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Abstract: Agriculture is the most important industry for human survival and solving the hunger
problem worldwide. With the growth of the global population, the demand for food is increasing,
which needs more agriculture labor. However, the number of people willing to engage in agricultural
work is decreasing, causing a severe shortage of agricultural labor. Therefore, it is necessary to
study the mode of agricultural production without labor force participation. With the rapid devel-
opment of the Internet of Things, Big Data, artificial intelligence, robotics and fifth-generation (5G)
communication technology, robots can replace humans in agricultural operations, thus enabling
the establishment of unmanned farms in the near future. In this review, we have defined unmanned
farms, introduced the framework of unmanned farms, analyzed the current state of the technology
and how these technologies can be used in unmanned farms, and finally discuss all the technical
challenges. We believe that this review will provide guidance for the development of unmanned
farms and provide ideas for further investigation of these farms.
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1. Introduction

Agriculture is the most important industry in the world, as it ensures survival of
the global human population [1]. Agricultural production needs more agricultural labor
to cope with the rising global population [2]. However, in past few decades, the average
age of farmers has increased dramatically: around 58 years old in the USA and Europe,
63 in Japan [3]. Moreover, the number of people willing to work as agricultural labor is
declining, especially in the United States, Japan, Germany and Russia [4]. The data show
that in 2017, the proportion of the labor force involved in agriculture in the United States,
Japan, Germany and Russia is 1.66%, 1.28%, 3.49% and 6.70% respectively [5], and it is still
a downward trend, which causes the agricultural labor force will be increasingly lower
in the future. Therefore, the current agricultural research mainly focuses on developing
strategies for improving agricultural production with less labor.

An agricultural factory develops agriculture from a traditional small-scale farm to
a large-scale enterprise, which has a high resource utilization rate, small land occupation
and high yield and is not limited by climate and region [6]. However, the agricultural
factory needs more human resources. Sudden situations lead to the shortage of agricultural
labor, which will have a huge impact on an agricultural factory [7,8]. Therefore, it is
necessary to study the mode of agriculture in which no one enters the agricultural work
site.
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Recently developed technologies, such as the Internet of Things (IoT) [9,10], robotics [11],
Big Data [12] and artificial intelligence (AI) [13,14], have been used to guide agricultural pro-
duction, which greatly reduces the use of the labor force and enhances efficient utilization
of resources, thus facilitating the development of sustainable agriculture [15]. The develop-
ment of these technologies has made it possible to construct unmanned farms [16].

As early as 2017, Harper Adams University (Newport, UK) collaborated with Precision
Decision company on the Hands Free Hectare project, and realized automatic work through
the transformation of traditional tractors, exploration vehicles and harvesters and the use of
unmanned aerial vehicles (UAVs) for drawing paths and for positioning [17]. However, this
required manual participation in UAV operation and background monitoring. Techno Farm
Keihanna opened in November 2018 and is the first factory to use Techno Farm™. It is one
of the largest automated vertical farms in the world, leveraging cutting-edge technologies
such as robotics and the IoT, where planting, management and harvesting are controlled
by robots. Intelligent environmental control and advanced water circulation technology
have greatly improved the efficiency of vertical planting, achieving the goal of 98% water
resources will be recycled and producing 30,000 lettuce stably every day. Production could
be raised by 25% and labor costs halved. Moreover, light-emitting diodes (LEDs) are used
to simulate sunshine, achieving 1/3 energy saving [18]. In August 2020, academician Luo
Xiwen harvested rice grown in an unmanned farm in Zengcheng, a teaching and research
base of South China Agricultural University, using intelligent agricultural machinery
to achieve full coverage of farming, management and production. At this unmanned
farm, the theoretical yield of rice per acre was 3390.7 kg, as determined by the five-point
sampling method [19]. Jingdong agriculture and animal husbandry company announced
the establishment of and researched an intelligent pig breeding system. The system can
automatically adjust the fan, water curtain, heating and other equipment to ensure that
the air, temperature and humidity of the pig farm are maintained in the best state suitable
for the healthy growth of pigs. Combined with AI technology, they have developed modern
equipment suitable for a pig farm environment, such as an intelligent camera, pig feeding
robot, inspection robot, telescopic semi-limited pig pen and so on. The goal is to realize
the whole process of unmanned, non-intervention and non-contact breeding. It is estimated
that the company can reduce the labor cost of pig breeding by 30–50%, reduce the feed
consumption by 8–10%, and shorten the average slaughter time by 5–8 days, which can
reduce the cost of 50 billion yuan a year [20].

To date, many agricultural operations have been unmanned, and many countries have
been involved in the construction of unmanned farms; however, there has been no formal
introduction of unmanned farms in scientific literature. In this paper, we presented an
overview of the unmanned farm shown in Figure 1, and divide unmanned farms into basic
layer–decision layer–application layer. The main contributions of this paper are:
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Figure 1. Conceptual unmanned farm system architecture showcasing various elements and inter-
actions. 
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technologies of each system, and min reviewed recent research about the application of 
these technologies, discussion the problem of these technologies’ application in un-
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manned farms bring to farmers and society. Finally, we conclude the paper in Section 6. 
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Figure 1. Conceptual unmanned farm system architecture showcasing various elements and interac-
tions.

• We proposed a new agriculture production mode, namely unmanned farm, and de-
scribe different interactions between the components.

• We introduced the application of related technologies in recent years, and discussed
how to apply these technologies in unmanned farm and the existing challenges.

• We analyzed the problems that will exist in the unmanned farm, including the current
technical problems, as well as the social impact, data privacy, transparency etc.

• We put forward our own suggestions and views on the development of unmanned farms.

In Section 2, we define the unmanned farm and describe its system composition,
operation principle and the important of each part. In Section 3 we introduce the crucial
technologies of each system, and min reviewed recent research about the application of
these technologies, discussion the problem of these technologies’ application in unmanned
farms. We discuss the benefits in Section 4 and problems in Section 5 that unmanned
farms bring to farmers and society. Finally, we conclude the paper in Section 6. We believe
that this article provides guidance for the development of unmanned farms and ideas for
further investigation of the unmanned farms in the future.

2. Unmanned Farms
2.1. Definition

An unmanned farm is a new production mode, which does not require labor force but
adopts diverse novel technologies such as IoT, Big Data, AI, fifth-generation (5G) technology
and robots, for performing all farm production operations through remote control, whole-
process automatic control of facilities, equipment and machinery or autonomous control by
robots. The unmanned farm is the ultimate form of intelligent agriculture and the highest
standard of agricultural production.

Unmanned farm uses modern sensing technology for monitoring the environment,
growth status of agricultural animals and plants and the working status of various operat-
ing equipment, and for transmitting data to the cloud using a low-delay and high-reliability
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communication technology. A cloud platform can analyze and process data through Big
Data and AI technology, independently generate production and operation decisions and
then transmit decision information to the robot. The robot completes the decision-making
information of the cloud platform through path planning and navigation, target recognition
and flexible machinery and other technologies, and this process does not require human
participation.

In an unmanned farm, every link of production and management can be automatically
planned and decided by the cloud platform and then performed by machinery, indepen-
dent of people’s participation, 24 h a day from the beginning to the end of planting or
breeding. An unmanned farm realizes precise management, self-decision making, un-
manned operation, precise investment and personalized service during the whole process
of agricultural production and management, and then realizes the sustainable development
goals of agricultural production. In the future, unmanned vehicles, unmanned boats, UAVs
and all kinds of agricultural intelligent machinery will be able to independently complete
mobile operations without human intervention and realize the seamless docking of fixed
equipment and mobile equipment.

2.2. System Composition

The architecture of an unmanned farm consists of basic layer, decision layer, and ap-
plication services layer together, and the role and components is described as follows:

The basic layer consists of sensing and communication system and infrastructure
system. Infrastructure system includes basic conditions such as factory building, roads,
utilities, garages, network equipment and intelligent terminals, which provides basic work-
ing conditions and environment for the unmanned farm system through the IoT technology.
The sensing and communication system aiming at getting the information of the farm
mainly about environment, the growth state of breeding objects and the operation state
of equipment, which is obtained by sensors, space information equipment, camera equip-
ment, positioning/navigation equipment and a wireless transmission module deployed at
the farm. The basic layer is to convert various farm information to digital data, provide
the work environment for other work equipment, and the high-speed communication
between various items of equipment.

The decision layer is an intelligent decision cloud platform for unmanned farm, which
hosts that analysis, processing and storage of massive data resources of unmanned farm.
It is the nerve center of the unmanned farm that makes data-based intelligent decisions
for the unmanned farm. Intelligent decisions include model base, method base, database
and knowledge base and, with the help of cloud computing, Big Data and AI technologies,
it can perform tasks such as animal and plant welfare monitoring, environmental data
analysis, remote robot control, equipment fault diagnosis and farm intelligent production
and operation. The decision layer instead of humans is for thinking about agricultural
production, to produce a more scientific and reasonable proposal.

The application layer is the auto-work equipment system, which is the core component
of the unmanned farm that utilizes the technology of intelligent agricultural equipment
and IoT. The operation and equipment system include fixed and mobile equipment. Fixed
equipment mainly applied in unmanned livestock farming, fishery or glasshouse, and can
perform independent tasks, such as feeding and aeration, without moving. On the other
hand, mobile equipment refers to equipment, such as a seeder and unmanned ground vehi-
cle (UGV), which are dependent on movement for completing farm operations. Moreover,
mobile equipment can realize unmanned transport mission and can serve as a platform
for carrying. The application layer in unmanned farm is to replace humans to complete
the agricultural work, especially in the harsh conditions.

The three layers of components of the unmanned farm play different roles: the basic
layers’ infrastructure system is necessary for supporting the operation of other systems;
the basic layers’ sensing and communication system is responsible for data collection
and transmission; the decision layer performs data management and makes production
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and operation related decisions; the application layer use machines, instead of people, to
conduct farm operations. These three layers cooperate with each other to realize safe and
reliable operation of the unmanned farm.

2.3. The Development Stage of the Unmanned Farm

Remote-controlled farm: remote control is the primary stage of unmanned farm, which
is used to realize the unmanned operation of the farm through the remote control of
facilities, equipment, machinery, etc. The characteristic of this stage is that it only realizes
the replacement of labor by machines, and it also requires people to carry out remote
operation, participate in decision-making and control, but it does not require people to
participate in work on site, which liberates people from heavy physical labor. Therefore,
it can also be called hands-free farm.

Unattended farm: unattended is the intermediate stage of the unmanned farm, in which
there is no need for people to remotely operate farm equipment in the remote monitoring
room 24 h a day. The system can cruise independently, but it still needs people’s participa-
tion, mainly for the issuance of agricultural operation instructions and decision-making of
production management. In this stage, the time of participating in the production process
of the farm is greatly shortened, and there is no need to be on duty all the time. When
necessary, it can participate in the decision-making management.

Autonomous farm: the autonomous operation is the advanced stage of the unmanned
farm that does not need human participation. All farm operations and management have
cloud management and control platforms for independent planning, decision-making and
operation, and all farm businesses are completed by equipment independently, especially
business docking link, which is completed by equipment through communication and
identification. Human participation is not required in the whole production management
process. It is a completely unmanned autonomous farm and the ultimate form of farm
development.

3. Unmanned Farm System
3.1. Infrastructure System

The infrastructure system in the foundation layer is to provide basic working condi-
tions for the whole unmanned farm intelligence, involving the transformation, layout and
design of infrastructure. The layout and construction of the infrastructure system is deter-
mined according to the production object and scale as well as the intelligent equipment.
For example, the small and scattered land should be effectively integrated, and the water
supply network, road network, power grid and communication signal must be constructed
in compliance with certain conditions. Therefore, the infrastructure of the unmanned farm
needs to be laid out and built according to certain principles, namely, practicability and cost.
Practicability implies that every workshop, warehouse, road, etc. should play a specific
role in the unmanned farm and should be sufficient to support the normal operation of
the unmanned farm. The second principle of cost implies that the construction of infrastruc-
ture should be cost-effective, given the low value of agricultural products, and the future
operation and maintenance costs of agricultural production should be considered.

In addition, infrastructure digitization is very necessary. Consistent use of digital
methods from the start of a project provides a basis for the definition of the intended
construction state [21]. Building information modeling (BIM) technology can be shared and
transferred throughout project planning, operation and maintenance via the integration of
building data and information model [22]. This ensures that engineering and technical per-
sonnel develop a correct understanding of building-related information, three-dimensional
(3D) visualization and automatic layout, thus reducing design time and improving project
coordination. This technology shows great potential for planning the infrastructure system
of an unmanned farm and consequently improving the reliability of the farm.

The design of the infrastructure system is particularly important, as it provides op-
eration support for the whole unmanned farm. Following the principles of practicability
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and cost can be more easily accepted by farmers and, with the help of BIM technology,
can improve the reliability of unmanned farms. At present, we can use various tools to
help people build infrastructure. In addition to the principle of practicality and low cost,
the infrastructure of unmanned farm also needs to be digitized. People are required to
participate in the process of design and construction, and the management of infrastructure
only needs a remote-control robot to complete it.

3.2. Sensing and Communication System

The sensing and communication system is the foundation that realizes the interconnec-
tion of everything, based on the IoT and information and communication technology (ICT).
In the agricultural environment, IoT refers to the use of sensors and other devices, which
transform each element and action involved in agriculture into data. IoT and ICT have
been applied in intelligent agriculture for tasks, such as crop or livestock management,
resource management and animal, plant and environment monitoring, which can help im-
prove the quality and quantity of agricultural products [23]. Information acquisition in an
unmanned farm is similar to smart agriculture, which relies on IoT for building the sens-
ing and communication frameworks. Sensing and communication system is the basis of
the digitalization of the unmanned farm. A complete information transmission system
can obtain the various information parameters of the farm without human participation,
and the information is processed by the intelligent decision cloud platform and then make
the decision.

3.2.1. Sensing: Intelligent Perception of Unmanned Farm

In traditional agriculture, farm management relies on the experience of the farmer;
however, there are many uncertainties and errors. To build an unmanned farm, it is impor-
tant to eliminate these uncertainties for accurate management, which requires sensitive
and fast sensors. A sensor is a device that perceives and transmits the environmental
information and provides a foundation for the digitization of agricultural information.
In an unmanned farm, sensors obtain agricultural information, including the growth
environment, physiological status of animals and plants and information about the equip-
ment or robot status [24]. This information is transmitted to the cloud platform through
the processing network, thus providing data support for decision control.

Agricultural sensors have been widely used for collecting information on environ-
mental factors such as temperature, humidity, light, dissolved oxygen (DO) and heart
rate. Research shows that the wireless sensor network built with various types of sensor,
such as information acquisition terminals, enable intelligent monitoring and intelligent
control [25,26]. This system usually uses sensors to build wireless sensor networks and
sends data to servers or terminals through telecommunication technologies (such as 4G)
to help farmers make better decisions and accomplish the goal of accurate management.
In some ways, sensor networks are essential for implementing intelligent agricultural
systems, the same will be true on an unmanned farm. However, unmanned farm have
more stringent requirements for the accuracy and timeliness of information acquisition
because it is a completely unmanned production process.

Over the past few years, sensor research has become more miniaturized and intelligent,
and new sensors have been developed using novel materials, which have advantages in de-
tection sensitivity. These sensors provide reliable data support for more precise unmanned
management but are not popular because of the high cost. Advances in material science
and processing technology will help solve these problems. In recent years, the image-
processing technology, based on the neural network, has led to widespread application of
the image sensor. The machine vision method has replaced the traditional information ac-
quisition method in some aspects. For example, the pig face recognition method has started
replacing the traditional radio frequency identification (RFID) method [27], as it offers
more advantages in management and convenience. Breakthroughs in sensor performance
and changes in information acquisition methods help optimize the sensing system and
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increase the possibilities for unmanned farm. In addition, remote-sensing technology is an
important tool for spatial information acquisition in an unmanned farm. Remote-sensing
technology offers many advantages such as synchronous and non-destructive observations
in a large area, strong timeliness and objective response to ground object change. This tech-
nology has been widely used for monitoring farm crop growth and drought and freezing
injury and for controlling disease and insect pest populations [28–30].

An unmanned farm is a completely unmanned production process. Therefore, all
equipment and systems must work on the basis of agricultural data, which are collected
using sensing equipment. However, the sensors may not be reliable or stable for long-term
use, and special agricultural sensors are not comprehensive. In addition, the explosive
growth of equipment and data consumes a lot of network and cloud resources because
of unified upload and centralized processing. Moreover, data processing is not timely,
and the network is unstable, which reduce the stability and availability of the sensor
system. Edge computing can meet the key requirements of network capacity constraints,
data timeliness, resource constraints, security and privacy challenges. Each edge of the IoT
has data collection, analysis and calculation, communication and intelligent processing
capabilities, and can process, filter and analyze nearby data [31].

3.2.2. Transmission: High-Speed and Efficient Communication Promotes
the Unmanned Farm

The transmission of information on an unmanned farm is performed through a net-
work. The network efficiently, stably, safely and in a timely way transmits data obtained
from the “end” layer of agricultural IoTs and processed data to the “cloud” layer of agri-
cultural IoTs, which as a link between the “cloud” layer and the “end” layer. Information
transmission is the fundamental guarantee for the normal operation of agricultural IoTs,
with more emphasis on reliability and security.

Information transmission may include both wired and wireless communication, de-
pending on the transmission medium. Wired communication refers to the technology that
transmits information through a twisted pair, coaxial cable, optical fiber and other tangible
media, which are mostly Ethernet and fieldbus [32]. Wireless communication is a com-
munication technology that uses electromagnetic wave signals to transmit information
directly in space for information exchange; examples of wireless communication tech-
nologies include RFID, near-field communication (NFC), infrared data association (IrDA),
Zigbee, Wi-Fi, long range (LoRa), Bluetooth, narrowband IoT (NB-IoT), 3G and 4G [33,34].
Wireless communication technologies connect various elements of agriculture and simplify
the information interaction among various fixed agricultural equipment, robots, sensors
and machine vision and remote-sensing monitoring platforms in an unmanned farm is an
efficient and intelligent manner.

Wireless sensor networks (WSNs) have created novel research opportunities, leading
to tremendous improvements in agricultural application systems such as those used for
groundwater quality monitoring, irrigation management, fertilizer control, planting moni-
toring, crop quality monitoring, pest and disease control, agricultural product tracking,
environmental gas monitoring and animal movement monitoring [35]. WSNs collect data
from different types of sensor and send them to the primary server via a transmission
system. This makes standardized planting or breeding management smart. Farmers can
achieve accurate management by monitoring farm crops from any location using soil mois-
ture sensors, temperature and humidity sensors, light sensors and automated irrigation
systems [36]. Wang and colleagues designed an automatic monitoring system for green-
house crop survival, based on a WSN [37]. This system can effectively control and maintain
optimal microclimate conditions in the greenhouse. Similarly, Mahale et al. implemented
intelligent monitoring of chicken farms using mobile phones and smart devices [38], while
Goud et al. completed the control and remote monitoring of environmental parameters
in the chicken farm using a WSN and mobile system network [39]. Research shows that IoT-
based intelligent monitoring systems will help farms grow crops or livestock in a scientific
and balanced manner.
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Nowadays, the 5G communication technology is being employed for wireless com-
munication. For example, in China, the Daoji Agriculture company has started to operate
smart farms based on 5G. The 5G networks are expected to provide 1000–5000 times more
capacity than 3G and 4G networks and will consist of cellular networks with peak rates of
10–100 Gb, which will take 1–10 milliseconds to transmit data from one specified point to
another. The 5G Intelligent Internet of Things (5G I-IoT) proposed by Wang et al. can help
realize the intelligent processing of Big Data and facilitate the optimization of communica-
tion channels [40], thus providing the possibility for fast, real-time and high-throughput
demand of unmanned farm.

3.3. Intelligent Decision Cloud Platform

The intelligent decision cloud platform is the brain of unmanned farm, which performs
data processing, intelligent decision-making and remote monitoring on an unmanned
farm. The workflow and application of the intelligent decision cloud platform are shown
in Figure 2. The operation of the intelligent decision cloud platform is mainly supported
by three technologies: Big Data, AI algorithm and cloud computing. Big Data technology
can analyze and process the data uploaded to the cloud platform and extract effective
information; the AI technology, together with Big Data, analyzes various data to make
scientific production-based decisions; cloud computing technology provides technical
support for the reliability of Big Data and AI processing of massive data. These technologies
work together to ensure the intelligence and effectiveness of the cloud platform.
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Figure 2. Workflow and application of the intelligent decision cloud platform.

3.3.1. Big Data: Data-Driven Unmanned Farm

In unmanned farming, various types of data, including digital, sound, image and
video, are produced during the process of agricultural production and management. Be-
cause of the different sources and forms of data and interaction between many elements,
it is difficult to process, analyze and store the data within a specific time period. Therefore,
mining effective information from multidimensional heterogeneous data obtained from
diverse sources is difficult.
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Big Data technology provides a solution for effective data mining. Big Data refers
to the technology of analyzing, processing and storing data, which is s very important
technology of mass data processing [41]. Data mining is one aspect of Big Data application,
and can be divided into 4 steps: data pre-processing, data reduction, data modeling and
solution analysis [42]. Data storage also can be solved by Big Data technologies and cloud
computing [43].

Big Data is still in its infancy in agriculture, but it has been proposed as a tool for
guiding farm-based decisions [44]. Australia uses the Big Data technology to analyze dairy
production, lactation and reproduction data in dairy farms, and studies the importance
of Big Data in agricultural decision-making [45]. Through mining and analysis the data
of climate, soil conditions, crop growth and pest and disease, Li obtained the optimal
conditions of high quality and high yield of crops, and then intelligent planting was
realized by guides the regulation of agricultural varieties and production environment [46].

To date, a number of studies have been conducted on the application of Big Data
in the field of agriculture. Kamilaris et al. reported 34 studies on the use of Big Data
in agricultural applications [12]. Wolfert et al. summarized the application of Big Data
in smart farming [47]. Several studies have also been conducted in the construction of an
agricultural Big Data platform [48]. The Consortium of International Agricultural Research
Centers (CGIAR; Montpellier, France) has created an agricultural Big Data platform, aiming
to solve the problems of agricultural development faster, better and on a larger scale using
Big Data. In China, numerous provinces have set up agricultural Big Data platforms to
guide and improve agricultural production and increase farmer income.

Application of the Big Data technology needs tremendous data, and this requires
farms to use numerous pieces of data acquisition equipment [49]. Unmanned farms have
sufficient data to meet the needs of Big Data. Therefore, Big Data technology will also play
an important role in unmanned farms, which is mainly reflected in four aspects: (1) Big
Data technology enables the processing of multi-source for unmanned farm, and uses data
processing methods such as removing false data, storing true data and classifying data;
(2) Big Data can mine, analyze and discover knowledge from numerous data, and form
a regular farm management knowledge base; (3) Big Data can effectively store all kinds of
data to form historical data for learning and invocation of unmanned farm could platform;
(4) Big Data, together with cloud computing and edge computing technology, forms an
efficient computing system that ensures rapid, precise and independent operation.

Big Data plays an important role in the massive data processing and storage, which pro-
vides technical and reliable data support for intelligent decision-making in the unmanned
farm. Given the complexity of agricultural operations and the diversity, heterogeneity and
accuracy of data, more research is needed to verify the reliability of Big Data in agriculture.

3.3.2. Artificial Intelligence (AI): Make Unmanned Farms Think Like People

Big Data provides data processing and storage technology, but AI technology plays
the thinking and decision-making roles [50]. AI allows the machine or system to exhibit
independent, but rational, thinking and behavior, similar to human beings [51,52]. With
classification, logistic regression, correlation analysis and decision-making capabilities,
AI has been widely used in agricultural decision support systems (ADSS), agricultural
prediction analysis, visual monitoring systems, robot control [14,53,54].

Agricultural Decision Support Systems

An ADSS is a human-computer system which utilizes data from various sources,
aiming at providing farmers with a list of advice for supporting their decision-making
under different circumstances by AI [54]. The ADSS does not give direct instructions or
commands to farmers, it provides advice to farmers, farmers make the final decisions.
The ADSS has been used in feeding decision-making [55], smart irrigation decision support
systems [56], and crop nutrient management [57]. For example, Zhou et al. proposed
the near infrared computer vision and neuro-fuzzy model-based feeding decision system
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for fish in aquaculture, which can conversion rate can be reduced by 10.77% and water
pollution can also be reduced [55]. It shows ADSS is very helpful for assisting farmers
in performing various agricultural activities.

However, there are also some questions to be answered if ADSS is to be widely used,
such as the incomplete functionality, insufficient consideration, inadequate requirement
analysis and bad graphical user interfaces (GUIs) [58]. For an unmanned farm, ADDS
need do more performing analysis on historical information to enhance the quality of
decision supports. It also should consider provide more adequate decision supports and
re-planning mechanisms, the more important is to do the agricultural prediction analysis.

Agricultural Prediction Analysis

Predictive analysis uses data, statistical algorithms and machine learning techniques
to determine the possibility of future results based on historical data. AI has shown great
potential in agricultural prediction analysis, such as dissolved oxygen prediction [59,60],
agricultural product price forecasting [61], greenhouse gas emissions prediction [62] and
agricultural yield prediction [63,64]. For example, Liu et al. [59] study the effectiveness of
attention-based recurrent neural network (RNN) methods in the short-term and long-term
prediction of dissolved oxygen, achieve the good results in the prediction of almost all
time steps.

However, some of the more accurate forecasting models require longer working
time. In an unmanned farm, it is necessary to further to combining data-driven machine
learning (ML) and biophysical based approaches, and optimizing their configuration and
parameters in an ensemble learning approach [62].

Agricultural Computer Vision

Computer vision is an important technology, which studies how to use a computer
to understand the information contained in a digital image or video at a high level [65].
Machine vision technology is often combined with an AI algorithm, which has been
widely used in the field of agriculture, such as species classification [66], crop disease
recognition [67], behavior analysis [68,69] etc. Chen et al. [70] proposed neural network
and long short-term memory for recognition of aggressive episodes of pigs with an accuracy
of 97.2%. These show that AI has great application potential in agricultural machine vision

Among some review conclusions [65,71], the deep learning algorithm has the most
potential, it has good nonlinear simulation performance, as well as the ability to apply
in more complex environments. However, most of the methods proposed in the literature
are only used in the laboratory, and there are still some problems in practical application,
especially for an unmanned farm. It is necessary to study how to use artificial intelligence
to improve the recognition accuracy in complex scenes.

Agricultural Robot Control

Robots can work autonomously because artificial intelligence replaces human thinking.
For example, the multi-robot task system [72] aims at performing tasks automatically by
control aerial and ground vehicles. The robot path planning [73] needs the help of AI
technology to plan the optimal path, such as Ayushman et al. [74] used the method of
“chase the rabbit” to plan the path of the lemniscate shape, and the real underwater
experiment by an autonomous underwater vehicle (AUV) showed that the algorithm has
faster calculation speed.

These studies demonstrate that AI plays an important role in smart farming. However,
the application of AI in agriculture is in its infancy [75], and many difficulties, such as data
sets, need to be resolved for the establishment of deep learning in agriculture.

Similarly, the intelligent decision cloud platform of an unmanned farm also needs AI
technology, which is mainly reflected in four aspects. First, the utilization of machine vision
technology, in combination with AI technology, for the analysis of the physiological charac-
teristics of animals and plants can provide more accurate data. Second, the agricultural
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robot equipped with AI can enhance the autonomous walking and workability of the robot.
Third, Big Data and AI can analyze the current data and historical database, and predict
the trend of data at the next stage, so that decisions can be made at the next stage without
delay. Fourth, AI technology can provide the intelligent decision cloud platform the ability
to think like a human and realize intelligent decision-making and control.

AI is the core of the intelligent decision-making cloud platform and also the basis
for the realization of the unmanned farm. Although a large amount of research has been
conducted on the application of AI technology in the field of agriculture, there is still a long
way to go before it can be applied in an unmanned farm. Moreover, we need to increase
not only the investment in agriculture to obtain more data but also the number of scholars
engaged in agricultural AI research.

3.3.3. Cloud Computing: Stable and High-Speed Data Storage and Computing

An intelligent decision cloud platform uses Big Data technology to discover effective
information and rules from massive data processing, and then makes production decisions
using the AI technology. However, because of the relatively large amount of data, using
only a local computer for data calculation will greatly increase the cost and processing
time [76]. The emergence of cloud computing effectively solves the problem of massive
data operation and rapid data processing [77].

Cloud computing is a form of distributed computing, i.e., the huge data computing
processing program is decomposed into numerous small programs through the cloud
network. Cloud computing provides flexible, convenient and on-demand network access
to many configured computing resources, which greatly improves the computing effi-
ciency. Therefore, this system has been widely used for Big Data processing. Chen proved
that cloud computing is effective for optimizing cold chain logistics vehicle routing [78].
Zhou et al. demonstrated an effective solution for monitoring soil moisture in precision
agriculture by integrating cloud computing and information infrastructure supporting
web services [79]. Liu et al. designed a modern agricultural IoT monitoring system based
on cloud computing to reduce the development cost of the system and ensure its relia-
bility and security [80]. Zamora et al. constructed a smart agriculture system based on
cloud computing, edge computing and IoT, and used this system in a real greenhouse
in Southeast Spain, saving more than 30% water and 80% of some nutrients [81].

Given the huge amount of data generated during the production and operation of an
unmanned farm, combining the cloud computing technology with Big Data technology is
necessary to process and store data. To date, many enterprises such as Amazon, Microsoft,
Alibaba and Google have developed cloud computing businesses and promoted the rapid
development of cloud computing. However, no cloud computing platform has been
specifically designed for the agricultural field, and more research is needed on information
security of the cloud computing platform.

3.4. Auto-Work Equipment System

Artificial phenotypic tasks are labor-intensive, destructive and error prone [82],
and auto-work equipment can overcome problems in manual operations. Relying on
intelligent equipment and robots to complete work that would have been done manually
in traditional agriculture is the key to realizing the complete replacement of artificial labor
in an unmanned farm. Based on the sensor and transmission system, operational equip-
ment interconnects different pieces of equipment and connects equipment with the cloud
platform. The rational management and control of Big Data, AI and the cloud platform
will help achieve effective docking and cooperative operation between devices, increase
the environmental adaptability and working efficiency of unmanned automatic operating
equipment, and improve the intelligence level of the unmanned farm. The auto-work equip-
ment has an information processing system, which provides reliable hardware support for
edge computing. Reliance on edge computing technology can help realize the terminal
processing of equipment information and terminal control of autonomous operation.
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3.4.1. Intelligent Fixed Equipment

Intelligent fixed equipment can complete the autonomous work tasks of the unmanned
farm without moving can be independently regulated and combined with other equipment
and agricultural robots to carry out systematic operation control. In addition to relying on
its own intelligent control system, autonomous intelligent fixed equipment also needs to
rely on the IoTs to achieve information exchange and intelligent decision cloud platform to
achieve information processing and decision-making.

Sprinkler or drip irrigation equipment is important for crop cultivation, especially
in low-crown or orchard environments. Intelligent management of fresh water and fertilizer
for precise irrigation is critical for increasing crop yield and reducing the input cost [83],
while contributing to environmental sustainability. Based on the IoTs, automatic irrigation
equipment can help farmers achieve remote management [84,85]. Additionally, with
the help of the cloud platform, automatic irrigation equipment can be used in an automated
manner without the need for farmer interference. In the future, in unmanned management,
autonomous operation will be achieved by combining sensing, transmission and cloud
platform systems, and the decision control of these devices will be more scientific and
intelligent.

Unlike plant management equipment, the animal control equipment is more diverse
and complex, which requires higher technical support. Animal control equipment is
designed to manage the growth of a single animal through the automatic, continuous and
non-invasive real-time monitoring of environmental factors, animal health and welfare,
production, reproduction, thus adding value to the product without causing any additional
stress to the animal [86]. Given the large size of animals and considerable variation among
them, animals need to be managed on an individual level. Smart collars (wearable devices)
are designed to track the health of an individual animal, and can be used to monitor cows
or sheep [87,88]. For example, these collars monitor the fertility of a cow by tracking its
movements during the fertile period, and alert farmers by sending messages to a laptop or
smartphone when the cow is ready to mate (Figure 3). Furthermore, the collar can detect
early signs of disease by monitoring the average time spent by each cow on eating and
regurgitating.
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Feeding equipment occupies an important position in farms, especially in pig, chicken
and cattle farms. Conveyor belt or guide rail feeding equipment developed by LELY
Industries N.V. can achieve precise target feeding using the guideway, and can control
the size of the outlet to achieve more accurate feeding, which has more advantages in pre-
cision feeding. The intelligent control system of feeding equipment can be connected with
the cloud computing platform through a wireless network, and the cloud can provide reli-
able decision-related information to achieve intelligent feeding. In the field of aquaculture,
some developed countries, such as Norway, Japan and USA, the automatic feeding system
has been applied. The net cage automatic feeding system developed by the Norwegian
fishery equipment enterprise Fishery Equipment Enterprise is composed of a management
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system, online monitoring system and feeding module. The online monitoring system
can simultaneously monitor the pH, dissolved oxygen (DO) level, temperature and other
parameters of aquaculture water in real time, and transmit the data to the management
system to enable the automatic feeding of bait.

Automatic milk equipment has been used in many modern cattle farms. For exam-
ple, the fully automatic milking machine (Figure 4) developed by LELY Industries N.V.
provides accurate teat-position information, independent of light or background, thus
providing a comfortable milking experience by quickly, consistently and accurately con-
necting nipple cups. Additionally, the automatic milking machine enables accurate health
management through individual identification and milk quality detection, and provides
nutrition management and disease treatment by adjusting the feed ratio. Precise manage-
ment requires more accurate target recognition. Electronic device tags or collars can be
used to classify individuals, but tags still need to be artificially worn, and it is a difficult
work for small animals. Recognition based on a visualization-based technology is non-
invasive and contact-free, it can not only overcome these problems but also allow for fast
recognition [27].
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In chicken houses, advanced technologies such as automatic feeding and water supply
are commonly used (Figure 5a). In recent years, extensive research has been carried out to
improve poultry production and comprehensive benefits [89]. Because of the structural
configuration of the cage production system, a variety of automated equipment has become
a functional component of this system. A good example is the highly automated machine
used to collect and sort egg layers (Figure 5b). Nonetheless, checking the health and wel-
fare of chickens and optimizing the overall management of the hen house requires human
intervention [90]. Currently, large chicken farms are equipped with the cloud-based data
management system (CDMS), which can share real-time visual data on the performance
and feeding conditions of chicken flocks in a given chicken farm with a number of different
chicken farms. This is conducive to the realization of scientific management [91]. An un-
manned farm is committed to intelligent management, where intelligent equipment can be
used to replace repetitive and frequent manual operations, such as assessing animal status,
eliminating dead chickens, maintaining indoor environmental conditions (dry cleaning,
wet washing, fertilizer removal, ventilation and sanitary treatment), inoculation, trade-offs,
selection of floor eggs, sorting and packaging [92,93]. A cloud platform can be established
as the core of the system to achieve unmanned management.
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As a part of an auto-work equipment system, intelligent fixed equipment plays an
important role in accurate management and control, especially intelligent monitoring
equipment. Intelligent fixed equipment can replace the repeated and tired work of human
beings, but the management of intelligent equipment still needs human participation.
The setting and adjustment of parameters and the planning of tasks are mostly dependent
on human thinking, and computers can only assist human thinking, which is the goal
of a smart farm. The final stage of the unmanned farm is to achieve complete operation
without human participation, and all decisions and thinking will be made by the intelligent
decision cloud platform.

3.4.2. Agricultural Robots: Replace Farmers

Agricultural robots are mobile and autonomous operating equipment in an unmanned
farm; examples of agricultural robots include field farm ploughing and sowing machin-
ery, harvesting machinery, plant protection machinery and other operating machinery.
Unmanned vehicles, unmanned surface vessels (USVs) and UAVs are the most impor-
tant mobile equipment on an unmanned farm. These agricultural robots not only enable
unmanned transport missions but also serve as a platform for carrying other intelligent
equipment. Mobile equipment also includes a variety of mobile robot equipment. Mobile
equipment and fixed equipment execute farm operations on an unmanned farm. Effective
docking and cooperation between these equipment increase the environmental adaptability
and work efficiency of intelligent equipment and robots on an unmanned farm, improve
the intelligence level of the unmanned farm and help realize the replacement of manual
operations by machines.

Agricultural robots are used in diverse applications, including automatic seeding and
harvesting (with mobile platforms and robots), point spraying, plant health testing and
point pruning. Field robots play an important role in improving operational reliability,
environmental health and crop productivity. Agricultural field robots and manipulators
have become an important part of the intelligent agricultural system [13,47]. Unmanned
driving technology forms the basis of free movement of field robots. Although operator-
free driving technology shows good performance in industry, it is still at the development
stage in agriculture. Because of the complexity of the agricultural working environment,
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unmanned driving cannot develop as rapidly in agriculture as in industry. In the field
environment, unmanned driving has been used for automatic sowing, cultivation and har-
vesting, and these processes can be monitored in real time using the data platform [94,95].
Because the environment of a cultivated land system is relatively simple and maneuverable,
unmanned cultivation shows a great potential for realization.

Automatic harvesting platforms are one of the important achievements in the field of
agricultural robotics, and there has been very good verification in fruit and vegetable pick-
ing. For example, Panasonic (Japan) has developed a tomato harvesting robot, equipped
with its own image sensors, which can harvest tomatoes unattended. It uses image sensors
to detect ripe red tomatoes and then pinpoints their shape and location. At harvesting,
the robot pulls on the stem without damaging the fruit. When the harvest basket is full,
wireless communication technology informs the robot to automatically replace the empty
basket. In addition, the yield and quality of tomatoes are recorded by data management,
and the harvest can be planned. Arad et al. analyzed the greenhouse sweet pepper har-
vesting robot (Figure 6a), and showed that the robot can run automatically on pipe rails
and concrete floors and in an end-user environment [96]. Xiong et al. evaluated a straw-
berry picking robot (Figure 6b) used in greenhouses, which was able to pick individual
strawberries with a near-perfect success rate of 96.8% [97]. As for agricultural robots,
Shamshiri et al. have made a detail summary, especially those used for automatic weed
control, field reconnaissance and harvesting [11].

The robotics system is designed to replace simple manual labor. In the future, agricul-
tural robots will act as the “hand” and “foot” on an unmanned farm and provide technical
support for planting, cultivation, harvesting and plant protection. The agricultural robotics
technology is developing rapidly, but the lack of stable recognition and accurate picking
ability hinder the commercial application of harvesting robots extensively. Machine vision
technology plays an important role in alleviating such problems. Birrell and colleagues
used visual technology to locate, classify and harvest iceberg lettuce in a complex environ-
ment [98]. Visual control technology provides important technical support to the fruit and
vegetable harvesting robots, and the research on picking robots in recognition, positioning,
all-weather operation mode and intelligent computing indicates the possibility of robot
application driven by information technology [99]. An unmanned farm relies on the ap-
plication of these robots, but autonomous operating platforms are currently less efficient
than mobile operating platforms with human participation. Smooth mechanical control
is the key to improving efficiency. The traditional PID algorithm shows high complexity
and low adaptability, while an intelligent algorithm (e.g., neural network algorithm) can
reduce the complexity of parameter adjustment to a certain extent and improve the control
accuracy, as shown in apple picking (Figure 6c) [100].
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In fish pond or lake farming, the premise of scientific farming is to obtain key water
related parameters, such as temperature, pH, DO level, oxidation-reduction potentiometer
and electron conduction, quickly and in real time. At present, the development of robotic
fish (for water quality monitoring/early warning; Figure 7) [101–103], USV (for fish density
estimation and water quality monitoring; Figure 8) [104], and robots (for integrating feed-
ing and water quality monitoring [105] has been initiated. The underwater mobile robot is
a good equipment for fishing and observing underwater plants and animals. For example,
robots used for sea cucumber fishing enable visual observation and capture based on
underwater images [106] and are expected to operate autonomously [107]. In addition,
the inspection robot can detect the position of dead fish, based on deep learning, computer
vision and positioning technology. When combined with optical and acoustic systems
and an automatic manipulator, the underwater detection robot can be used for picking
dead fish. A biomimetic robotic fish is a flexible underwater machine which can perform
self-inspection, underwater positioning, automatic obstacle avoidance, breeding target
tracking, biomass estimation and 3D monitoring of underwater aquaculture by carrying
sensor equipment. To performs tasks on the water surface, USVs are urgently needed.
The USV can effectively reduce the sensor layout requirements in large areas or deep
water, and can be used for water sampling at any designated location as well as real-time
online monitoring through the combination of dynamic nodes and static monitoring nodes.
Moreover, the data can be uploaded to the cloud platform, which provides the robot with
instructions for the next action through calculation and decision making. USVs can carry
underwater monitoring sonar for tracking fish stocks and estimating the biomass. USVs
can also be used as a carrier platform for other breeding equipment, such as an aerator,
bait machine and harvesting equipment, especially as the launching platform of UAV and
bionic unmanned fish. However, taking into account the demands of an unmanned farm,
the current techniques are not mature enough. Some problems have been resolved, such as
the bit rate problem of communication via remote Wi-Fi communication satellite [108],
path planning, autonomous obstacle avoidance and visual tracking in autonomous naviga-
tion [109–111]. However, further investigation of unattended autonomous operations and
fishing or feeding operations is needed. It will not be long before the autonomous robots
replace humans in fishing or feeding on the surface of the water, just as USVs replaced
humans in water-quality monitoring.
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In livestock and poultry breeding farms, livestock and poultry robots can replace
a large number of manual activities. For example, fully automatic self-walking feeding
robots, cleaning robots, feeding system by automated guided vehicle [112] and egg picking
robot can complete the work efficiently, independent of human intervention, after receiving
the necessary instructions. Researchers at the Georgia Tech Research Institute (Atlanta, GA,
USA) have developed a robot that can autonomously navigate, perform inspections and
pick-up eggs from the floor among a flock of live chickens, with a success rate of 91.6% [113],
which has met the work needs. TRIOLIET Feeding Technology, LELY Industries N.V.
and other companies have provided smart farming support programs. However, these
programs can only help farmers to better manage the livestock but cannot be used for
unattended farming, as the latter requires cloud computing (for enabling unmanned
decision-making) and a more intelligent robot or a device (for performing complex and
difficult tasks such as disease diagnosis, treatment, breeding and nursing).

On an unmanned farm, UAVs are indispensable. Unmanned farm require joint
supervision of air and land, especially in large farming or growing areas such as fields, lakes
or open sea, where the dependence on UAVs is extremely high. UAV-based monitoring
systems show high spatial and temporal range and are widely used in precision agriculture
and intelligent farming. To date, UAV-based monitoring systems have mainly been used for
monitoring crops [114,115], environment [116], and animal behavior [117]. Multispectral
remote sensing based on a UAV shows great potential for precise crop management [118].
UAVs provide accurate terrain surface and height information through images and accurate
surface information for unmanned vehicles or unmanned ships. For example, Comba et al.
used a UAV to obtain vineyard row spacing and terrain slope information to better manage
the path and operation of unmanned vehicles [119]. SZ DJI Technology Co., Ltd. (DJI)
developed a UAV-based platform for plant protection, pest detection and data management.
The T20 plant protection UAV, equipped with a reliable omni-directional digital radar
(Figure 9), can perform the full autonomous operation of sowing and fertilizing in fields,
terraces, orchards and other operation scenes. UAV PHANTOM 4 Multispectral can quickly
obtain the indexes of each growth stage of crops, conduct real-time monitoring of crop
growth, help users quickly find diseases, pests and weeds, take targeted plant protection
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measures and perform precise management. The DJI Agricultural Data Platform, which is
for the comprehensive demand of agricultural Big Data and IoT, and can perform statistical
analysis on data records of any node. On an unmanned fishing ground, a UAV can be used
for water exploration and patrol, fish fry delivery, bait delivery, fish swarm monitoring and
other operations. Because UAVs are fast, convenient and demonstrate high precision and
easy interconnection, they show great potential on unmanned farm.
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Different agricultural production objects and environments (cultivated land, green-
house, livestock, poultry and aquaculture) require different types of robots (examples as
Figure 10), and these robots are the key to achieving unmanned production. Supported by
modern information technologies such as comprehensive perception, intelligent processing,
intelligent navigation and accurate operation, and combined with traditional equipment,
robots can perform unmanned production, information monitoring, optimal control and
accurate independent operation.
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Intelligent robots and UAVs will likely play an important role in an unmanned farm.
Influenced by the working environment, there are differences in the degree of intelligence of
robots. Robots in livestock and poultry farms have been capable of working autonomously,
while in the greenhouse environment, picking is still a challenge, and human participation
in picking is essential [120]. In general, agricultural robots currently require human
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involvement, such as task decision-making, planning and supervision. In the future, an
unmanned farm, which involves human participation, will eventually be replaced by
autonomous robots and computers, and humans only need to view them remotely.

4. Prospect

Obviously, unmanned farms can improve agricultural production and product quality.
Intelligent decision cloud platforms can make farm production more scientific and efficient,
causes fewer losses of fertilizer and pesticides to the environment, reduced water consump-
tion, and reduced greenhouse gas emissions, which is conducive to reduce the problem
of environmental pollution [121]. With the application of auto-work equipment, it is con-
ducive to more professional agricultural operations, and can effectively avoid the problem
of rising labor costs and labor shortage [122].

According to international research predictions, the global intelligent agriculture mar-
ket value is expected to have a revenue of US$23.14 billion in 2022 [123] with opportunities
for technology providers, agricultural equipment and machinery providers, producers
and others involved in this business. An unmanned farm uses more new information
technologies and products, involving the IoT, Big Data, AI, robotics, 5G and others, which
will provide the market for the development of these technologies.

At present, the unmanned farm is only in the tentative stage. With the development
of science and technology, intelligent equipment and information industry, we predict that
there will be unmanned farm with independent planning, decision-making and manage-
ment capabilities from 2050 to 2070. In all agricultural sectors, crop production would be
the first to realize unmanned farming. This is because the land where crops grow is easy
to manage, and it is easier to sow, cultivate, manage and harvest crops than other types
of produce. The hardest aspect of animal husbandry is that animals have uncontrollable
factors. Other agricultural sectors also have weaknesses (Table 1), for example, the accuracy
of fruit picking robots in an actual farm is not high [97]. High-speed transmission (5G)
technology can be implemented in the farm, other technologies have some challenges
shown in Table 1.

Table 1. The convenient areas for implementation of technologies through unmanned farm in agri sectors.

Level Agri Sectors Technologies

Easiest
Crop

• Crop production system has low
complexity and is easy to
implement.

• Fully automatic machines for
ploughing, sowing, plant
protection and harvesting are
already available.

Sensing and
Communication

• Available of high-speed,
high-bandwidth transmission
technology.

• Micromachining technology
and microsensor technology
offer more possibilities

• Special sensors need further
development (etc. animal
physiology, disease).

Floricultural
greenhouses

• Floricultural greenhouse is easy to
be intensive, and the cultivation
machine can run autonomously

• The flower classification packaging
needs intelligent machine.

to
Poultry

industry

• Poultry (etc. chickens and ducks)
are easy to raise and manage.

• The intelligent equipment of
poultry farm feeding and
harvesting is already available.

• Diagnosis and management of
the disease are needed

Big Data

• The quantity of agricultural
information data is insufficient
and the technology is not
mature enough.

• There are still many problems
with big data (data security,
privacy protection,
transparency...).
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Table 1. Cont.

Level Agri Sectors Technologies

Aquaculture

• Aquaculture in deep-sea cages and
factory facilities can be operated
autonomously.

• Lack of stable sensing, accurate
and efficient surface and
underwater robots.

AI
• AI algorithm efficiency cannot

adapt to the actual needs.
• Instability in a complex envi-

ronment presents great chal-
lenges.

• Inadequate hardware base for
computing.

Hardest
Fruit and

vegetables

• Vegetables and fruits planting,
management equipment can be
partially automated.

• Efficient and precise picking robots
still need to be researched.

Animal
husbandry

• The automatic feeding and
cleaning equipment in animal
husbandry has been able to
operate autonomously.

• More research is needed on
reproductive facilities/machines.

Robots

• Intelligent machines in some
environments are available, but
machines in complex
environments operate
inefficiently.

• Robots for breeding need to be
developed

• Intelligent robots rely on AI
training

5. Challenges

It is true that an unmanned farm can assist farmers and enhance food production, but,
at the same time, there are many issues that need to be solved.

Whether the technology is compatible with unmanned farm is the first question
(Table 1). An unmanned farm requires all information to be digitized, and the data ac-
quisition is real-time, continuous and highly reliable. However, the special real-time
online sensors for agriculture are not comprehensive, and some sensors have insufficient
long-term stability and reliability under complex conditions. Some intelligent agricul-
tural robots can be used in agriculture, but an agricultural picking robot shows low work
efficiency and crop recognition error, and its flexible arm technology is not as good as
manual picking [124]. The data obtained in agriculture is not enough for Big Data analysis,
and AI technology cannot replace human beings to make correct decisions. Therefore, for
now, these technologies are not compatible with driverless farms, and more research is
needed. But these technologies are already compatible with smart farms [125], and their
applications in an unmanned farm need to be further studied in the future.

The second problem is that there are still many problems in the application of big
data technology in unmanned farms [126]. First, who owns the data? Farmers don’t know
how to use and obtain big data. Although farmers have contributed to the development of
tools, they don’t have right about data collection, analysis and use [127]. Secondly, big data
may lead to the disclosure of their privacy [128,129]. Then, the transparency of data use
is not clear, and farmers are not willing to share their data [130] unless they understand
what people are doing with it [131]. Finally, how to distribute the benefits brought by big
data is a problem. Although farmers contribute to the data, they do not have ability to
control over the income distribution generated by the data. These problems also exist in an
unmanned farm, such as data privacy leakage, opaque data use and fair distribution of
big data revenue. It is essential for the government to establish an intermediate regulatory
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mechanism, which is responsible for data sharing and storage, data transparent use, data
revenue distribution and other tasks

Third, how to make the transition to an unmanned farm is also an important ques-
tion [132]. Unmanned farm will lead to a large number of people’s unemployment, such as
the reduction of production of fertilizer, feed, pesticides and other manufacturers, resulting
in layoffs, and the surplus of labor force caused by farmers not having to farm land to par-
ticipate in other industries. There are three stages of transition in the research of unmanned
farms, namely remote-control farm, unattended farm and autonomous farm. There is some
work that humans need to complete in these three stages, but the number of farmers will
increasingly decline, which is a slowly changing process. In this process, the government
needs to increase the training of farmers, so that farmers learn more skills.

Finally, a lot of advanced equipment is used in an unmanned farm, even for the larger
farms, and the cost of this equipment is high, especially for developing countries [133,134].
This requires the joint efforts of researchers and the state, which needs to increase subsidies
for these equipment and research funds for experts, and experts need to conduct in-depth
research to reduce the cost of these machines. Similarly, farmers can use much-needed
equipment first, such as unmanned harvesters.

The problems described above limit the practical application of an unmanned farm.
In the future, it is important to study how to solve these problems for an unmanned farm,
which requires the join efforts of the government, researchers, farmers and enterprises
in this direction.

6. Conclusions

In this paper, we introduce a new agricultural production mode, i.e., an unmanned
farm, which does not require people to enter the farm, and uses modern information tech-
nology and intelligent equipment to replace manual labor with machines for the production
and management of the farm. Here, we defined the unmanned farm, explained its opera-
tion principle and characteristics, and introduced the system architecture of the unmanned
farm system. We also analyzed the technology needed for system operation, and described
the current application of these technologies. Finally, we summarized the challenges that
unmanned farm faces.

Through the analysis of literature, it can be concluded that unmanned farm is feasible.
We will gradually realize unmanned farm in the next 50 years, which will play a role in re-
ducing the number of environmental problems, solving the shortage of agricultural labor
and bringing economic benefits. But at the same time, we need to solve some problems,
such as unstable sensors, inefficient robots, AI applications in complex environments, pri-
vacy and management problems brought by Big Data, and how to transition to unmanned
farm.

We believe that solving these problems of unmanned farms requires joint efforts of
the government, enterprises and research institutes. The government should give policy
support, such as agricultural subsidies, data security legislation and so on. Enterprises
increase production, reduce the production costs of various agricultural machinery, and im-
prove the utilization rate of agricultural machinery. The research institute should study
agricultural robots and systems with high precision, fast response and stability in depth.
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104. Koprowski, R.; Wróbel, Z.; Kleszcz, A.; Wilczyński, S.; Woźnica, A.; Łozowski, B.; Pilarczyk, M.; Karczewski, K.J.; Migula, P.
Mobile sailing robot for automatic estimation of fish density and monitoring water quality. Biomed. Eng. Online 2013. [CrossRef]

105. Von Borstel, F.D.; Suárez, J.; De La Rosa, E.; Gutiérrez, J. Feeding and water monitoring robot in aquaculture greenhouse. Ind.
Robot. 2013, 40, 10–19. [CrossRef]

106. Design and Motion Analysis of ROV Robot for Catching Sea Cucumber. Int. J. Simul. Syst. 2016, 17, 31–38. [CrossRef]
107. Qiao, X.; Bao, J.; Zhang, H.; Zeng, L.; Li, D. Underwater image quality enhancement of sea cucumbers based on improved

histogram equalization and wavelet transform. Inf. Process. Agric. 2017, 4, 206–213. [CrossRef]
108. Takahata, K.; Shimizu, E.; Umeda, A.; Oode, T.; Tsuchiya, T.; Tamura, Y. Development of remotely operated unmanned boat with

long-range Wi-Fi. Artif. Life Robot. 2016, 21, 365–370. [CrossRef]
109. Tong, X.; Zhang, H.; Chen, W.; Zhao, P.; Leng, Z.; Cheng, K. A research on intelligent obstacle avoidance for unmanned surface

vehicles. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp.
1431–1435. [CrossRef]

110. Zeng, B.; Song, Y.; Liu, C. Design and implementation of an unmanned boat visual target tracking system. In Proceedings of
the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 5225–5230. [CrossRef]

111. Chen, H.; Wu, Z.; Zheng, R.; Zhang, S. Design of Autonomous Obstacle Avoidance Unmanned Boat System for Wetland
Monitoring. J. Phys. Conf. Ser. 2020, 1486, 72033. [CrossRef]

112. Ahn, S.; Lee, Y.; Yoo, J.; Lee, Y. Development and Verification of the Automated Cow-Feeding System Driven by AGV. Korea Acad.
Ind. Coop. Soc. 2017, 18, 232–241. [CrossRef]

113. Joffe, B.P.; Usher, C.T. Autonomous robotic system for picking up floor eggs in poultry houses. In Proceedings of the 2017 ASABE
Annual International Meeting, Spokane, WA, USA, 16–19 July 2017.

http://doi.org/10.1109/R10-HTC.2016.7906792
http://doi.org/10.2527/af.2017.0102
http://doi.org/10.1108/SR-08-2017-0152
http://doi.org/10.1016/j.compag.2020.105444
http://doi.org/10.1038/srep25972
http://www.ncbi.nlm.nih.gov/pubmed/27170597
http://doi.org/10.3382/ps/pey525
http://www.ncbi.nlm.nih.gov/pubmed/30535034
http://doi.org/10.3965/j.ijabe.20160904.2488
http://doi.org/10.1016/j.biosystemseng.2018.07.015
http://doi.org/10.1016/j.biosystemseng.2018.01.002
http://doi.org/10.5772/intechopen.90683
http://doi.org/10.1002/rob.21937
http://doi.org/10.1016/j.compag.2019.01.009
http://doi.org/10.1002/rob.21888
http://doi.org/10.1177/1729881420925310
http://doi.org/10.3390/electronics8060605
http://doi.org/10.1016/j.snb.2016.08.030
http://doi.org/10.1016/S1672-6529(14)60098-6
http://doi.org/10.1186/1475-925X-12-60
http://doi.org/10.1108/01439911311294219
http://doi.org/10.5013/IJSSST.a.17.25.38
http://doi.org/10.1016/j.inpa.2017.06.001
http://doi.org/10.1007/s10015-016-0284-7
http://doi.org/10.1109/CAC.2018.8623358
http://doi.org/10.1109/CCDC49329.2020.9164278
http://doi.org/10.1088/1742-6596/1486/7/072033
http://doi.org/10.5762/KAIS.2017.18.3.232


Agriculture 2021, 11, 145 26 of 26

114. Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10,
349. [CrossRef]

115. Yang, S.; Yang, X.; Mo, J. The application of unmanned aircraft systems to plant protection in China. Precis. Agric. 2017, 19,
278–292. [CrossRef]

116. Manfreda, S.; Mccabe, M.F.; Miller, P.E.; Lucas, R.; Madrigal, V.P.; Mallinis, G.; Ben-Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al.
On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [CrossRef]

117. Nyamuryekung, E.S.; Cibils, A.F.; Estell, R.E.; Gonzalez, A.L. Use of an Unmanned Aerial Vehicle−Mounted Video Camera to
Assess Feeding Behavior of Raramuri Criollo Cows. Rangel. Ecol. Manag. 2016, 69, 386–389. [CrossRef]

118. Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-based multispectral remote sensing for precision agriculture: A comparison
between different cameras. ISPRS J. Photogramm. 2018, 146, 124–136. [CrossRef]

119. Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Gay, P. Unsupervised detection of vineyards by 3D point-cloud UAV photogramme-
try for precision agriculture. Comput. Electron. Agric. 2018, 155, 84–95. [CrossRef]

120. Amer, G.; Mudassir, S.M.M.; Malik, M.A. Design and operation of Wi-Fi agribot integrated system. In Proceedings of the 2015
International Conference on Industrial Instrumentation and Control (ICIC), Pune, India, 28–30 May 2015; pp. 207–212. [CrossRef]

121. Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision Agriculture
Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability 2017, 9,
1339. [CrossRef]

122. Pivoto, D.; Barham, B.; Waquil, P.D.; Foguesatto, C.R.; Corte, V.F.D.; Zhang, D.; Talamini, E. Factors influencing the adoption of
smart farming by Brazilian grain farmers. Int. Food Agribus. Manag. Rev. 2019, 22, 571–588. [CrossRef]

123. Forecast Market Value of Smart Agriculture Worldwide in 2017 and 2022. Available online: https://www.statista.com/statistics/
720062/market-value-smart-agriculture-worldwide/ (accessed on 15 November 2020).

124. Hajjaj, S.S.H.; Sahari, K.S.M. Review of agriculture robotics: Practicality and feasibility. In Proceedings of the 2016 IEEE
International Symposium on Robotics and Intelligent Sensors (IRIS), Tokyo, Japan, 17–20 December 2016; pp. 194–198. [CrossRef]

125. Lioutas, E.D.; Charatsari, C. Smart farming and short food supply chains: Are they compatible? Land Use Policy 2020, 94, 104541.
[CrossRef]

126. Lioutas, E.D.; Charatsari, C.; La Rocca, G.; De Rosa, M. Key questions on the use of big data in farming: An activity theory
approach. NJAS—Wagening. J. Life Sci. 2019, 90–91, 100297. [CrossRef]

127. Bronson, K.; Knezevic, I. Big Data in food and agriculture. Big Data Soc. 2016, 3, 1245635505. [CrossRef]
128. Shepherd, M.; Turner, J.A.; Small, B.; Wheeler, D. Priorities for science to overcome hurdles thwarting the full promise of

the ‘digital agriculture’ revolution. J. Sci. Food Agric. 2020, 100, 5083–5092. [CrossRef] [PubMed]
129. Fielke, S.; Taylor, B.; Jakku, E. Digitalisation of agricultural knowledge and advice networks: A state-of-the-art review. Agric. Syst

2020, 180, 102763. [CrossRef]
130. Wiseman, L.; Sanderson, J.; Zhang, A.; Jakku, E. Farmers and their data: An examination of farmers’ reluctance to share their data

through the lens of the laws impacting smart farming. NJAS—Wagening. J. Life Sci 2019, 90–91, 100301. [CrossRef]
131. Jakku, E.; Taylor, B.; Fleming, A.; Mason, C.; Fielke, S.; Sounness, C.; Thorburn, P. “If they don’t tell us what they do with it,

why would we trust them?” Trust, transparency and benefit-sharing in Smart Farming. NJAS—Wagening. J. Life Sci. 2019, 90–91,
100285. [CrossRef]

132. Scholz, R. Sustainable Digital Environments: What Major Challenges Is Humankind Facing? Sustainability 2016, 8, 726. [CrossRef]
133. Kendall, H.; Naughton, P.; Clark, B.; Taylor, J.; Li, Z.; Zhao, C.; Yang, G.; Chen, J.; Frewer, L.J. Precision Agriculture in China:

Exploring Awareness, Understanding, Attitudes and Perceptions of Agricultural Experts and End-Users in China. Adv. Anim.
Biosci. 2017, 8, 703–707. [CrossRef]
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