
big data and
cognitive computing

Article

Developing a Robust Defensive System against
Adversarial Examples Using Generative
Adversarial Networks

Shayan Taheri †, Aminollah Khormali †, Milad Salem and Jiann-Shiun Yuan *

Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA;
shayan.taheri@knights.ucf.edu (S.T.); aminkhormali@knights.ucf.edu (A.K.); milad73s@gmail.com (M.S.)
* Correspondence: Jiann-Shiun.Yuan@ucf.edu; Tel.: +1-407-823-5719
† These authors contributed equally to this work.

Received: 29 April 2020; Accepted: 19 May 2020; Published: 22 May 2020
����������
�������

Abstract: In this work, we propose a novel defense system against adversarial examples leveraging
the unique power of Generative Adversarial Networks (GANs) to generate new adversarial examples
for model retraining. To do so, we develop an automated pipeline using combination of pre-trained
convolutional neural network and an external GAN, that is, Pix2Pix conditional GAN, to determine
the transformations between adversarial examples and clean data, and to automatically synthesize
new adversarial examples. These adversarial examples are employed to strengthen the model,
attack, and defense in an iterative pipeline. Our simulation results demonstrate the success of the
proposed method.

Keywords: adversarial machine learning; botnet detection; generative adversarial networks;
machine learning

1. Introduction

Machine learning models, specifically deep learning networks, have proven themselves to be
capable tools in a wide range of challenging domains, such as computer vision, healthcare, industry,
finance, and so forth. For instance, machine learning applications are leveraged for network traffic
analysis and in particular botnet [1] detection in ever growing number of Internet of Things (IoT)
devices (28.1 billion devices in 2020 and expected to reach trillions in 2025 [2]). Traditional machine
learning-based botnet detection approaches, including statistical methods and behavioral techniques,
rely on the extraction of patterns from empirical data using a set of selective features. However, these
techniques require expert domain knowledge for best feature engineering. Recently, researchers in the
community have proposed representation learning for automatic learning of representative features
from raw data as a technique to overcome to problems of traditional machine learning methods.
Convolutional Neural Networks (CNNs) are one of the well-established methods for representation
learning, where network traffic data can be fed to the model as either numeric or image format [3].
The later is known as visualization-based botnet detection approach, which are utilized for data
characteristics understanding and embedding features visualization [3,4]. These deep learning models
not only are capable of learning the representative properties of the network traffic data but also can
be used for prediction of the label of the future network traffic data in an automated manner.

With great usage and wide adoption of neural networks in sensitive domains, the reliability of their
results is a necessary. However, this widespread usage of deep learning models has became an incentive
for adversarial entities to manipulate the inference of these learning models such that the output is
not correct [5]. In last few years, it has been proven that deep learning models are vulnerable in

Big Data Cogn. Comput. 2020, 4, 11; doi:10.3390/bdcc4020011 www.mdpi.com/journal/bdcc

http://www.mdpi.com/journal/bdcc
http://www.mdpi.com
http://www.mdpi.com/2504-2289/4/2/11?type=check_update&version=1
http://dx.doi.org/10.3390/bdcc4020011
http://www.mdpi.com/journal/bdcc

Big Data Cogn. Comput. 2020, 4, 11 2 of 14

making inference from manipulated input data [6,7]. When presented with inputs containing minor
perturbation, that is, adversarial examples, deep learning networks would be forced to misclassify
the input and be fooled into giving wrong results [6–9]. As deep learning models learn the inherent
pattern of input dataset, introducing a small yet carefully designed perturbation into the dataset
would adversely impact the output of the model. In the concept of adversarial machine learning,
the generated adversarial examples are very similar to the original ones and not necessarily output of
the input data distribution. Thus, detection of adversarial examples is a challenging task. There exist
several algorithms to systemically generate adversarial examples [10]. Although, there exist algorithms
that work based on evolutionary-based optimization methods [11], most of the adversarial example
generator algorithms are based on the gradient analysis of the model output with regard to the input.
For instance, Goodfellow et al. proposed Fast Gradient Sign Method (FGSM) [12], which generates
adversarial examples based on only sign of the gradient. Kurakin et al. proposed Basic Iterative
Method (BIM) [13] that basically iterates FGSM method for several steps. DeepFool [8] is proposed
by Moosavi-Dezfooli et al. to find the closest distance between a given input and decision boundary
of adversarial examples. Papernot et al. presented Jacobian-based Saliency Map Attack (JSMA) [6]
that tries to generate an adversarial attack through perturbing a limited number of input features.
Although adversarial learning attacks are initially developed in the image domain, they are actively
applied on other sensitive domains, as well. For example, Grosse et al. [14] have expand on existing
adversarial example generating algorithms to create a highly-effective attack that utilizes adversarial
examples against malware detection models. Osadchy et al. [15] have utilized adversarial examples to
generate a secure CAPTCHA scheme.

In response to the vulnerability of deep learning networks to adversarial examples, there
has been huge interest in building defensive systems to improve the robustness of deep learning
models [12,16–18]. However, in a recent work it was shown that approximately all the proposed
approaches to defend against adversaries can be circumvented, with the approach of Retraining being
an exception [19]. Note that any defense mechanism not only should be robust against existing
adversarial attacks, but also performs well against future and unseen adversarial attacks within
the specified threat model. Thus, any defense proposal should be adaptive, as well.

In this work, we propose a novel defense system leveraging the unique power of Generative
adversarial networks (GANs) [20] to generate adversarial examples for retraining. We approach
attacking the deep learning network in an automated way, using an external GAN, that is, Pix2Pix [21]
conditional GAN, to understand the transformations between adversarial examples and clean data,
and to automatically generate unseen adversarial examples. After attacking the neural network, we
generate a plethora of adversarial examples in an iterative manner and use them to automate defense
against adversaries. Via doing so, we develop a defense mechanism which is practical in real-world
application with pre-trained deep learning network. Since the vulnerability against adversaries is
inherent to the world of neural networks, using an iterative offensive approach to generate new attacks
to help strengthen the neural network is the best defense.

Particularly, the main contributions of this work are structured as follows:

• Developing a novel (attacking) method for adversarial example generation, which learns the initial
data distribution of common adversarial examples and shifts it to fool a pre-trained deep
learning model.

• Creating new adversarial examples that can pass undetected to models trained on the initial
common adversarial examples.

• Attaching a pre-trained CNN to a Pix2Pix GAN and learning the generation with the goal to fool
the attached network, a technical feat which has not been done before.

• Implementing a novel iterative pipeline in order to strengthen the model, attack, and defense in
an iterative manner. After each iteration the attacker generates stronger adversarial examples,
while the robustness of the model increases through retraining and updating associated weights.

Big Data Cogn. Comput. 2020, 4, 11 3 of 14

• Conducting extensive experiments to evaluate the performance of the proposed method,
with demonstrating an application for visualization-based botnet detection systems.

The rest of the paper is organized as follows: Background information and preliminaries
are discussed in Section 2. Our developed robust defensive system against adversarial attacks
leveraging the power of generative adversarial networks is presented in Section 3. We evaluate
the performance of the proposed method and discuss the results in Section 4. Finally, conclusion and
future work is placed in Section 5.

2. Background and Preliminaries

In this work we conduct a comprehensive study that lies in the intersection of computer
vision, artificial intelligence, and cybersecurity in an attempt to develop an automated defensive
system against adversarial attacks. In this section, we describe required background information
and fundamental concepts.

2.1. Network Traffic Data Visualization

Visualization-based network traffic data analysis has recently introduced by Wang et al. [22].
The proposed approach takes three stages to convert network traffic data into gray-scale images,
including traffic splitting, traffic clearing, and image generation. These stages are described as:
(1) Traffic split: This step is responsible for splitting packet capture files to multiple discrete traffic units
into either packet capture for flow-based layers or binary for flow-based application layer. (2) Traffic
clear: This step is responsible for anonymization/sanitization, where media access control addresses
and the Internet Protocol (IP) addresses are randomized in data link layer and IP layer, respectively.
Furthermore, duplicate or empty data are removed. (3) Image generation: In this step, first traffic
data that have a significantly different size from the rest of the data, outliers, are removed. Next,
the remaining data are adjusted to a specific length, which is then transformed into gray-scale images.

2.2. Adversarial Attacks in Deep Learning

A threat model guides the generation of the adversarial examples and also defines the capabilities
of the attacker. In this study, the threat model is defined and discussed as follows:

1. The adversaries can only attack at the test stage after the training has been done. Therefore,
training data poisoning will not be examined.

2. In this work, deep convolutional neural networks will be examined as the model under attack.
While traditional machine learning models, such as like Support Vector Machines (SVM) [23]
or Random Forest (RF) [24] can also deliver high accuracy, it has been shown that adversarial
examples found in deep neural networks work effectively against these traditional models [25,26].

3. Adversaries aim to compromise integrity, which can be defined using one of the performance
metrics such as accuracy or F1-score.

4. The goal of the attacker is adversarial falsification. If an adversary is trying to fool the model
to misclassify as input as positive or negative, the attacks differ. In the case of botnet detection,
the adversary can try to make a botnet be classified as non-malicious and launch a successful
attack or make the normal data be classified as malicious and cause disastrous consequences.

5. In this study, we assume that the attacker is launching attacks frequently and in an
iterative manner.

6. The adversary has full knowledge about model structure and its internals, that
is, white-box attacks.

Based on the outline of our threat model, it lies in relatively easy attacks, where any attacker can
design an attack to make an adverse impact on the output of deep learning models. Note that building

Big Data Cogn. Comput. 2020, 4, 11 4 of 14

an effective system to defend against such prevalent attacks would immune deep learning models
against a huge number of potential threats, which is the main goal of this study.

2.3. Generative Adversarial Networks

Generative adversarial networks are a class of machine learning models comprised of two neural
networks, including a Generator network (G) and a Discriminator network (D) [20,27]. This structure
makes GANs capable of synthesizing data points similar to those of the original data distribution.
These networks have the capability to produce synthetic images that look perfect to human beings [28],
compose music [29], and even generate new molecules [30]. Similarly, this generative power can
be used to synthesize adversarial examples.

Generative network is responsible to generate perceptually convincing synthesized samples that
appear to have been drawn from a real data distribution Pdata. The generator takes a noise vector z
from a distribution of Pz and generates a new synthesized sample, G(z), which has same dimensions
as real sample. On the other hand, the discriminator is a binary classifier that takes both real sample
and the synthesized one as input and calculates the probability that the sample is real rather than fake.
Typically, training process of a GAN is involved with solving the following optimization problem (1),
where loss of the generator is directly related to the performance of the discriminator.

min
G

max
D

V(D, G) = E
x∼Pdata

[log D(x)] + E
z∼Pz

[log(1− D(G(z)))] (1)

Here, V(D, G) is the objective function, Pdata is real data distribution, D(x) denotes the probability
that D discriminates x as real data, Pz is noise distribution, G(z) is the sample generated by the
generator, and D(G(z)) indicates the probability that D determines the sample created by generator
G(z). While the discriminator tries to maximize its cost function through minimizing prediction errors,
the generator tries to minimize its cost function through generating samples that are not detectable by
the discriminator. More detailed information about GANs can be found in References [20,27].

3. Methodology

The detail of our proposed attack and defense system is proposed in this section. As it can be seen
in Figure 1, the proposed method is composed of four main components, including DL-based botnet
detector, gradient-based adversarial attacks, GAN-based adversarial attacks, and defensive mechanism.

Retraining Defense Mechanism

Victim

Model

Train

Test

Gradient-

based

Attack

Engines

𝑋′

Convolutional Neural NetworkInput

Gradient-based Adversarial Attacks

Adversarial

Examples

DL-based Botnet Detector

Updated

Victim

Model

Victim

Model

Synthesized

Adversarial

Examples

Pix2Pix

Attack

Engine

GAN-based Adversarial Attacks

Updating weights of Victim Model

Figure 1. General structure of our proposed attack and defense system. It is composed of four main
components, including DL -based botnet detector, Gradient-based adversarial attacks, GAN -based
Adversarial attacks, and defense mechanism based on retraining of victim model.

Big Data Cogn. Comput. 2020, 4, 11 5 of 14

3.1. Victim Model

Convolutional neural networks are one of the well-known representation learning techniques,
which is widely employed in a wide range of sensitive domains ranging from computer vision to
visualization-based botnet detection. Thus, in this study we employed a convolutional neural network
as our baseline botnet detection model. We refer to this baseline model as victim model, as we assumed
that this model is under adversarial attacks. Note that, as we explain in more details in next sections,
the main goal of this work is to develop a defensive system to improve the robustness of this model
against adversarial attacks leveraging unique power of generative adversarial attacks.

To build our victim model, network traffic data is converted into gray-scale images. These images
contain representative information about nature of the traffic, whether they are normal traffic data
or related to malicious activity. Our botnet detector is composed of two consecutive convolutional
layers as feature extractor and a fully connected layer as classifier.

3.2. Attack Engines

In this section, we described our attack engines that have been employed to generate adversarial
examples to attack our victim model. First, we utilized generic gradient-based attack engines to
generate adversarial examples. These adversarial attack methods are well-established and include, fast
gradient sign method [12], DeepFool [8], and projected gradient descent [31], which will be discussed
in Section 3.2.1. Second, we employed a custom generative adversarial network that is able to generate
unlimited number of adversarial examples, which will be described in Section 3.2.2.

3.2.1. Gradient-Based Attack Engine

In recent couple of years, researchers have introduced several adversarial attack methods on
deep learning models. Most of these attack methods are working based on gradient descent. In this
study, we employed three most common attack engines, including FGSM, DeepFool, and PGD ,
as examples to conduct adversarial attacks on DL-based botnet detection system. General structure
of our gradient-based adversarial attacks on DL-based botnet detection system is shown in Figure 2.
In the following, we describe each of these attack engines briefly, and refer interested readers to original
papers for more information.

Victim

Model

Train

Test

FGSM

DeepFool

PGD

Adversarial

Examples

𝑌 𝑌′

𝑋′𝑋

DL-based Botnet Detector Generic Example Generator

Convolutional Neural NetworkInput ≠

Gradient-based Attack Engine

Figure 2. General structure of the generic adversarial attack on deep learning-based botnet detection
systems. In this work, we utilized three common gradient-based adversarial attacks on our DL-based
botnet detector (victim model), including Fast Gradient Sign Method (FGSM), DeeFool, and PGD.

• FGSM: FGSM is a fast method introduced by Goodfellow et al. in 2015 [12], which updates
each feature in the direction of the sign of the gradient. This perturbation can be created after
performing back-propagation. Being fast makes this attack a predominant attack in real world
scenarios. FGSM can be formulated using (2).

XAdv = X + ε · sign (∇X J(X, Y)) (2)

Big Data Cogn. Comput. 2020, 4, 11 6 of 14

Here, X is the clean sample, XAdv is the adversarial example, J is the classification loss,
Y is the label of the clean sample, and ε is a tunable parameter that controls the magnitude of
the perturbation. Note that, in FGSM only direction of the gradient is important not its magnitude.

• DeepFool: This attack is introduced by Moosavi-Dezfooli et al. [8] as an untargeted iterative
attack based on the L2 distance metric. In this attack the closest distance from the clean input to
the decision boundary is found. Decision boundaries are the boundaries that divide different
classes in the hyper-plane created by the classifier. Perturbations are created in a manner that
pushes the adversarial example outside of the boundary, causing it to be misclassified as another
class, as demonstrated in Algorithm 1.

Algorithm 1: The process of generating adversarial examples based on DeepFool
method [8].

1 input: Image x, classifier f
2 output: Perturbation r̂
3 Initialize x0 ← x, i← 0
4 while sign (f (xi)) = sign (f (x0)) do

5 ri ← −
f (xi)

‖∇ f (xi)‖2
2
∇ f (xi)

6 xi+1 ← xi + ri
7 i← i + 1
8 end while
9 return r̂ = ∑i ri

• PGD: This attack is proposed by Madry et al. [31] as an iterative adversarial attack that creates
adversarial examples based on applying FGSM on a data point x0, in an iterative manner, that
is obtained by adding a random perturbation of magnitude α to the original input x. Then
the perturbed output is projected to a valid constrained space. The projection is conducted by
finding the closet point to the current point within a feasible region. This attack can be formulated
based on the following equation.

xi+1 = Projx+S

(
xi + α sign

(
∇xi J

(
θ, xi , y

)))
, (3)

where xi+1 is the perturbed input at iteration i + 1 and S denotes the set of feasible perturbations
for x.

3.2.2. GAN-Based Attack Engine

Generative adversarial networks have the capability to produce synthetic images that look perfect
to human beings [28], compose music [29], and even generate new molecules [30]. In this work, we
utilize a conditional generative adversarial network specifically designed for image domain, that
is, Pix2Pix [21]. In conditional GANs additional information, such as source image, is provided.
Thus, loss function of a conditional GAN can be determined as (4).

LcGAN(G.D) =Ex∼pdata(x)[log(D(x.y))] + Ez∼pz(z)[log(1− D(G(z.y).y))]. (4)

This fact makes Pix2Pix a perfect fit for the image classification and botnet detection domain to
be used to understand the transformations between normal data and malicious data and generating
unlimited amounts of new adversarial examples. In Pix2Pix, the generator is build based on the U-net

Big Data Cogn. Comput. 2020, 4, 11 7 of 14

structure, while the discriminator has built based on PatchGAN architecture. We refer the interested
readers to the source paper for more information about Pix2Pix structure [21].

Pix2Pix is a type of conditional GAN employs a loss function to train the mapping from input
image to output image. This adversarial loss function, shown in (5), forces the generator to create
a sample that resembles the conditioning variable x. Finally, this adversarial loss function is added
to (4).

LL1(G) = Ex,y,z [‖x− G(z.y)‖1] . (5)

The loss function in this work is as (6).

L(G.D) = LcGAN(G.D) + λLL1(G), (6)

where λ is a hyper-parameter that controls the weight of the term.
The general architecture of our Pix2Pix-based adversarial example generator is shown in Figure 3.

After the transformations are fond, any given clean data from the dataset can be transformed into
a malicious data. In other words, the Pix2Pix learns how to add perturbation to the data in an
automated manner. This automated attacking is leveraged, and a huge corpus of new attack data is
generated. To enable the Pix2Pix to generate better attacks, each generated image is fed to the victim
model and is tested to see if it fools the model or not. This can be formulated via adding a loss function
for the attack on the model, which can help the training of the Pix2Pix. By doing so, the Pix2Pix
autonomously attacks the model using the understanding of the perturbation distribution and is able
to generate huge corpus of unseen adversarial examples.

𝐹𝐺𝑆𝑀

𝐷𝑒𝑒𝑝𝐹𝑜𝑜𝑙

𝑃𝐺𝐷 𝐿
𝑎
𝑏
𝑒𝑙

Generic

Adversarial

Attack

Victim

Model

DL-based Botnet Detector

Input

GAN-based Attack Engine

𝑖𝑛𝑝𝑢𝑡Generator

Discriminator
𝑖𝑛𝑝𝑢𝑡
𝑜𝑢𝑡𝑝𝑢𝑡

Pix2Pix

𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑
𝐹𝐺𝑆𝑀

𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑
𝐷𝑒𝑒𝑝𝐹𝑜𝑜𝑙

𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑
𝑃𝐺𝐷

Victim

Model
𝑖𝑛𝑝𝑢𝑡
𝑜𝑢𝑡𝑝𝑢𝑡

Adversarial Examples

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑊𝑒𝑖𝑔ℎ𝑡𝑠

𝐿
𝑎
𝑏
𝑒𝑙

Gradient-based Attack Engine

Figure 3. General structure of the GAN-based adversarial attacks on DL-based botnet detection system.
Here, we employed Pix2Pix to synthesize new adversarial examples that are similar to adversarial
examples generated in Section 3.2.

3.3. Defense Mechanism

Having generated a substantial number of adversarial examples in an automated manner, we
can defend against them using retraining approach. Retraining consists of feeding the adversarial
data back to the victim model and training it again. Having done so, we can convey to the neural
networks that it is making mistakes in certain inputs. The neural network then learns how to avoid
these mistakes by improving its decision boundaries, as shown in Figure 4. This method has been
proven to withstand adversarial attacks when other defenses, such as change in structure, have failed.

General structure of our proposed defensive method is shown in Figure 5. This can be done in
the following steps; Step 1—Fine-tune the neural network using the generative adversarial examples,

Big Data Cogn. Comput. 2020, 4, 11 8 of 14

improving the model. Step 2—Generate more examples via using the formulated automated attack
on the improved model. Step 3—Iterate by going back to step 1 until desired performance metric
is reached.

Figure 4. In retraining the defensive approach the victim model learns how to avoid mistakes by
improving its decision boundaries.

GAN-based Adversarial Attacks

𝑖𝑛𝑝𝑢𝑡Generator

Discriminator
𝑖𝑛𝑝𝑢𝑡
𝑜𝑢𝑡𝑝𝑢𝑡

Pix2Pix

𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑
𝐹𝐺𝑆𝑀

𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑
𝐷𝑒𝑒𝑝𝐹𝑜𝑜𝑙

𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑
𝑃𝐺𝐷

Victim

Model

𝑖𝑛𝑝𝑢𝑡
𝑜𝑢𝑡𝑝𝑢𝑡

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑊𝑒𝑖𝑔ℎ𝑡𝑠

L
ab
el
s

Updated Victim Model

Updating weights of Victim Model

Retraining

Victim

Model

Train

Test

FGSM

DeepFool

PGD

𝐿 𝐿′

𝑋′𝑋

Convolutional Neural NetworkInput ≠

Gradient-based Adversarial Attacks

Attack Engines

𝑋𝐹𝐺𝑆𝑀

𝑋𝐷𝑒𝑒𝑝𝐹𝑜𝑜𝑙

𝑋𝑃𝐺𝐷

L
ab

el
s

Adversarial Examples

DL-based Botnet Detector

Figure 5. General architecture of our proposed attack and defense system. In the retraining
process the weights of the victim model are being updated in each iteration, thus improves its
decision boundaries. In return, this process also yields to more powerful adversarial examples after
each iteration.

This iterative approach will cause the neural network to evolve over time. The impact of this
defense can be significant on neural networks in security domain. With the example of malware
detection in mind, this technique allows for new adversarial examples to be generated on each iteration
for a specific pre-trained neural network. This model which carries out the task of malware detection
in real life is then retrained on the new attack data and becomes more robust towards them. This task
iterates, and the model evolves until certain accuracy is reached.

4. Evaluation and Discussion

We evaluate the performance of the proposed method for both generating new adversarial
examples and defending against them through comprehensive experiments. In the following, first
we give a brief description about utilized dataset, experimental setup, and evaluation metrics in
Section 4.1, Section 4.2 and Section 4.3, respectively. Finally, the obtained results are discussed in
Section 4.4.

Big Data Cogn. Comput. 2020, 4, 11 9 of 14

4.1. Dataset

To evaluate the performance of the proposed approach, we utilized CTU-13 dataset [32] that is
a dataset of botnet, normal, and background traffic with corresponding labels. In this study, we only
used normal and botnet traffic data. Table 1 shows the distribution of the normal and botnet samples in
this study. We randomly selected a smaller subset of train and test data, while maintaining the original
distribution, totalling into 50,000 samples as train samples and 10,000 samples as test data, to conduct
our experiments. All train and test data are converted into gray-scale images based on the technique
described in Section 2.1.

Table 1. Distribution of train and test samples across normal and botnet classes.

Train Test

Normal 34,144 7376

Botnet 15,856 2624

Total 50,000 10,000

4.2. Experimental Setup

For reproducibility of our proposed method, in the following we provide detailed information
about the experimental setup we employed in this study.

Implementation To implement our attack algorithms we utilized a Python library, Cleverhans [33],
which is a library to benchmark machine learning systems’ vulnerability to adversarial examples. It is
an adversarial example library for constructing attacks, building defenses, and benchmarking [33].

Parameters The proposed method has several methods for each attack and defense scenario.
Several experiments were conducted with different values for each parameter to achieve desirable
results, that is, higher misclassification rate in attack phase, while lower fooling rate in defence phase.
For instance, PGD has two parameters to be tuned, ε and number of iterations, which were set to 0.15
and 10, respectively. With this setting we were able to achieve a fooling rate of 99.98%.

Evaluation System All of the experiments are conducted on a Lambda Quad deep learning
workstation with Ubuntu 18.04 OS, Intel Xeon E5-1650 v4 CPU, 64 GB DDR4 RAM, 2TB SSD, 4TB
HDD, and 4 NVIDIA Titan-V Graphics Processing Units (GPUs).

4.3. Evaluation Metrics

In order to find out how well the attacks and defense mechanisms are performing, a set of
proper performance metrics need to be defined. In classification tasks this metrics can be accuracy
or F1 score as defined in (7) and (8), respectively. Although in the adversarial example generation
domain accuracy score is a mandatory metric, we need more evaluation metrics to measure the
quality of the synthesized examples and their fooling rate. The quality of generated adversarial
examples is examined via calculating the distance metric as average of their L2 norm distance between
the normalized form of clean data and the synthesized data. Furthermore, the fooling rate is considered
to be the number of samples that are not classified correctly.

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

F1 Score =
2TP

2TP + FP + FN
(8)

where True Positive (TP) and True Negative (TN) are correctly identified botnet and normal samples,
respectively. While False Positive (FP) is normal samples that are classified as botnet, False Negative
(FN) is botnet samples that are classified as normal. These metrics are used to create the confusion
matrix, as shown in Table 2.

Big Data Cogn. Comput. 2020, 4, 11 10 of 14

Table 2. The confusion matrix for botnet detection.

True Label

Botnet Normal

Predicted Label
Botnet True Positive (TP) False Positive (FP)

Normal False Negative (FN) True Negative (TN)

4.4. Results

In this section, we present our experiments with the systematic approaches described above to see
the proposed approach’s capabilities in generating new adversarial examples and defending against
them. All our experiments are conducted on the CTU-13 dataset [32], which is a dataset with given
labels for botnet, normal and background traffic. In this study, we only employed the botnet and
the normal traffic data. The collected set are transformed into gray-scale images using the technique
described in Section 2.1.

Victim Model Performance The generated images are utilized to build our victim model based
on convolutional neural network architecture, as described in Section 3.1. The evaluation results of
these experiments are shown in Table 3. As it can be seen from this table, our model is able to achieve
an accuracy rate of 99.99% and an F1 score of 99.98%. Note that this model will be used as our victim
model (baseline) model for generating adversarial examples and defending against them.

Table 3. Analysis of confusion matrix of victim model in classification of botnet and normal traffic data.

Confusion Matrix Accuracy Rate (%) F1 Score (%)
Predicted Label

99.99 99.98Botnet Normal

True Label Botnet TP = 2624 FN = 0
Normal FP = 1 TN = 7375

Gradient-based Adversarial Attacks In order to examine the robustness of our victim model
against gradient-based adversarial attacks, we used three well-established adversarial methods for
experiments. Our obtained results demonstrate that all FGSM, DeepFool, and PGD methods are able
to fool the classifier with high success rate. The obtained results for these experiments are presented in
Table 4. For instance, PGD is able to achieve a fooling rate of 99.98% with an average distortion rate of
18.93%, outperforming the other two attacks. We assume that lower fooling rate of the DeepFool is due
to its inherent presumptions, where classifiers are considered to be linear with hyperplanes separating
each of the classes from another.

Table 4. Fooling and average distortion rate of each adversarial attack method.

Attack Fooling Rate (%) Distortion Rate (%)

FGSM 99.69 39.73

DeepFool 67.73 43.93

PGD 99.98 18.93

GAN-based Iterative Attack and Defense By generating a plethora of adversarial examples
using gradient-based attack methods, the main goal of the GAN-based iterative attack and defense
is to generate both more powerful adversarial examples and improve the robustness of the model
at the same time. We evaluated performance of this attack and defense strategy with all three
gradient-based adversarial attacks. In the nutshell, we synthesize adversarial examples similar to
that of gradient-based approach to retrain the victim model and then test the robustness of the victim

Big Data Cogn. Comput. 2020, 4, 11 11 of 14

model against original adversarial example, which are not seen by the victim model. This means that
we are improving the robustness of the victim model against gradient-based adversarial examples
without actually showing them to the victim model.

• FGSM Figure 6 demonstrates performance of proposed method in generating stronger adversarial
examples, which are used to improve the performance of the victim model to defend against
FGSM-based adversarial examples. As can be seen, after each iteration it was able to synthesize
more samples that are fooling the victim model. Retraining the model using these synthesized
examples, on the other hand, as it was expected improves the decision boundaries of the victim
model such that fooling rate drops from 673 to 237 samples only after five iterations.

• DeepFool The obtained results for iterative attack and defense based on DeepFool are shown in
Figure 7. Although the fooling rate of the DeepFool algorithm was only 67.73%, the GAN-based
algorithm is able to generate similar number of successful synthesized adversarial examples as
FGSM. This is promising as it demonstrates that our GAN-based approach is able to generate new
and strong adversarial examples with even fewer number of samples. Similarly, the robustness of
the retrained victim model is improved.

• PGD The obtained results for iterative attack and defense based on PGD is shown in Figure 8.
The obtained results from our experiments demonstrates a similar trend to that of both FGSM
and DeepFool methods.

In order to better understand the results, we present our obtained results in a normalized format
in Figure 9. As can be seen from this figure, FGSM and PGD methods follow very similar trends both in
attack and defense phases. The DeepFool method performs relatively better in attack phase; however,
it shows less success in the defense phase. In addition, the trend shows that although number of new
fooling samples increases after each iteration, the defensive power of the system saturates after few
iterations. This is due to the fact that distribution of the synthesized adversarial samples experiences a
shifts after each iteration. Therefore, the victim model starts to learning new distribution other than
the original distribution.

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 1 2 3 4 5

F
o
o
lin

g
 S

a
m

p
le

s

Iteration

Attack Performance - FGSM

FGSM

(a) Attack Performance

 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 1 2 3 4 5

F
o
o
lin

g
 S

a
m

p
le

s

Iteration

Defence Performance - FGSM

FGSM

(b) Defence Performance

Figure 6. The results of FGSM.

Big Data Cogn. Comput. 2020, 4, 11 12 of 14

 2000
 2200
 2400
 2600
 2800
 3000
 3200
 3400
 3600
 3800
 4000

 1 2 3 4 5

F
o
o
lin

g
 S

a
m

p
le

s

Iteration

Attack Performance - DeepFool

DeepFool

(a) Attack Performance

 200

 300

 400

 500

 600

 700

 800

 1 2 3 4 5

F
o
o
lin

g
 S

a
m

p
le

s

Iteration

Defence Performance - DeepFool

DeepFool

(b) Defence Performance

Figure 7. The results of DeepFool.

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 1 2 3 4 5

F
o
o
lin

g
 S

a
m

p
le

s

Iteration

Attack Performance - PGD

PGD

(a) Attack Performance

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5

F
o
o
lin

g
 S

a
m

p
le

s

Iteration

Defence Performance - PGD

PGD

(b) Defence Performance

Figure 8. Our simulation results based on PGD attack method. While (a) presents attack performance,
(b) shows the success of our proposed defensive system for five iterations.

 25

 30

 35

 40

 45

 50

 55

 60

 1 2 3 4 5

F
o
o
lin

g
 R

a
te

 (
%

)

Iteration

Attack Performance

FGSM
DeepFool

PGD

(a) Attack Performance

 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

 1 2 3 4 5

F
o
o
lin

g
 R

a
te

 (
%

)

Iteration

Defence Performance

FGSM
DeepFool

PGD

(b) Defence Performance

Figure 9. Overall simulation results for all three attack types. We observed similar trends for all three
attack methods in both attack and defence scenarios.

5. Conclusions

Thanks to the powerful learning capabilities of neural networks, they are actively being used in a
wide range of domains, specifically sensitive domains. However, it has been shown that adversarial
entities are able to manipulate the inference of the model through adversarial examples. Although there
exist several defensive methods, it has shown that most of them can be circumvented. Thus, in this

Big Data Cogn. Comput. 2020, 4, 11 13 of 14

work, we propose a novel defense system leveraging the unique power of GANs to generate adversarial
examples for retraining. We approach attacking the neural network in an automated way, using
an external GAN, that is, Pix2Pix conditional GAN, to understand the transformations between
adversarial examples and clean data, and to generate unseen adversarial examples automatically.
After attacking the neural network, we create a plethora of adversarial examples in an iterative
manner and use them to automate defense against adversaries. Via doing so, we develop a defense
mechanism which is practical in real-world application with pre-trained neural networks. We evaluate
the performance of our developed method against visualization-based botnet detection systems.
Our results demonstrate the success of our proposed method. For example, the number of fooling
adversarial examples generated by the PGD method is decreased from 824 to 226 samples after only
five iterations.

Author Contributions: M.S. and S.T. came up with the ideas. S.T. and A.K. ran the experiments. A.K. wrote the
manuscript. J.-S.Y. provided technical feedback and A.K. revised the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported in part by Florida Center for Cybersecurity.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Silva, S.S.; Silva, R.M.; Pinto, R.C.; Salles, R.M. Botnets: A survey. Comput. Netw. 2013, 57, 378–403.
2. Manyika, J.; Chui, M.; Bisson, P.; Woetzel, J.; Dobbs, R.; Bughin, J.; Aharon, D. Unlocking the Potential of the

Internet of Things; McKinsey Global Institute: Washington, DC, USA, 2015.
3. Taheri, S.; Salem, M.; Yuan, J.S. Leveraging Image Representation of Network Traffic Data and Transfer

Learning in Botnet Detection. Big Data Cogn. Comput. 2018, 2, 37.
4. Vinayakumar, R.; Alazab, M.; Srinivasan, S.; Pham, Q.V.; Padannayil, S.K.; Simran, K. A Visualized Botnet

Detection System based Deep Learning for the Internet of Things Networks of Smart Cities. IEEE Trans. Ind.
Appl. 2020, doi:10.1109/TIA.2020.2971952.

5. Chen, B.; Ren, Z.; Yu, C.; Hussain, I.; Liu, J. Adversarial examples for CNN-based malware detectors.
IEEE Access 2019, 7, 54360–54371.

6. Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning
in adversarial settings. In Proceedings of the 2016 IEEE European Symposium on Security and Privacy
(EuroS&P), San Sebastian, Spain, 7–8 July 2016; pp. 372–387.

7. Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik, Z.B.; Swami, A. Practical black-box attacks against
machine learning. In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security, Abu Dhabi, UAE, 2–6 April 2017; pp. 506–519.

8. Moosavi-Dezfooli, S.M.; Fawzi, A.; Frossard, P. Deepfool: A simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,
NV, USA, 27–30 June 2016; pp. 2574–2582.

9. Wang, B.; Yao, Y.; Viswanath, B.; Zheng, H.; Zhao, B.Y. With great training comes great vulnerability:
Practical attacks against transfer learning. In Proceedings of the 27th USENIX Security Symposium (USENIX
Security 18), Baltimore, MD, USA, 15–17 August 2018; pp. 1281–1297.

10. Yuan, X.; He, P.; Zhu, Q.; Li, X. Adversarial examples: Attacks and defenses for deep learning. IEEE Trans.
Neural Netw. Learn. Syst. 2019, 30, 2805–2824.

11. Su, J.; Vargas, D.V.; Sakurai, K. One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput.
2019, 23, 828–841.

12. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. In Proceedings of
the International Conference on Learning Representation ICLR, San Diego, CA, USA, 7–9 May 2015.

13. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial examples in the physical world. arXiv 2016,
arXiv:1607.02533.

14. Grosse, K.; Papernot, N.; Manoharan, P.; Backes, M.; McDaniel, P. Adversarial examples for malware
detection. In Proceedings of the European Symposium on Research in Computer Security, Oslo, Norway,
11–15 September 2017; pp. 62–79.

Big Data Cogn. Comput. 2020, 4, 11 14 of 14

15. Osadchy, M.; Hernandez-Castro, J.; Gibson, S.; Dunkelman, O.; Pérez-Cabo, D. No bot expects the
DeepCAPTCHA! Introducing immutable adversarial examples, with applications to CAPTCHA generation.
IEEE Trans. Inf. Forensics Secur. 2017, 12, 2640–2653.

16. Buckman, J.; Roy, A.; Raffel, C.; Goodfellow, I. Thermometer encoding: One hot way to resist adversarial
examples. In Proceedings of the International Conference on Learning Representation ICLR, Vancouver, BC,
Canada, 30 April–3 May 2018 .

17. Guo, C.; Rana, M.; Cisse, M.; Van Der Maaten, L. Countering adversarial images using input transformations.
In Proceedings of the International Conference on Learning Representation ICLR, Vancouver, BC, Canada,
30 April–3 May 2018 .

18. Song, Y.; Kim, T.; Nowozin, S.; Ermon, S.; Kushman, N. Pixeldefend: Leveraging generative models to
understand and defend against adversarial examples. In Proceedings of the International Conference on
Learning Representation ICLR, Vancouver, BC, Canada, 30 April–3 May 2018 .

19. Athalye, A.; Carlini, N.; Wagner, D. Obfuscated Gradients Give a False Sense of Security: Circumventing
Defenses to Adversarial Examples. In Proceedings of the 35th International Conference on Machine Learning,
Vienna, Austria, 25–31 July 2018; Volume 80, pp. 274–283.

20. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

21. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–28 July 2017; pp. 1125–1134.

22. Wang, W.; Zhu, M.; Zeng, X.; Ye, X.; Sheng, Y. Malware traffic classification using convolutional neural
network for representation learning. In Proceedings of the 2017 International Conference on Information
Networking (ICOIN), Da Nang, Vietnam, 11–13 January 2017; pp. 712–717.

23. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.
24. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis

and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282.
25. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks?

In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13
December 2014; pp. 3320–3328.

26. Dong, Y.; Pang, T.; Su, H.; Zhu, J. Evading defenses to transferable adversarial examples by
translation-invariant attacks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 15–20 July 2019; pp. 4312–4321.

27. Pan, Z.; Yu, W.; Yi, X.; Khan, A.; Yuan, F.; Zheng, Y. Recent progress on generative adversarial networks
(GANs): A survey. IEEE Access 2019, 7, 36322–36333.

28. Tolosana, R.; Vera-Rodriguez, R.; Fierrez, J.; Morales, A.; Ortega-Garcia, J. DeepFakes and Beyond: A Survey
of Face Manipulation and Fake Detection. arXiv 2020, arXiv:2001.00179.

29. Engel, J.; Agrawal, K.K.; Chen, S.; Gulrajani, I.; Donahue, C.; Roberts, A. Gansynth: Adversarial neural
audio synthesis. arXiv 2019, arXiv:1902.08710.

30. De Cao, N.; Kipf, T. MolGAN: An implicit generative model for small molecular graphs. arXiv 2018,
arXiv:1805.11973.

31. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to
adversarial attacks. In Proceedings of the International Conference on Learning Representation ICLR,
Vancouver, BC, Canada, 30 April–3 May 2018.

32. Garcia, S.; Grill, M.; Stiborek, J.; Zunino, A. An empirical comparison of botnet detection methods. Comput.
Secur. 2014, 45, 100–123.

33. Papernot, N.; Faghri, F.; Carlini, N.; Goodfellow, I.; Feinman, R.; Kurakin, A.; Xie, C.; Sharma, Y.; Brown, T.;
Roy, A.; et al. Technical Report on the CleverHans v2.1.0 Adversarial Examples Library. arXiv 2018,
arXiv:1610.00768.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Preliminaries
	Network Traffic Data Visualization
	Adversarial Attacks in Deep Learning
	Generative Adversarial Networks

	Methodology
	Victim Model
	Attack Engines
	Gradient-Based Attack Engine
	GAN-Based Attack Engine

	Defense Mechanism

	Evaluation and Discussion
	Dataset
	Experimental Setup
	Evaluation Metrics
	Results

	Conclusions
	References

