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Abstract: Precision agriculture is a crucial way to achieve greater yields by utilizing the natural
deposits in a diverse environment. The yield of a crop may vary from year to year depending
on the variations in climate, soil parameters and fertilizers used. Automation in the agricultural
industry moderates the usage of resources and can increase the quality of food in the post-pandemic
world. Agricultural robots have been developed for crop seeding, monitoring, weed control, pest
management and harvesting. Physical counting of fruitlets, flowers or fruits at various phases of
growth is labour intensive as well as an expensive procedure for crop yield estimation. Remote
sensing technologies offer accuracy and reliability in crop yield prediction and estimation. The
automation in image analysis with computer vision and deep learning models provides precise field
and yield maps. In this review, it has been observed that the application of deep learning techniques
has provided a better accuracy for smart farming. The crops taken for the study are fruits such as
grapes, apples, citrus, tomatoes and vegetables such as sugarcane, corn, soybean, cucumber, maize,
wheat. The research works which are carried out in this research paper are available as products for
applications such as robot harvesting, weed detection and pest infestation. The methods which made
use of conventional deep learning techniques have provided an average accuracy of 92.51%. This
paper elucidates the diverse automation approaches for crop yield detection techniques with virtual
analysis and classifier approaches. Technical hitches in the deep learning techniques have progressed
with limitations and future investigations are also surveyed. This work highlights the machine vision
and deep learning models which need to be explored for improving automated precision farming
expressly during this pandemic.

Keywords: precision agriculture; crop yield estimation; plant disease detection; robot harvesting;
post harvesting

1. Introduction

Smart farming helps farmers plan their work with the data obtained with agricultural
drones, satellites and sensors. The detailed topography, climate forecasts, temperature and
acidity of the soil can be accessed by sensors positioned on the agricultural farms. Precision
agriculture affords farmers with compilations of statistics to:

• create an outline of the agricultural land
• detect environmental risks
• manage the usage of fertilizers and pesticides
• forecast crop yields
• organize for harvest
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• improve the marketing and distribution of the farm products.

According to the 2011 census, in India nearly 54.6% of the entire workforce is dedicated
to agricultural and associated sector tasks, which in 2017–2018 accounted for 17.1% of
the nation’s Gross Value Added. To safeguard from the risks inherent to agriculture, the
Ministry of Agriculture and Farmers Welfare announced an insurance scheme for crops in
1985. Problems have emerged in the scheme technology to collect data and lessen the delays
in responding to insurance claims by the farmers. Crop yield estimation is mandatory
for this and are recorded by conducting Crop Cutting Experiments (CCE) conducted
in regions of the states by the Government of India. The directorate of Economics and
Statistics is presently guiding Crop Cutting Experiments for 13 chief crops under the
General Crop Estimation Scheme. To improve the quality of statistics collection of Crop
Cutting Experiments, Global Positioning System (GPS) data such as elevation of fields,
area, latitude and longitude are being recorded by remote sensing [1,2]. The vegetation
indices acquired through the satellite images track the phenological profiles of the crops
throughout the year [3,4].

The conventional crop yield estimation requires crop acreages along with sample
assessments that depend on crop cutting experiments. The crop yield data is the most
essential data for the area-yield insurance schemes such as Pradhan Mantri Fasal Bima
Yojana (PMFBY) in India. The PMFBY scheme was launched to support the Indian farmers
financially during times of crop failure caused by natural disasters or pest attacks [5]. To
implement these national scale agricultural policies, crop cutting experiments are carried
out by government officers in various regions in different districts of the state. Because the
costs involved are pretty high, the desired crop data from large specific regions is limited to
small scale crop cutting experiments and surveys of small zones. The present-day industry
methods for yield estimation use automated computer vision technology to detect and
estimate the count of various harvests [6]. The progress in computing capabilities has
provided appropriate techniques for small area yield estimation. The proficiency of crop
yield estimation can be improved by using remote sensing data for a considerably larger
area [7]. Satellite images are quantitatively processed to obtain high accuracy in agricultural
applications such as crop yield estimation [8].

The crop yield prediction has been possible by counting the number of flowers and
comparinf this number with the count of fruits prior to harvesting stage for citrus trees [6].
The bloom intensity existing in an orchard influences the crop management in the early
season. The estimation of flower count with a deep learning model will be effectual for
crop yield prediction, thinning and pruning which impact the fruit yield [9]. The prediction
of vine yield helps the farmer to prepare for harvest, transport the crop and plan for
distribution in the market. The plant diseases during the flowering and fruit development
stage may affect crop yield forecasts. Deep learning classifier models are advanced to
execute crop disease identification to operate in agricultural farms under controlled and
real cultivation environments [10,11].

At Iwate University, Japan, a robotic harvester with a machine vision system was
able to recognize Fuji apples on the tree and estimate the fruit yield with an accuracy of
88%. The bimodal distribution of the enhanced image with its histogram uses optimal
thresholding segmentation to extract the fruit portion from the background [12]. The
maturity level for tomato berries can be detected with a supervised backpropagation neural
network classifier, with the green, orange and red color extraction technique as explained
in [13]. Agricultural robots execute their farm duties either as self-propelled autonomous
vehicles or manually controlled smart machines. The autonomous vehicles may be an
unmanned aerial vehicle (UAV) or an unmanned ground vehicle (UGV) guided by GPS and
a global navigation satellite system (GNSS). The autonomous agricultural tasks that can be
accomplished by the larger robots range from seeding to harvesting and post-harvesting
tasks as well in some cases.

Automation in agriculture to perform farm duties must face challenges due to lighting
conditions and crop variations [14,15]. In Norway, an autonomous strawberry harvester
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was developed considering light variations. The machine vision system changed its color
threshold in response to alterations in the light intensity [16]. Robot harvesting machines
achieve lower accuracy in spotting and picking crops due to occlusions caused by leaves
and twigs [17,18]. Modern machine vision techniques and machine learning models with
assorted sensors and cameras can overcome these inadequacies. The basic system of a
robot harvester must perform functions such as: detect the fruit or detect the disease, pick
the fruit/ berry without damaging it, guide the harvester to navigate the field, maneuver
irrespective of the lighting and weather conditions, be cost-effective and have a simple
mechanical design [19].

Being a review paper, we have extensively surveyed the merits and demerits of
the deep learning techniques used in smart agriculture. A keyword-based search was
performed for transactions, journal and conference papers with the scientific indexing from
databases such as IEEE Xplore, Scopus, Wiley Online library and ScienceDirect. We used
“machine vision” and “deep learning techniques in agriculture” as keywords and filtered
the papers for various agricultural applications. This review intends to help researchers
further explore machine vision techniques and the various classifiers of deep learning
models used in smart farming.

The outline of our review is as follows: Section 2 discusses with the various image
acquisition approaches at the ground level and aerial view. The modes of automation for
diverse agricultural applications are surveyed in Section 3. Section 4 deals with the image
preprocessing techniques involved in enhancing the raw images. Section 5 lists the image
segmentation approaches for distinguishing fruit/flower pixels from the background pixels.
Section 6 emphases the selection and extraction of features for the deep classifier models.
Section 7 discusses further literature on classifiers used in deep learning models for various
agricultural applications, followed by the available datasets. Section 8 expands the survey
with the performance metrics used to compare the existing and proposed algorithms.
Section 9 interprets with the pros and cons of the existing approaches. Section 10 concludes
the survey with a discussion of potential future work.

2. Materials and Methods

Many studies on machine vision and deep learning models for fruit and flower
detection, counting and harvesting are being formulated. The accurate yield estimation for
diverse vegetable and fruit crops is extremely essential for better harvesting, marketing and
logistics planning. Bloom intensity estimation effectively provides crop yield predictions
and fruit detection with machine vision techniques facilitates yield estimations. The
accurate prediction of yield helps the farmers to improve the quality of the crop at an
early stage.

This review deals with diverse research issues in agricultural automation such as:

3 image acquisition using handheld cameras under different lighting conditions;
3 approaches employing image segmentation techniques;
3 identification of features with various descriptors;
3 improving the classification rate with deep learning models;
3 achieving high accuracy and reducing the error rates;
3 the essential challenges to be tackled in the future.

The outcome of this research will reduce the labor, time consumption and cost-effective
machineries to support farmers in precision farming. The stages of the literature review
are shown in Figure 1.
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Figure 1. Summary of the literature search work.

Several publicly available datasets were used in this study. The Apple A dataset
provides a collection of apple flower images recorded with a hand-held camera and the
Apple B dataset provides a collection of apple flower images taken by a utility vehicle.
Figure 2a presents the distribution of papers taken for the literature review. From the bar
chart, it is relevant that 50% of papers taken for study are published in the years 2018, 2019
and 2020. Figure 2b presents the distribution of agriculture-related articles in each journal
taken for the literature study.
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2.1. Crop Image Acquisition

Machine vision systems attempt to provide automatic analysis and image-based
inspection data for guidance and control of the machine by integrating the accessible
methods in innovative ways for solving the real-time problems [20]. The so called agrobots
execute their farm duties through developed machine learning technology and robot vision
systems [21]. The mapping, navigation and detection for an autonomous agrobot to control
and plan the execution can be achieved with these machine vision algorithms [22]. The
machine vision system requires an assortment of image processing technologies such as:
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filtering, thresholding, segmentation, color-texture- shape analysis, pattern recognition,
edge detection, blob detection and diverse neural network processing models. The machine
learning models combined with machine vision techniques enhance the performance of
the automated system to perform farm duties more precisely.

2.1.1. Crop Image Acquired by Cameras at Ground Level

RGB images are captured with cameras in a small scale or on a larger scale depending
on the area of the field. The images of the plants are captured utilizing common digital
cameras with a high image resolution [23]. The recordings were taken under various
environmental conditions. The lighting conditions include natural sunlight, with or without
shadows, and artificial illumination or infrared lighting at night. Fusion of RGB with near
infrared (NIR) multimodal pictures acquired all through the day as well as at night was
used for fruit detection [24]. To enhance the fruit detection, pixel-based fusion techniques
like the Laplacian pyramid transform (LPT) and fuzzy logic were tested. Fuzzy logic of grey
image functioned better than LPT based on image fusion indices. The segmentation success
rate was 0.89 for fuzzy logic and 0.72 for LPT. A visible image and a thermal infrared image
fusion enhanced fruit detection [25]. RGB images were analyzed to estimate the chlorophyll
content in potato plants [26] and maturity of the tomato plants. Image acquisition cameras
provide high-resolution real-time pictures that are further processed contingent on the
prerequisites of the machine. The artificial active lighting enhances the system with a ring
flash fastened around the lenses [23]. The image acquisition at the bloom stage (flowering)
predicted the crop yield using image processing algorithms [27]. The image acquisition
for training data needs to be cautiously chosen. The selection of the architecture of the
neural network should not be affected by the size of training datasets with respect to its
performance. The machine vision techniques encounter specific problems owing to the
configuration of the agricultural fields for image acquisition such as:

� Natural illumination to detect the fruit/berries on the plant [28,29]
� Multiple recognition instances of the same fruit, acquired from subsequent images that
may perhaps lead to miscounting [30].
� Occlusion of fruits due to foliage, twigs, branches or additional fruit [14,31].
� Location of camera with respect to distance and angle [32].

Sample dataset images of tomato crop phenology are shown in Figure 3.
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2.1.2. Crop Image Acquisition by Remote Sensing

The images obtained through Landsat 8 OLI have low resolution and a pan-sharpening
technique is applied to calculate the vegetation indices [33–35]. The multispectral and
hyperspectral images acquired through remote sensing were used for monitoring seasonally
variable crop and soil status features such as crop diseases, crop biomass, the nitrogen
content in leaves, weed and insect penetration, chlorophyll levels of leaves, moisture
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content, surface roughness, soil texture and soil temperature. The satellite images have
low spatial resolution compared to the images acquired via drones or in-situ images.
This requires cloud scattering, radiometric, atmospheric and geometric correction with
assorted techniques for effective calibration of the acquired remote sensing data [8]. The
obstructions in remote sensing data may occur due to cloud coverage during the course
of the satellite overflight. The corn yield estimation was achieved with the various data
acquired from MODIS product such as leaf area index (LAI), gross primary production
(GPP), fraction of photosynthetically active radiation (FPAR), evapotranspiration (ET), soil
moisture (SM) and enhanced vegetation Index (EVI) using deep learning techniques [36–40].
The yield prediction is executed more effectively with RGB data than normalized difference
vegetation indices (NDVI) images [41].

3. Autonomous Movers for Smart Farming
3.1. Unmanned Ground Vehicles (UGVs)

The autonomous ground vehicles for tree pruning, and blossom stage tasks such as
fruit thinning, mowing, spraying pests, sensing, fruit harvesting and post harvesting were
trained, reconfigured and reassigned for numerous operations. An autonomous prime
mover could complete 300 km of driving in orchards with no supervision to reduce labor
costs [42]. The autonomous navigation technique in row detection for tiny plants adapts a
pattern with a Hough transform to assess the row spacing and lateral offset with real-time
field data [28,43]. The localization, mapping, path planning and the agricultural field
information with miscellaneous sensors guide autonomous ground vehicles to perform
various farm duties. Obstacle-averting decisions in agricultural terrain are complicated.
The fusion of sensors with multiple algorithms and multiple robots detects the defined
obstacles, controls and navigates the agricultural environment [44–46]. The automation
system increases the farm proficiency with the self-guided vehicles and autonomous
execution of farm duties like spraying, pruning, mowing, thinning and harvesting. A
phenotyping robot can be fast and more precise; a next-best view (NBV) algorithm collects
the information of unknown obstacles to plan the plant phenotyping automatically [47].

The autonomous harvesting process entails the detection of targets by the machine
vision model and plans the sequential task of grasping the real targets by the manipulators
or grippers. The sugarcane harvester machine combined with machine vision algorithm
detects the damaged billets, consequently increasing the quality of the production [48]. The
autonomous rice harvester with a combined robot performed harvesting, unloading and
restarting with adequate accuracy [49]. The autonomous harvesting grippers with machine
vision locate target like peduncles for various crops and remove the leaves and stems as
obstacles to improve the harvesting system [50]. A manipulator (Jaco arm) can perform
trimming of a bush into three shapes and the navigation system tracked the generalized
travelling salesman problem (GTSP) [51]. Reducing the cycle time for harvesting represents
a vital role for the robot industry. The review showed a kiwi harvester could achieved
the shortest cycle time of 1 s due to a low-cost and effective manipulator [52,53]. The
damage caused during the grasping of the fruit is one of the main concerns in dealing with
manipulators [54]. An arc shaped finger was designed and demonstrated to reduce injury
to the cortex of apples.

Autonomous robots are widely used in weed detection and management [55]. The
agricultural robots are quite expensive and not widely used due to safety reasons, me-
chanical and industrial limitations. The pest sprayer robot lessens the exposure of human
workers to pesticides, reducing medical hazards [56–58]. A high-resolution camera for a
machine vision system along with accurate sensors and increased number of manipulators
executing in parallel with human collaboration can progress the agricultural automation
industry [59]. Dual arm manipulators in a single harvester with one gripper dedicated to
moving aside any obstacles, could successfully pick strawberries [16]. An autonomous
robot can navigate in straight or curved rows without having hundreds of programmed
waypoints, by utilizing a 2D laser scanner [46]. A 3D simulation with real-time geographic
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coordinates and a first order approximation model was designed as a skid-steering au-
tonomous robot [60]. The dynamic and kinematic constraints of a path-planning robot were
successfully applied to a yield prediction and harvest scheduling path planner autonomous
machine [61]. The motion control of the manipulator has been realized with a TRAC-IK
kinematic solver. Some other kinematic solvers used are ROS MoveIt, and lazy PRM
planner [62].

3.2. Unmanned Aerial Vehicles (UAVs)

Drones or unmanned aerial vehicles mounted with RGB-NIR cameras afford data
with high spatial resolution. UAVs can cover the tree crowns and plants and provide
multi-spectral images by flying at low altitudes [63]. Agricultural drones provide a bird’s
eye view with multispectral images and survey the field periodically to provide informa-
tion about the crops. Drones provide bird-view snapshots of the agronomic world. The
aerial images are acquired through drones equipped with a high definition RGB camera
with 4k resolution to snap images along with an attached GPS [64]. Depending on the
agricultural application, UAV platforms with diverse embedded technologies have been
commercialized. UAVs can fly at lower as well as higher altitudes, depending on the
requirements of the monitoring function at hand [65].

4. Enhancement of Captured Crop Images for Bloom/Yield Detection

The enhancement process eliminates noise or blur in an image. Various techniques
like bilinear, nearest neighbor, bicubic, histogram equalization, iterative-curvature-based
interpolation, and linear/non-linear filtering enhancement were employed in applica-
tions such as resizing, image reduction, image registration, zooming and to alter spatio-
geometric distortions.

4.1. Resolution Enhancement

Real time captured color images are resized with techniques like the bicubic interpola-
tion or bilinear interpolation method for computational simplicity. Bicubic interpolation
technique resample images considering 16 (4 × 4) pixels on a 2D grid to furnish a smooth
scaled image. In remote sensing applications, a digital terrain model established process
improves the accuracy and efficacy of the satellite data [66]. To unify the dimensions
of the samples, resizing of the images is necessary. The effectiveness in categorization
can be ensured by increasing the resolution of satellite images through a pan-sharpening
technique. The accuracy of the crop yield estimation relies upon the total number as well
as the size of the samples. The size of the input image for classification persists as a crucial
parameter. The average size of the featured templates defines the minimum size of the
image window [67]. The resolution of the images was chosen based on the regions of
interest (ROIs) which were extracted from the captured real time frame. The importance of
positioning of the camera angles such as azimuth and zenith angles, were explained in [32].
The detection rate increases with the increase in number of captured images of the same
crop from multifarious viewpoints.

4.2. Filtering

The images require filtering techniques to diminish noisy pixels. NIR filters help to
trace the visible light precisely. A Gaussian filter is applied to the tonal images to lessen the
noise [68]. The separation of fruit from the background pixels along with noise elimination
uses a Gaussian density function, emphasized with erosion and dilation, which erodes the
neighborhood pixels [23]. The Gaussian filtering affects the edges during noise removal
for a fixed window size. The median filter preserves edges effectively and eliminates the
impulsive noise in digital images. The templates are transformed with K-means clustering
based on Euclidean metrics to rescale images considering points of interest. For the
enhancement of an RGB image and to remove the edge pixel region, a variance filter was
used to replace the individual pixels using the neighbourhood variance value of the R,
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G, B regions correspondingly [14]. A median filter can reduce the noise caused by sun
ray illumination.

4.3. Histogram Equalization

In computer vision, the image histogram can be epitomized graphically with pixels
plotted through tonal variations for images to analyze the peaks and valleys and conse-
quently to uncover the threshold value. The histograms applied for color spaces assist
in background removal to improve the efficiency as well as accuracy [69]. The optimal
threshold value can be resolved automatically with the unimodal attributes generated by
the grey-level histogram of the luminance designed for natural images. The histogram for
each pixel in the image constructs peaks and valleys for each object in accordance with the
color. As a consequence, a threshold value can be procured for each entity in the image.
Normalized histograms were used for the correlation with persimmon fruit [70].

Our investigation indicates that the most common color space model used in various
yield recognition applications was RGB. Image resizing processes are applied in most of
the works to unify the dimensions of the samples and to speed up the training process
in deep learning models. High-resolution cameras are commonly used for capturing the
details of the crops. In most of the works, color-based or threshold-based segmentation
was performed to extract the region of interest. Table 1 lists the miscellaneous modes of
capture and their enhancement methods.

Table 1. Diverse modes for Real-time capture.

Real Time
Capture

Color
Space Pixels Crop/Fruit No. of

Images
Lighting

Conditions
Enhancement
Techniques Success % Error %

CCD
camera [12] RGB 320 × 240 Fuji apple 60 sunlight optimum

threshold 92.2 1.5

DSLR [71] RGB
HSV 1232 × 1616 apple 8000 natural

watershed
segmentation

& circular
Hough

transform

- 3.8

Monocular
Nikon

D300 [30]
HSV 1072 × 712 green apple 480

artificial il-
lumination

at night

saturation
threshold - 1.2

Nikon J2
[72]

YIQ, RGB,
Lab 3872 × 2592 tomato 180 daylight

average pixel
value of I

component
96.5 3.5

Kinect v1.0
sensor [73] HSV 640 × 480 tomato 800

(9:00–11:00
a.m.) and
(4:00–6:00

p.m.)

Contour
segmentation - -

Canon
Power shot

SD8801S
[74]

HSI, YCbCr
and RGB 3648 × 2736 citrus 96 daylight

color
thresholding,

circular Gabor
texture and
‘Eigenfruit’

75.3 24.7

Smart
mobile

phone [75]
RGB 3264 × 2448 citrus 40 natural

daylight

global
segmentation

threshold
90 10

Power shot
SD880IS

[69]
RGB 3648 × 2736 citrus 118 daylight circular Hough

transform 84 16

Canon 50D
[14]

RGB and
YCbCr 4752 × 3168 mango 593 sunlight threshold Cr

layer 51 2.4
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5. Crop Image Segmentation

The image-based segmentation is the process of classification of parts of images into
fruit, leaf, stem, flower or any background as non-plant pixels. In this method, the acquired
raw images are modified to lessen the effects of blur, noise and distortion to improve
the image quality. Recent advances in computer vision enable us to analyze each pixel
of an image. For identifying the pixel region as an individual fruit, leaf, flower or twig,
image segmentation approaches are required [76,77]. Some of the image-segmentation
approaches for machine vision system have been reviewed in this article.

5.1. Threshold-Based Segmentation

The partitioning of an image into its foreground and background by a threshold
value is defined by exploring the peaks and valleys from the histogram. The optimal
threshold value segments the object from the background. The threshold magnitudes
were determined by the trial-and-error method for assorted color spaces, to procure the
required color layer. The color image acquired will be instantly threshold segmented into
the H layer by the Otsu method for differentiating reddish grapes region from greenish
background. The histogram-based thresholding for the H component eliminated the twigs,
leaf, sky, trunk and sky from real-time images. Local 3D threshold values computed for
different smaller regions in network device interface (NDI) space of the image with high,
medium and low illumination conditions could reduce the false detection of real fruits [78].
The tracking of the fruit with respect to new detection are estimated by the boundary
threshold value and intersection of union (IoU) threshold value. The threshold value was
computed for the red regions to eliminate the background images with morphological
functions for the estimation of tomatoes. The EVI data contaminated with clouds were
smoothened by a hard threshold [68]. The false positive elimination was made on the basis
of cluster reflectance, geometry and positioning. The clusters were segmented with a 3D
point cloud with a reflectance threshold value. The blob and pixel-based segmentation
with X-means clustering technique classified and detected individual tomato berry from a
fruit cluster [79].

5.2. Color-Based Segmentation

Machine vision for harvesting incorporates miscellaneous color spaces like RGB, HSI,
L*A*B*, CIE Lab changing in harmony with the illumination of the environment. The
color space, L*A*B* restores the human vision based on chromatic eccentricity level of
the image. The detection of the fruit during the ripening period uses RGB and HSI color
models along with the calibration spheres to resolve the size of apple fruits in [15,80].
The fruit detection by thresholding of grey images was not satisfactory, as the histogram
values of the color images and grey images were not unimodal. The color of the fruit was
accounted for with the calculated pixels of an individual citrus fruit and tomato berry. The
color-based segmentation may be effective only under natural daylight conditions. The
multiband ratio-based segmentation has a self-adaptive range for diverse illumination
effects accomplished with an Otsu threshold value.

5.3. Segmentation Based on Texture Analysis

Texture-based segmentation extracts the regions of interest from images based on
spatially distributed boundaries with similar pixels. The Wigner-Ville distribution defines
an auto-correlation function of the time-frequency domain to construct the textures of the
color segmented image [81]. Entropy (E) and smoothness (S) were estimated to remove
the false positives. The lower entropy value was categorized as fruits when compared
with the values of leaves and twigs. The fruit identification with texture-based analysis
extracts the regions with similar adjacent pixels and partitions the needed fruit pixels from
the background pixels. A revolution invariant circular Gabor texture segmentation with
color and shape features—an ‘Eigenfruit’ algorithm—was proposed to detect green citrus
fruits [74].
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5.4. Segmentation Based on Shapes

To preserve shapes and to reconstruct the captured scene, a 3D reconstruction shape
algorithm with image registration practices is employed for pruning vines [82]. Considering
only the color features may lead to many false positives due to the similarity of the green
colors of fruits and leaves. A circular Hough transform can identify the circular citrus fruits
by merging multiple detections along with the histograms of H, R, B components [69]. The
calibration measurements with destructive hand samples by the time of imaging provide
accurate prediction of vine yields [83].

5.5. Morphological Operations

The morphological operations involve the conversion of pixel regions to individual
fruits to be counted. The eccentricity was calculated for individual color segmented apple
regions; thereby, a threshold value finds a relatively round region, which further deter-
mines individual apples without occlusion. In the case of two or more occluded fruits, the
length of the ellipse was calculated and its major axis was split into two segments [30]. The
parting of individual fruits from clusters or to link disjoint fragments of the same fruit,
the watershed algorithm was used along with a circular Hough transform. The watershed
algorithm executed the work better than circular Hough transform. The watershed transfor-
mation is an efficient segmentation algorithm which considers the image as a homogeneous
topographic plane. The morphological functions were applied with an Euclidean transform
and watershed gradient lines to detect small blobbed cucumbers thereby eliminating small
leaves and flowers [67].

6. Feature Extraction for Classification

Feature extraction with color values of RGB converted to HSI color values determines
the maturity of tomato samples with image processing techniques. The deep learning
methods do not require hand-crafted features during training of data. The basic convolution
neural network (CNN) architecture with its input layer, intervening convolution and max-
pooling or sub-sampling layer and the output layers automatically extracts feature as well
as classifies diverse object classes in images. Haar-like features based on edge, radian and
line were experimented for grey images combined with color analysis in an Adaboost
classifier to eliminate the false negative ratio. The texture features and the maximally stable
color region (MSCR) descriptor sets, govern fruit detection in the subdivided support
window with a frequency distributed histogram using a support vector machine (SVM)
classifier. The attribute profiles with multilevel morphological characteristics such as area
(dimensions of the region in terms of pixels), standard deviation (texture measure of the
region) and moment of inertia (shape of the region) offered a vast advancement upon
state-of-art descriptors in the classification of weed and crop using machine vision [84].
The estimation of fruit is realized with a fruit-as-feature as a SfM, which converts 2D
traces to 3D markers. This feature improves the system with CNN classifier to eliminate
scenarios of double counting of fruits and was a faster algorithm when paralleled with
scale-invariant feature transform (SIFT) features [85]. The feature sets like closeness,
solidity, extent, compactness and texture were selected by a sequential forward selection
and RELIEF algorithm and implemented with SVM for yield estimation and prediction [86].
A combination of histograms of oriented gradients (HOG) features in color image, false
color removal (FCR) technique and non-maximum suppression (NMS) features trained
using a SVM classifier detected mature tomatoes with a processing time of 0.95 s [87].

The other parameters selected by feature assorting algorithms like variance inflation
factor, sequential forward parameter descriptor, random forest variable and correlation-
based descriptor selection were number of wells, area, tanks, the canal lengths and soil
capacity, landscape features. The descriptors selected for crop yield prediction were
rainfall, maximum-average-minimum temperature, solar radiation, planting area, irrigation
water depth and season duration [88]. Automatic disease detection with computer vision
technology can treat the crop at the earliest, which consequently improves the quality and
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increase the crop yield. Crop disease detection can utilize simple linear iterative clustering
features to segment the super pixels in a CIELAB color model [89]. The autonomous
maturity detection of tomato berries was developed with the fusion of multiple (color-
texture) features using an iterative RELIEF algorithm [90]. Principal component analysis
(PCA), a pixel level classification technique, could automatically detect diseases in pepper
leaves from the color features [91].

7. Deep Learning Models

Deep learning models have been used in diverse applications of crop yield measure-
ments such as crop monitoring, prediction, estimation and fruit detection in harvesting
with numerous data sets for the machine to learn. The architecture can be implemented in
different ways like, deep Boltzmann machine, deep belief network, convolutional neural
network and stacked auto-encoders. The CNN architecture learns in depth the hierarchical
features with residual blocks and soft-NMS decays the detected object with the bounding
boxes. The networks are interpreted as universal approximation theorems with hidden
layers, filters and hyper-parameters. Previous works report on the prediction accuracy with
respect to the number of convolutional layers. The increase in the number of convolutional
layers improves the accuracy of the network.

7.1. Deep Architectures in Smart Farming

A deep convolutional neural network (DCNN) is a multi-layered neuron, which is
trained with complex patterns provided with appropriately classified features of an image.
The InceptionV3 model assists as a conventional image feature extractor to classify fruit
and background pixels in an image. The classifier localizes the fruits to count the quantities
of fruit present [31,92] and classify the species of tomato [93]. A K-nearest neighbour (KNN)
classifier was employed to classify the fruit pixels in trained datasets with a threshold pixel
value set as a fruit pixel. The SVM functions for pattern classification as well as linear
regression assessment, based on the selected features. Darknet classifier with a trained
“you only look once” (YOLO) model detected iceberg lettuce [94] and grapes [95] with
edges for harvesting using a Vegebot. YOLO models offer a high objects detection rate in
real-time when compared to faster region-based CNN (FRCNN) [96].

The AdaBoost model structures the strong traditional classifier by combining the
weak classifiers linearly with minimal thresholding tasks and Haar-like features to detect
tomato berries with an accuracy of 96% [72]. A multi-modal faster region-based CNN
model constructs an efficient fruit yield detection technique with multifarious modalities
by the fusion of RGB and near-infrared images and has improved the performance up to
0.83 F1 score [97]. The dataset images were fed to the R-CNN model to generate the feature
map for classification.

The spatiotemporal exploration from remote sensing image data of normalized dif-
ference vegetation indices were trained with a spiking neural network (SNN) to plan
crop yield prediction and crop yield estimation of winter wheat [98]. A better prediction
algorithm for corn, soybean [99] and paddy crops was proposed with a (feed forward back
propagation) artificial neural network (ANN) and later with a fusion of multiple linear
regression (MLR). The linear discriminant analysis (LDA) approach eradicates the imbal-
ance generated from the performance value attained through an ANN classifier [100]. The
fusion of huge datasets was implemented and compared with various machine learning
models like SVM, DL, extremely randomized trees (ERT) and random forest (RF) for the
estimation of corn yield [36]. The deep learning (DL) model succeeded with high accuracies
with respect to correlation coefficients. The detection of flowers in an image accomplished
by a deep learning model in semantic segmentation of CNN and SVM classifier helps
crop yield management. The image segmentation techniques and canopy features were
used by backpropagation neural network (BPNN) model to train the system for the apple
yield prediction [101]. The SVM and kNN classifiers were efficient, with an accuracy
of 98.49% and 98.50%. Deep convolutional neural networks were developed to identify
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plant diseases and to predict the macronutrient deficiencies during the flowering and fruit
development stage [102]. The visual geometry group (VGG) CNN architecture identified
plant diseases with the leaf images of the plants and communicated the results to farmers
through smart phones [103,104]. The endemic fungal infection diagnosis in the winter
wheat [89] was validated and trained with Imagenet datasets and implemented with an
adaptive deep CNN. The deep CNN model with GoogleNet classified nine diseases in the
tomato leaves [105]. The defects in the external regions and the occlusion of flower and
berries of tomatoes were identified with deep autoencoders and a residual neural network
(ResNet) 50 classifier [106,107]. A leaf-based disease identification model was developed
with a random forest classifier trained with HOG features and could detect diseases on
papaya leaves [108].

Ripeness estimation is required in the agricultural industry to know the quality and
level of maturity of the fruit. The ripening of tomatoes was detected with the fusion of
features extracted and classified using a weighted relevance vector machine (RVM) as a
bilayer classification approach for harvesting agrobots. The maturity levels in tomatoes
were detected with the color features classified with BPNN model. A fuzzy rule-based
classification (FRBCS) approach was proposed based on the color feature with decision
trees (DT) and Mamdani fuzzy technique to estimate six stages of maturity level in tomato
berries [109]. A mature-tomato can be identified with a SVM classifier trained by HOG
features along with false elimination and overlap removal features.

7.2. Network Training Datasets and Tools

The deep learning architectures vary widely based on the diverse applications and
models that are implemented to train them. The deep learning techniques analyze huge
datasets in a very short computation period to predict the sowing time as well as the opti-
mum harvesting time of the plants. The available datasets could be accessed to predict and
detect diseases in the crops. For creating a deep learning model, there exist various archi-
tectures which may be pre-trained with diverse datasets. Huge datasets with vast numbers
of input images are required to train the deep learning models to resolve complicated chal-
lenges. The numerous models and datasets include CaffeNet, modified Inception-ResNet,
YOLO version 3 trained by Darknet classifier, MobileNet, R-CNN trained using ResNet 152,
Resnet 50, AlexNet, GoogLeNet, Overfeat, AlexNetOWTBn and VGG, ReLU, GitHub and
Kaggle. The neural network libraries that work with Python comprise of keras, DeepLaB +
RGR, TensorFlow, Caffe, R library, Torch7, LuaJIT, PyTorch, pylearn2, Theano and the Deep
Learning Matlab Toolbox. The available datasets for crop images are listed in Table 2.

Table 2. Image Databases of crops: fruits and vegetables.

Datasets
No. of Samples

Web-Link
Training Sets Testing Sets

Apple A, 100
https://data.nal.usda.gov/dataset/data-multi-speciesfruit-

flower-detection-using-refined-semantic-segmentation-network
(access on 10 October 2020)

Apple B, 18 30
Peach, 24

Pear [9] 18

Metadata [71] 900 100+100 https://github.com/acfr/pychetlabeller.git (access on 10
October 2020)

Apples 1120
http://data.acfr.usyd.edu.au/ag/treecrops/2016-multifruit/

(access on 10 October 2020)
Mangoes 1964

Almonds [71] 620 -

Fruits 360 [110] 82,213 - https://www.kaggle.com/moltean/fruits (access on 10
October 2020)

Tomato [110] - - https://www.kaggle.com/noulam/tomato (access on 10
October 2020)

TomDB - - http://pgsb.helmholtz-muenchen.de/plant/tomato/index.jsp
(access on 10 October 2020)

Sugarcane [48] 600 - https://github.com/The77Lab/SugarcaneBilletsDataset (access on
10 October 2020)

KFuji RGB-DS database [111] 967 - http://www.grap.udl.cat/publicacions/datasets.html (access on 10
October 2020)

https://data.nal.usda.gov/dataset/data-multi-speciesfruit-flower-detection-using-refined-semantic-segmentation-network
https://data.nal.usda.gov/dataset/data-multi-speciesfruit-flower-detection-using-refined-semantic-segmentation-network
https://github.com/acfr/pychetlabeller.git
http://data.acfr.usyd.edu.au/ag/treecrops/2016-multifruit/
https://www.kaggle.com/moltean/fruits
https://www.kaggle.com/noulam/tomato
http://pgsb.helmholtz-muenchen.de/plant/tomato/index.jsp
https://github.com/ The77Lab/SugarcaneBilletsDataset
http://www.grap.udl.cat/publicacions/datasets.html
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8. Performance Metrics

The image enhancement techniques, image processing algorithms, detection and
prediction algorithms with classifier approaches were compared and evaluated with diverse
performance metrics. The comparative studies presented by diverse deep learning models
were validated with assorted performance metrics which are as follows:

� Root mean square error (RMSE)
� Normalized mean absolute error (MAE)
� Root relative square error (RRSE)
� Correlation coefficient (R)
� Mean forecast error
� Average cycle time
� Harvest and detachment success
� Mean absolute percentage error (MAPE)
� Root relative square error (RRSE)
� Receiver operating characteristics
� Precision, recall, F-measure

Table 3 lists the various classifiers used for different agricultural applications with
their respective pros and cons and some topics for future work.

Table 3. Summary of performance measures of different classifiers for smart agriculture.

Crop &
Vehicle

Image
Analysis Feature Classifier Application Performance

Metrics Challenges Future Work

Tomato GV
[13]

Threshold
segmenta-
tion, noise

cancellation,
contour

extraction,
boundary

filling

Color feature
(ripeness
detection)

Back
propagation

neural
network
(BPNN)

Ripeness
detection

Accuracy—
99.31%

standard
deviation—

1.2%

Time
consuming

Proceed for
estimation
application

Tomato GV
[72]

Split I layer
from YIQ

color model

Haar-like
feature

AdaBoost
classifier

Berry
detection

Computation
time—15–24

s
Accuracy—

96%

Training
errors, false
detection in

occluded
regions

Reduce
computation

time
andenhance

detection
rates

Tomato GV
[73]

Contour seg-
mentation

canny
operator

Edge and
deep features

CNN +
intuitionistic

fuzzy set

Detect ripe
berries

RMSE—
2.996

Lighting
conditions

and camera
parameters

Increase
recall rate,

multisensory
fusion

technology
for

illumination
issues

Tomato GV
[29]

Synthetic
image

creation to
train

Object
features

image-based
descriptors

Deep CNN +
modified
Inception-

ResNet

Berry
estimation

Computation
time—0.006 s
Accuracy—

91%

Geen
tomatoes as it

were not
trained on

them

Count green
berries,
mobile

application

Tomato GV
[112]

Scaling,
rotation &
random
noises

Activation
function &

pooling
CNN Robot

harvesting

Computation
time—0.01 s
Accuracy—

91.9%

Noise
sensitive

Extension for
other

applications
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Table 3. Cont.

Crop &
Vehicle

Image
Analysis Feature Classifier Application Performance

Metrics Challenges Future Work

Corn,
soybean,

winter wheat
AV [90]

MODIS
re-projection

tool

Colour and
texture
features

Weighted
relevance

vector
machine

Estimation

Computation
time—2.94 s
Accuracy—

94.9%

Larger error,
less accuracy
and error in

cropland
mask

Refinement
in crop mask,

accuracy

Paddy AV
[113]

Missing
value and

outlier
treatment

Weather &
climatic
features

MLR + ANN
(BPNN)

Yield
prediction

RMSE—0.051
R—0.99

MAE—0.041

Improved
accuracy -

Pepper GV
[114] 3D image

Intersection
over union

(IOU)
threshold

Multiclass-
FRCNN +
parallel-
FRCNN

Ripeness
estimation

and detection

F1
Score—77.3
Accuracy—

82%

Lack of
features in

training data
-

Pepper GV
[115]

Color trans-
formation
(G-B), POI

MSCR,
texture

Naïve Bayes
classifier +

SVM
classifier

Detecting,
counting

F1 Score-0.65
r2—74.2%

Computation
time—10 s

Standard
error in

prediction

Various
applications

Mango GV
[14]

Threshold Cr
layer Texture - Yield

estimation r2—0.74
Inaccurate

and sensitive
to noise

Improve fruit
detection &

lighting
conditions

Apple GV
[71]

Watershed +
CHT segmen-

tation

Hand-
engineered

features
MLP + CNN

Fruit
detection +

yield
estimation

F1
score—0.861

r2—0.826

Misclassification,
hand-

engineered
feature

extraction

Varied
strategies for

training
different

fruits for seg-
mentation/
detection

Apple A,
Apple B,

peach, pear
GV [9]

No prepro-
cessing

Semantic seg-
mentation of

flowers

Residual
CNN

Flower
estimation

F1—83.3%
F1—77.3%
F1—74.2%
F1—86%

Computation
time is more

Evaluate
with

multispecies
datasets of

flowers

Cucumber
AV [67]

Watershed
transforma-

tion, minimal
imposition
technique

Speeded-UP
Robust

Features
(SURF)

Support
vector

machine
(SVM)

Robot
harvesting F1—0.838

Accuracy
and long

processing
time for
complex
scenes

Usage of 3d
range sensing

Citrus GV
[69] CHT Color, shape,

texture
FNCC +

KNN
Detection &

counting
Accuracy—

84.4%

Illumination
effects and
acquisition
parameters

Improve
accuracy &
predicting

yield

9. Discussion

Precise agricultural farming requires constant innovation to increase the quantity
and quality of food production. The machine vision techniques for machine learning
approaches in the automation industry have both positive features and shortcomings that
are discussed in this section.

Advantages and Disadvantages

The acquired images may be prone to be degradation caused by misfocus of the
camera, poor lighting conditions or sensor noise. The image enhancement techniques
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have a visual impact on the desired information in a real time captured image. The image
enhancement techniques do not afford augmented results unless the color modifications
are made under multiple light sources. The median filter removes the blurred effect and
reduces the noise. The nonlinear filtering technique can be employed to upgrade the
quality of blurred images with the light source being refined. Adding noise to the image
can improve the image in certain applications.

The image segmentation techniques are easy to implement and modify to classify
pixels with less computation. The threshold segmentation requires appropriate lighting
conditions. The optimal threshold value has to be selected, but it may not be pertinent for
every application. Any background complexity increases the error rate and computation
time. The color-based segmentation has constraints due to the non-uniform light sensitivity.
Otsu thresholds excel in the detection of edges and select the threshold value based on
the features provided to the image. The watershed segmentation provides continuous
boundaries however, with consequent complexity in the calculation of the gradients. The
texture and shape-based segmentation are time-consuming and provide blurred boundaries.
To optimize the computer vision technology, further exploration in unstable agricultural
environments has to be formulated.

The feature selection process reduces the quantity of input data while developing a
predictive classifier model. Haar wavelet features combined with an AdaBoost classifier
achieved high accuracy. The feature selection prioritizes the existing features in a dataset.
The PCA can outperform other features with high accuracy by the pixel-level identification
of input as original image compared with the input features. The SIFT detection algorithm
requires scaling of local features in the images. The HOG method can extract global
features by computing the edge gradient. HOG+FCR+NMS achieved a computation time
of 0.95s for maturity detection. The hybrid approaches in feature extraction can improve
classification and computation time.

The DL model with SVM, BPNN classifiers outperformed other classifiers. The SVM
classifiers provide less error with effective prediction but require abundant datasets and are
more complex and delicate to handle varied datatypes. The TensorFlow library endeavors
to uncover optimal policy and does not wait till the termination to update the utility
function. K-NN classifiers are robust in classifying the data with zero cost in learning
process. These classifiers require large datasets with high computation for mixed data.
The DL can extract the required features based on color, texture, shape and SIFT feature
extraction processes. The combination of ANN and MLR classifier provided the highest
accuracy in crop prediction. DL classifiers were used in a wide range of agricultural
applications with an average performance F1 score of 0.8. Errors occurred due to the
occlusion of leaves or cluster of fruits. The fruit detection for robot harvesting and yield
estimation outperformed using a combination of CNN and linear regression models. The
need of large datasets as input for training increases the computation time for DL approach.
The SVM classifiers provide high accuracy with improved computation time. The fusion
of the classifiers with assorted features may improve the computer vision technique and
DL model.

10. Conclusions

The progression and challenges of various image processing and deep learning classi-
fication techniques in agricultural farm duties were analyzed in this paper. The inferences
based on our extensive review is presented below:

• The review highlighted the merits and demerits of different machine vision and deep
learning techniques along with their various performance metrics.

• The pertinence of diverse techniques for yield prediction with the bloom intensity
estimation helps farmers improve their crop yields at the early stage.

• The fruit detection and counting models with image analysis and feature extraction
for classifiers technologically advance the crop yield estimation and robot harvesting.
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• The combination of various hand-crafted features using hybrid DL models improves
the computational efficiency and reduces the computation time.

• The deep learning models outperform the other conventional image processing tech-
niques with an average accuracy of 92.51% in diverse agricultural applications.

As future work, hybrid techniques of machine vision and deep learning models can be
applied to develop automated systems for precision agriculture. The methods highlighted
in this paper can be tested for real-time crop yield estimation applications. Innovative
methods with the objective of improving the performance of the overall system can be
also developed.

Abbreviations

The abbreviations used in this manuscript are given as under:
CCE Crop Cutting Experiments
GPS Global Positioning System
PMFBY Pradhan Mantri Fasal Bima Yojana
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
GNSS Global Navigation Satellite System
NIR Near Infra-Red
DL Deep Learning
ML Machine Learning
MSCR Maximally Stable Color Region
SfM Structure from Motion
SIFT Scale-Invariant Feature Transform
HOG Histograms of Oriented Gradients
NMS Non-Maximum Suppression
PCA Principal Component Analysis
CNN Convolution Neural Network
FRCNN Faster Region Convolution Neural Network
DCNN Deep Convolutional Neural Network
KNN K-nearest neighbour
SVM Support Vector Machine
SNN Spiking Neural Network
MLR Multiple Linear Regression
ERT Extremely Randomized Trees
RF Random Forest
RFR Random Forest Regression
BRT Boosted Regression Tree
SVR Support Vector Regression
BPNN Backpropagation Neural Network
LDA Linear Discriminant Analysis
DT Decision Trees
VGG Visual Geometry Group
RVM Relevance Vector Machine
RCNN Region based Convolutional Neural Network
FRBCS Fuzzy Rule-Based Classification Approach
LPT Laplacian Pyramid Transform
LAI Leaf Area Index
GPP Gross Primary Production
FPAR Fraction of Photosynthetically Active Radiation
ET Evapotranspiration
SM Soil Moisture
EVI Enhanced Vegetation Index
NDVI Normalized Difference Vegetation Indices
UGV Unmanned Ground Vehicle
UAV Unmanned Aerial Vehicle
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NBV next-best view
GTSP Generalized Travelling Salesman Problem
ROIs Regions of Interests
NDI Network Device Interface
IoU Intersection of Union
FCR False Color Removal
YOLO You Only Look Once
ANN Artificial Neural Network
ResNet Residual Neural Network
SURF Speeded-UP Robust Features
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