, such as motor speed, and PID gains, in order to control
the stability and position [85,86]. Moreover, sprayer UAVs are relatively heavier than
other UAVs due to the liquid load [87,88]. During spraying operation, droplet deposition
is the primary concern for an agricultural UAV, and it is directly related to the flying
parameters such as flying velocity and altitude [89]. These parameter settings are selected
by operators depending on the plant growth and types, terrain, and topography of the
farmland, etc. [90–92].

With regards to these spraying issues, the safety of the sprayer UAV should always be
ensured. Because of the low altitude flying, obstacles are more specified on farmland, such
as ladders, pump houses, electrical substations, power lines, telephone towers, lighting
towers, groups of trees, scattered trees, flying birds or bats, etc. Example obstacle images
(satellite image) are shown in Figure 6. To avoid these kinds of obstacles successfully and
intelligently, it is essential to analyze the features of the obstacles on farmland. So, we
categorized all the possible obstacles on farmlands, and their details are in Table 1.
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Figure 6. Farmland obstacles, satellite view—(a) house [93]; (b) electric tower [94]; (c) big bush [95]; (d) trees [96].

Table 1. Possible obstacles on farmland.

Obstacle In Flying
Zone

Removable/
Replicable Solution Comment

Local electric wire for pump or
other farm-related use Yes Yes Rewiring -

Gridline electric wire No No - Not concern

Plant brunch Yes Yes Trimming -

Protruding plant Yes Yes Replace or Trimming

Test pole - - -
These test poles use for

research, and mostly high as
the plants

Nylon net - - - These nets are for covering the
plants from birds

Metal net - - - These nets use for
the boundary

Group trees Yes Yes If not cut down or
remove, avoid by UAV

Group of trees can be detected
from the satellite image and

can be filtered from the
mission planner [70]

Single tree Yes Yes If not cut down or
remove, avoid by UAV -

Telegraph pole + wooden pole +
small electrical pole Yes No Avoid by UAV -

Windmill Yes No Avoid by UAV -

Pergola Yes No Avoid by UAV -

Small house/pump house Yes No Avoid by UAV -

Big house Yes No Avoid by UAV

Can be detected from the
satellite image and can be
filtered from the mission

planner [70]

High-pressure tower Yes No Avoid by UAV -

Meteorological tower Yes No Avoid by UAV -

Birds Yes No -
Birds are the most unpredicted
dangerous moving obstacle for

all kind of aircraft
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Table 1. Cont.

Obstacle In Flying
Zone

Removable/
Replicable Solution Comment

Other drones Yes Yes - -

Human Yes Yes - -

Other moving non-living things Yes Yes - -

After categorizing all possible obstacles on farmland, we can see some of these obsta-
cles and the global detection system can detect the bigger size obstacles, and some need to
be detected by the local detection system [70]. The local detection and obstacle avoidance
operations need real-time analysis, intelligent identification, potential area detection, the
suitable path, and so on [97]. Thus, the sprayer UAV needs a suitable detection sensor or
sensor fusion; thus, obstacle detection sensors are discussed in the next section.

3. Obstacle Avoidance Scenario

The primary motivation for obstacle avoidance, specifically for sprayer UAVs, comes
from a fast-growing number of commercial sprayer UAVs and their full autonomy. Unlike
the other types of UAVs, the avoidance scenarios of sprayer UAVs are different, for three
reasons: (a) the UAV’s liquid load transfer, which is comparatively heavy; (b) the UAV
must maximize its spray coverage; and (c) the UAV must use its full battery usage so that
it can spray more. Various techniques have been proposed for obstacle avoidance. The
basic idea behind the obstacle avoidance scenarios for sprayer UAV is to detect the obstacle
precisely and create a suitable avoidance trajectory concerning spraying and safety. This
section describes the most important obstacle avoidance scenarios.

Several technologies have been developed for obstacle detection, and numerous works
have been performed using sonar, radar, laser, visionary, and fusion methods. For mission
follower UAVs, three control architectures have been developed, namely, the reactive
control architecture, deliberative planning architecture, and hybrid control architecture.
Thus, combining different obstacle detection methods and control architectures, several
techniques have been developed for obstacle avoidance. We categorize the detection
methods and describe some obstacle avoidance approaches remembering the terms of
sprayer UAVs. Finally, we summarize the scenario using existing works about the control,
detection sensors, detection methods, and avoidance approaches, as shown in Figure 7.

3.1. Avoidance Plan and Control Architecture

The control architecture for avoiding obstacles for a UAV describes how the avoidance
actions will be organized from perceiving the environmental data. Three types of control
architectures meet the obstacle avoidance requirement. These are reactive control, delib-
erative planning, and hybrid integration control [36]. The functional diagram is shown
in Figure 8. Typically, the flying mission and obstacle avoidance operation are separate
works. This control architecture is called reactive control, where the UAV will start flying
according to the mission plan, and during the mission, when it senses the obstacle locally,
it will avoid the obstacles and follow real-time sensor data.

In the deliberative planning architecture, at first, the UAV starts flying according to
the flight plan, then during operation, it senses the working environment and updates the
map model. After the primary flying, the final map will be determined, and it will generate
the optimal sequence of the collision-free path. However, this method takes a longer time
to determine the definitive plan, and without accurate positioning data, this method will
not be sufficient.
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Figure 7. Obstacle avoidance scenario group.

Figure 8. (a) Reactive control architecture; (b) deliberative planning architecture; (c) hybrid control
architecture [36].

Using reactive control and deliberative planning, Nakhaeinia et al. [98] made a hybrid
architecture where the execution layer will be in three parts, namely, the deliberative layer,
control execution layer, and reactive control layer, which are also shown in Figure 8c. Here,
the deliberative layer generates an optimal collision-free plan, which is then transferred to
the reactive layer to generate the UAV’s control action. The execution layer connects the
other two layers.

3.2. Detection Sensors

Due to atmospheric conditions, such as lighting difference, temperature difference,
spray drift or spray fog, water vaporization, etc., selecting the type of sensors for obstacle
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detection is an essential factor for agricultural sprayer UAV [99–102]. Different kinds of
sensors generate the required information about the obstacle, including their surrounding
environment, for the UAV to calculate the obstacle distance and processes necessary for safe
path generation around the obstacle; this information contains the size, shape, and location
of the obstacles [103,104], and according to the task requirements, different systems use
various sensor setups [105].

Sensor classification can be classified into two functional axes [106]: propriocep-
tive/exteroceptive and passive/active. Proprioceptive sensors detect a vehicle’s internal
detection data, such as position, orientation, and speed, which are detected by sensors such
as velocity sensors [107], tilt sensors [108], position sensors [109], heading sensors [110],
accelerometers [111], etc. Exteroceptive sensors collect information and features from
the surrounding environment as well as the surrounding obstacle data of the vehicle,
which are obtained by sensors such as ToF [112], lidar [113], laser [114], camera [115],
sonar [116], microwave radar [117], etc. These sensors provide information collected from
the surroundings and help the vehicles in their decision-making and interaction with
the environment.

From the viewpoint of technical information, the other type of classification is passive
or active. These are some different sensing systems used to detect obstacles and record
information of the obstacle’s presence on the path. Passive sensors use the available
environmental energy sources to process data of the surroundings [106]. Sun provides
energy, which has visible spectrums and creates light reflections off the objects. These
visible wavelengths and reflecting lights can be detected by light- or wavelength-detecting
sensors and different camera types, such as CCD, CMOS, and thermal cameras [118,119].
That is why these kinds of sensors are often defined as vision-based sensors, which generate
information based on pictures [120–129]. On the other hand, active sensors use their own
generated energy, such as light and soundwaves, and detect the energy reflections by
sonar, microwave radar, laser, ToF, etc. From the reflected energy, the sensor generates
the surrounding environmental reaction. Because active sensors generate information
depending on their controlled interactions, sometimes its performance is better. However,
the generated energy can be influenced by other sources of energy, which may cause error
readings [106,130–136].

For agricultural UAVs in different environments, a single sensor may not fulfill the
task requirements. So, in that case, a multi-sensor combination, as well as sensor fusion,
can be used for better performance [137,138]. Hrabar et al. [139], McGuire et al. [140], and
Santos et al. [141] proposed an optical flow and stereo vision sensor fusion to improve the
accuracy of the obstacle avoidance performance. Gageik et al. [142] presented infrared
with ultrasonic sensors for obstacle avoidance at a low cost. on farmland, the obstacles
and situation are different and more specified. Kragh et al. [143] made a datasheet of the
different sensor performance types using a ground robot on farmland. After studying the
Chinese agricultural UAV industry and the different types of detection sensors for obstacle
avoidance, Wang, Lan, Zhang, Zhang, Tahir, Ou, Liu, and Chen [97] compared and sum-
marized the features, advantages, and disadvantages of the sensors from the perspective of
agricultural field operation. The different types of real-time obstacle detection sensors, and
their advantages and disadvantages, are outlined in Table 2.

Table 2. Obstacle detection sensors for UAVs.

Sensor Types Ultrasonic Laser/Initiative
Infrared Sensor

Structured Light
Sensor ToF

Millimeter-
Wave
Radar

Monocular
Vision

Binocular
Vision

Range <10 <50 <10 <10 <250 <10 <100

Cost Low Medium Very High Medium High Medium High

Precision Short Range Very High Very High Medium Low Low Medium

Resolution Low Very High Very High Low Low Medium Medium

Reliability Low High High High High Medium Medium
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Table 2. Cont.

Sensor Types Ultrasonic Laser/Initiative
Infrared Sensor

Structured Light
Sensor ToF

Millimeter-
Wave
Radar

Monocular
Vision

Binocular
Vision

Liquid Droplet
Influence Yes Yes Yes Yes No Yes Yes

Sound Influence
High-Pitched

Sound
Interference

No No No No No No

Light Influence No
Direct Sunlight
May Influence

Infrared
Very High Very High No No No

Temperature
Influence Yes No No No No No No

Light Need No No No No No Yes Yes

Single Point
Measurement

Reliability
No - Yes - No Suitable for

Static Obstacle -

Process Fast Fast Medium Fast Fast
Large Amount

Data Need Faster
Processor

Large Amount
Data Need Faster

Processor

Reference [130,131,144–146] [132,147–149] [133,150] [135,151,152] [136,153,154] [121,122,155,156] [157–160]

3.3. Obstacle Detection Technologies

A system can get various information about its surrounding obstacles from light or
soundwave reflection via different sensors. From the previous section, we know these non-
contact sensors have different information-sensing capacities. These pieces of information
contain the obstacle’s size, distance, shape, color, and direction. After selecting the farmland
for spraying, farmland obstacles are more likely a no-fly or no-spraying zone for the UAV.
Thus, the primary concerns for the UAV are the shape and position of the obstacle. To
achieve obstacle-detection capacity, the sprayer UAV can choose a single or multiple
fusion detection methods. Due to the emerging development and future demand of image
processing and 3D mapping, obstacle detection using image processing has attracted the
attention of several researchers [161–172]. Moreover, because of the rapid response and
low computational requirement, many detection and ranging-based or active sensor-based
research also have been used for the detection of the surrounding obstacle’s position, as
well as its coordinates and mapping [125,144,173–180]. Other studies on such detection
systems use the fusion of active and passive sensing [181–183]. For autonomous navigation,
the obstacle detection method is an important part. From analyzing previous studies, we
found some of the major obstacle detection methods, which are given in the next section.

3.3.1. Sonar Mapping

The sonar (sound navigation and ranging) mapping system uses the acoustic wave
reflection time from different angles to make an image or diagram of the surrounding
environment. A sonar sensors represents the oldest obstacle detection technology, which
was firstly used to measure the range of an underwater floor in the year 1912 [184]. Later on,
this technology was broadly used in modern warfare to detect obstacles [185]. Eventually,
it started operating in robotics. Elfes [186] used the sonar-based surrounding mapping
for obstacle detection, where a sonar sensor detects the obstacle’s range from different
points of view, creating a 2D map. Flynn [187] used multiple sonar sensors for more
accuracy from a different angle to create the 2D map in a ground robot. Kleeman and
Kuc [188] used a sonar array for targeting, localizing, classifying, and creating the 2D
mapping. Akbarally and Kleeman [189] used the sonar sensor for localizing and classifying
accurate 3D targets. Later, simultaneous localization and mapping or SLAM technology
using sonar sensors were used for 3D imaging underwater by Ribas et al. [190]. Steckel
and Peremans [191] used a biomimetics SLAM called BatSLAM, a mapping module using
sonar to create a map for mobile robots. Steckel and Peremans [192] used a 3D sonar
sensor and BatSLAM sonar module together to improve localization and mapping. Two
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fully embedded real-time 3D imaging sonar architectures, also known as RTIS, were also
demonstrated by Kerstens et al. [193]. A series of sonar sensors were also used in a UAV by
bin Misnan et al. [194] for low-altitude mapping where the sensors were setup at different
angles. Gageik, Muller, and Montenergo [144], Gageik, Benz, and Montenegro [142], Gupta
et al. [195], and Becker, et al. [196] used a round array setup of ultrasonic sensors in a small
quadrotor UAV for obstacle mapping. Further studies on mapping obstacles using sonar
sensors also have been conducted by various other researchers [197–201].

Sonar sensor mapping and obstacle detection sensors are mostly used in underwater
vehicles because of the shortage of light in the deep sea. Because of the fact that the human
body is mostly made of water, sonar sensors are also used in medical science to detect
the internal body structures in humans [202–205]. Besides that, sonar mapping is also
used in ground robots and small quadcopters in some research to prove the concept of
algorithms [142,189,191,195,196].

3.3.2. Radar Mapping

Radar (radio detection and ranging) imaging uses the same ranging principle as sonar.
Both use time-of-flight or echo ranging to calculate the distance. Radar uses different
radio wave signals, which are also a part of the radio spectrum [206]. Radar imaging
uses massive mathematical calculations, but has the powerful capacity of being very long-
ranging through space, and therefore has extensive use in aerospace technologies [207,208].
This is why many works have been published on radar in rocket science and military
technology [209–213]. However, our concern is obstacle detection for smaller vehicles
with lower computational systems. A simple, short-range obstacle localization system
was proposed by Giubbolini [214], where multiple 13–24 GHz radars were set up around
a vehicle with a central digital processor system (DSP) system. Comprehensive sensing
(CS) technology, addressed by Baraniuk and Steeghs [215], is appropriate for monostatic
bistatic and multistate scenarios. Viquerat, Blackhall, Reid, Sukkarieh, and Brooker [174]
used four microwave doppler radars on a fixed-wing UAV to illuminate four forward field
quadrants to determine an obstacle’s position. A rotating radar was used for localization
and mapping the surroundings by Vivet et al. [216]. Zhu et al. [217] proposed a 60 GHz
imaging algorithm that can detect the nearby object and its location, orientation, curvature,
and surface boundaries. Iyer et al. [218] experimented with 77–81 GHz radar for obstacle
detection. Guo et al. [219] used range-angle mapping with a single radar pulse to create a
map, while Feger et al. [220] used radar integrated with a MIMO array to determine an
object’s location. The frequency-modulated continuous wave, or FMCW radar sensor, is
another popular radar sensor for obstacle imaging [221–224].

The rapid growth of autonomous car manufacturing increases miniature radar us-
age [225,226]. Autonomous UAV usage is growing, and several studies also used radar for
obstacle detection [47,227–229]. The benefit of a radar detection system is that it can work
under various hazardous conditions, such as rain, dust, sunlight, etc. [218].

3.3.3. Laser Ranging

Laser imaging uses single- or multiple-laser sensors to generate an image or map of
the surroundings. For laser-imaging techniques, the most used technology is laser imaging
and ranging or lidar [230]. Lidar works the same as radar, except that it uses a laser for
ranging. The single-point laser uses one-point distance measurements [231]. Creating a
single line or 2D laser beam, using a single laser or multiple lasers, for 2D area or obstacle
imaging creates an array of point clouds [232,233]. Using a four-layer laser scanner, Yu and
Zhang [234] proposed an obstacle detection algorithm that can be used on autonomous
land vehicles. The lidar technology uses laser point clouds and scans continuously to
create a 3D map [235,236]. Demantké et al. [237] presented a multi-scaling method to
compute geometric structures on lidar point clouds to retrieve the optimal surrounding
size for each point. Li et al. [238] designed bounding box encoding, which uses a fully
convolutional network with lidar to detect vehicles. Kim et al. [239] used 2D lidar scanning
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on an agricultural helicopter to scan obstacles. Peng et al. [240] also used 2D lidar scanning
to detect obstacles that can effectively filter noise from raw laser data with the ground robot.
Zheng et al. [241] used clustering based on relative distance and density (CBRDD) and
the point-cloud correction method to detect surrounding obstacles from airborne UAVs.
Basically, the 2D lidar scanning method is used for avoidance operations [242–244]. Usage
of 3D lidar scanning is frequent in airborne geographical monitoring, such as agricultural
plant monitoring, forest canopy monitoring, urban area monitoring, etc. [230,245–249]

Imaging with lidar is very precise, but it is relatively costly. Laser-ranging system uses
highly intensive light, which can be interrupted by fog, rain, or dust. However, because of
the increasing precision engineering, the usage of laser imaging is very high.

3.3.4. Computer Vision

Computer vision is a trendy way to detect obstacles, and many studies have been
done in different regions [250–253]. Computer vision or image processing method uses a
different type of camera for obstacle detection and mapping, such as monocular vision,
stereo vision, binocular vision, infrared cameras, etc. [254–257]. Computer vision does
obstacle detection, recognition, and can measure the distance using different methods.
Using vision as the only exteroceptive sensors is called simultaneous localization and
mapping (SLAM) [258]. The first use of computer vision was for negation based on a
binocular stereo configuration [259,260]. However, because of the expensive binocular or
multi-camera systems, monocular vision became more popular [261]. Vision-based obstacle
detection is often used for complex environments, where getting the surrounding data is
complicated for active sensors. Using computer vision for obstacle detection needs higher
computational facilities, but nowadays the rapid development of microcomputers is filling
this gap. There are various methods used for computer vision obstacle detection, and some
essential techniques are discussed in the subsequent sub sections.

Target Based

The target-based obstacle detection method using computer vision uses known ob-
stacle features to find the obstacles in a known environmental situation. Target-based
obstacle detection using computer vision on various platforms has a vast and long history
of research [262,263]. Besides, target-based methods on UAVs are also rising. The classical
morphological filtering method has been used to detect and avoid obstacles from UAVs
by Carnie et al. [264], and the same method has been employed in finding landmine-like
objects using UAVs, by Rodriguez et al. [265]. Aoude, Luders, Levine, and How [165]
used Ecological Recognizer architecture, which uses a pattern matcher, and was trained
offline to make a path estimation. A color-based, robust tracking method was developed by
Teuliere et al. [266], which was tracked through particle filtering. Mori and Scherer [161]
designed a scale expansion detector to detect obstacles with a monocular camera and
used SURF (Speeded-Up Robust Features) to match the obstacle detail with the given data.
Targeting forward motion, Barry, Florence, and Tedrake [166] proposed an integration
method using push-broom stereo perception and control. Wang and Li [124] proposed a
local object-based subtraction method to get the object’s outline.

One advantage of target-based obstacle detection is that it usually uses a single camera
for detection, and another benefit is its faster method than others because of its low
computation. However, even though it can detect the position of the obstacle in the image
correctly, it cannot detect the actual distance. Thus, it requires an additional distance sensor
fusion to solve this problem [267,268].

Optical Flow Based

The optical flow-based method uses camera images frame-by-frame, and monitor each
frame’s pixel-level movement to find the motion and temporal variation in each image’s
grayscale version. Braillon et al. [269] used the optical flow method, where they used
two-frame pixel matching to detect an obstacle in real time. Using optical flow information,
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Souhila and Karim [167] developed an algorithm that can locate any obstacle by detecting
any change from the data. Naito et al. [270] developed an algorithm to find the obstacle
edges and their changes from the optical flow images. Gharani and Karimi [271] proposed
an algorithm that used optical flow with point-tracking algorithms to detect stationary
and moving obstacles and show a safe path. Agrawal et al. [272] used two sides of the
optical flow images to generate the turn rate of a UAV through the urban canyon. The
kernelized correlation filter (KCF) framework, proposed by Bharati et al. [273], uses an
adaptive obstacle detection and tracking approach. Capito et al. [274] used a sequence of
images using sparse optical flow to generate an artificial potential field or visual potential
field. Even though this method can be applied to any unknown environment, it cannot
identify the obstacle’s specific characterization. In addition, it renders poor performance
when applied to stationary and relatively slow-moving obstacles.

Stereo-Vision Based

Stereo-vision, also known as binocular stereo-vision, uses multiple camera feeds
from different angles to generate depth and detect stereo-vision-based obstacles [275].
Due to its ability to provide more accurate data than other visionary detection systems,
several research studies have been conducted on stereo-vision-based object tracking. Using
the simplified stereo-vision algorithm, Bertozzi et al. [276] detected vehicle identification
and distance. Nedevschi et al. [277] presented a stereo-vision-based obstacle detection
method that reconstructs and works on the 3D points matching of the object edges. Moore,
Thurrowgood, Bland, Soccol, and Srinivasan [168] used two rigidly mounted cameras in a
coaxial stereo configuration to capture stereo images of the environment and process them
for navigation. Gao, Ai, Wang, Rarity, and Dahnoun [169] used a 3D camera to produce
depth information and converted it into the UV-disparity domain, which presents obstacles
and ground surfaces as lines. Kramm and Bensrhair [170] proposed an algorithm using
stereo-vision and clustering data to localize obstacles. Iacono and Sgorbissa [171] used an
RGB-D camera to generate the 3D surface of the surroundings, generating a radial function
for every obstacle, and then creating a safe UAV path. Ma et al. [278] proposed a novel
insulator detection approach based on RGB-D saliency detection and structural feature
searching for aerial images captured by a UAV power transmission line inspection system.

Stereo-vision works like a human eye, which captures an object’s view and assumes
the distance. The binocular stereo-vision detection system needs a massive amount of data
to process the figure, and real-time processing requires a powerful system [54,275,279,280].

3.3.5. Fusion

From the review of different obstacle detection methods, it can be observed that there
are limitations for each detection method. Optical sensing cannot generate accurate ranging
data, while active sensor-based methods can measure distances more accurately. In view of
this, researchers use fusion methods depending on the working motive, and several fusion
combinations can be found in the literature [126,176,267,281–287].

3.4. Obstacle Avoidance Techniques

As presented in the previous sections, the flying complexity of a sprayer UAV is quite
different from a general UAV. Besides that, the obstacles are static and separated on farm-
lands, as described in Section 2.3. This is why the obstacle avoidance techniques need to be
different from others. Although there are some research papers on obstacle avoidance and
path planning using satellite images (Section 2.1), to the best of our knowledge, no research
work specifically on local obstacle avoidance for sprayer UAVs has been conducted.

Using local satellite images for obstacle avoidance and path planning on farmlands
may be deleterious. Because the satellite data updates after a particular schedule, some-
times the images get updated before an obstacle appears, which may cause accidents.
Moreover, after updating the image of an obstacle, the obstacle may disappear, which may
cause unwanted path generation. Sometimes even a small or narrow obstacle cannot be
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seen from the satellite image. Thus, avoiding obstacles locally is very important for sprayer
UAVs. Several works have been done on local obstacle avoidance for mobile robots as
well as UAVs. The subsequent subsections will present some of these obstacle avoidance
approaches from different studies.

3.4.1. Bug Algorithm

The simplest obstacle avoidance method among all obstacle avoidance methods is
the bug method. Lumelsky and Stepanov [288] proposed this method following bug’s
movement. They made two versions of the bug algorithm: Bug1 and Bug2, which are
shown in Figure 9. Here, the robot starts the operation from “s” to target “t”. For the case
of Bug1, the robot will move fully around to check the object and will calculate the shortest
position towards the target point. For the case of Bug2, the robot will create a line from
start to target, and if it finds an obstacle, it will go alongside the obstacle, and when it finds
the line, it will keep moving. The Bug1 algorithm travels a long path to reach the goal
point, whiles Bug2 uses a shorter route. However, to use even a shorter way to reach the
goal, some improvements have been made on the bug algorithm, such as tangent bug [289],
I-Bug [290], improved bug [291], splitting Bug [292], etc. [293]. These bug algorithms are
not so reliable in a more complex environment, and in some tricky conditions, one version
works better than the other version. However, the generality of the bug algorithms is that
it works well with single obstacle avoidance [294].
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3.4.2. Artificial Potential Field Algorithm

The artificial potential field algorithm (APF) was proposed by Khatib [295], a unique
real-time obstacle avoidance approach for mobile robots. This algorithm sets an artificial
potential field to every point of its known area and starts moving towards the lower
possible area, where the target point is the lowest possible area. The vehicle is always
attracted to the lowest possible area, to eventually reach the target point. In Figure 10,
a robot is avoiding an obstacle using the potential field. Cetin et al. [296] used the APF
algorithm to avoid other obstacles and forming obstacles. Besides that, the authors used
APF in multiple connected vehicles to make a suitable path.

APF algorithm has some limitations, such as the local minimum point problem and
dead point problems. Chen et al. [297] reconstructed the APF to constrained optimization
to solve the traditional dead point problem. Since the traditional algorithm only works
for a single-vehicle trajectory, Sun et al. [298] proposed an optimized APF algorithm for
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multi-UAV operation in a 3D environment. Fan et al. [299] improved the APF algorithm by
solving some inherited problems, such as the local minima and the target’s inaccessibility.

Figure 10. Artificial potential field [298].

3.4.3. Collision Cone Method

The collision cone concept was first proposed by Chakravarthy and Ghose [45] for a 2D
movement scenario. The authors assumed any obstacle as a circular area, and the distance
from the UAV’s position to the obstacle area is calculated within a collision cone using the
UAV’s velocity vector. This concept works for any irregular-shaped unknown obstacle and
prevents collision between two irregular-shaped objects or vehicles. Following the same
strategy, Ajith Kumar and Ghose [47] calculated a radar detection cone to find the possible
collision-free path. To solve the collision between two aircraft in 3D space, Goss et al. [300]
used the collision cone method with mixed geometry. Watanabe et al. [301] used a 2D
passive vision sensor and collision cone approach in order to examine the obstacles from
a critical distance. In Figure 11, the vehicle’s position is Xv, the obstacle position, Xobs, is
inside the safe boundary, and Xap is the vehicle’s aiming point.

Figure 11. Collision cone and aiming point [301].

Later on, Chakravarthy and Ghose [302] extended the collision cone approach to
detect the moving obstacle in 3D space. Sunkara et al. [303] used this method to avoid
shape-shifting targets like shape-shifting snake robots, a swarm of vehicles, and oil split.
They first developed the collision cone between a point object and a deformable object
and subsequently extended that to the case of an engagement between a circular object
and a deforming object. A real-time collision avoidance algorithm, called Tangent Plan
Coordinate, addressing multiple obstacles, was proposed by Park and Baek [51]. They
used a stereo-vision sensor with a limited field of view to assume the unknown obstacle.
The collision cone was calculated by straight lines using an affine transformation that are
tangent to the ellipsoid and that passes through the position of the quadrotor.
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3.4.4. Fuzzy Logic Algorithm

Fuzzy logic was proposed by Zadeh [304], which uses the fuzzy controller. To use
fuzzy logic in any system, the operator needs to assign a set of data or knowledge to create
fuzzy sets that will be used to avoid obstacles or navigate the mobile robot. This process of
assigning fuzzy input sets is called fuzzification. The set value usually can be anywhere
between two traditional logics, such as (0, 1) or (Low, High) or (Cold, Hot), etc. This is
why, usually, those vehicles that use fuzzy logic for navigation and avoidance use one kind
of multiple sensors or sensor fusion. Lian [305] used the fuzzy controller to control an
obstacle avoidance mobile robot. In Figure 12, the usage procedure is given.

Figure 12. Usage of fuzzy logic control: (a) multiple sensor setup with (b) the structure of the fuzzy controller. (c) Fuzzy
control rules for steering away from front obstacles [305].

This classic method is used in many vehicle navigation systems [306]. Reignier [307]
used fuzzy logic techniques to build a reactive navigation system and avoid obstacles.
Several research works created a fuzzy logic controller using fuzzy sets to avoid obstacles
in real time. Dong et al. [308] used a fuzzy-based approach to track paths and avoid
obstacles. Jin [309] proposed a navigation algorithm using a fuzzy controller and sensor
fusion (camera and sonar) with a mobile robot to avoid obstacles and generate trajectories.
Using the fuzzy logic system and three-way ultrasonic sensor, Li and Choi [310] proposed
an avoidance algorithm for a mobile robot. Pandey et al. [311] designed a fuzzy logic
controller to improve the vehicle’s movement according to the obstacle’s position.

3.4.5. Vector Field Histogram Method

Vector field histogram is a real-time obstacle avoidance method for mobile robots
developed by Borenstein and Koren [41]. This method works using three steps for obstacle
avoidance. In the first step, the robot generates a two-dimensional sensory histogram
around its body or a limited angle and starts updating the histogram data at every stage. In
the second step, the two-dimensional histogram data are converted into one-dimensional
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histogram data. Finally, it selects the lower polar dense area and moves the vehicle,
calculating the direction. In Figure 13, the 2D and 1D histograms are presented.

Figure 13. (a) 2D histogram grid map; (b) converted 1D polar histogram [41].

The VHF algorithm was improved to VFH+ [312] and VFH* [313], respectively. VFH+
reduces the original VFH parameter tuning, and the VFH* method verifies that a particular
candidate direction guides the robot around an obstacle. Lidar is a suitable sensor for
approving VFH methods, since it can take high-resolution multiple ranging data in two
dimensions. For example, Sary et al. [314] used VFH+ with lidar to avoid obstacles using a
hexa-copter and Bolbhat et al. [315] used original VHF with lidar for obstacle avoidance of
automated guided vehicles.

3.4.6. Neural Network

Neural network algorithms are inspired by the human brain. The neural network
takes in data, train themselves to recognize the patterns in the data, and then predict
the outputs for a new set of similar data. A computational model repeats training or
functions with a biological neural network system until the best result comes out. The
dynamic neural network is capable of automatically adjusting its structure, following
the complication of the vehicle’s environment, understanding the mapping connection
amongst the vehicle’s state and its obstacle avoidance decision in real-time, and efficiently
decreasing the vehicle’s computational load [316].

Glasius et al. [317] designed a Hopfield-type neural network with nonlinear analog
neurons for path planning and obstacle avoidance. Using a reinforcement learning neural
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network, an obstacle avoidance approach was proposed by Huang et al. [318]. Yadav
et al. [319] designed a controller to find the obstacle-free shortest trajectory in 3D space
for a UAV, which used a vision-based Grossberg Neural Network. Later, using a modified
Grossberg neural network Wang, Yadav, and Balakrishnan [50] proposed an algorithm to
avoid dynamic obstacles in 3D space. Chi and Lee [320] proposed a neural network control
system to guide mobile robots to avoid arbitrary obstacles in a maze. Kim and Chwa [321]
used a fuzzy neural network to avoid obstacles with a wheeled mobile robot. They used
fuzzy sets as members of the neural network layer. Back et al. [322] proposed a vision-based
trail following a UAV, which will avoid obstacles in the route using Convolutional Neural
Network (CNN). Dai et al. [323] also used CNN to learn schemes to avoid obstacles in an
unknown environment for a quadrotor UAV. Using neural network algorithms for obstacle
avoidance needs lots of training data, but it is suitable for real-time obstacle avoidance
performance. Example training data, to train for a complex environment, are shown in
Figure 14, but the result is better than a few other obstacle avoidance methods, shown
in Figure 15.

Figure 14. Neural network training data. (a–h) Generated paths with single and multiple obstacles
with different placements during training phase [324].

Figure 15. Collision avoidance performance using training data, comparing with Particle Swarm
(PSO), the dynamic A * algorithm, and Artificial Potential Field (APF) [324].
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4. Challenges, Technical Limitations, and Analytical Comparison for Sprayer UAVs
4.1. Obstacle Detection and Collision Avoidance Challenges

If positive and precise spraying is to be achieved, autonomous sprayer UAVs must
be capable of taking a coherent decision as to which scenarios involve hazard, in order to
avoid obstacles that lead to actions that are not only wrong but deleterious to other farming
tools and farm workers. This section highlights the major open challenges of obstacle
detection and collision avoidance algorithms.

• A major obstacle detection challenge arises from severe weather conditions and envi-
ronments with changing illumination conditions. Windy environments and fog can
obscure the detection sensors or cameras, which render the processed data inadequate
for obstacle avoidance. Even though this challenge can be resolved with the use of
radar, which has no problems detecting in fog, rain, or heavy snow, a major drawback
of the radar is its limited lateral vision. In other words, the radar only covers a rela-
tively small angular section of about 15 degrees. To enhance lateral vision, multiple
sensors have to be employed, which complicates the system. Thus, in order to measure
an accurate reconstruction of the environment in such unfavorable conditions, robust
algorithms have to be developed to effectively detect and classify the obstacle.

• Obstacle avoidance techniques, such as Neural Network and Fuzzy Logic, require the
extraction of hierarchical abstractions from preprocessed data used throughout the
training or learning stages, and the ability of generalization relies on the availability
of a large dataset. As a drawback, the large computational cost is a major challenge
and has to be highlighted.

• Realistically, most of the obstacle detection algorithms have to be trained offline
through simulation analysis before they are integrated into the sprayer UAV system.
The huge gap between real and virtually simulated environments limits the applica-
bility of offline simulation policies to the real world. The development of a realistic
virtual dataset is still an open challenge.

• Accuracy of temporal and spatial alignments among different sensors used in the
sprayer UAV system also impacts the quality of the collected data.

The materials and methods should be described with sufficient details to allow others
to replicate and build on the published results. Please note that the publication of your
manuscript implicates that you must make all materials, data, computer code, and protocols
associated with the publication available to readers. Please disclose at the submission stage
any restrictions on the availability of materials or information. New methods and protocols
should be described in detail while well-established methods can be briefly described and
appropriately cited.

Research manuscripts reporting large datasets that are deposited in a publicly available
database should specify where the data have been deposited and provide the relevant
accession numbers. If the accession numbers have not yet been obtained at the time of
submission, please state that they will be provided during review. They must be provided
prior to publication.

4.2. Other Challenges

In addition to the abovementioned obstacle detection and collision avoidance chal-
lenges, the following open challenges exist.

• For agricultural sprayer UAVs, spray deposition and coverage are a primary concern,
and these parameters are directly related to the drone weight and payload. Moreover,
there is always a trade-off between payload and cost, and reliability should be main-
tained when selecting the type of agricultural sprayer UAV. In most instances, the
selection is between single-rotor and multi-rotor. However, quadrotors, which have
several spraying limitations, are the preferred choice for agricultural sprayer UAVs.

• Taking into consideration the current stage of sprayer UAV technology, the high cost
of the intelligent sensors and that of the UAV system is a major issue. Improvements
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in this area will enable farmers to reap more from the use of sprayer UAVs for remote
sensing in precision spraying.

• Even though the use of UAVs for agricultural spraying is increasing, several limi-
tations that prevent wider usage exist. Among these limitations is the absence of a
standardized workflow, which leads to the use of ad-hoc procedures for deploying
agricultural sprayer UAVs, a fact that discourages stakeholders.

• As agricultural sprayer UAVs require data-intensive algorithms for the processing
of the images acquired, expertise in the field of autonomous flight is usually needed.
This suggests that the average farmer will require training or may be compelled to
hire experts to assist in the image processing, which may be costly. This may prohibit
the adoption of agricultural sprayer UAVs from farmers with less technical expertise.

• Most agricultural sprayer UAVs have a short flight time, usually from 10 min to
barely half an hour. The sprayer UAVs that can offer a longer flight time are relatively
expensive. Moreover, the effective usage of a sprayer UAV is mostly prone to climatic
conditions. For instance, during windy or rainy days, the flight operation has to
be postponed.

4.3. Avoidance Technique Comparison

The proper technique of obstacle avoidance on farmland for sprayer UAVs during
the planned mission, based on some special parameters, were discussed in the previous
sections. Based on those studies, we summarized and compared the obstacle avoidance
techniques for sprayer UAVs, shown in Table 3.

Table 3. Algorithm comparison for sprayer UAVs.

Avoidance Technique Features Sprayer UAV’s Insights

Bug2
Algorithm

• Easy and Convenient
• It follows the obstacle’s exact outline
• It changes the heading when bypassing

the obstacle
• It doesn’t detect the edge of the obstacle,

which may take a longer path sometimes

This algorithm may suitable for rotorcraft UAVs. It
can ensure the coverage of spraying because of
following the exact border of the obstacle. But
changing direction for every edge of the obstacle
may increase avoidance time. Modifying the
algorithm by fixing the heading direction may
reduce the time duration.

Artificial
Potential Field

• A simple approach for implementation
• Easy to find the shorter edge of the obstacle
• Local minima problem can cause

process failure

This method can use for finding the shorter
avoidance direction according to the edge of the
obstacle. But because the sprayer UAV operated
based on waypoints, the avoidance may search the
next waypoint as the target and change the
coverage path line.

Collision Cone

• Creates simpler avoidance path
• Uses vehicle dynamics to create

avoidance path
• The minimum effort of guidance control
• Doesn’t consider the shape of the obstacle

Because the sprayer UAV carries a liquid load that
decreases continuously, this method may reduce
the avoidance time by using the vehicle
information. But in case of larger obstacles may
consider the spray coverage.

Fuzzy Logic

• Robust and suitable for
dynamic environments

• Needs multisensory system
• Polyhedral shape may increase

computational calculation

The multisensory system mostly uses low-cost
sensors, which may reduce the UAV’s retail price
and increase availability for poor farmers. But it
also has an issue with heading change.
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Table 3. Cont.

Avoidance Technique Features Sprayer UAV’s Insights

Vector Field Histogram

• A better method for detect obstacle’s
shape identification

• Require longer time to 2D map the obstacle
• High computational requirement
• Doesn’t consider the vehicle’s dynamics

Expensive UAV’s uses Lidar sensor for detecting
an obstacle, which is suitable for this method. An
up-gradation of including vehicle details may
increase the performance of the
avoidance procedure.

Neural Network

• Good for known obstacle environment
• Better performance for real-time avoidance
• Needs lots of training data

before performance

On farmland, most obstacles are known and
categorized. A collection of training data may
create a perfect avoidance performance for
particular models.

5. Conclusions

This article reviewed the current advances in obstacle detection and collision avoid-
ance scenarios concerning sprayer UAVs. In doing so, the most relevant obstacle detection
and collision avoidance techniques were reviewed and discussed, including their applica-
tion with agricultural sprayer UAVs. In addition, the recent obstacle detection algorithms
that are used in agricultural UAVs and the structural challenges of sprayer UAVs were
described. After analyzing the main issues of autonomous sprayer UAVs on farmlands,
a thorough survey of the recent articles on obstacle detection and collision avoidance
techniques was presented. Besides, various constraints of agriculture sprayer UAVs were
detailed together with the operational pattern. The detection sensors and control archi-
tectures for collision avoidance are thoroughly highlighted to pave the way for future
researchers to design their own agriculture sprayer UAV systems. Specific to the physical
structure of the sprayer UAV, the liquid load and sloshing, and the most widely used
detection sensors were described. For autonomous navigation, the obstacle detection
method is an important part. A major obstacle detection challenge arises from severe
weather conditions and environments with changing illumination conditions. As agri-
cultural sprayer UAVs require data-intensive algorithms for the processing of the images
acquired, expertise in the field of autonomous flight is usually needed. The present study
provides a comprehensive review analysis of the obstacle detection methods under UAV
spraying conditions and concluded that UAV sprayers are still facing obstacle detection
challenges due to their dynamic operating and loading conditions. Moreover, and most
importantly, the relevant obstacle detection and collision avoidance algorithms were also
presented, wherein, comparative analysis of the obstacles on farmland, including obstacle
detection technologies, were tabulated. The Bug2 algorithm is suitable for rotorcraft UAVs.
It can ensure the coverage of spraying because of following the exact border of the obstacle.
Modifying the algorithm by fixing the heading direction may reduce the time duration. The
other algorithms also have their merits under various working conditions. Furthermore,
the most relevant open challenges concerning agricultural sprayer UAVs were highlighted.
Among these challenges is “spray deposition and coverage”, and these parameters are di-
rectly related to the drone weight and payload. Another open challenge that has to do with
the high cost of the intelligent sensors and that of the UAV system was highlighted. The
short UAV flight times and the high cost of operation, which are major concerns to farmers,
were also disclosed. Finally, the gap between real and virtually simulated environments,
which limits the applicability of offline simulation policies to the real world, was stated. In
all, this review work defines a clear roadmap for future research.
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23. Kulbacki, M.; Segen, J.; Knieć, W.; Klempous, R.; Kluwak, K.; Nikodem, J.; Kulbacka, J.; Serester, A. Survey of Drones for
Agriculture Automation from Planting to Harvest. In Proceedings of the 2018 IEEE 22nd International Conference on Intelligent
Engineering Systems (INES), Las Palmas de Gran Canaria, Spain, 21–23 June 2018; IEEE: Las Palmas de Gran Canaria, Spain,
2018; pp. 000353–000358. [CrossRef]

24. Durham, K.; Giles, R.C.B. Deployment and Performance of a UAV for Crop Spraying. Chem. Eng. Trans. 2015, 44, 307–312.
[CrossRef]

25. Faiçal, B.S.; Freitas, H.; Gomes, P.H.; Mano, L.Y.; Pessin, G.; de Carvalho, A.C.P.L.F.; Krishnamachari, B.; Ueyama, J. An adaptive
approach for UAV-based pesticide spraying in dynamic environments. Comput. Electron. Agric. 2017, 138, 210–223. [CrossRef]

26. Kim, J.; Kim, S.; Ju, C.; Son, H.I. Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and
Applications. IEEE Access 2019, 7, 105100–105115. [CrossRef]

27. Shilin, W.; Jianli, S.; Xiongkui, H.; Le, S.; Xiaonan, W.; Changling, W.; Zhichong, W.; Yun, L. Performances evaluation of four
typical unmanned aerial vehicles used for pesticide application in China. Int. J. Agric. Biol. Eng. 2017, 10, 22–31. [CrossRef]

28. Yanliang, Z.; Qi, L.; Wei, Z. Design and test of a six-rotor unmanned aerial vehicle (UAV) electrostatic spraying system for crop
protection. Int. J. Agric. Biol. Eng. 2017, 10, 68–76. [CrossRef]

29. Lou, Z.; Xin, F.; Han, X.; Lan, Y.; Duan, T.; Fu, W. Effect of Unmanned Aerial Vehicle Flight Height on Droplet Distribution, Drift
and Control of Cotton Aphids and Spider Mites. Agronomy 2018, 8, 187. [CrossRef]

30. Qin, W.; Xue, X.; Zhang, S.; Gu, W.; Wang, B. Droplet deposition and efficiency of fungicides sprayed with small UAV against
wheat powdery mildew. Int. J. Agric. Biol. Eng. 2018, 11, 27–32. [CrossRef]

31. Wen, S.; Zhang, Q.; Deng, J.; Lan, Y.; Yin, X.; Shan, J. Design and Experiment of a Variable Spray System for Unmanned Aerial
Vehicles Based on PID and PWM Control. Appl. Sci. 2018, 8, 2482. [CrossRef]

32. Yallappa, D.; Veerangouda, M.; Maski, D.; Palled, V.; Bheemanna, M. Development and Evaluation of Drone Mounted Sprayer for
Pesticide Applications to Crops. In Proceedings of the 2017 IEEE Global Humanitarian Technology Conference (GHTC), San Jose,
CA, USA, 19–23 October 2017; IEEE: San Jose, CA, USA, 2017; pp. 1–7. [CrossRef]

33. Hentschke, M.; Pignaton de Freitas, E.; Hennig, C.; Girardi da Veiga, I. Evaluation of Altitude Sensors for a Crop Spraying Drone.
Drones 2018, 2, 25. [CrossRef]

34. Chen, P.; Lan, Y.; Huang, X.; Qi, H.; Wang, G.; Wang, J.; Wang, L.; Xiao, H. Droplet deposition and control of planthoppers of
different nozzles in two-stage rice with a quadrotor unmanned aerial vehicle. Agronomy 2020, 10, 303. [CrossRef]

35. Basso, M.; Stocchero, D.; Ventura Bayan Henriques, R.; Vian, A.L.; Bredemeier, C.; Konzen, A.A.; Pignaton de Freitas, E. Proposal
for an Embedded System Architecture Using a GNDVI Algorithm to Support UAV-Based Agrochemical Spraying. Sensors 2019,
19, 5397. [CrossRef] [PubMed]

36. Huang, S.; Teo, R.S.H.; Tan, K.K. Collision avoidance of multi unmanned aerial vehicles: A review. Annu. Rev. Control 2019, 48,
147–164. [CrossRef]

37. Sedighi, K.H.; Ashenayi, K.; Manikas, T.W.; Wainwright, R.L.; Tai, H.-M. Autonomous Local Path Planning for a Mobile Robot
Using a Genetic Algorithm. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753),
Portland, OR, USA, 19–23 June 2004; IEEE: Portland, OR, USA, 2004; pp. 1338–1345. [CrossRef]

38. Marin-Plaza, P.; Hussein, A.; Martin, D.; Escalera, A.d.l. Global and Local Path Planning Study in a ROS-Based Research Platform
for Autonomous Vehicles. J. Adv. Transp. 2018, 2018, 6392697. [CrossRef]

39. Warren, C.W. Fast Path Planning Using Modified A* Method. In Proceedings of the IEEE International Conference on Robotics
and Automation, Atlanta, GA, USA, 2–6 May 1993; IEEE: Atlanta, GA, USA, 1993; pp. 662–667. [CrossRef]

40. Cui, J.; Zhang, Y.; Ma, S.; Yi, Y.; Xin, J.; Liu, D. Path planning algorithms for power transmission line inspection using unmanned
aerial vehicles. In Proceedings of the 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30
May 2017; IEEE: Chongqing, China, 2017; pp. 2304–2309. [CrossRef]

41. Borenstein, J.; Koren, Y. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 1991, 7,
278–288. [CrossRef]

42. Lozano-Pérez, T.; Wesley, M.A. An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 1979,
22, 560–570. [CrossRef]

43. Bellingham, J.; Tillerson, M.; Richards, A.; How, J.P. Multi-task allocation and path planning for cooperating UAVs. In Cooperative
Control: Models, Applications and Algorithms; Springer: Berlin/Heidelberg, Germany, 2003; pp. 23–41. [CrossRef]

44. Minguez, J.; Montano, L. Nearness Diagram (ND) Navigation: Collision Avoidance in Troublesome Scenarios. IEEE Trans. Robot.
Autom. 2004, 20, 45–59. [CrossRef]

45. Chakravarthy, A.; Ghose, D. Obstacle avoidance in a dynamic environment: A collision cone approach. IEEE Trans. Syst.
ManCybern. Part A Syst. Hum. 1998, 28, 562–574. [CrossRef]

46. Fiorini, P.; Shiller, Z. Motion Planning in Dynamic Environments Using Velocity Obstacles. Int. J. Robot. Res. 2016, 17, 760–772.
[CrossRef]

47. Ajith Kumar, B.; Ghose, D. Radar-assisted collision avoidance/guidance strategy for planar flight. IEEE Trans. Aerosp. Electron.
Syst. 2001, 37, 77–90. [CrossRef]

http://doi.org/10.3965/j.ijabe.20171003.3088
http://doi.org/10.1109/INES.2018.8523943
http://doi.org/10.3303/CET1544052
http://doi.org/10.1016/j.compag.2017.04.011
http://doi.org/10.1109/ACCESS.2019.2932119
http://doi.org/10.25165/j.ijabe.20171004.3219
http://doi.org/10.25165/j.ijabe.20171006.3460
http://doi.org/10.3390/agronomy8090187
http://doi.org/10.25165/j.ijabe.20181102.3157
http://doi.org/10.3390/app8122482
http://doi.org/10.1109/GHTC.2017.8239330
http://doi.org/10.3390/drones2030025
http://doi.org/10.3390/agronomy10020303
http://doi.org/10.3390/s19245397
http://www.ncbi.nlm.nih.gov/pubmed/31817832
http://doi.org/10.1016/j.arcontrol.2019.10.001
http://doi.org/10.1109/CEC.2004.1331052
http://doi.org/10.1155/2018/6392697
http://doi.org/10.1109/ROBOT.1993.291883
http://doi.org/10.1109/CCDC.2017.7978899
http://doi.org/10.1109/70.88137
http://doi.org/10.1145/359156.359164
http://doi.org/10.1007/978-1-4757-3758-5_2
http://doi.org/10.1109/TRA.2003.820849
http://doi.org/10.1109/3468.709600
http://doi.org/10.1177/027836499801700706
http://doi.org/10.1109/7.913669


Agronomy 2021, 11, 1069 25 of 35

48. Olivares-Mendez, M.A.; Mejias, L.; Campoy, P.; Mellado-Bataller, I. Cross-Entropy Optimization for Scaling Factors of a Fuzzy
Controller: A See-and-Avoid Approach for Unmanned Aerial Systems. J. Intell. Robot. Syst. 2012, 69, 189–205. [CrossRef]

49. Richards, A.; How, J.P. Aircraft Trajectory Planning with Collision Avoidance Using Mixed Integer Linear Programming. In
Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), Anchorage, AK, USA, 8–10 May 2002; IEEE:
Anchorage, AK, USA, 2002; pp. 1936–1941. [CrossRef]

50. Wang, X.; Yadav, V.; Balakrishnan, S.N. Cooperative UAV Formation Flying With Obstacle/Collision Avoidance. IEEE Trans.
Control Syst. Technol. 2007, 15, 672–679. [CrossRef]

51. Park, J.; Baek, H. Stereo vision based obstacle collision avoidance for a quadrotor using ellipsoidal bounding box and hierarchical
clustering. Aerosp. Sci. Technol. 2020, 103, 105882. [CrossRef]

52. Mukhtar, A.; Xia, L.; Tang, T.B. Vehicle detection techniques for collision avoidance systems: A review. IEEE Trans. Intell. Transp.
Syst. 2015, 16, 2318–2338. [CrossRef]

53. Rybus, T. Obstacle avoidance in space robotics: Review of major challenges and proposed solutions. Prog. Aerosp. Sci. 2018, 101,
31–48. [CrossRef]

54. Lu, Y.; Xue, Z.; Xia, G.-S.; Zhang, L. A survey on vision-based UAV navigation. GEO Spat. Inf. Sci. 2018, 21, 21–32. [CrossRef]
55. Shabbir, J.; Anwer, T. A survey of deep learning techniques for mobile robot applications. arXiv 2018, arXiv:07608.
56. Faiçal, B.S.; Costa, F.G.; Pessin, G.; Ueyama, J.; Freitas, H.; Colombo, A.; Fini, P.H.; Villas, L.; Osório, F.S.; Vargas, P.A.; et al.

The use of unmanned aerial vehicles and wireless sensor networks for spraying pesticides. J. Syst. Archit. 2014, 60, 393–404.
[CrossRef]

57. Bae, Y.; Koo, Y.M. Flight attitudes and spray patterns of a roll-balanced agricultural unmanned helicopter. Appl. Eng. Agric. Avoid.
Algorithm Based Monocular Vis. Quad Rotor 2013, 29, 675–682. [CrossRef]

58. Giles, D.; Billing, R. Deployment and Performance of an Unmanned Aerial Vehicle for Spraying of Specialty Crops. In Proceedings
of the International Conference of Agricultural Engineering, Zurich, Switzerland, 6 July 2014; p. C0589.

59. Oksanen, T.; Visala, A. Path planning algorithms for agricultural machines. Agric. Eng. Int. CIGR J. 2007. Available online:
file:///C:/Users/MDPI/AppData/Local/Temp/940-Article%20Text-934-1-10-20080428-1.pdf (accessed on 1 April 2021).

60. Wang, C.; Song, J.; He, X.; Wang, Z.; Wang, S.; Meng, Y. Effect of flight parameters on distribution characteristics ofpesticide
spraying droplets deposition of plant-protection unmanned aerial vehicle. Trans. Chin. Soc. Agric. Eng. 2017, 33, 109–116.

61. Fritz, B.K.; Czaczyk, Z.; Hoffmann, W.C. Model based decision support system of operating settings for MMAT nozzles. J. Plant
Prot. Res. 2016, 56, 178–185. [CrossRef]

62. De Bruin, S.; Lerink, P.; Klompe, A.; van der Wal, T.; Heijting, S. Spatial optimisation of cropped swaths and field margins using
GIS. Comput. Electron. Agric. 2009, 68, 185–190. [CrossRef]

63. Oksanen, T.; Visala, A. Coverage path planning algorithms for agricultural field machines. J. Field Robot. 2009, 26, 651–668.
[CrossRef]

64. Hofstee, J.; Spätjens, L.; Ijken, H. Optimal Path Planning for Field Operations. In Proceedings of the Joint International Agricultural
Conference, (JIAC2009), Wageningen, The Netherlands, 6–8 July 2009; pp. 511–519.

65. Hameed, I.A.; Bochtis, D.D.; Sørensen, C.G.; Nøremark, M. Automated generation of guidance lines for operational field planning.
Biosyst. Eng. 2010, 107, 294–306. [CrossRef]

66. Bochtis, D.D.; Sørensen, C.G. The vehicle routing problem in field logistics part I. Biosyst. Eng. 2009, 104, 447–457. [CrossRef]
67. Bochtis, D.D.; Sørensen, C.G.; Busato, P.; Berruto, R. Benefits from optimal route planning based on B-patterns. Biosyst. Eng. 2013,

115, 389–395. [CrossRef]
68. Scheuren, S.; Stiene, S.; Hartanto, R.; Hertzberg, J.; Reinecke, M. Spatio-temporally constrained planning for cooperative vehicles

in a harvesting scenario. Ki-Künstliche Intell. 2013, 27, 341–346. [CrossRef]
69. Vasquez Gomez, J.I.; Melchor, M.M.; Herrera Lozada, J.C. Optimal Coverage Path Planning Based on the Rotating Calipers

Algorithm. In Proceedings of the 2017 International Conference on Mechatronics, Electronics and Automotive Engineering
(ICMEAE), Cuernavaca, Mexico, 21–24 November 2017; pp. 140–144. [CrossRef]

70. Torres, M.; Pelta, D.A.; Verdegay, J.L.; Torres, J.C. Coverage path planning with unmanned aerial vehicles for 3D terrain
reconstruction. Expert Syst. Appl. 2016, 55, 441–451. [CrossRef]

71. Zhou, K.; Leck Jensen, A.; Sørensen, C.G.; Busato, P.; Bothtis, D.D. Agricultural operations planning in fields with multiple
obstacle areas. Comput. Electron. Agric. 2014, 109, 12–22. [CrossRef]

72. Moon, S.-W.; Shim, D.H.-C. Study on Path Planning Algorithms for Unmanned Agricultural Helicopters in Complex Environment.
Int. J. Aeronaut. Space Sci. 2009, 10, 1–11. [CrossRef]

73. Wang, K.; Meng, Z.; Wang, L.; Wu, Z.; Wu, Z. Practical Obstacle Avoidance Path Planning for Agriculture UAVs. In Advances and
Trends in Artificial Intelligence, Proceedings of theInternational Conference on Industrial, Engineering and Other Applications of Applied
Intelligent Systems, Graz, Austria, 9–11 July 2019; Springer: Cham, Switzerland, 2019; pp. 196–203. [CrossRef]

74. Zhang, X.; Fan, C.; Cao, Z.; Fang, J.; Jia, Y. Novel obstacle-avoiding path planning for crop protection UAV using optimized
Dubins curve. Int. J. Agric. Biol. Eng. 2020, 13, 172–177. [CrossRef]

75. Khorsandi, F.; Ayers, P.D.; Freeland, R.S.; Wang, X. Modeling the effect of liquid movement on the center of gravity calculation of
agricultural vehicles. J. Terramech. 2018, 75, 37–48. [CrossRef]

76. Monaghan, J.J.; Kos, A.; Issa, N. Fluid Motion Generated by Impact. J. Waterw. Port Coast. Ocean Eng. 2003, 129, 250–259.
[CrossRef]

http://doi.org/10.1007/s10846-012-9791-5
http://doi.org/10.1109/ACC.2002.1023918
http://doi.org/10.1109/TCST.2007.899191
http://doi.org/10.1016/j.ast.2020.105882
http://doi.org/10.1109/TITS.2015.2409109
http://doi.org/10.1016/j.paerosci.2018.07.001
http://doi.org/10.1080/10095020.2017.1420509
http://doi.org/10.1016/j.sysarc.2014.01.004
http://doi.org/10.13031/aea.29.10059
file:///C:/Users/MDPI/AppData/Local/Temp/940-Article%20Text-934-1-10-20080428-1.pdf
http://doi.org/10.1515/jppr-2016-0030
http://doi.org/10.1016/j.compag.2009.06.001
http://doi.org/10.1002/rob.20300
http://doi.org/10.1016/j.biosystemseng.2010.09.001
http://doi.org/10.1016/j.biosystemseng.2009.09.003
http://doi.org/10.1016/j.biosystemseng.2013.04.006
http://doi.org/10.1007/s13218-013-0267-y
http://doi.org/10.1109/icmeae.2017.11
http://doi.org/10.1016/j.eswa.2016.02.007
http://doi.org/10.1016/j.compag.2014.08.013
http://doi.org/10.5139/IJASS.2009.10.2.001
http://doi.org/10.1007/978-3-030-22999-3_18
http://doi.org/10.25165/j.ijabe.20201304.3205
http://doi.org/10.1016/j.jterra.2017.09.005
http://doi.org/10.1061/(ASCE)0733-950X(2003)129:6(250)


Agronomy 2021, 11, 1069 26 of 35

77. Frosina, E.; Senatore, A.; Andreozzi, A.; Fortunato, F.; Giliberti, P. Experimental and Numerical Analyses of the Sloshing in a Fuel
Tank. Energies 2018, 11, 682. [CrossRef]

78. Zang, Y.; Zang, Y.; Zhou, Z.; Gu, X.; Jiang, R.; Kong, L.; He, X.; Luo, X.; Lan, Y. Design and anti-sway performance testing of
pesticide tanks in spraying UAVs. Int. J. Agric. Biol. Eng. 2019, 12, 10–16. [CrossRef]

79. Li, X.Z.J.; Qu, F.; Zhang, W.; Wang, D.; Li, W. Optimal design of anti sway inner cavity structure of agricultural UAV pesticide
tank. Trans. Chin. Soc. Agric. Eng. 2017, 33, 72–79.

80. Yan, G.R.; Rakheja, S.; Siddiqui, K. Baffle Design Analysis for a Road Tanker: Transient Fluid Slosh Approach. SAE Int. J. Commer.
Veh. 2008, 1, 397–405. [CrossRef]

81. Zheng, X.-L.; Li, X.-S.; Ren, Y.-Y.; Wang, Y.-N.; Ma, J. Effects of Transverse Baffle Design on Reducing Liquid Sloshing in Partially
Filled Tank Vehicles. Math. Probl. Eng. 2013, 2013, 130570. [CrossRef]

82. Kandasamy, T. An Analysis of Baffles Designs for Limiting Fluid Slosh in Partly Filled Tank Trucks~!2009-10-29~!2010-04-
21~!2010-07-23~! Open Transp. J. 2010, 4, 23–32. [CrossRef]

83. Spickelmire, J. Liquid Stabilizing Baffle System. U.S. Patent 5,890,618, 6 April 1999.
84. Taylor, G.L. Anti-Slosh Devices for Damping Oscillation of Liquids in Tanks. U.S. Patent 7,648,749, 19 January 2010.
85. Lun, S.M.L.J.; Sakulthong, S.; Srigrarom, S. Wind Disturbance Control for V-Tail Y-Shape Quadcopter. In Proceedings of the 2019

First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), Bangkok, Thailand,
16–18 January 2019; IEEE: Bangkok, Thailand, 2019; pp. 195–202. [CrossRef]

86. Le Nhu Ngoc Thanh, H.; Hong, S.K. Quadcopter Robust Adaptive Second Order Sliding Mode Control Based on PID Sliding
Surface. IEEE Access 2018, 6, 66850–66860. [CrossRef]

87. Freeman, P.K.; Freeland, R.S. Agricultural UAVs in the U.S.: Potential, policy, and hype. Remote Sens. Appl. Soc. Environ. 2015, 2,
35–43. [CrossRef]

88. Lan, Y.; Chen, S. Current status and trends of plant protection UAV and its spraying technology in China. Int. J. Precis. Agric.
Aviat. 2018, 1, 1–9. [CrossRef]

89. Lan, W.G.B. Overview and development prospects of China’s plant protection drone industry. Agric. Eng. Technol. 2018, 38, 17–27.
[CrossRef]

90. Chen, S.; Lan, Y.; Li, J.; Xu, X.; Wang, Z.; Peng, B. Evaluation and test of effective spraying width of aerial spraying on plant
protection UAV. Trans. Chin. Soc. Agric. Eng. 2017, 33, 82–90.

91. Wang, C.; He, X.; Wang, X.; Wang, Z.; Pan, H.; He, Z. Testing method of spatial pesticide spraying deposition quality balance for
unmanned aerial vehicle. Trans. Chin. Soc. Agric. Eng. 2016, 32, 54–61. [CrossRef]

92. Wang, D.; Zhang, J.; Li, W.; Xiong, B.; Zhang, S.; Zhang, W. Design and test of dynamic variable spraying system of plant
protection UAV. Trans. Chin. Soc. Agric. Mach 2017, 5, 86–93.

93. AppleMaps. In Apple: Sattelite Pro. Available online: https://satellites.pro/China_map#31.928614,119.487323,19 (accessed on 3
January 2021).

94. AppleMaps. In Apple: Sattelite Pro. Available online: https://satellites.pro/China_map#31.878564,119.454724,19 (accessed on 3
January 2021).

95. AppleMaps. In Apple: Sattelite Pro. Available online: https://satellites.pro/China_map#31.756452,119.511074,19 (accessed on 3
January 2021).

96. AppleMaps. In Apple: Sattelite Pro. Available online: https://satellites.pro/China_map#32.466044,120.242939,19 (accessed on 3
January 2021).

97. Wang, L.; Lan, Y.; Zhang, Y.; Zhang, H.; Tahir, M.N.; Ou, S.; Liu, X.; Chen, P. Applications and Prospects of Agricultural Unmanned
Aerial Vehicle Obstacle Avoidance Technology in China. Sensors 2019, 19, 642. [CrossRef] [PubMed]

98. Nakhaeinia, D.; Tang, S.H.; Noor, S.M.; Motlagh, O. A review of control architectures for autonomous navigation of mobile robots.
Int. J. Phys. Sci. 2011, 6, 169–174. [CrossRef]

99. Wang, G.; Han, Y.; Li, X.; Andaloro, J.; Chen, P.; Hoffmann, W.C.; Han, X.; Chen, S.; Lan, Y. Field evaluation of spray drift
and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Sci. Total Environ. 2020, 737, 139793.
[CrossRef] [PubMed]

100. Liu, Z.; He, Y.; Wang, C.; Song, R. Analysis of the Influence of Foggy Weather Environment on the Detection Effect of Machine
Vision Obstacles. Sensors 2020, 20, 349. [CrossRef] [PubMed]

101. Richard, P.-L.; Pouliot, N.; Montambault, S. Introduction of a LIDAR-Based Obstacle Detection System on the LineScout Power
Line Robot. In Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besacon,
France, 8–11 July 2014; IEEE: Besacon, France, 2014; pp. 1734–1740. [CrossRef]

102. Zhu, Y.; Yi, B.; Guo, T. A Simple Outdoor Environment Obstacle Detection Method Based on Information Fusion of Depth and
Infrared. J. Robot. 2016, 2016, 2379685. [CrossRef]

103. White, B.A.; Shin, H.-S.; Tsourdos, A. UAV Obstacle Avoidance using Differential Geometry Concepts. IFAC Proc. Vol. 2011, 44,
6325–6330. [CrossRef]

104. Aswini, N.; Krishna Kumar, E.; Uma, S.V. UAV and obstacle sensing techniques—A perspective. Int. J. Intell. Unmanned Syst.
2018, 6, 32–46. [CrossRef]

http://doi.org/10.3390/en11030682
http://doi.org/10.25165/j.ijabe.20191201.4338
http://doi.org/10.4271/2008-01-2670
http://doi.org/10.1155/2013/130570
http://doi.org/10.2174/1874447801004010023
http://doi.org/10.1109/ICA-SYMP.2019.8646025
http://doi.org/10.1109/ACCESS.2018.2877795
http://doi.org/10.1016/j.rsase.2015.10.002
http://doi.org/10.33440/j.ijpaa.20180101.0002
http://doi.org/10.16815/j.cnki.11-5436/s.2018.09.004
http://doi.org/10.25165/j.ijabe.20181102.3187
https://satellites.pro/China_map#31.928614,119.487323,19
https://satellites.pro/China_map#31.878564,119.454724,19
https://satellites.pro/China_map#31.756452,119.511074,19
https://satellites.pro/China_map#32.466044,120.242939,19
http://doi.org/10.3390/s19030642
http://www.ncbi.nlm.nih.gov/pubmed/30717488
http://doi.org/10.5897/IJPS10.540
http://doi.org/10.1016/j.scitotenv.2020.139793
http://www.ncbi.nlm.nih.gov/pubmed/32526578
http://doi.org/10.3390/s20020349
http://www.ncbi.nlm.nih.gov/pubmed/31936287
http://doi.org/10.1109/AIM.2014.6878334
http://doi.org/10.1155/2016/2379685
http://doi.org/10.3182/20110828-6-IT-1002.02344
http://doi.org/10.1108/IJIUS-11-2017-0013


Agronomy 2021, 11, 1069 27 of 35

105. Discant, A.; Rogozan, A.; Rusu, C.; Bensrhair, A. Sensors for Obstacle Detection—A Survey. In Proceedings of the 2007 30th
International Spring Seminar on Electronics Technology (ISSE), Cluj-Napoca, Romania, 9–13 May 2007; IEEE: Cluj-Napoca,
Romania, 2007; pp. 100–105. [CrossRef]

106. Siegwart, R.; Nourbakhsh, I.R.; Scaramuzza, D. Introduction to Autonomous Mobile Robots; MIT Press: Boston, MA, USA, 2011.
107. Wen-Hong, Z.; Lamarche, T. Velocity Estimation by Using Position and Acceleration Sensors. IEEE Trans. Ind. Electron. 2007, 54,

2706–2715. [CrossRef]
108. Dai, R.; Stein, R.B.; Andrews, B.J.; James, K.B.; Wieler, M. Application of tilt sensors in functional electrical stimulation. IEEE

Trans. Rehabil. Eng 1996, 4, 63–72. [CrossRef] [PubMed]
109. Chao, H.; Gu, Y.; Gross, J.; Guo, G.; Fravolini, M.L.; Napolitano, M.R. A Comparative Study of Optical Flow and Traditional

Sensors in Uav Navigation. In Proceedings of the 2013 American Control Conference, Washington, DC, USA, 17–19 June 2013;
IEEE: Washington, DC, USA, 2013; pp. 3858–3863. [CrossRef]

110. Racz, R.; Schott, C.; Huber, S. Electronic Compass Sensor; SENSORS; IEEE: Vienna, Austria, 2004; pp. 1446–1449. [CrossRef]
111. Beliveau, A.; Spencer, G.T.; Thomas, K.A.; Roberson, S.L. Evaluation of MEMS capacitive accelerometers. IEEE Des. Test Comput.

1999, 16, 48–56. [CrossRef]
112. Foix, S.; Alenya, G.; Torras, C. Lock-in Time-of-Flight (ToF) Cameras: A Survey. IEEE Sens. J. 2011, 11, 1917–1926. [CrossRef]
113. Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ.

2015, 158, 295–310. [CrossRef]
114. Suh, Y.S. Laser Sensors for Displacement, Distance and Position. Sensors 2019, 19, 1924. [CrossRef]
115. Bernini, N.; Bertozzi, M.; Castangia, L.; Patander, M.; Sabbatelli, M. Real-Time Obstacle Detection Using Stereo Vision for

Autonomous Ground Vehicles: A Survey. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation
Systems (ITSC), Qingdao, China, 24–26 September 2014; IEEE: Qingdao, China, 2014; pp. 873–878. [CrossRef]

116. Choi, J.; Ahn, S.; Chung, W.K. Robust Sonar Feature Detection for the SLAM of Mobile Robot. In Proceedings of the 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; IEEE: Edmonton, AB,
Canada, 2005; pp. 3415–3420. [CrossRef]

117. Li, C.; Peng, Z.; Huang, T.-Y.; Fan, T.; Wang, F.-K.; Horng, T.-S.; Munoz-Ferreras, J.-M.; Gomez-Garcia, R.; Ran, L.; Lin, J. A Review
on Recent Progress of Portable Short-Range Noncontact Microwave Radar Systems. IEEE Trans. Microw. Theory Tech. 2017, 65,
1692–1706. [CrossRef]

118. Akagawa, K. Thermal Camera for Infrared Imaging. U.S. Patent 5,994,699, 30 November 1999.
119. Fossum, E.R.; Hondongwa, D.B. A review of the pinned photodiode for CCD and CMOS image sensors. IEEE J. Electron. Devices

Soc. 2014. [CrossRef]
120. Yamaguchi, K.; Kato, T.; Ninomiya, Y. Moving Obstacle Detection Using Monocular Vision. In Proceedings of the 2006 IEEE

Intelligent Vehicles Symposium, Meguro-Ku, Japan, 13–15 June 2006; IEEE: Meguro-Ku, Japan, 2006; pp. 288–293. [CrossRef]
121. Han, Y.-X.; Zhang, Z.-S.; Dai, M. Monocular vision system for distance measurement based on feature points. Guangxue Jingmi

Gongcheng 2011, 19, 1110–1117.
122. Zhao, H.; Chen, X.C.; Wang, J.L.; Zeng, R.F. Obstacle avoidance algorithm based on monocular vision for quad-rotor helicopter.

Opt. Precis. Eng. Freq. (Rf) Time Flight Ranging Wirel. Sens. Netw. 2014, 22, 2232–2241. [CrossRef]
123. Rui, Z.; Jingyi, L.; Hengyu, L.; Qixing, C. Real-Time Obstacle Detection Based on Monocular Vision for Unmanned Surface Vehicles.

In Proceedings of the International Conference on Bio-inspired Information and Communication Technologies, Singapore, 1–2
August 2020; Springer: Singapore, 2020; pp. 166–180. [CrossRef]

124. Wang, S.-H.; Li, X.-X. A Real-Time Monocular Vision-Based Obstacle Detection. In Proceedings of the 2020 6th International
Conference on Control, Automation and Robotics (ICCAR), Singapore, 20–23 April 2020; IEEE: Singapore, 2020; pp. 695–699.
[CrossRef]

125. Cho, M.-g. In A Study on the Obstacle Recognition for Autonomous Driving RC Car Using Lidar and Thermal Infrared Camera.
In Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5
June 2019; IEEE: Zagreb, Croatia, 2019; pp. 544–546. [CrossRef]

126. Carrio, A.; Lin, Y.; Saripalli, S.; Campoy, P. Obstacle Detection System for Small UAVs using ADS-B and Thermal Imaging. J. Intell.
Robot. Syst. 2017, 88, 583–595. [CrossRef]

127. Huang, S.-K.; Xia, T.; Zhang, T.-X. Passive ranging method based on infrared images. Infrared Laser Eng. 2007, 36, 109.
128. Lu, Y.; Feng, Y.-S.; Ling, Y.-S.; Qiao, Y. Infrared three-color passive ranging by colorimetric method. Guangxue Jingmi Gongcheng

2012, 20, 2680–2685. [CrossRef]
129. Wang, H.; Wang, J.; Shen, Z. Helicopter Pods-based Obstacle Avoidance Technology Using Infrared Imaging and Radar. Sci.

Technol. Innov. Her 2014, 29, 56–59.
130. Cheng, H.; Li, J.; Jin, B. Research of Small Blind Zone Ultrasonic Ranging Method Based on Natural Vibration Restraining. J. Vib.

Meas. Diagn 2015, 2, 369–374.
131. Wang, M. Localization and Obstacle Avoidance Control of Agricultural Robot Based on DSP and Ultrasonic Distance Measurement.

Agric. Mech. Res 2017, 8, 207–211.
132. Zhao, H.; Liu, Y.; Zhu, X.; Zhao, Y.; Zha, H. Scene Understanding in a Large Dynamic Environment through a Laser-Based

Sensing. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 4–8 May
2010; IEEE: Anchorage, AK, USA, 2010; pp. 127–133. [CrossRef]

http://doi.org/10.1109/ISSE.2007.4432828
http://doi.org/10.1109/TIE.2007.899936
http://doi.org/10.1109/86.506403
http://www.ncbi.nlm.nih.gov/pubmed/8798073
http://doi.org/10.1109/ACC.2013.6580428
http://doi.org/10.1109/ICSENS.2004.1426458
http://doi.org/10.1109/54.808209
http://doi.org/10.1109/JSEN.2010.2101060
http://doi.org/10.1016/j.rse.2014.11.001
http://doi.org/10.3390/s19081924
http://doi.org/10.1109/ITSC.2014.6957799
http://doi.org/10.1109/IROS.2005.1545284
http://doi.org/10.1109/TMTT.2017.2650911
http://doi.org/10.1109/JEDS.2014.2306412
http://doi.org/10.1109/IVS.2006.1689643
http://doi.org/10.3788/ope.20142208.2232
http://doi.org/10.1109/DSR.2011.6026880
http://doi.org/10.1109/ICCAR49639.2020.9108018
http://doi.org/10.1109/ICUFN.2019.8806152
http://doi.org/10.1007/s10846-017-0529-2
http://doi.org/10.3788/ope.20122012.2680
http://doi.org/10.1109/ROBOT.2010.5509169


Agronomy 2021, 11, 1069 28 of 35

133. Wang, Y.; Liu, J.; Zeng, Q. 3D environment restructure method with structured light for indoor vision/inertial navigation. J. Chin.
Inert. Technol. 2016, 1, 51–58.

134. Houshiar, H.; Elseberg, J.; Borrmann, D.; Nüchter, A. A study of projections for key point based registration of panoramic
terrestrial 3D laser scan. GEO Spat. Inf. Sci. 2015, 18, 11–31. [CrossRef]

135. Thorbjornsen, B.; White, N.; Brown, A.; Reeve, J. Radio frequency (RF) time-of-flight ranging for wireless sensor networks. Meas.
Sci. Technol. Meas. Via Using Ultrason. Sens. 2010, 21, 035202. [CrossRef]

136. Rankin, G.; Tirkel, A.; Leukhin, A. Millimeter Wave Array for UAV Imaging MIMO Radar. In Proceedings of the 2015 16th
International Radar Symposium (IRS), Dresden, Germany, 24–26 June 2015; IEEE: Dresden, Germany, 2015; pp. 499–504.
[CrossRef]

137. Zhang, W.; Ning, Y.; Suo, C. A Method Based on Multi-Sensor Data Fusion for UAV Safety Distance Diagnosis. Electronics 2019,
12, 1467. [CrossRef]

138. Lyu, H. Detect and Avoid System Based on Multi Sensor Fusion for UAV. In Proceedings of the 2018 International Conference
on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 17–19 October 2018; IEEE: Jeju, Korea, 2018;
pp. 1107–1109. [CrossRef]

139. Hrabar, S.; Sukhatme, G.S.; Corke, P.; Usher, K.; Roberts, J. Combined Optic-Flow and Stereo-Based Navigation of Urban Canyons
for a UAV. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB,
Canada, 2–6 August 2005; IEEE: Edmonton, AB, Canada, 2005; pp. 3309–3316. [CrossRef]

140. McGuire, K.; De Croon, G.; De Wagter, C.; Tuyls, K.; Kappen, H. Efficient Optical Flow and Stereo Vision for Velocity Estimation
and Obstacle Avoidance on an Autonomous Pocket Drone. IEEE Robot. Autom. Lett. 2017, 2, 1070–1076. [CrossRef]

141. Santos, M.C.; Santana, L.V.; Brandao, A.S.; Sarcinelli-Filho, M. UAV Obstacle Avoidance Using RGB-D System. In Proceedings of
the 2015 International Conference On Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; IEEE: Denver, CO,
USA, 2015; pp. 312–319. [CrossRef]

142. Gageik, N.; Benz, P.; Montenegro, S. Obstacle Detection and Collision Avoidance for a UAV With Complementary Low-Cost
Sensors. IEEE Access 2015, 3, 599–609. [CrossRef]

143. Kragh, M.F.; Christiansen, P.; Laursen, M.S.; Larsen, M.; Steen, K.A.; Green, O.; Karstoft, H.; Jorgensen, R.N. FieldSAFE: Dataset
for Obstacle Detection in Agriculture. Sensors 2017, 17, 2579. [CrossRef]

144. Gageik, N.; Muller, T.; Montenergo, S. Obstacle detection and collision avoidance using ultrasonic distance sensors for an
autonomous quadrocopter. In Proceedings of the 1st microdrones International ResearchWorkshop UAVWeek 2012, Siegen,
Germany, 20–21 November 2012; pp. 3–23.

145. Zhmud, V.; Kondratiev, N.; Kuznetsov, K.; Trubin, V.; Dimitrov, L. Application of Ultrasonic Sensor for Measuring Distances in
Robotics; Conference Series; IOP Publishing: Tomsk, Russia, 2018; p. 032189. [CrossRef]

146. Kelemen, M.; Virgala, I.; Kelemenová, T.; Mikova, L.; Frankovský, P.; Lipták, T.; Lörinc, M. Distance measurement via using of
ultrasonic sensor. J. Autom. Control 2015, 3, 71–74.

147. Kilian, J.; Haala, N.; Englich, M. Capture and evaluation of airborne laser scanner data. Int. Arch. Photogramm. Remote Sens. 1996,
31, 383–388.

148. Donges, A.; Noll, R. Laser Measurement Technology; Springer: Berlin/Heidelberg, Germany, 2016.
149. Di, L.; Chao, H.; Chen, Y. A Two-Stage Calibration Method for Low-Cost UAV Attitude Estimation Using Infrared Sensor.

In Proceedings of the 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications,
QingDao, China, 15–17 July 2010; IEEE: QingDao, China, 2010; pp. 137–142. [CrossRef]

150. Silberman, N.; Fergus, R. Indoor Scene Segmentation Using a Structured LIGHT Sensor. In Proceedings of the 2011 IEEE
International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; IEEE:
Barcelona, Spain, 2011; pp. 601–608. [CrossRef]

151. Nejad, S.M.; Olyaee, S. Low-noise high-accuracy TOF laser range finder. Am. J. Appl. Sci. 2008, 5, 755–762. [CrossRef]
152. Fujimoto, D.; Hayashi, Y.-I. Study on Estimation of Sensing Timing Based on Observation of EM Radiation from ToF Range

Finder. In Proceedings of the 2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and Asia-Pacific
International Symposium on Electromagnetic Compatibility (EMC Sapporo/APEMC), Sapporo, Japan, 3–7 June 2019; IEEE:
Sapporo, Japan, 2019; pp. 1–4. [CrossRef]

153. Xiang, J.; Zhang, M. Millimeter-Wave Radar and Its Applications; National Defense Industry Press: Beijing, China, 2015.
154. Johnston, S.L. Millimeter Wave Radar; Harard: Dedham, MA, USA, 1980.
155. Chen, H.-C. Monocular Vision-Based Obstacle Detection and Avoidance for a Multicopter. IEEE Access 2019, 7, 167869–167883.

[CrossRef]
156. Levkovits-Scherer, D.S.; Cruz-Vega, I.; Martinez-Carranza, J. Real-Time Monocular Vision-Based UAV Obstacle Detection

and Collision Avoidance in GPS-Denied Outdoor Environments Using CNN MobileNet-SSD. In Proceedings of the Mexican
International Conference on Artificial Intelligence, Veracruz, Mexico, 27 October–2 November 2019; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 613–621. [CrossRef]

157. Zhang, L.; Xu, J.; Xia, Q. Pose estimation algorithm and verification based on binocular stereo vision for unmanned aerial vehicle.
J. Harbin Inst. Technolobstacle Detect. Using Ultrason. Sens. 2014, 46, 66–72.

158. Zhu, P.; Zhen, Z.-Y.; Qin, H.-Q.; Jiang, J. Stereo vision and optical flow based obstacle avoidance algorithm for UAVs. Electron.
Opt. Control 2017, 24, 31–35.

http://doi.org/10.1080/10095020.2015.1017913
http://doi.org/10.1088/0957-0233/21/3/035202
http://doi.org/10.1109/IRS.2015.7226217
http://doi.org/10.3390/electronics8121467
http://doi.org/10.1109/ICTC.2018.8539587
http://doi.org/10.1109/IROS.2005.1544998
http://doi.org/10.1109/LRA.2017.2658940
http://doi.org/10.1109/ICUAS.2015.7152305
http://doi.org/10.1109/ACCESS.2015.2432455
http://doi.org/10.3390/s17112579
http://doi.org/10.1088/1742-6596/1015/3/032189
http://doi.org/10.1109/MESA.2010.5552079
http://doi.org/10.1109/ICCVW.2011.6130298
http://doi.org/10.3844/ajassp.2008.755.762
http://doi.org/10.23919/EMCSapporo/APEMC44270.2019.9320845
http://doi.org/10.1109/ACCESS.2019.2953954
http://doi.org/10.1007/978-3-030-33749-0_49


Agronomy 2021, 11, 1069 29 of 35

159. Wang, Q.; Meng, Z.; Liu, H. Review on Application of Binocular Vision Technology in Field Obstacle Detection. In IOP Conference
Series: Materials Science and Engineering, Proceedings of the International Conference on AI and Big Data Application (AIBDA
2019), Guangzhou, China, 20–22 December 2019; IOP Publishing: Bristol, UK, 2020; p. 012025. [CrossRef]

160. Lei, Z.; Shumao, W.; Bingqi, C.; Zhigang, L. Detection of obstacles in farmland based on binocular vision. J. China Agric. Univ.
2007, 12, 70.

161. Mori, T.; Scherer, S. First Results in Detecting and Avoiding Frontal Obstacles from a Monocular Camera for Micro Unmanned
Aerial Vehicles. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany,
6–10 May 2013; IEEE: Karlsruhe, Germany, 2013; pp. 1750–1757. [CrossRef]

162. Lee, J.O.; Lee, K.H.; Park, S.H.; Im, S.G.; Park, J. Obstacle avoidance for small UAVs using monocular vision. Aircr. Eng. Aerosp.
Technol. 2011, 83, 397–406. [CrossRef]

163. Magree, D.; Mooney, J.G.; Johnson, E.N. Monocular visual mapping for obstacle avoidance on UAVs. In Proceedings of the 2013
International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 18–31 May 2013; IEEE: Atlanta, GA, USA,
2013; pp. 471–479. [CrossRef]

164. Pal, S.K.; King, R.A.; Hashim, A.A. Image description and primitive extraction using fuzzy sets. IEEE Trans. Syst. ManCybern.
1983, SMC-13, 94–100. [CrossRef]

165. Aoude, G.S.; Luders, B.D.; Levine, D.S.; How, J.P. Threat-Aware Path Planning in Uncertain Urban Environments. In Proceedings
of the2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; IEEE:
Taipei, Taiwan, 2010; pp. 6058–6063. [CrossRef]

166. Barry, A.J.; Florence, P.R.; Tedrake, R. High-speed autonomous obstacle avoidance with pushbroom stereo. J. Field Robot. 2018, 35,
52–68. [CrossRef]

167. Souhila, K.; Karim, A. Optical Flow Based Robot Obstacle Avoidance. Int. J. Adv. Robot. Syst. 2007, 4, 2. [CrossRef]
168. Moore, R.J.; Thurrowgood, S.; Bland, D.; Soccol, D.; Srinivasan, M.V. A Stereo Vision System for Uav Guidance. In Proceedings of

the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009; IEEE: St.
Louis, MO, USA, 2009; pp. 3386–3391. [CrossRef]

169. Gao, Y.; Ai, X.; Wang, Y.; Rarity, J.; Dahnoun, N. UV-Disparity Based Obstacle Detection with 3D Camera and Steerable Filter. In
Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; IEEE: Baden-Baden,
Germany, 2011; pp. 957–962. [CrossRef]

170. Kramm, S.; Bensrhair, A. Obstacle Detection Using Sparse Stereovision and Clustering Techniques. In Proceedings of the 2012
IEEE Intelligent Vehicles Symposium, Madrid, Spain, 3–7 June 2012; IEEE: Madrid, Spain, 2012; pp. 760–765. [CrossRef]

171. Iacono, M.; Sgorbissa, A. Path following and obstacle avoidance for an autonomous UAV using a depth camera. Robot. Auton.
Syst. 2018, 106, 38–46. [CrossRef]

172. Kato, T.; Ninomiya, Y.; Masaki, I. An obstacle detection method by fusion of radar and motion stereo. IEEE Trans. Intell. Transp.
Syst. 2002, 3, 182–188. [CrossRef]

173. Vidhya, D.; Rebelo, D.P.; D’Silva, C.; Fernandes, L.W.; Costa, C. Obstacle detection using ultrasonic sensors. Int. J. Innov. Res. Sci.
Technol. 2016, 2, 316–320.

174. Viquerat, A.; Blackhall, L.; Reid, A.; Sukkarieh, S.; Brooker, G. Reactive Collision Avoidance for Unmanned Aerial Vehicles Using
Doppler Radar. In Field and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 245–254. [CrossRef]

175. Blanc, C.; Aufrère, R.; Malaterre, L.; Gallice, J.; Alizon, J. Obstacle detection and tracking by millimeter wave RADAR. IFAC Proc.
Vol. 2004, 37, 322–327. [CrossRef]

176. Sugimoto, S.; Tateda, H.; Takahashi, H.; Okutomi, M. Obstacle Detection Using Millimeter-Wave Radar and Its Visualization on
Image Sequence. In Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, 26
August 2004; IEEE: Cambridge, UK, 2004; pp. 342–345. [CrossRef]

177. Han, J.; Kim, D.; Lee, M.; Sunwoo, M. Enhanced road boundary and obstacle detection using a downward-looking LIDAR sensor.
IEEE Trans. Veh. Technol. 2012, 61, 971–985. [CrossRef]

178. Catapang, A.N.; Ramos, M. Obstacle Detection Using a 2D LIDAR System for an Autonomous Vehicle. In Proceedings of the 2016
6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Batu, Ferringhi, 2 August 2016;
IEEE: Batu, Ferringhi, 2016; pp. 441–445. [CrossRef]

179. Kuthirummal, S.; Das, A.; Samarasekera, S. A Graph Traversal Based Algorithm for Obstacle Detection Using Lidar or Stereo. In
Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30
September 2011; IEEE: San Francisco, CA, USA, 2011; pp. 3874–3880. [CrossRef]

180. Thi Phuoc Van, N.; Tang, L.; Demir, V.; Hasan, S.F.; Duc Minh, N.; Mukhopadhyay, S. Review-Microwave Radar Sensing Systems
for Search and Rescue Purposes. Sensors 2019, 19, 2879. [CrossRef]

181. Zeng, S.; Zhang, W.; Litkouhi, B.B. Fusion of Obstacle Detection Using Radar and Camera. U.S. Patent 9,429,650, 30 August 2016.
182. Jha, H.; Lodhi, V.; Chakravarty, D. Object Detection and Identification Using Vision and Radar Data Fusion System for Ground-

Based Navigation. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN),
Noida, India, 7–8 March 2019; IEEE: Noida, India, 2019; pp. 590–593. [CrossRef]

183. Bertozzi, M.; Bombini, L.; Cerri, P.; Medici, P.; Antonello, P.C.; Miglietta, M. Obstacle Detection and Classification Fusing Radar
and Vision. In Proceedings of the 2008 IEEE Intelligent Vehicles Symposium, Eindhoven, The Netherlands, 4–6 June 2008; IEEE:
Eindhoven, The Netherlands, 2008; pp. 608–613. [CrossRef]

http://doi.org/10.1088/1757-899x/806/1/012025
http://doi.org/10.1109/ICRA.2013.6630807
http://doi.org/10.1108/00022661111173270
http://doi.org/10.1109/ICUAS.2013.6564722
http://doi.org/10.1109/TSMC.1983.6313038
http://doi.org/10.1109/IROS.2010.5650734
http://doi.org/10.1002/rob.21741
http://doi.org/10.5772/5715
http://doi.org/10.1109/IROS.2009.5354152
http://doi.org/10.1109/IVS.2011.5940425
http://doi.org/10.1109/IVS.2012.6232283
http://doi.org/10.1016/j.robot.2018.04.005
http://doi.org/10.1109/TITS.2002.802932
http://doi.org/10.1007/978-3-540-75404-6_23
http://doi.org/10.1016/S1474-6670(17)31996-1
http://doi.org/10.1109/ICPR.2004.1334537
http://doi.org/10.1109/TVT.2012.2182785
http://doi.org/10.1109/ICCSCE.2016.7893614
http://doi.org/10.1109/IROS.2011.6094685
http://doi.org/10.3390/s19132879
http://doi.org/10.1109/SPIN.2019.8711717
http://doi.org/10.1109/IVS.2008.4621304


Agronomy 2021, 11, 1069 30 of 35

184. Hill, M.N. Physical Oceanography; Harvard University Press: Boston, MA, USA, 2005; Volume 1.
185. D’amico, A.; Pittenger, R. A Brief History of Active Sonar; Space and Naval Warfare Systems Center: San Diego, CA, USA, 2009.
186. Elfes, A. Sonar-based real-world mapping and navigation. IEEE J. Robot. Autom. 1987, 3, 249–265. [CrossRef]
187. Flynn, A.M. Combining Sonar and Infrared Sensors for Mobile Robot Navigation. Int. J. Robot. Res. 2016, 7, 5–14. [CrossRef]
188. Kleeman, L.; Kuc, R. An Optimal Sonar Array for Target Localization and Classification. In Proceedings of the 1994 IEEE

International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994; IEEE: San Diego, CA, USA, 1994;
pp. 3130–3135. [CrossRef]

189. Akbarally, H.; Kleeman, L. A Sonar Sensor for Accurate 3D Target Localisation and Classification. In Proceedings of the 1995
IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995; IEEE: Nagoya, Japan, 1995;
pp. 3003–3008. [CrossRef]

190. Ribas, D.; Ridao, P.; Neira, J.; Tardos, J.D. SLAM Using an Imaging Sonar for Partially Structured Underwater Environments. In
Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006;
IEEE: Beijing, China, 2006; pp. 5040–5045. [CrossRef]

191. Steckel, J.; Peremans, H. BatSLAM: Simultaneous localization and mapping using biomimetic sonar. PLoS ONE 2013, 8, e54076.
[CrossRef] [PubMed]

192. Steckel, J.; Peremans, H. Spatial Sampling Strategy for a 3D Sonar Sensor Supporting BatSLAM. In Proceedings of the 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015;
IEEE: Hamburg, Germany, 2015; pp. 723–728. [CrossRef]

193. Kerstens, R.; Laurijssen, D.; Steckel, J. ERTIS: A Fully Embedded Real Time 3D Imaging Sonar Sensor for Robotic Applications. In
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019;
IEEE: Montreal, QC, Canada, 2019; pp. 1438–1443. [CrossRef]

194. Bin Misnan, M.F.; Arshad, N.M.; Abd Razak, N. Construction Sonar Sensor Model of Low Altitude Field Mapping Sensors for
Application on a UAV. In Proceedings of the 2012 IEEE 8th International Colloquium on Signal Processing and its Applications,
Malacca, Malaysia, 23–25 March 2012; IEEE: Malacca, Malaysia, 2012; pp. 446–450. [CrossRef]

195. Gupta, N.; Makkar, J.S.; Pandey, P. Obstacle Detection and Collision Avoidance Using Ultrasonic Sensors for Rc Multirotors. In
Proceedings of the 2015 International Conference on Signal Processing and Communication (ICSC), Noida, India, 16–18 March
2015; IEEE: Noida, India, 2015; pp. 419–423. [CrossRef]

196. Becker, M.; Sampaio, R.C.B.; Bouabdallah, S.; Perrot, V.; Siegwart, R. In flight collision avoidance for a Mini-UAV robot based on
onboard sensors. J. Braz. Soc. Mech. Sci. Eng. 2012, 2. Available online: https://www.researchgate.net/profile/Rafael-Sampaio-8/
publication/261635073_In_flight_collision_avoidance_for_a_Mini-UAV_robot_based_on_onboard_sensors/links/00b7d534e01ac6
c752000000/In-flight-collision-avoidance-for-a-Mini-UAV-robot-based-on-onboard-sensors.pdf (accessed on 1 April 2021).

197. Li, J.; Kaess, M.; Eustice, R.M.; Johnson-Roberson, M. Pose-Graph SLAM Using Forward-Looking Sonar. IEEE Robot. Autom. Lett.
2018, 3, 2330–2337. [CrossRef]

198. Rahman, S.; Li, A.Q.; Rekleitis, I. Sonar Visual Inertial SLAM of Underwater Structures. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Austrilia, 21–25 May 2018; IEEE: Brisbane, QLD,
Austrilia, 2018; pp. 5190–5196. [CrossRef]

199. Teixeira, P.V.; Kaess, M.; Hover, F.S.; Leonard, J.J. Underwater Inspection Using Sonar-Based Volumetric Submaps. In Proceedings
of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016;
IEEE: Daejeon, Korea, 2016; pp. 4288–4295. [CrossRef]

200. Huang, T.A.; Kaess, M. Towards Acoustic Structure from Motion for Imaging Sonar. In Proceedings of the 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; IEEE:
Hamburg, Germany, 2015; pp. 758–765. [CrossRef]

201. Wang, X.; Zhang, G.; Sun, Y.; Wan, L.; Cao, J. Research on autonomous underwater vehicle wall following based on reinforcement
learning and multi-sonar weighted round robin mode. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420925311. [CrossRef]

202. Chutia, S.; Kakoty, N.M.; Deka, D. A review of underwater robotics, navigation, sensing techniques and applications. Proc. Adv.
Robot. 2017, 1–6. [CrossRef]

203. Sahoo, A.; Dwivedy, S.K.; Robi, P.S. Advancements in the field of autonomous underwater vehicle. Ocean Eng. 2019, 181, 145–160.
[CrossRef]

204. Christ, R.D.; Wernli, R.L., Sr. The ROV Manual: A User Guide for Remotely Operated Vehicles; Butterworth-Heinemann: Oxford,
UK, 2013.

205. Nguyen, H.T.; Lee, E.H.; Lee, S. Study on the Classification Performance of Underwater Sonar Image Classification Based on
Convolutional Neural Networks for Detecting a Submerged Human Body. Sensors 2019, 20, 94. [CrossRef]

206. Levanon, N. Radar Principles. John Wiley & Sons: New York, NY, USA, 1988.
207. Özer, I.E.; Leijen, F.J.; Jonkman, S.N.; Hanssen, R.F. Applicability of satellite radar imaging to monitor the conditions of levees. J.

Flood Risk Manag. 2018, 12 (Suppl. S2), e12509. [CrossRef]
208. Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2017.
209. Kanevsky, M.B. Radar Imaging of the Ocean Waves; Elsevier: Amsterdam, The Netherlands, 2008.
210. Brisken, S.; Moscadelli, M.; Seidel, V.; Schwark, C. Passive Radar Imaging Using DVB-S2. In Proceedings of the 2017 IEEE Radar

Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; IEEE: Seattle, WA, USA, 2017; pp. 0552–0556. [CrossRef]

http://doi.org/10.1109/JRA.1987.1087096
http://doi.org/10.1177/027836498800700602
http://doi.org/10.1109/ROBOT.1994.351089
http://doi.org/10.1109/ROBOT.1995.525710
http://doi.org/10.1109/IROS.2006.282532
http://doi.org/10.1371/journal.pone.0054076
http://www.ncbi.nlm.nih.gov/pubmed/23365647
http://doi.org/10.1109/IROS.2015.7353452
http://doi.org/10.1109/ICRA.2019.8794419
http://doi.org/10.1109/CSPA.2012.6194766
http://doi.org/10.1109/ICSPCom.2015.7150689
https://www.researchgate.net/profile/Rafael-Sampaio-8/publication/261635073_In_flight_collision_avoidance_for_a_Mini-UAV_robot_based_on_onboard_sensors/links/00b7d534e01ac6c752000000/In-flight-collision-avoidance-for-a-Mini-UAV-robot-based-on-onboard-sensors.pdf
https://www.researchgate.net/profile/Rafael-Sampaio-8/publication/261635073_In_flight_collision_avoidance_for_a_Mini-UAV_robot_based_on_onboard_sensors/links/00b7d534e01ac6c752000000/In-flight-collision-avoidance-for-a-Mini-UAV-robot-based-on-onboard-sensors.pdf
https://www.researchgate.net/profile/Rafael-Sampaio-8/publication/261635073_In_flight_collision_avoidance_for_a_Mini-UAV_robot_based_on_onboard_sensors/links/00b7d534e01ac6c752000000/In-flight-collision-avoidance-for-a-Mini-UAV-robot-based-on-onboard-sensors.pdf
http://doi.org/10.1109/LRA.2018.2809510
http://doi.org/10.1109/ICRA.2018.8460545
http://doi.org/10.1109/IROS.2016.7759631
http://doi.org/10.1109/IROS.2015.7353457
http://doi.org/10.1177/1729881420925311
http://doi.org/10.1145/3132446.3134872
http://doi.org/10.1016/j.oceaneng.2019.04.011
http://doi.org/10.3390/s20010094
http://doi.org/10.1111/jfr3.12509
http://doi.org/10.1109/RADAR.2017.7944264


Agronomy 2021, 11, 1069 31 of 35

211. Ergun, S.; Sonmez, S. Terahertz technology for military applications. J. Manag. Inf. Sci. 2015, 3, 13–16. [CrossRef]
212. Pisciottano, I.; Pastina, D.; Cristallini, D. DVB-S based passive radar imaging of ship targets. In Proceedings of the 2019 20th

International Radar Symposium (IRS), Ulm, Germany, 26–28 June 2019; IEEE: Ulm, Germany, 2019; pp. 1–7. [CrossRef]
213. Cristallini, D.; Pisciottano, I.; Kuschel, H. Multi-Band Passive Radar Imaging Using Satellite Illumination. In Proceedings of the

2018 International Conference on Radar (RADAR), Brisbane, QLD, Austrilia, 27–30 August 2018; IEEE: Brisbane, QLD, Austrilia,
2018; pp. 1–6. [CrossRef]

214. Giubbolini, L. A multistatic microwave radar sensor for short range anticollision warning. IEEE Trans. Veh. Technol. 2000, 49,
2270–2275. [CrossRef]

215. Baraniuk, R.; Steeghs, P. In Compressive Radar Imaging. In Proceedings of the 2007 IEEE radar conference, Waltham, MA, USA,
17–20 April 2007; IEEE: Waltham, MA, USA, 2007; pp. 128–133. [CrossRef]

216. Vivet, D.; Checchin, P.; Chapuis, R. Localization and mapping using only a rotating FMCW radar sensor. Sensors 2013, 13,
4527–4552. [CrossRef] [PubMed]

217. Zhu, Y.; Zhu, Y.; Zhao, B.Y.; Zheng, H. Reusing 60ghz Radios for Mobile Radar Imaging. In Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking, Paris, France, 7–11 September 2015; pp. 103–116. [CrossRef]

218. Iyer, N.C.; Pillai, P.; Bhagyashree, K.; Mane, V.; Shet, R.M.; Nissimagoudar, P.; Krishna, G.; Nakul, V. Millimeter-wave AWR1642
RADAR for Obstacle Detection: Autonomous Vehicles. In Innovations in Electronics and Communication Engineering; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 87–94. [CrossRef]

219. Guo, L.; Antoniou, M.; Baker, C.J. Memory-augmented cognitive radar for obstacle avoidance using nearest steering vector search.
IET Radar. Sonar. Navig. 2020, 15, 51–61. [CrossRef]

220. Feger, R.; Wagner, C.; Schuster, S.; Scheiblhofer, S.; Jager, H.; Stelzer, A. A 77-GHz FMCW MIMO Radar Based on an SiGe
Single-Chip Transceiver. IEEE Trans. Microw. Theory Tech. 2009, 57, 1020–1035. [CrossRef]

221. Zhang, Z.; Tian, Z.; Zhou, M. Latern: Dynamic Continuous Hand Gesture Recognition Using FMCW Radar Sensor. IEEE Sens. J.
2018, 18, 3278–3289. [CrossRef]

222. Peng, Z.; Li, C.; Muñoz-Ferreras, J.-M.; Gómez-García, R. An FMCW Radar Sensor for Human Gesture Recognition in the Presence
of Multiple Targets. In Proceedings of the 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC), Gothenburg,
Sweden, 15–17 May 2017; IEEE: Gothenburg, Sweden, 2017; pp. 1–3. [CrossRef]

223. Folster, F.; Rohling, H.; Lubbert, U. An Automotive Radar Network Based on 77 GHz FMCW Sensors. In Proceedings of the IEEE
International Radar Conference, Arlington, VA, USA, 9–12 May 2005; IEEE: Arlington, VA, USA, 2005; pp. 871–876. [CrossRef]

224. Jardak, S.; Alouini, M.-S.; Kiuru, T.; Metso, M.; Ahmed, S. Compact mmWave FMCW radar: Implementation and performance
analysis. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 36–44. [CrossRef]

225. Hussain, R.; Zeadally, S. Autonomous Cars: Research Results, Issues, and Future Challenges. IEEE Commun. Surv. Tutor. 2019, 21,
1275–1313. [CrossRef]

226. Jianmin, D.; Kaihua, Z.; Lixiao, S. Road and Obstacle Detection Based on Multi-Layer Laser Radar in Driverless Car. In
Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China, 28–30 July 2015; IEEE: Hangzhou, China,
2015; pp. 8003–8008. [CrossRef]

227. Kwag, Y.K.; Chung, C.H. UAV Based Collision Avoidance Radar Sensor. In Proceedings of the 2007 IEEE International Geoscience
and Remote Sensing Symposium, Barcelona, Spain, 23–27 July 2007; IEEE: Barcelona, Spain, 2007; pp. 639–642. [CrossRef]

228. Hugler, P.; Roos, F.; Schartel, M.; Geiger, M.; Waldschmidt, C. Radar Taking Off: New Capabilities for UAVs. IEEE Microw. Mag.
2018, 19, 43–53. [CrossRef]

229. Dogru, S.; Marques, L. Pursuing Drones With Drones Using Millimeter Wave Radar. IEEE Robot. Autom. Lett. 2020, 5, 4156–4163.
[CrossRef]

230. Reutebuch, S.E.; Andersen, H.-E.; McGaughey, R.J. Light detection and ranging (LIDAR): An emerging tool for multiple resource
inventory. J. For. 2005, 103, 286–292. [CrossRef]

231. Kikuta, H.; Iwata, K.; Nagata, R. Distance measurement by the wavelength shift of laser diode light. Appl. Opt. 1986, 25, 2976.
[CrossRef] [PubMed]

232. Dalgleish, F.R.; Vuorenkoski, A.K.; Ouyang, B. Extended-Range Undersea Laser Imaging: Current Research Status and a Glimpse
at Future Technologies. Mar. Technol. Soc. J. 2013, 47, 128–147. [CrossRef]

233. Ye, C.; Borenstein, J. Characterization of a 2D Laser Scanner for Mobile Robot Obstacle Negotiation. In Proceedings of the 2002
IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), Washington, DC, USA, 11–15 May 2002; IEEE:
Washington, DC, USA, 2002; pp. 2512–2518. [CrossRef]

234. Yu, C.; Zhang, D. Obstacle Detection Based on a Four-Layer Laser Radar. In Proceedings of the 2007 IEEE International Conference
on Robotics and Biomimetics (ROBIO), Sanya, China, 15–18 December 2007; IEEE: Sanya, China, 2007; pp. 218–221. [CrossRef]

235. Himmelsbach, M.; Mueller, A.; Lüttel, T.; Wünsche, H.-J. LIDAR-Based 3D Object Perception. In Proceedings of the 1st
International Workshop on Cognition for Technical Systems, Munich, Germany, 6–8 October 2008.

236. Douillard, B.; Underwood, J.; Kuntz, N.; Vlaskine, V.; Quadros, A.; Morton, P.; Frenkel, A. On the Segmentation of 3D LIDAR
Point Clouds. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May
2011; IEEE: Shanghai, China, 2011; pp. 2798–2805. [CrossRef]

237. Demantké, J.; Mallet, C.; David, N.; Vallet, B. Dimensionality Based Scale Selection in 3D Lidar Point Clouds. ISPRS Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 38, 97–102. [CrossRef]

http://doi.org/10.17858/jmisci.58124
http://doi.org/10.23919/IRS.2019.8768097
http://doi.org/10.1109/RADAR.2018.8557260
http://doi.org/10.1109/25.901896
http://doi.org/10.1109/RADAR.2007.374203
http://doi.org/10.3390/s130404527
http://www.ncbi.nlm.nih.gov/pubmed/23567523
http://doi.org/10.1145/2789168.2790112
http://doi.org/10.1007/978-981-15-3172-9_10
http://doi.org/10.1049/rsn2.12012
http://doi.org/10.1109/TMTT.2009.2017254
http://doi.org/10.1109/JSEN.2018.2808688
http://doi.org/10.1109/IMBIOC.2017.7965798
http://doi.org/10.1109/RADAR.2005.1435950
http://doi.org/10.1109/MAES.2019.180130
http://doi.org/10.1109/COMST.2018.2869360
http://doi.org/10.1109/ChiCC.2015.7260912
http://doi.org/10.1109/IGARSS.2007.4422877
http://doi.org/10.1109/MMM.2018.2862558
http://doi.org/10.1109/LRA.2020.2990605
http://doi.org/10.1093/jof/103.6.286
http://doi.org/10.1364/AO.25.002976
http://www.ncbi.nlm.nih.gov/pubmed/18235561
http://doi.org/10.4031/MTSJ.47.5.16
http://doi.org/10.1109/ROBOT.2002.1013609
http://doi.org/10.1109/ROBIO.2007.4522163
http://doi.org/10.1109/ICRA.2011.5979818
http://doi.org/10.5194/isprsarchives-XXXVIII-5-W12-97-2011


Agronomy 2021, 11, 1069 32 of 35

238. Li, B.; Zhang, T.; Xia, T. Vehicle detection from 3d lidar using fully convolutional network. arXiv 2016, arXiv:07608.
239. Kim, J.; Song, S.; Kim, S.; Suk, J. Collision Avoidance System for Agricultural Unmanned Helicopter using LIDAR Sensor.

Asia-Pacific Int. Symp. Aerosp. Technol. 2014. Available online: https://www.researchgate.net/profile/Seungkeun-Kim/
publication/273135419_Collision_Avoidance_System_for_Agricultural_Unmanned_Helicopter_using_LIDAR_Sensor/links/
54f91ec90cf210398e976276/Collision-Avoidance-System-for-Agricultural-Unmanned-Helicopter-using-LIDAR-Sensor.pdf
(accessed on 1 April 2021).

240. Peng, Y.; Qu, D.; Zhong, Y.; Xie, S.; Luo, J.; Gu, J. The Obstacle Detection and Obstacle Avoidance Algorithm Based on 2-d Lidar.
In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, 8–10 August 2015;
IEEE: Lijiang, China, 2015; pp. 1648–1653. [CrossRef]

241. Zheng, L.; Zhang, P.; Tan, J.; Li, F. The Obstacle Detection Method of UAV Based on 2D Lidar. IEEE Access 2019, 7, 163437–163448.
[CrossRef]

242. Song, K.-T.; Chiu, Y.-H.; Kang, L.-R.; Song, S.-H.; Yang, C.-A.; Lu, P.-C.; Ou, S.-Q. Navigation Control Design of a Mobile Robot by
Integrating Obstacle Avoidance and LiDAR SLAM. In Proceedings of the 2018 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; IEEE: Miyazaki, Japan, 2018; pp. 1833–1838. [CrossRef]

243. Baras, N.; Nantzios, G.; Ziouzios, D.; Dasygenis, M. Autonomous Obstacle Avoidance Vehicle Using Lidar and an Embedded
System. In Proceedings of the 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST),
Thessaloniki, Greece, 13–15 May 2019; IEEE: Thessaloniki, Greece, 2019; pp. 1–4. [CrossRef]

244. Miyakawa, A.S. Autonomous Ground Vehicle Low-Profile Obstacle Avoidance Using 2D LIDAR; Naval Postgraduate School: Monterey,
CA, USA, 2019.
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