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Abstract: During the last few years, various Industrial Internet of Things (IIoT) applications have
emerged with numerous network elements interconnected using wired and wireless communication
technologies and equipped with strategically placed sensors and actuators. This paper justifies why
non-terrestrial networks (NTNs) will bring the IIoT vision closer to reality by providing improved data
acquisition and massive connectivity to sensor fields in large and remote areas. NTNs are engineered
to utilize satellites, airships, and aircrafts, which can be employed to extend the radio coverage
and provide remote monitoring and sensing services. Additionally, this paper describes indicative
delay-tolerant massive IIoT and delay-sensitive mission-critical IIoT applications spanning a large
number of vertical markets with diverse and stringent requirements. As the heterogeneous nature
of NTNs and the complex and dynamic communications scenarios lead to uncertainty and a high
degree of variability, conventional wireless communication technologies cannot sufficiently support
ultra-reliable and low-latency communications (URLLC) and offer ubiquitous and uninterrupted
interconnectivity. In this regard, this paper sheds light on the potential role of artificial intelligence (AI)
techniques, including machine learning (ML) and deep learning (DL), in the provision of challenging
NTN-based IIoT services and provides a thorough review of the relevant research works. By adding
intelligence and facilitating the decision-making and prediction procedures, the NTNs can effectively
adapt to their surrounding environment, thus enhancing the performance of various metrics with
significantly lower complexity compared to typical optimization methods.

Keywords: deep learning (DL); high-altitude platforms (HAPs); industrial internet of things (IIoT);
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1. Introduction

The fifth-generation (5G) and beyond 5G (B5G) vision does not only represent a significant
upgrade of mobile broadband communications, but it will bring new unique network and service
capabilities towards the evolution of Internet of Things (IoT) [1,2]. The IoT is an information network
that encompasses a large family of applications and transparently enables the deployment of a massive
number of often miniaturized, low-cost, low-complexity, and low-power interconnected physical
objects, generally referred to as machine-type devices (MTDs), which interact and cooperate without
human intervention. As the consumer-focused IoT is exponentially expanding around the world,
its strong potential in critical applications in the industrial sector, for which the term Industrial IoT
(IIoT) is typically used, becomes more explicit [3,4]. The IIoT, a sub-segment of the IoT, is the latest
catalyst to process automation and was introduced by General Electric. By integrating ultra-low
power sensors interacting with data processing, micro-controller units (MCUs), advanced network
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and communication technologies, as well as powerful cloud-based analytics, IIoT intends to enable
cyber-physical systems (CPSs). Applying IIoT and CPSs to the industrial domain brings closer
the physical machines and the digital world and facilitates the autonomous prediction of failures,
the triggering of the maintenance processes, and the provision of self-organized logistics to respond to
the changes in the production. IIoT also enables the realization of the Industry 4.0 concept, where 4.0
represents the fourth industrial revolution relying on advanced intelligent networking technologies [5].

The industrial applications cover a broad spectrum of use cases and each one has its own
set of challenges. On the one hand, a wide variety of licensed or unlicensed industrial, scientific,
and medical (ISM) standard microwave or millimeter-wave (mm-wave) frequencies should be used
on a global, regional, or national basis, in order to establish wireless connections in the era of
IIoT depending on the requirements and the limitations of each application scenario [6]. At these
frequencies, advanced antennas should be designed to address the sensing and detection/tracking
of objects, as well as the onward transmission over the wireless IIoT networks. In this respect,
antenna attributes, such as compactness, simplicity, low-cost, stability, directivity, wider beam-scanning,
radiation efficiency, and mutual-coupling between the radiating elements, are of great importance.
Therefore, metamaterial-based leaky-wave antennas (LWA) [7], planar broadband antennas based
on meandered line loops [8], wideband printed monopole antennas [9], and densely packed array
antennas with embedded metamaterial electromagnetic bandgap (EMBG) structures [10] represent
candidate antenna solutions. On the other hand, the endmost goal of shaping an IIoT ecosystem is the
creation of a network of remoted factories that can effectively and autonomously adapt to production
requirements and share their resources. Besides the above, some special IIoT applications would require
coverage in rugged and remote locations, e.g., desert, valley, ocean, and forest, beyond the indoor and
outdoor radio coverage of conventional cellular networks. In such situations, there exist commercial
and engineering difficulties of exclusively constructing and/or exploiting terrestrial networks and
obtaining connectivity with reasonable capital expenditure (CAPEX) and operation and maintenance
expenditure (OPEX).

To achieve ubiquitous connectivity and materialize the vision of IIoT, supplementing and extending
the terrestrial communication networks is indispensable [11]. In this context, non-terrestrial networks
(NTNs) constitute the driving infrastructure to obtain global IIoT and extend radio coverage by
exploiting the available degrees of freedom from both the space- and air-based nodes [12–14].
Nevertheless, integrating NTNs in ultra-dense heterogeneous networks (UDHNs) [15,16] with a
density of possibly thousands of nodes per square kilometer and applying innovative physical layer
(PHY) techniques cannot be directly feasible. The reasons are the special features of the spaceborne and
airborne platforms, the particularity of the propagation environment, as well as the problems imposed
by the underlying radio propagation channels. As far as complex, dynamic, and mission-critical
communication scenarios with requirement for ultra-reliable and low-latency communications (URLLC)
are concerned, artificial intelligence (AI) [17–19] can revolutionize the decision-making processes with
respect to the maintenance of the radio connections as well as the processing and distribution of
data. Specifically, AI includes a number of sophisticated algorithms, techniques, and methods and
achieves the emulation of the human brain reasoning process, enabling the ability to extract specific
knowledge and repeating motifs from a series of observations. In Figure 1, the key enablers of the
NTN-based IIoT landscape are synopsized with the intelligence introduced by the AI-based methods,
providing real-time insights and allowing IIoT core elements to reach their full potential. These key
enablers should be harmonically combined and coordinated to satisfy the individual demands of each
application scenario and stand for the cornerstone for future IIoT applications.

This ambiguous landscape regarding the NTNs, IIoT, and AI has motivated the present review
paper, whose contribution is twofold. Firstly, this paper aims to shed light on the NTN-based IIoT
and provide an overview of emerging IIoT applications. Secondly, this paper underlines the unique
challenges that arise when implementing IIoT scenarios and investigates the adoption of AI techniques.
To the best of the authors’ knowledge, previous relevant surveys and tutorials considered only airborne
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platforms and AI methods, without emphasizing the IIoT applications and principle. More specifically,
these works studied the communication aspects [20], the design of radio access networks (RANs) [21],
the interference management [22], the object detection and image recognition [23,24], the trajectory
and placement [25], and the planning, motion control, and situational awareness [26]. On the contrary,
this paper focuses on the deployment of a wide range of AI techniques on both spaceborne and airborne
platforms exclusively for the IIoT, describes the benefits of these techniques in specific IIoT scenarios,
and identifies fertile research areas.
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Figure 1. Key enablers for globally accelerating the adoption of non-terrestrial network (NTN)-based
Industrial Internet of Things (IIoT).

The rest of the paper is organized as follows. Section 2 focuses on the indispensability of
the wireless communication technologies within factory halls. Section 3 categorizes the types of
aerospace communication technologies, emphasizes their advantages, and presents the state of art in
advanced wireless techniques for NTNs. Section 4 outlines potential IIoT applications and services.
Section 5 underlines the challenges of the NTN-based IIoT and highlights the advanced AI technologies
that intend to enrich its capabilities. Section 6 surveys recent research work on AI methods for
NTN-based IoT and underlines open research issues. Finally, conclusions are drawn in Section 7.

2. Integration of Wireless Connectivity into the Industrial Domain

To provide IIoT services and massive machine type communications (mMTC) [27] supporting
millions of IoT devices with intermittent activity and transmission of small data packets,
advanced information, network, and communication technologies should be adopted by traditional
industries. The convergence between industrial networks and traditional networks is also known
as IT/OT convergence, where the operational technology (OT) refers to highly reliable and secure
industrial networks and products, and information technology (IT) refers to the Internet and the
end-to-end (E2E) flow control [28]. Similar to the IoT, the notion of IIoT relies on the availability of
radio connections among the devices within an industrial environment. In massive IIoT, the data
transmission is infrequent and not persistent, whereas the latency requirements are not tight. However,
in mission-critical IIoT applications, system designers should consider a number of factors regarding
the ubiquitous connectivity of the vast number of devices to guarantee the end-user experience
and prevent failures and severe consequences in a systematic, secure, and cost-effective manner.
More specifically, critical IIoT goes beyond massive IIoT and enhanced mobile broadband (eMBB),
which aims at maximizing the data throughput without ensuring extremely low latency radio access
and high E2E reliability [29]. Additionally, safeguarding the operation of IIoT against cyber-physical
attacks is requisite. Figure 2 depicts the main requirements of critical IIoT applications.
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wide range of industry verticals.

Although the majority of the devices in an industrial environment can be interconnected through
homegrown wired technologies, e.g., Fieldbus technology [30], the most progressive manufacturers
have started to integrate wireless Internet protocol (IP)-enabled solutions for industrial sensing and
control systems. The introduction of short- and long-range wireless communications for locally and
remotely connected IIoT entities, respectively, enhances flexibility, improves security, and significantly
reduces the operational cost for deployment and maintenance, while driving new revenue through
IIoT-based solutions. For localized IIoT scenarios, short-range networks based on wireless industrial
standards, including ISA100.11a and WirelessHART, are the most convenient, since they take advantage
of the unlicensed spectrum and maximize the battery life [31]. Other wireless standards and protocols
providing limited range and low-power consumption, such as wireless fidelity (Wi-Fi) HaLow based on
Institute of Electrical and Electronics Engineers (IEEE) 802.11ah, IPv6 over low-power wireless personal
area networks (6LoWPAN), ZigBee, Bluetooth low energy (BLE), and near field communication (NFC),
may suffice depending on the application requirements. Besides the above, exploiting current and future
conventional cellular networks and low-power wide area network (LPWAN) 3rd Generation Partnership
Project (3GPP) standards, e.g., Extended Coverage-Global System for Mobile Communications for the
IoT (EC-GSM-IoT), Narrowband-IoT (NB-IoT), and Long-Term Evolution for Machines (LTE-M), as well
as non-3GPP standards [6], e.g., Long Range (LoRa) and SigFox, could satisfy the needs for long-range
communication of IIoT applications in the near term. Currently, terrestrial wireless networks offer a
limited radio coverage of approximately 20% across the territories of China and U.S. [32].

3. NTNs for IIoT Applications

In IIoT applications, the effective wireless connectivity is not only requisite for the data transmission
between the multiple nodes but also represents a key factor to ensure the safety of personnel or citizens
in remote locations, especially in cases with environmental hazards or in emergency situations.
As previously mentioned, the IIoT can exploit both 3GPP cellular-based and non-3GPP license-free
terrestrial infrastructures. The former allows for large-scale device deployments aided by the mobile
network operators and supports widely adopted wireless standards. However, a huge number of
base stations is indispensable for global radio coverage. In addition, the terrestrial communication
infrastructure is sensitive to natural disasters, e.g., earthquakes and floods. To further extend the IIoT
connectivity into remote and industrialized areas and enhance the reliability and resiliency of services,
the aerospace infrastructure should be leveraged. NTNs are capable of simultaneously interconnecting
a massive number of devices that struggle for connectivity, while ensuring the successful management
of data-intensive applications, redundant connections at critical sites, low latency, and enhanced
capacity. In addition, NTNs represent an ideal fit for supervisory control and data acquisition (SCADA),
since they ensure the delivery of wireless services in challenging environments with highly mobile and
dispersed nodes.
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The successful operation of space-air-ground integrated networks (SAGINs) that provide connectivity
for the IIoT envisages the synergetic and seamless integration of heterogeneous wireless networks with
distinct capabilities [33]. From a wireless communications engineering standpoint, the heterogeneity of
the aforementioned networks corresponds to highly variable service requirements with respect to key
metrics, such as the E2E communication delay and the data traffic. Since reliable communications are a
prerequisite for critical IIoT applications, the choice of appropriate types of satellites and aerial platforms,
such as those described below, heavily depends on the size, altitude, mobility issues, autonomy level,
and specific application needs. Figure 3 demonstrates a SAGIN consisting of heterogeneous communication
infrastructures and multiple network segments in space, air, and ground for cost-effective, flexible,
and large-scale IIoT applications and services, e.g., Earth observation, navigation, and telecommunications.
In this envisioned and promising SAGIN-based paradigm, satellite-to-ground (S2G), satellite-to-air (S2A),
air-to-air (A2A), air-to-ground (A2G), and ground-based radio links exist, whereas typical limitations
posed by single network segments are effectually resolved.
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Figure 3. Simple representation of a space-air-ground integrated network (SAGIN) for IIoT
applications that includes space, air, and ground network components and aims at cooperatively
expanding radio coverage over large areas and facilitating the collection, as well as the coordination,
of multi-dimensional data.

3.1. Overview on Spaceborne Platforms for IIoT

Satellites constitute the main representative of NTNs and refer to spaceborne vehicles in low
earth orbit (LEO), medium earth orbit (MEO), geostationary earth orbit (GEO), or in highly elliptical
orbit (HEO). Over the past 30 years, satellites have been typified as the unique means of achieving
global coverage. More importantly, satellites can potentially promote mMTC [34] and the Internet
of Remote Things (IoRT) [35] when terrestrial constraints in terms of connectivity exist over a
wide geographical area. A typical example of IoRT is the global sensor network (GSN) for remote
environment observation, where massively connected IoT sensor networks are connected via LEO
satellites [36]. Aiming at evolving the satellite technology with regard to IoT and realizing the
Internet of Space Things (IoST) [37], Iridium Communications Inc., McLean, VA, USA, a major
commercial solution provider, has launched Iridium NEXT satellites for Earth and space sensing,
supporting payloads of up to 50 kg, called SensorPODs. Besides this, Inmarsat, as the leader
in global mobile satellite communications services, predominantly used the L-band (1–2 GHz),
which supports an extremely low data rate for IoT applications. As IIoT takes hold over the next few
years, the network traffic will be significantly increased. Moreover, large data volumes generated from
multiple sensors should be aggregated to perform prescriptive and predictive analytics and provide
real-time services, such as surveillance and monitoring using closed circuit television (CCTV). Hence,
a higher bandwidth technology, notably Ka- and Ku-bands, will facilitate the establishment of a broad
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range of satellite-based IIoT applications. High throughput satellites (HTS), e.g., ViaSat-1 and EchoStar
XVII, operating at the Ka-band, provide more than 100 Gbps of throughput. Although the majority of
IIoT scenarios may not require such throughput performance, the significant benefit of Ka/HTS is the
dramatic reduction in the transmission cost-per-bit. With the exploitation of the Ku-band, the large
number of open Ku-band satellites can be leveraged and ensure lower spectrum cost than L-band.
Although using Ka- and Ku-bands seems beneficial, rain substantially affects signal propagation
in mm-wave frequencies and a dominant line-of-sight (LoS) signal is required for sufficient radio
coverage due to the severe attenuation of the non-line-of-sight (NLoS) links. Since the utilization
of the IPv6 is a precondition for the successful deployment of IIoT systems leading to the huge
number of simultaneously interconnected nodes, the Digital Video Broadcasting—Return Channel
via Satellite—Second Generation (DVB-RCS2) standard supports this protocol [38], whereas the
DVB-RCS2+M standard adds mobile and mesh capabilities.

The realization of IIoT and machine-to-machine (M2M) communications can be further reinforced
owing to the investments in terrestrial segment technologies, i.e., compact, electronically steerable,
and/or phased-array transceivers, as well as the cost-effective CubeSat platforms [37,39] based on
micro-, nano-, and pico-satellites, operating as access points. Based on the Northern Sky Research
(NSR), the satellite IoT (S-IoT) market will include more than 5.3 million terminals by 2024, whereas the
European, Middle Eastern, and African (EMEA) market is expected to reach US$495 million in revenue
by 2024. In the context of S-IoT applications, Inmarsat was the first to join the LoRa Alliance as
its first satellite member and combine a low-power, low-data-rate, long-range, wide area network
(LoRaWAN) on the ground with a satellite mesh in the sky. Actility, an industry leader in LPWAN,
has recently become part of Inmarsat’s Certified Applications Provider Programme (CAPP). Aided by
this partnership, a global L-band satellite connectivity platform can be effectively combined with
Actility’s ThingPark IoT management platform. Hence, an integrated solution for IIoT can be provided
by third-party companies which are in compliance with the specifications of Inmarsat’s satellite network.

Although the satellite networks have a huge initial cost, they still constitute the exclusive means
of wireless connectivity in traditional maritime and aeronautical markets. The spaceborne networks
can support navigation, Earth observation, emergency rescue, and communication/relaying as well
as strongly enhancing the terrestrial backhaul networks. HTS can provide effective backhauling of
aggregated IIoT traffic and transfer data from LPWANs nodes to cloud platforms. GEO satellites are
widely available and can enable multicast/broadcast and trucking of video and other data across a large
area or a central site while providing data distribution to local cell sites. LEO satellite constellations
require less on-the-ground power and smaller antennas due to the significantly lower orbit altitude
(normally lower than 2000 km) and smaller propagation losses. Since most IoT terminals are small-sized
and energy-constrained, the aforementioned benefits of LEO satellites are substantial. The CubeSats are
also expected to contribute to the cost-effective and extended radio coverage for the IIoT operating at
relatively low altitudes, i.e., <1000 km, without suffering from the traditional satellite drawbacks, e.g.,
long development cycles, high costs, increasing congestion, lack of sequential redundancy, and high-risk
exposure [37,39]. In addition, the form factor of CubeSats, typically 10 × 10 × 10 cm3, allows for the
integration of accurate attitude determination and control systems (ADCS) and effective solar panels,
which in turn increases the range of applications. However, constellations with multiple CubeSats in
several orbital planes are indispensable for extended coverage due to the small footprint of a single
CubeSat. Satellites have also a major role in assisting IIoT systems to meet low latency requirements.
Although GEO satellites’ latency of 250 ms (500 ms round-trip time—RTT) is acceptable for many
IIoT applications and is comparable with the RTT of a long terrestrial link (100–200 ms), MEO and
LEO satellite constellations allow for lower latency in the special case of voice and video transmission
(less than 100 ms RTT). The competence of satellite networks in terms of the latency, even in the case
of harsh propagation conditions, is partially due to the adoption of adaptive coding and modulation
(ACM), as foreseen in the DVB—Satellite—Second Generation (DVB-S2) standard.
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3.2. Overview of Airborne Platforms for IIoT

Beyond satellites, NTNs indicate networks or segments of networks with high- and low-altitude
platforms (HAPs/LAPs) or airborne vehicles acting as aerial transceivers that operate at altitudes
ranging between 8 and 50 km above ground level [40–42]. The term HAP defines both aircrafts flying in a
roughly circular tight path in the stratosphere layer and quasi-stationary, solar-powered, non-pollutant,
and environmentally friendly airships [43]. Besides the above, LAPs fly at lower altitudes, in the
troposphere, and intend to accomplish diverse missions. Among them, unmanned aerial vehicles
(UAVs) [44] constitute a type of small fueled aircraft employed for short time periods and allow for a
rapid relay-based deployment of a multi-hop communication backbone [45]. Indicative types of UAVs
are drones, remotely piloted vehicles (RPVs), pilotless aircrafts, and robot planes, whose size may
significantly differ. Since the links of terrestrial systems are often blocked, aerial platforms have great
potential to attain a higher chance of LoS communication with the ground users and thus enhance
the coverage and connectivity. It is also noted that flying ad-hoc networks (FANETs) among aerial
platforms are also envisioned [46], owing to possible connectivity and coverage restrictions of terrestrial
and/or satellite networks. Prospective 5G, B5G, and IIoT systems are expected to include UAVs as
autonomous communicating nodes or aerial relays for attaining highly reliable connections between
sensors and data collection points at high elevation angles and across urban, suburban, and rural
terrains [47]. Both HAPs and LAPs can be rapidly deployed and moved on-demand and can also
carry a range of sensors, including geospatial sensor technologies gathering massive amounts of
valuable data [41]. To retain the high level of stability required for critical IIoT applications and prevent
displacements in any direction (e.g., roll, pitch, and yaw effects) due to wind and pressure variations,
flight control tilt sensors along with accelerometers and gyroscopes can be exploited, combined with
ultrasonic sensors for obstacle avoidance. These aerial platforms may be supplied with electro-optical
sensors and radars, achieving adequate resolutions for data acquisition purposes. To enhance the
surveillance and monitoring applications, low- or high- resolution red-green-blue (RGB) cameras
are required, whereas normalized difference vegetation index (NDVI) cameras are recommended for
unrivalled precision farming. Moreover, UAV-based light imaging, detection, and ranging (LIDAR)
is suggested for efficient mapping and localization [48]. Besides this, the hyperspectral depth and
thermal sensors facilitate the creation of aerial thermal imaging for analysis and reporting. Moreover,
3GPP suggested the deployment of aerial platforms for Long-Term Evolution (LTE) standard [49],
whereas the notion of the nomadic relay was proposed by the IEEE 802.16s Relay Task Group [50].
In 2016, the Radio Technical Commission for Aeronautics (RTCA) aspired to introduce UAVs into
the national airspace system [51]. The National Aeronautics and Space Administration (NASA) and
Federal Aviation Administration (FAA) have also cooperatively considered the integration of UAVs into
the airspace system of United States [52], while in Europe, Single European Sky ATM Research (SESAR)
has intended to meliorate air traffic management (ATM) in order to overcome challenges arising
from large UAV swarms and the different types of UAVs [53]. In this regard, a UAV swarm network
architecture with multiple layers for IoT scenarios was presented in [54], and a low-latency routing
algorithm (LLRA) was proposed that relies on the position and the connectivity of the UAVs. From an
industry perspective, Google has recently initiated Project Loon, which aims at leveraging balloons
in high altitudes as a means of provision of broadband services in remote locations [55]. Moreover,
Facebook [56] has attempted to use solar-powered drones to serve Internet access to underdeveloped or
sparsely populated countries. Additionally, Microsoft has deployed balloons equipped with cameras
and sensors that wirelessly communicate with the Azure IoT platform in order to send the telemetry
data to the field gateway through the constrained application protocol (CoAP) [57]. Qualcomm has
also investigated the use of UAVs for fourth-generation (4G) communications and beyond [58]. Table 1
provides a perspective on available communication technologies that are capable of extending the
coverage for the IIoT.
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Table 1. Comparison of long-range terrestrial and non-terrestrial communication technologies.

Terrestrial Networks
Non-Terrestrial Networks

Spaceborne Airborne

Cellular Low-Power Wide Area
Network (LPWAN)

Geostationary Earth
Orbit (GEO)

Medium Earth Orbit
(MEO)

Low Earth Orbit
(LEO) CubeSats High-Altitude Platform

(HAP)
Low-Altitude

Platform (LAP)

Altitude (km) - - 35,786 3000 <3000 <1000 17-22 <15

Mobility Static Static Static to Earth Medium High High Quasi-Stationary Varying Speeds

Round-Trip Time (ms) Lowest Lowest 500 <100 <100 ~10 Low Low

Throughput Medium to High Low Low to High Low to High Low to High Low to High Low to High Low to High

Radio Coverage Urban and Suburban Urban Global Global Global Global Global Global

Propagation Loss Least Least Highest High Medium Medium Low Low

Network Complexity Complex Complex Simple Medium Complex Complex Medium Medium

Resources Rich Rich Limited Limited Limited Limited Limited Limited

Cost Medium Medium to Low High High High Medium Medium Medium to Low
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3.3. State of the Art in Wireless Communication and Networking Technologies for NTNs

Although the mean volume of data transmitted to and from IIoT nodes may not be substantial,
greater bandwidths may be imperative to meet the stringent latency prerequisite. Additionally,
new requirements for enhanced spectral efficiency, higher throughput, and sufficient bandwidth
continuously emerge. In this respect, the multiple-input multiple-output (MIMO) [59] and massive
MIMO [60] technology can revolutionize NTNs by exploiting spatial diversity and multiplexing as well
as serving multiple ground nodes through multi-user (MU) MIMO [61]. In this direction, the extension of
the DVB—Satellite to Handheld (DVB-SH) [62] and DVB—Next Generation Handheld (DVB-NGH) [63]
standards to introduce MIMO configurations has been suggested with minor modifications. Besides the
above, the mm-wave frequencies have been proposed as key enablers of 5G and IoT systems to attain
sufficient bandwidth [60]. As the performance of radar systems is limited by target scintillations,
the application of MIMO techniques to synthetic aperture radars (SARs) can also greatly improve the
resolution and sensitivity as well as detection and estimation performance of NTN-based applications
for the IIoT by exploiting the diversity of target scattering [64]. Data rates in the multigigabit regime
can be achieved using free-space-optical (FSO) inter-satellite, inter-platform, satellite-to-platform,
satellite-to-ground, and platform-to-ground connections [65,66]. Additionally, non-orthogonal multiple
access (NOMA) represents a promising solution to facilitate the evolution of mMTC and improve the
spectral efficiency by enabling non-orthogonal data transmission and exploiting successive interference
cancellation (SIC) [42]. To update the quality of service (QoS), mobile-edge computing (MEC) represents
a promising candidate technology [67]. The extension of MEC by exploiting the advances of NTNs
can be performed in two directions: the introduction of the mobility of the MEC nodes and the
multi-hop interconnection among the MEC nodes. As cloud and fog computing and networking can
promote the cooperation of diverse networks, the UAVs’ energy-efficient deployment for caching
data in fog-based IoT systems was described in [68], focusing on a probabilistic/randomized content
placement algorithm and using stochastic geometry. Additionally, software-defined radio (SDR),
software-defined networking (SDN) [69], and network function virtualization (NFV) [70] could
redefine the network architecture and bring flexibility and cost-efficient deployment and runtime of
customized networks. In [71], SDN/NFV and microsatellite technology were integrated into the S-IoT
concept, whereas SDN/NFV-enabled flying and ground moving networks were considered in [72].
The feasibility of multi-UAV SDN-enabled drone base stations (DBS) for emergency and surveillance
monitoring scenarios was also studied in [73] and emphasis was placed on the effectiveness issues and
cybersecurity aspects.

4. Potential IIoT Applications

A wide variety of challenging applications is foreseen for IIoT [74,75]. These applications can be
categorized into two groups: the delay-tolerant ones related to mMTC and forecasting/monitoring
applications and the delay-sensitive ones regarding enhanced SCADA, time-critical IIoT, and URLLC.
The former ensures E2E massive connectivity and energy efficiency, but at the expense of augmented
delay. More specifically, delay-tolerant applications tend to be those encompassing large land and
remote or sea areas, e.g., energy and smart grid, oil and gas pipeline integrity, and tracking of mining
trucks. Applications regarding disaster and crisis management in industrial environments are also
worth mentioning. Despite the link with factories, manufacturing, and heavy industries, the term IIoT
is also used to describe several IoT applications outside of the consumer IoT in the context of facility
management, such as agriculture, transport systems, and healthcare. Figure 4 summarizes indicative
types of sensors and potential applications with respect to the NTN-based IIoT.
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4.1. Energy Applications

By employing NTNs, various electric grid automation and metering applications can be handled,
whereas the incorporation and productive use of the major energy resources and the electric grid
infrastructure can be supported by involving smart sensors, smart meters, and smart control [76].
In oil and gas production sites, where adverse environments and burdensome operating conditions
are observed, NTNs can be also beneficial by monitoring and transmitting sensor data related to
wellhead production, drilling control, distribution logistics, pipeline monitoring, and asset security.
The measured operational parameters are initially transmitted to a control room. Then, using SCADA,
set-points are arranged and control settings are expedited. By exploiting intelligent NTNs in energy
systems together with sophisticated sensors, companies can remotely collect meaningful data and thus
attain real-time vital insights into the E2E operational condition of their projects, e.g., solar panels and
wind turbines, depending on the environmental conditions, and ensure that the systems work at the
maximum possible efficiency. Moreover, by using remote installations of UAVs, the human inspection
of the facilities would be avoided.

4.2. Disaster and Crisis Management Applications

As far as natural disasters or large-scale unexpected events occur, terrestrial networks may be
overloaded or totally devastated. During these urgent situations, NTNs have the ability to provide more
effective services compared to traditional infrastructures. More specifically, NTNs can successfully
sustain applications, including video surveillance and structural monitoring, as well as facilitate
structural monitoring and protection of critical infrastructures, e.g., dams, bridges, power stations,
nuclear reactors, etc. [77]. Additionally, NTNs can strengthen security and access controls with respect
to border control, flood warning, earthquake detection, early warning for possible fire disasters,
weather and environmental monitoring, coastline and pipeline surveillance, and trafficability of
maritime routes, e.g., detection of icebergs, and synthetic aperture radar applications. Besides the
above, emergency networks via circular flight tracks of HAPs and LAPs can be realized to continuously
observe regional hotspots and hazard areas or provide emergency vehicle guidance and inform
rescue services [78].
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4.3. Agriculture and Farming Applications

The deployment of NTNs in the agriculture and farming sector mainly targets the efficient
management of water resources and irrigation systems and the monitoring of weather and climatological
conditions. To succeed in these objectives, multiple sensor nodes should be deployed at different
points across farming land and large remote plantations. In this direction, a LoRaWAN gateway can
provide ubiquitous connectivity to these sensors and send data via satellites or aerial platforms to
central cloud platforms that will then analyze this data and guide the agriculture and farming activity.
This procedure intends to optimize water usage and irrigation schedules for precision agriculture,
ensures consistent soil-water content for all plants, enables intelligent resource management in a
particular area, and decreases the amount of land required for production purposes. Using NTNs,
farming operations can also be monitored all the way from harvest to delivery [79,80]. Therefore,
farmers can make better decisions about the planting and harvesting of crops. Moreover, a long-range
and reliable network for the tracking of livestock and keeping sight of their location, health, and safety
is also viable by using tracking devices on each one of the animals.

4.4. Transportation Applications

NTNs can ensure the safety and effective management of the transportation infrastructure
and realize the Internet of Vehicles (IoV) by expanding the use of networking vehicles, sensors,
and controls [81]. Specifically, the smarter use of road and rail transportation can be enabled and
important applications can be supported, e.g., signaling and routing and alerts for road and weather
conditions. The global positioning system (GPS) though satellites can determine the positioning of each
vehicle, whereas HAPs represent a feasible solution for data acquisition in IoV, especially in rural areas.
Besides the above, the monitoring of vehicular traffic via autonomous UAVs employing cameras or
sensors is also viable. By taking advantage of NTNs, the operation of commercial autonomous shipping
can be enabled along with future commercial marine vessels, smart ports, and cargo logistics [82].

4.5. Medical Applications

As the Healthcare IIoT (HealthIIoT) will have a remarkable influence across the IIoT-driven
healthcare industry [83], NTNs can strongly support welfare and mission-critical HealthIIoT
applications [84]. Apart from extending coverage through S-IoT configurations, the deployment of UAVs
as wireless relays can enhance data communication in body area networks (BANs), thus facilitating the
provision of low-cost and timely HealthIIoT, e.g., real-time diagnosis and prescription, in remote and
inaccessible areas [85]. In this direction, UAVs can initially collect data from wearable biomedical sensors
that detect abnormal health conditions and then send the information to central devices. Additionally,
UAVs can be used for monitoring endemics/epidemics at any area and remotely recording people’s vital
signals, e.g., body temperature and heart rate, as has been proven by the recent COVID-19 outbreak [86].
Patients and the aging population can be served by NTN-based telemonitoring and medical diagnosis
from their homes through IoT-powered in-home healthcare (IHH) services, whereas interaction
though videoconferencing between medical personnel and patients at home is also viable. Moreover,
high bandwidth links can accommodate real-time medical imaging and remote robotic surgery [87].
To further improve the interaction of users with the NTN-aided HealthIIoT, recognizing the emotions
of users via AI-based methods is also foreseen [88]. However, medical information should be protected
from unauthorized access and publicly posting personal information should be avoided. Hence,
data protection in the form of digital watermarking and authentication is crucial in a HealthIIoT system.

5. Challenges of NTN-Based IIoT and the Emergence of AI

Although the spaceborne and airborne platforms have the potential to revolutionize the IIoT,
they still try to attain maturity. The major challenges and influencing factors in enabling the successful
and long-term operation of NTN-based IIoT are listed below.
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• Particularities of spaceborne and airborne platforms: NTNs have distinctive attributes,
including highly dynamic network topologies, orbits, and/or flight trajectories, as well as weak
communication links among the network elements. Besides these, possible displacements of
the aerial platforms in any direction and at a varying speed may take place due to the winds
or pressure variations of the troposphere and stratosphere layers. There also exist on-board
computation inefficiency and energy constraints stemming from the limited battery capacity.

• Application of communication and networking technologies: As far as ultra-dense NTN-based
IIoT networks are concerned, it is not straightforward to adopt well established wireless
standards and protocols, as well as conventional design methods of typical terrestrial networks.
More importantly, conventional communication and networking technologies encompass several
inherent limitations, as far as non-linear and unexpected phenomena prevail, and a massive
number of devices exists. Under these circumstances, channel estimation is a complex and
non-trivial process. Therefore, a lack of channel state information (CSI) is inevitable. It is well
known that the knowledge of CSI controls important parameters of PHY, such as power allocation,
the type of modulation, the management of resources, and the interference mitigation [89].
This issue becomes much more complex when accurate and timely CSI is required (e.g., in massive
MIMO systems) or when advanced signal processing algorithms are exploited.

• Computing offloading: Since the spaceborne and airborne platforms represent resource-constrained
devices, the provision of computation-intensive services necessitates the offloading of applications
to cloud servers with centralized and sufficient computation resources. However, in remote areas,
edge/cloud infrastructures are usually unavailable.

• Inter-operability among the heterogeneous types of wireless networks: NTNs have to deal
with mutual interference due to the diverse nature of communication technologies within the
same system or the coexistence of heterogeneous systems, which limits the performance and
capabilities of the entire system.

• Target detection and data acquisition: The inspection, collection, and analysis of structured and
unstructured sensor data to extract information and construct IIoT applications typically presupposes
human intervention. Nevertheless, accomplishing autonomous, self-configured, and self-optimized
network operations in real time within the heterogeneous and multi-dimensional NTN-based IIoT is
uncommonly complex.

To handle the aforementioned challenges and effectively respond to uncertainties, the IIoT network
elements should be context-aware and learn and make decisions from the collected and exchanged data.
In this respect, AI technologies, which have been adopted in several forms in terrestrial networks [90–92],
are seen as promising for implementation in NTN-based IIoT, enabling the transformation of “connected
things” to “connected intelligence”. Although cognitive radio technologies have been investigated
for around 20 years [93], the intelligence introduced in them is limited to solving problems regarding
spectrum access. As the intelligence expands to service orchestration and network management,
cognitive wireless communications are expected to evolve into intelligent radio communications [94,95],
where interdisciplinary approaches can be implemented from the field of communication engineering
and the IT sector.

5.1. Classification of AI Techniques

AI constitutes a generic term that invokes various techniques, which are summarized in Figure 5.
Among these techniques, machine learning (ML) [96], a subset of AI, consists of supervised and
unsupervised learning, as well as reinforcement learning (RL), and can improve the performance of a
system in processing a particular task without the need for reprogramming. The ML techniques that
rely on artificial neural networks (ANNs) are capable of extracting, predicting, and characterizing
nonlinearities from massive datasets. Evolutionary ML techniques are deep learning (DL) [97] and
deep RL (DRL) [98], which use multi-layered ANNs to deliver high accuracy and aim to teach a
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system how to autonomously learn through direct interaction with the environment, just like humans,
without guidance from an external supervisor and without the need to provide standardized and
defined models of knowledge. DL techniques constitute universal function approximators with
superior algorithmic learning abilities, regardless of the complexity of the system. In this way,
non-linear problems can be solved and systems can successfully respond to unprecedented and
undefined conditions. Since the implementation of DL involves the use of ANNs, DL models are
sometimes referred to as deep neural networks (DNNs) [99]. In DL-based recurrent neural networks
(RNNs), which are appropriate for modeling sequential data, e.g., natural language and time series,
the output from a previous step of a process is fed as an input into the current step [100]. Besides the
above, the more powerful DL-based convolutional neural networks (CNNs) are suitable for spatial
data, e.g., images, and are constructed on multiple layers of convolving trainable filters, implying a
hierarchical increase in the complexity [101]. It is noted that the learning algorithms are represented by
weights, optimizing E2E performance through appropriate training methods.
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5.2. Potential Advantages of Learning Techniques in NTN-Based IIoT

The application of AI techniques to NTNs would enable the further exploration of fundamental
and heretofore unexplored features of NTNs and the development of innovative communications
and networking technologies including new architectures, sophisticated algorithms, and protocol
designs. More specifically, the design of PHY can be optimized to increase flexibility in spectrum
access, whereas the radio channel can be accurately estimated and modeled using a limited number
of measured data and avoiding extensive measurements. In addition, the implementation of AI in
NTNs would allow these networks to have seamless autonomous communication on each type of radio
channel in the presence of interference, fading, and attenuation and enable the coexistence of NTNs
with terrestrial networks without requiring prior mathematical analysis and modeling. Additionally,
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while optimization of performance in conventional communications systems is independently handled
in each distinct stage (e.g., encoding, modulation, and detection), further improvement is expected to
be achieved if E2E performance optimization is realized though AI. In the context of network operation,
AI can be used for efficiently handling the optimization of resource allocation and congestion avoidance.
Additionally, the management of large satellite constellations and UAV swarms can be facilitated
without the need for centralized coordination. In the different cells of UDHNs, where handovers
are frequent, AI methods could be applied to learn and adapt terminals to spatio-temporal changes
so as to maintain low power consumption while attaining an exceptional QoS level. Moreover,
intelligent spaceborne and airborne platforms would be capable of sensing their surroundings and
learning the network variations, mapping out areas, tracking IIoT objects, and responding directly
and successfully to real-time changes in the radio channel. Recent studies have argued that learning a
communication system from E2E can be realized by considering this system as an autoencoder [102].
The autoencoder describes a DNN which is trained to recreate the input as the output, while the
radio channel is structured as a set of levels with stochastic and deterministic behavior. As the
information has to pass through multiple levels, the network must adopt a robust representation of
the incoming messages at each level. Figure 6 illustrates the structuring elements of a prospective
NTN in which learning techniques are applied. In this intelligent NTN, a data transmission and
reception unit facilitates the exchange of IIoT data streams among devices, a data conversion unit
with analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) enables signal
conversion, a control unit controls information and inspects data exchange among network entities,
and an AI-based advanced learning mechanism allows for effective action prediction.
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6. Overview of Existing AI Techniques for NTN-Based IIoT

In an effort to stay competitive with terrestrial networks, NTNs strive to pursue the evolution in AI
technology and take advantage of the meaningful research achievements in this area [17]. Nevertheless,
the application of AI techniques to NTN-based IIoT has been significantly less studied compared to
conventional terrestrial networks. In this section, recent research efforts on this sector are thoroughly
discussed. Additionally, these research efforts are summarized in Table 2.
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6.1. Spaceborne-Based Intelligent IIoT

Recently, AI solutions have been proposed to handle in an optimal or near optimal manner
a wide range of communication and networking issues of spaceborne platforms in varying and
unexpected operating conditions to maintain reliability and efficient utilization of the resources
and accomplish specific application missions. Among these issues, (i) the power allocation, (ii) the
energy consumption, and (iii) the computing offloading represent the most challenging ones. However,
contradictory requirements should be also fulfilled, including the low latency and enhanced throughput
and coverage as well as the vast number of interconnected devices.

To enable massive access in S-IoT, a NOMA downlink system was considered in [103] involving a
satellite source node and multiple ground nodes, where the nodes in the same spot beam coverage
synchronously shared the same frequency. For this system, a DL-based adaptive moment estimation
(Adam) algorithm was developed to jointly optimize the decoding order of SIC and the long-term
power allocation. In this regard, a neural network was used, acting as an approximation function that
was capable of calculating the SIC decoding order given the queue and channel states. The results
underlined the accuracy and efficiency of this method requiring only a few iterations with respect to
the long-term network utility, average arriving rate, and queue delay. Nevertheless, large amounts of
datasets are essential for training. A DL-based multi-objective optimization of the resource allocation
in CubeSats-based IoST networks was proposed in [104], using an ensemble DNN and a random
hill-climbing algorithm to control the weights of the neurons. The resource-constrained CubeSats
were equipped with reconfigurable plasmonic reflect arrays, whereas real satellite trajectory data
of the Iridium NEXT were utilized for training. According to the results, the inter-satellite links
are capable of supporting multi-Gbps throughput in low Earth orbits. In [67], an MEC-enhanced
S-IoT network with limited computation and energy resources was optimized in terms of energy
consumption and processing latency. This network consisted of multiple satellites acting as edge
computing nodes connected to multiple satellite gateways for IoT nodes that were distributed in a
remote area. In this respect, a Lagrange multiplier method was employed in dynamic environments to
realize the computing and communication optimization of the resource allocation, while a DRL-based
deep Q-network (DQN) was also collaboratively exploited to handle the off-loading decision.

In [105], the role of edge computing and DL in S-IoT image data target detection was discussed
and a reference three-layer architecture was presented. According to this architecture, the data for
target detection can be collected from both the S-IoT edge and cloud nodes through appropriate sensors,
while the optimization training of the DL algorithm that handles the efficient computing offloading
can be accomplished in advance and then transferred to the satellites. The results placed emphasis on
the reduction of the delay of acquiring images from satellites and the improvement of the performance
with respect to the target detection as well as the backhaul bandwidth preservation. Based on these
results, it was obvious that edge intelligent computing can intercept purposeless data transmission
and processing and also enhance the utilization of bandwidth. An S-IoT edge intelligent computing
architecture was also described in [106] that effectively accelerates the data processing by adopting
edge computing and DL methods. More importantly, S-IoT edge computing and distributed S-IoT
intelligent computing architectures were presented. The former constitutes a three-layer architecture
that comprises three parts, i.e., S-IoT cloud nodes, S-IoT edge nodes, and the ground data center. In this
architecture, the computing power of each layer gradually increases as the processes move from the edge
to the cloud. The latter, instead of performing this analysis at the cloud on the ground, enables direct
data analysis at the satellites’ sensors in a distributed lightweight DNN training manner, thus saving
the network bandwidth that would be expended by data acquisition. On the other hand, the inference
stage is locally realized. The simulation results in terms of the connectivity and coverage performance
suggested that the lightweight DNN model is the most appropriate one for S-IoT-based scenarios. As far
as SAGINs are concerned, an IoT edge/cloud remote computing offloading approach was presented
in [107]. In this approach, UAVs were employed to support near-user edge computing, with their edge
servers’ computation resources virtualized as virtual machines (VMs), whereas the satellites aimed at
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attaining radio access to the cloud computing. The offloading decision was formulated as a Markov
decision process (MDP). Additionally, a DRL-based computing offloading method was proposed in
order to learn the network’s dynamic conditions and handle complexity issues.

6.2. Airborne-Based Intelligent IIoT

One of the main potential barriers of implementing airborne-based IIoT systems is the limited
on-board capabilities of the aerial platforms that restrict their endurance, communication, sensing,
and computation capabilities. In this sense, the majority of previous works on the adoption of AI
techniques have studied the separate or joint optimization of (i) energy consumption that involves
energy harvesting and wireless power transmission (WPT), allowing for remotely recharging platforms;
(ii) task offloading based on edge computing; (iii) path planning, trajectory, and horizontal and/or
vertical placement with respect to ground or flying objects, and (iv) detection, identification, and tracking
of objects.

The energy efficiency is a serious issue for disaster management through aerial platforms,
as indicated in [108]. Thus, the optimization of the flight route of a UAV via a genetic algorithm
was suggested during data collection from ground IoT nodes that intends to minimize the energy
consumption. A decision tree ML-based classifier was also proposed to be capable of predicting the
health risk status with high precision using vital signs data gathered from devastated areas, whereas the
collected data were analyzed at the monitoring center in order to reduce energy consumption. To further
enhance the energy efficiency, multiple UAVs can be employed, with individual tasks assigned to
each of them. The use of aerial platforms flying in varying altitudes and elevation angles for the
rapid deployment of a communication network in emergency situations was proposed in [109].
More specifically, an A2G physical propagation model along with a ML-based method based on a radial
basis function (RBF) ANN were presented, aiming at providing optimized link budget performance
and energy efficiency as well as enhanced LoS connections with rescue teams randomly distributed in
an urban area. However, the inclusion of geolocations and relevant environmental information would
offer more insights into the optimization process. A UAV-enabled communication scenario for a public
safety network (PSN) was proposed in [110]. In this scenario, NOMA techniques were employed and
the batteries of IoT nodes were recharged using wireless powered communication (WPC). To optimize
the network lifetime radio frequency (RF) energy harvesting as well as overcome shortcomings related
with centralized cellular connectivity, ML methods were adopted. Moreover, the IoT nodes were
associated with particular roles, i.e., coalition heads operating as gateways or coalition members in a
distributed manner by using the minority games (MG) theory [111]. To form coalitions among the
IoT nodes while attaining energy efficiency and autonomous operation, an RL technique was applied
that considers the member nodes as stochastic learning automata. Although extensive simulation
results were provided, verifying these results using real-world testbeds is necessary in order to realize
energy-efficient and self-adaptive PSNs. In [112], the wireless powered IoT (WP-IoT) was envisioned
and a WPT system was presented that involved energy-constrained IoT sensors and a UAV serving as
an RF energy transmitter. To determine the charging policy for these sensors and decrease the data
packet loss rate, an ML framework of echo state networks (ESNs) combined with an improved k-means
clustering algorithm was suggested, whereas the problem of mitigating interference among the IoT
sensor nodes and optimally controlling the power was modeled as a mean field game (MFG).

Motivated by the benefits offered by edge computing, a three-layer MEC-based online big data
processing IoT network was envisioned in [113], where hovering UAVs were deployed as edge
servers. In addition, distributed sensors generating raw datasets and center clouds were included.
The online optimization of the edge processing scheduling was realized through an algorithm based
on Lyapunov optimization. In addition, a DRL algorithm was proposed in order to effectively optimize
the path planning of the UAVs, and a CNN Q-network that enables action rewards prediction was
trained using UAVs’ observations of the surrounding environment. The simulation results with
regard to data delay and power consumption demonstrated that the proposed algorithms can notably
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enhance service coverage. However, further investigation may be devoted to scenarios with intense
mobility and coexistence with terrestrial cellular networks. To surpass the limitations of the computing
power of ground IoT devices, an IoT system with multiple flexible and cost-effective UAV-based
MEC mobile nodes and strong LoS propagation conditions was proposed in [114] that facilitates task
offloading services. Aiming at optimizing the load balance among the UAVs while attaining adequate
coverage and QoS, a differential evolution (DE)-based algorithm was developed to find a near-optimal
UAV placement, whereas the access problem was formulated as a generalized assignment problem
(GAP). Besides the above, a DRL-based task scheduling scheme was presented that improves the
task processing efficiency of an individual UAV. The simulation results depicted that the proposed
optimization framework can achieve superior performance compared to other benchmark solutions.
The joint optimization of the multi-UAV three-dimensional (3-D) trajectory and the time resource
allocation that leads to throughput maximization in a WPC network was handled in [115]. In this
respect, a multi-agent deep Q-learning (DQL) approach was presented. Specifically, the WPC network
consisted of UAVs acting as base stations providing energy signals in the downlink to wirelessly
charge IoT devices. These devices sent data information in the uplink by exploiting the gathered
energy. The numerical results verified the efficacy of the proposed learning scheme in terms of
the maximization of the minimum throughput. Additionally, an intelligent IoT data harvesting
scheme based on resource-constrained aerial base stations and multiple ground IoT sensors was
proposed in [116] and a map-compression based ML solution was used. In this work, the propagation
parameters in an urban area were assumed to be unknown and the UAV trajectory was optimized to
increase data throughput based on 3-D map data, provided that the optimal channel parameters were
adequately learned.

As effective tracking systems can fetch the trajectory of UAVs and detect abnormal behavior,
the trajectory tracking of UAVs in 5G-IoT networks was optimized in [117], using a probability
hypothesis density (PHD) filter along with an ML technique based on k-nearest-neighbor (kNN) and
k-means clustering algorithms. The results in terms of the optimal subpattern assignment (OSPA)
distance underlined that the proposed ML-based approach outperforms the conventional Gaussian
mixture (GM) PHD filter [118], which cannot accurately track the dynamics of UAV targets and
unfortunately generates false alarms. Nevertheless, tracking scenarios, where measured data from
multiple sensors are used, should be also investigated. An intelligent UAV-based real-time monitoring
and control system for an IIoT environment that leverages fog and cloud computing was proposed
in [119], where the visual recognition of the photos captured by the UAV’s camera was instantly
performed in the cloud. To verify the reliability and efficiency of this system, a case study involving
the visual supervision in a bulk concrete production plant via drones was described, where the
International Business Machines (IBM) Watson DNN-based visual recognition service was exploited,
and fog computing together with the Node-RED programming tool were used as the bridge among the
layers of the IIoT. In [120], an intelligent UAV-based autonomous vision-based system for the inspection
of power grids was proposed. In this system, optical images were used as the primary data source
and deep residual networks (ResNets) [121] were adopted for classification, data analysis, and rapid
and accurate identification of faults and damages of power line elements. The self-driving and
autonomous inspections through UAVs can be facilitated by combining the ResNets with conventional
navigation methods, e.g., GPS. To obtain visual identification of farmlands, a decentralized and
heterogeneous intra-UAV swarm scheme, where the UAVs were equipped with multimedia or scalar
sensors, was presented in [122]. In this scheme, a faster region-based convolutional neural network
(RCNN) approach [123] was implemented in the low-power on-board computing system of the
UAVs to track ground nodes. Since the data generation in each UAV varies and leads to significant
processing delays, the optimization of computation resources in intensive processing tasks was handled
using a Nash bargaining-based intra-edge processing data offload method, where the weights were
pre-allocated based on the swarm architecture. More importantly, a central UAV node was responsible
for video capture, while the other UAVs were only responsible for sensing purposes. Contrary to
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conventional star and mesh network topologies, the scalability of the proposed distributed aerial
processing (DAP) offloading method in highly mobile environments offers substantially increased
processing speeds while requiring fewer employed UAVs. To facilitate rescue operations and enable
the virtual teleportation of rescuers to restricted areas after catastrophic events, UAV-IoT data capture
and networking for remote scene virtual reality (VR) immersion can be exploited [124]. In this respect,
the delivered expected immersion fidelity can be maximized through optimization of the network
placement policy by adopting RL methods.

Table 2. Synopsis of the research work on AI-enhanced NTNs for IoT scenarios.

Reference Platform Optimization Target AI Solution Performance Metrics

Sun et al. [103] Satellite IoT (S-IoT)

Decoding order of
successive interference
cancellation (SIC) and

long-term power allocation

Deep learning (DL)-based
Adam algorithm

Utility, data rate,
and queue delay

Nie et al. [104] Cubesat Resource allocation Deep neural network (DNN) Bit-error-rate (BER) and
data throughput

Cui et al. [67] S-IoT Latency and
energy consumption Deep Q-network (DQN) Total cost and proportion

of tasks

Wei et al. [105] S-IoT Image data target detection DL-based Connectivity, coverage,
and processing delay

Wei et al. [106] S-IoT Data processing DNN Connectivity, coverage,
and processing delay

Cheng et al. [107] SAGIN Computing offloading Deep reinforcement
learning (DRL)

Delay, run-time, total cost,
and energy consumption

Ejaz et al. [108] Unmanned aerial
vehicle (UAV) Energy efficiency Decision tree classifier Energy consumption

Almalki et al. [109]

Low-altitude
platforms (LAPs)
and high-altitude
platforms (HAPs)

Link budget,
energy efficiency,
and connectivity

Radial basis function (RBF)
artificial neural
network (ANN)

BER, probability of blocking,
probability of a call

being delayed

Sikeridis et al. [110] UAV
Lifetime radio frequency
(RF) energy harvesting

and connectivity

Machine learning
(ML)-based

Consumed energy,
harvested energy,

energy availability

Li et al. [112] UAV
Energy efficiency,
charging policy,

and interference mitigation

Echo state networks (ESNs)
and k-means algorithm

Packet loss rate,
signal-to-interference-noise

ratio (SINR)

Wan et al. [113] UAV Path planning and action
rewards prediction DRL Data delay and

power consumption

Yang et al. [114] UAV Computing offloading DRL
Reward for task scheduling
and average slowdown of

offloaded tasks

Tang et al. [115] UAV Data throughput Deep Q-learning (DQL) Minimum data throughput

Esrafilian et al. [116] UAV Trajectory Map compression based Data throughput

Tang et al. [117] UAV Trajectory tracking k-nearest-neighbor (kNN)
and k-means algorithms

Optimal subpattern
assignment (OSPA) distance

Salhaoui et al. [119] UAV Visual recognition DNN Latency

Nguyen et al. [120] UAV Image recognition and
object detection

Deep residual
networks (ResNets)

Detection of common
faultson power

line components

Mukherjee et al. [122] UAV Tracking ground targets
Faster region-based

convolutional neural
network (RCNN)

Processing time and speed

Chakareski et al. [124] UAV Delivered expected
immersion fidelity RL

Network capacity,
network rate mismatch,

and packet loss rate

6.3. Practical Limitations and Open Issues

The requirements for rapid, efficient, and real-time handling and processing of large amounts of
data in the application of advanced AI methods are particularly high. Consequently, signal processing
algorithms require parallel processing architectures and significant computational power. Hopefully,
data availability is currently possible due to the development of sensory systems, the widening of
storage in digital systems and the increase in data transmission speed. In addition, today’s powerful
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graphics processing units (GPUs) together with libraries for DL [125–127] enable real-time parallel data
processing, while clusters and cloud computing reduce the training time required by DL. Based on
the review of the research results in this section, one can conclude that the forceful DL represents
the most popular and widely used AI-based technique, enabling not only data classification but also
feature extraction as soon as a large amount of training measured data is available and the computation
capabilities are sufficient. Nevertheless, the limited processing capabilities and power resources of
spaceborne and airborne platforms may discourage the application of DL. One may ideally move more
computing power to space and air in the future, but current practical constraints enjoin the design and
implementation of low-power and efficient DL solutions.

To overcome the limitations of resources, cloud-centric DL schemes can be used that require data
transmission from the satellites and the aerial platforms to a centralized server. To avoid network
overhead during transmissions to centralized entities and collaboratively and locally train DL-based
learning models on IoT devices, employing federated DL (FDL) is proposed [128]. Besides the above,
computationally simpler AI methods, e.g., RL, which can be implemented in a distributed manner
and in resource-constrained devices, seem promising. As many critical applications require rapid
learning procedures to obtain URLLC, introducing specific constraints into the optimization procedure
and/or confidence scores to predictions can dramatically decrease the computation time. To further
improve the performance of SAGINs and satisfy the requirements of quality of experience (QoE),
jointly optimizing the communication, caching, energy, and computing resources is also suggested.

Finally, experimental testing of the proposed learning frameworks through measurements
in realistic testbed environments is required in order to validate the hitherto theoretical results.
In this regard, non-identical spaceborne and airborne types with variant orbits, velocities, altitudes,
and antenna designs can be employed while conducting similar experiments.

7. Conclusions

Owing to the rapid advances in IT and the industrial infrastructure, IIoT is expected to be widely
adopted to industries and expedite automated control, monitoring, management, and maintenance.
In this paper, an overview of the role of NTNs in the future IIoT ecosystem has been provided.
Since ubiquitous connectivity and long-range radio coverage are required in many critical IIoT
applications, spaceborne and airborne platforms along with advanced sensing and wireless technologies
can significantly enhance the QoS and QoE and strongly promote the evolution of IIoT. Although the
IIoT market constitutes a significant opportunity for aerospace service providers, there exist many
challenges and performance barriers to a successful IIoT deployment. To predict and mitigate these
challenges and meet URLLC and mMTC presuppositions, recent research efforts have focused on
advanced AI-based learning solutions with low complexity. This paper has highlighted how different
AI algorithms have been adopted and evaluated for NTN-based IIoT applications depending on the
type of the platform and the optimization target as well as the power and computational resources.
Among these algorithms, DL is the most powerful one in terms of performing E2E optimization.
Since the practical feasibility of DL depends on availability of a vast number of sensor data and
adequate processing capabilities, other less demanding AI solutions with lower complexity, such as
RL, have been considered. Overall, the combination of AI techniques and NTNs is expected to
give great impetus to the establishment of IIoT and to act as a “human eye in the sky”. However,
future supplementary work and further advancements in this area, from the AI perspective, are needed.
To this end, this paper has also underlined current limitations and discussed relevant open issues.
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Abbreviations

The following abbreviations are used in this manuscript:

3-D Three-dimensional
3GPP 3rd Generation Partnership Project
4G Fourth-generation
5G Fifth-generation
6LoWPAN IPv6 over low-power wireless personal area networks
A2A Air-to-air
A2G Air-to-ground
ACM Adaptive coding and modulation
Adam Adaptive moment estimation
ADC Analog-to-digital converter
ADCS Attitude determination and control systems
AI Artificial intelligence
ANN Artificial neural network
ATM Air traffic management
B5G Beyond 5G
BAN Body area network
BER Bit-error-rate
BLE Bluetooth low energy
CAPEX Capital expenditure
CAPP Certified Applications Provider Programme
CCTV Closed circuit television
CNN Convolutional neural network
CoAP Constrained application protocol
CPS Cyber-physical system
CSI Channel state information
DAC Digital-to-analog converter
DAP Distributed aerial processing
DBS Drone base stations
DE Differential evolution
DL Deep learning
DNN Deep neural network
DQL Deep Q-learning
DQN Deep Q-network
DRL Deep RL
DVB-NGH DVB—Next Generation Handheld
DVB-RCS2 Digital Video Broadcasting—Return Channel via Satellite – Second Generation
DVB-S2 DVB—Satellite—Second Generation
DVB-SH DVB—Satellite to Handheld
EC-GSM-IoT Extended Coverage-Global System for Mobile Communications for the IoT
eMBB Enhanced mobile broadband
EMBG Electromagnetic bandgap
EMEA European, Middle Eastern, and African
ESN Echo state network
FAA Federal Aviation Administration
FANET Flying ad-hoc network
FDL Federated DL
FSO Free-space-optical
GAP Generalized assignment problem
GEO Geostationary Earth orbit
GM Gaussian mixture
GPS Global positioning system
GPU Graphics processing unit
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GSN Global sensor network
HAP High-altitude platform
HealthIIoT Healthcare IIoT
HEO Highly elliptical orbit
HTS High throughput satellites
IBM International Business Machines
IEEE Institute of Electrical and Electronics Engineers
IHH IoT-powered in-home healthcare
IIoT Industrial IoT
IoRT Internet of Remote Things
IoST Internet of Space Things
IoT Internet of Things
IoV Internet of Vehicles
IP Internet protocol
IR Infrared
ISM Industrial, scientific, and medical
IT Information Technology
kNN k-nearest-neighbor
KPI Key performance indicator
LAP Low-altitude platform
LEO Low Earth orbit
LIDAR Light imaging, detection, and ranging
LLRA Low-latency routing algorithm
LoRa Long-range
LoRaWAN Long-range wide area network
LoS Line-of-sight
LPWAN Low-power wide area network
LTE Long-Term Evolution
LTE-M LTE for machines
LWA Leaky-wave antennas
M2M Machine-to-machine
MCU Micro-controller unit
MDP Markov decision process
MEC Mobile-edge computing
MEO Medium Earth orbit
MFG Mean field game
MG Minority games
MIMO Multiple-input multiple-output
ML Machine learning
mMTC Massive machine type communications
mm-wave millimeter-wave
MTD Machine-type device
MU Multi-user
NASA National Aeronautics and Space Administration
NB-IoT Narrowband-IoT
NDVI Normalized difference vegetation index
NFC Near field communication
NFV Network function virtualization
NLoS Non-line-of-sight
NOMA Non-orthogonal multiple access
NSR Northern Sky Research
NTN Non-terrestrial network
OPEX Operation and maintenance expenditure
OSPA Optimal subpattern assignment
OT Operational technology
PHD Probability hypothesis density
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PHY Physical layer
PSN Public safety network
QoE Quality of experience
QoS Quality of service
RAN Radio access network
RBF Radial basis function
RCNN Region-based convolutional neural networks
ResNet Residual network
RF Radio frequency
RGB Red-green-blue
RL Reinforcement learning
RNN Recurrent neural network
RPV Remotely piloted vehicle
RTCA Radio Technical Commission for Aeronautics
RTT Round-trip time
S2A Satellite-to-air
S2G Satellite-to-ground
SAGIN Space-air-ground integrated network
SAR Synthetic aperture radar
SCADA Supervisory control and data acquisition
SDN Software-defined networking
SDR Software-defined radio
SESAR Single European Sky ATM Research
SIC Successive interference cancellation
SINR Signal-to-interference-noise ratio
S-IoT Satellite IoT
UAV Unmanned aerial vehicle
UDHN Ultra-dense heterogeneous network
URLLC Ultra-reliable and low-latency communications
VM Virtual machine
VR Virtual reality
Wi-Fi Wireless Fidelity
WPC Wireless powered communication
WP-IoT Wireless powered IoT
WPT Wireless power transmission
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