
applied
sciences

Article

An Improved Ciphertext-Policy Attribute-Based
Encryption Scheme in Power Cloud Access Control

Yuancheng Li 1,*, Pan Zhang 1,2 and Boyan Wang 1

1 School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China;
zhangpan-23@126.com (P.Z.); 13261200907@163.com (B.W.)

2 State Grid Information & Telecommunication Branch, Beijing100761, China
* Correspondence: yuancheng@ncepu.edu.cn

Received: 13 September 2018; Accepted: 29 September 2018; Published: 6 October 2018
����������
�������

Abstract: In power cloud environment, the existing Ciphertext-Policy Attribute-Based Encryption
(CP-ABE) access control schemes, do not consider the generation of access structure and the existence
of malicious users. To tackle these problems, a power cloud access control (PCAC) scheme is
proposed, which improves the traditional CP-ABE access control model. Considering the heavy time
consumption of CP-ABE, PCAC encrypts the symmetric key, instead of the raw data. PCAC combines
the access tree and linear secret-sharing scheme (LSSS) to achieve the automatic generation and
efficient operation of access structure. Additionally, an action audit phase, based on zero-knowledge
verification was designed to defend against malicious users. The experiments proved that PCAC
meets the requirement of fine-grained access control, in a power cloud. Compared with existing
CP-ABE schemes, the PCAC scheme reduced about half of the time consumption, in the action audit
phase and costs about one-third the time, in the data obtainment stage.

Keywords: power cloud; access control; CP-ABE; action audit

1. Introduction

With the fast development of cloud computing, it is economic for individuals and companies
to save their data in cloud. However, the safety of outsourced data, in cloud storage, has always
been a big issue. Power cloud contains a large number of users with complex system structure and
different data security requirements, which needs an automatic, fine-gained access control scheme.
National Institute of Standards and Technology (NIST) specifies the role-based access control (RBAC)
requirements for a smart grid access control [1]. In this study, we focus on the attribute-based access
control (ABAC), which is more fine-gained than RBAC.

CP-ABE is an ABAC scheme and was first proposed by Beyhencourt [2], who defined the basic
algorithms. In the model of CP-ABE, the ciphertext corresponds to access structure, while the key
corresponds to the attribute set. If, and only if, the user’s attribute set satisfies the access structure,
the user can decrypt the data. This scheme can meet the fine-grained access control requirement of
power clouds, but it is difficult to meet the security requirement. The recent research on CP-ABE
focuses on the improvement of access structures [3–10] and the generation and distribution of the secret
key [11–19]. Li [3] combined the access tree with an Ordered Binary Decision Diagram, and employed
a Boolean function in the leaf node, to finish the generation of the secret key and the attribute-based
encryption, with less time complexity, which reduced the computing cost. Wang [4] proposed a
hierarchical access structure which was based on access trees, in order to save the storage space of
the access tree. However, this scheme only achieved the deduplication of access structures, rather
than improve the structure of access tree. Xue [5] solved the problem of a single-point performance
bottleneck and the security problem of multi-agency access control. In their scheme, the verification

Appl. Sci. 2018, 8, 1836; doi:10.3390/app8101836 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9142-6896
http://www.mdpi.com/2076-3417/8/10/1836?type=check_update&version=1
http://dx.doi.org/10.3390/app8101836
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 1836 2 of 15

of the attribute set, and the access structure was shared by multiple semi-trusted third-part attribute
authorities. They refined the steps of the generation and distribution of the secret key, confirmed,
and traced malicious users by monitoring the key generation and the distribution process. Wang [6]
improved the key generation phase and proposed a new scheme in which he changed the traditional
single authority model. In this model he introduced the multi-agency idea where different agencies
managed different trapdoors. Users could obtain the shared secret key from multiple agencies, so it can
protect the user’s identifier and attribute set, to achieve the purpose of privacy protection. Alrawais [7]
applied a subset difference algorithm in the environment of fog computing, which is similar to
cloud computing, in order to update the access tree after the attribute is revoked. Xue [8] proposed
the generation and management of the sub-attributes with 0-encoding and 1-encoding, in order to
achieve the attribute comparison. Zhang [9] proposed a secure scheme which achieve revocation
and traceability requirement with the use of a subset cover algorithm. Zhou [10] proposed a Privacy
Preserving Constant CP-ABE (PPC-CP-ABE) scheme that reduces the ciphertext to a constant size
with any given number of attributes. PPCCP-ABE applies a hidden policy construction so that the
recipients’ privacy is preserved efficiently.

Many improvements have been made in key generation and distribution processes [11–19].
Yan [11] proposed a scheme based on trust evaluated by the data owner or reputations generated
by a number of reputation centers through the CP-ABE and Proxy Re-Encryption. Waters [12] and
Balu [19] proposed a new way using the linear secret-sharing scheme (LSSS). They described a
specific access structure by constructing an LSSS matrix from which the secret key was generated.
Only when all the attribute sets satisfy the requirement of the trap doors, the secret key can be generated
correctly. Calculations of this scheme is simplified with the matrix operation. Han [13] proposed a
privacy-preserving decentralized CP-ABE (PPDCP-ABE) to reduce the trust on the central authority
and protect the users’ privacy. Each authority can work independently without any collaboration
to initial the system and issue secret keys to users. Users can obtain secret keys from multiple
authorities without them knowing anything about himself/herself. Since CP-ABE uses a long-key
and computational time for the encryption, and the decryption algorithm increases with the grow
of attributes number, Guo [14] made improvements in the encryption algorithm. The algorithm
they designed is independent of the number of attributes and the minimum secret key length. It is
shortened to 672 bits, which greatly reduced the time for decryption. Lin [15] proposed a collaborative
key management protocol in CP-ABE to realize the distributed generation, issue, and storage of
private keys, without adding any extra infrastructure. Experiments prove that Lin’s scheme has
better performance in mobile devices. Ning [16] proposed an auditable σ-time outsourced CP-ABE,
which provides σ-time fine-grained access control and audits the correctness of the operation. Liu [17]
proposed a fine-grained two-factor authentication (2FA) access control system for web-based cloud
computing services. The cloud server has no idea on the exact identity of the user, to protect the user’s
privacy. Li [18] proposed a new scheme called outsourcing attribute-based encryption with keywords
search function(KSF-OABE).Cloud service privader perform search encrypted keywords instead of the
keywords embedded in trapdoor.

However, the existing CP-ABE schemes have not considered the security issue of the data source
and the generation of the access structure. On one hand, the data sources in power cloud are not
only collectors but also sensors which cannot judge who has access to the data, so there should be
an administrator to generate the access structure. If an agent is responsible for generating the access
structure, it is difficult to adapt to the high-frequency data storage, and the administrator may make
some mistakes. If an entity undertakes the task of a human administrator, some security issues
may be discovered. On the other hand, there may be malicious users on both data source-side and
user-side, who could make the power cloud create a wrong access structure, by forging or tampering
identification. In order to meet the high-frequency data storage requirements of the power cloud and
prevent possible attacks, the access control scheme must contain both the data collection stage and the
data obtainment stage.

Appl. Sci. 2018, 8, 1836 3 of 15

This paper proposes a Power Cloud Access Control (PCAC) scheme. PCAC improves the traditional
CP-ABE system model, including outsourcing the generation of access structures and the verification of
attribute sets to a third party, to reduce the computational complexity. Considering the heavy computation
overhead in an access tree, PCAC generates an access structure with the access tree, and shares a secret key
with the LSSS. In addition, our scheme achieves the action auditing of users and data sources. In previous
research studies, private keys did not work for the decryption process, therefore, authentication is a
must to protect data saved in the power cloud. The user’s and the data source’s action is audited with
zero-knowledge proofs, which prevents malicious users from attacking the system from both the source
side and the user side. The contribution of this paper can be summarized as follows:

(1) A power cloud access control scheme based on a CP-ABE has been proposed. Considering the
generation of the access structure and the heavy computation required for an access tree, PCAC
achieves the automatic generation of access structures and effective sharing of the secret key.

(2) In order to resist possible attacks that could come from the data source side and the user side, an action
audit phase has been designed, in which the user’s identity is verified without obtaining the user’s
private key.

(3) The data confidentiality and the operation efficiency of our PCAC scheme have been analyzed
with theory and experiments. The experiments show that our scheme satisfies the requirement of
fine-grained access control.

The rest of this paper are organized as follow: In Section 2, some definitions in CP-ABE are
presented. In Section 3, we build a system model of the program and make some security assumptions
about the agencies in the model. In Section 4, the phases designed in the paper are described in
detail. In Section 5, the security analysis and efficiency analysis of our PCAC scheme are given with
theory. In Section 6, our scheme is compared with Waters’ scheme [12] and the Robust and Auditable
Access Control (RAAC) [5] scheme to test the time consumption and storage consumption of PCAC.
Finally, in Section 7, we summarize the work of this paper.

2. Preliminaries and Definitions

2.1. Ciphertext-Policy Attribute-Based Encryption (CP-ABE)

CP-ABE, first proposed by Beyhencourt, is an access control scheme wildly used in cloud storage.
It mainly contains four algorithms:

Setup→(PK,MSK): This algorithm is run by the authority in the system, to generate the system
public key (PK) and the master secret key (MSK), with the system parameters.

Encrypt(M,T,PK)→CT: This algorithm is executed by the owner of the data. The message M is
encrypted by the system public key PK and the access structure T.

Key_Gen(MSK,S)→SK: This algorithm is performed by the authority, to generate the secret key
SK through the user’s attribute set S and the master secret key MSK.

Decrypt(CT,SK)→M
′
: This algorithm is executed by the user, to decrypt the ciphertext CT by the

secret key SK, and recover the message M’.

2.2. Attributes and Access Structures

Our access structure is similar to Waters [12]. Let P = {P1, P2, · · · , Pn} be a set of parties.
A collection A ⊆ 2{P1,P2,··· ,Pn} is monotone if ∀B, C: if B ∈ A and B ⊆ C then C ∈ A. An access
structure (monotone access structure) is a collection (monotone collection) A of non-empty subsets of
{P1, P2, · · · , Pn}, i.e., A ⊆ 2{P1,P2,··· ,Pn}\{φ}. The sets in A are called the authorized sets, and the sets
not in A are called the unauthorized sets.

In our PCAC scheme, the role of the parties is taken by the attributes. Different from most access
control scheme, the access structure adopted in this paper is composed of two parts, one is the static general

Appl. Sci. 2018, 8, 1836 4 of 15

access structure, denoted as T1, and the other is the dynamic restrictive access structure, denoted as T2,
while the final access structure is T = T1 and T2. A detailed description will be given in Section 4.

2.3. Bilinear Pairing

Let G and GT be two multiplicative cyclic groups of prime order p. let g be a generator of G and e
be a bilinear map, e : G×G→ GT . The bilinear map e has the follow properties:

Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(u, v)ab = e(u, v)ab.
Non-degeneracy: e(g, g) 6= 1.
Computability: to compute the pairing e is efficient.

2.4. Linear Secret-Sharing Schemes

A secret-sharing scheme II over a set of parties P is called linear (over Zp) if:

(1) The shares for each party form a vector over Zp.
(2) There exists a matrix M with l rows and n columns called the sharing-generating matrix for II. For all

i = 1, 2, · · · , l, the i’th row of M, we let the function ρ define the party labeling row i as ρ(i). When we
consider the column vector v = (s, r2, · · · , rn), where s ∈ Zp is the secret to be shared, and r2, · · · , rn ∈
Zp are randomly chosen, then M·v is the vector of l shares of the secret s according to II. The share (M·v)i
belongs to party ρ(i).

Every linear secret-sharing scheme based on the above definition enjoys the linear reconstruction
property, defined as follow: Suppose that II is an LSSS for access structure A. Let S ∈ A be
any authorized set, and let i ⊂ {1, 2, · · · , l} be defined as I = {i : ρ(i) ∈ S}. Then, there exist
constants

{
wi ∈ Zp

}
i∈I , if {λi} are valid shares of any secret s according to II, then ∑i∈I wiλi = s.

These constants {wi} can be found in a time polynomial, in the size of the share-generating matrix M.

2.5. Access Tree Structure

The access tree is used to describe an access structure. Each leaf node in the tree represents an
attribute. Each non-leaf node represents a relational function. The relational function can be AND (n
of n), OR (1 of n), n of m (m > n) threshold, and so on. As can be seen in Figure 1.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 4 of 15

2.3. Bilinear Pairing

Let 𝔾 and 𝔾T be two multiplicative cyclic groups of prime order p. let g be a generator of 𝔾

and e be a bilinear map, e:𝔾 × 𝔾 → 𝔾𝑇. The bilinear map e has the follow properties:

Bilinearity: for all u, v∈𝔾 and a, b∈Zp, we have e(u,v)ab = e(u,v)ab.

Non-degeneracy: e(g,g)≠1.

Computability: to compute the pairing e is efficient.

2.4. Linear Secret-Sharing Schemes

A secret-sharing scheme II over a set of parties P is called linear (over ℤp) if:

(1) The shares for each party form a vector over ℤ𝑝.

(2) There exists a matrix M with l rows and n columns called the sharing-generating matrix for II. For all

i = 1,2,⋯,l, the i’th row of M, we let the function 𝜌 define the party labeling row i as 𝜌(𝑖). When we

consider the column vector 𝑣 = (𝑠, r2,⋯,rn), where s∈ℤ𝑝 is the secret to be shared, and r2,⋯,rn ∈ ℤ𝑝

are randomly chosen, then M∙v is the vector of l shares of the secret s according to II. The share (M∙v)
i

belongs to party 𝜌(𝑖).

Every linear secret-sharing scheme based on the above definition enjoys the linear reconstruction

property, defined as follow: Suppose that II is an LSSS for access structure 𝔸. Let S∈𝔸 be any

authorized set, and let i⊂{1,2,⋯,l} be defined as I = {i:ρ(i)∈S} . Then, there exist constants

{wi ∈ ℤ𝑝}i∈I, if {𝜆𝑖} are valid shares of any secret s according to II, then ∑ wiλi = si∈I .These constants

{wi} can be found in a time polynomial, in the size of the share-generating matrix M.

2.5. Access Tree Structure

The access tree is used to describe an access structure. Each leaf node in the tree represents an

attribute. Each non-leaf node represents a relational function. The relational function can be AND (n

of n), OR (1 of n), n of m (m > n) threshold, and so on. As can be seen in Figure 1.

AND（2,2）

（1,2） （2,2）OR

AND

AND

（3,3）

A B C

D E F

Figure 1. Access Tree Structure.

Our PCAC scheme achieves secret-sharing about “AND” door and “OR” door, where “AND”

door is expressed as (n, n), and “OR” door is expressed as (1, n). Our scheme needs to achieve the

transformation from the access tree structure to the LSSS sharing-generating matrix, and this step

will be given in Section 4.

3. Our Proposed Scheme Model

3.1. System Model

Our PCAC scheme builds the system model which is shown in Figure 2. The model contains a

total of five agencies: Power Cloud (PC), Central Key Authority (CKA), Key Share (KS), Data Source

(DS), and User (U).

Figure 1. Access Tree Structure.

Our PCAC scheme achieves secret-sharing about “AND” door and “OR” door, where “AND”
door is expressed as (n, n), and “OR” door is expressed as (1, n). Our scheme needs to achieve the
transformation from the access tree structure to the LSSS sharing-generating matrix, and this step will
be given in Section 4.

3. Our Proposed Scheme Model

3.1. System Model

Our PCAC scheme builds the system model which is shown in Figure 2. The model contains a
total of five agencies: Power Cloud (PC), Central Key Authority (CKA), Key Share (KS), Data Source
(DS), and User (U).

Appl. Sci. 2018, 8, 1836 5 of 15
Appl. Sci. 2018, 8, x FOR PEER REVIEW 5 of 15

Audit

Data Source

Key Shares

User

Central Key

Authority

Power Cloud

distribution and aggregation

Figure 2. Power Cloud Access Control (PCAC) System Model.

PC: PC provides storage service to DSs and Us. A great deal of raw data is saved in the PC which

needs fine-grained access control, like power transmission data, electricity data, account information,

etc. PC is also an authority of the system. However, PC is not fully trusted, because there is a risk of

being attacked. Therefore, the PC stores the ciphertext CT of all collected data. PC also needs to save

some of the ciphertext of the symmetric key k, which is distributed by CKA. PC is responsible for

managing and coordinating the work of all agencies. When the system is initializing, the PC selects

the system parameters k’. k’ is used to generate the attribute sets S and the pair of public key and

private key (Pk, Sk), for each agency. The encrypt and decrypt algorithms are also constructed by

these parameters. When the secret key SK is generated, PC needs to audit the user’s action and

prevent our system from giving access to malicious users.

CKA: CKA is responsible for the distribution and coordination of KSs’ tasks. CKA shares the

computation overhead of PC. CKA also stores the users’ attribute sets and DSs’ static general access

structure which has been generated when PC initializes the system. When uploading the data, CKA

is responsible for generating the LSSS sharing matrix MLSSS through the access tree, and distributing

the ciphertext CT to KSs, according to some policies. The ciphertext is part of the secret key SK and it

will work in a decrypt algorithm, which is executed by U. During the user’s action audit phase, CKA

needs to interact with the user and send the result to the PC for audit. If the audit is successful, CKA

will generate secret key SK and send it to the user.

KS: KS is responsible for storing a part of the ciphertext CT assigned by CKA, in order to prevent

PC from being attacked and revealing all CT. For an access structure, there are multiple KSs involved

in key sharing. Every KS does not know the other KSs who take part in the same access structure,

and the data the KS saved does not contain other KSs’ information. U cannot communicate with KSs

directly. Only CKA is accessible to the data saved in KSs.

U: U is user of power cloud service, and U can’t upload the data to PC. Each U has his/her own

attribute set, and CKA will determine whether the user has the file access with it. When a U enters

the system, the PC distributes a specific public-private key pair (PkU, SkU) to U, for identity

verification, key generation, and file decryption. The request for data requires to be verified twice

(attribute set verification led by CKA and action auditing performed by the PC). If U does not pass

these verifications at the same time, U will not be able to gain access to the file.

DS: DSs are collectors of data. In the power cloud, the DSs may be smart meters, cameras, and

other electronic equipment or some collectors. All the data CT saved in PC comes from DSs, but DSs

can’t download data from the PC. The PC distributes an identity DSid to each DS when the system is

initialized. DS’s action should be verified to prevent any attack which comes from the DS’s side.

3.2. Security Assumption

Figure 2. Power Cloud Access Control (PCAC) System Model.

PC: PC provides storage service to DSs and Us. A great deal of raw data is saved in the PC which
needs fine-grained access control, like power transmission data, electricity data, account information,
etc. PC is also an authority of the system. However, PC is not fully trusted, because there is a risk
of being attacked. Therefore, the PC stores the ciphertext CT of all collected data. PC also needs to
save some of the ciphertext of the symmetric key k, which is distributed by CKA. PC is responsible for
managing and coordinating the work of all agencies. When the system is initializing, the PC selects
the system parameters k’. k’ is used to generate the attribute sets S and the pair of public key and
private key (Pk, Sk), for each agency. The encrypt and decrypt algorithms are also constructed by these
parameters. When the secret key SK is generated, PC needs to audit the user’s action and prevent our
system from giving access to malicious users.

CKA: CKA is responsible for the distribution and coordination of KSs’ tasks. CKA shares the
computation overhead of PC. CKA also stores the users’ attribute sets and DSs’ static general access
structure which has been generated when PC initializes the system. When uploading the data, CKA is
responsible for generating the LSSS sharing matrix MLSSS through the access tree, and distributing the
ciphertext CT to KSs, according to some policies. The ciphertext is part of the secret key SK and it will
work in a decrypt algorithm, which is executed by U. During the user’s action audit phase, CKA needs
to interact with the user and send the result to the PC for audit. If the audit is successful, CKA will
generate secret key SK and send it to the user.

KS: KS is responsible for storing a part of the ciphertext CT assigned by CKA, in order to prevent
PC from being attacked and revealing all CT. For an access structure, there are multiple KSs involved
in key sharing. Every KS does not know the other KSs who take part in the same access structure,
and the data the KS saved does not contain other KSs’ information. U cannot communicate with KSs
directly. Only CKA is accessible to the data saved in KSs.

U: U is user of power cloud service, and U can’t upload the data to PC. Each U has his/her
own attribute set, and CKA will determine whether the user has the file access with it. When a U
enters the system, the PC distributes a specific public-private key pair (PkU, SkU) to U, for identity
verification, key generation, and file decryption. The request for data requires to be verified twice
(attribute set verification led by CKA and action auditing performed by the PC). If U does not pass
these verifications at the same time, U will not be able to gain access to the file.

DS: DSs are collectors of data. In the power cloud, the DSs may be smart meters, cameras,
and other electronic equipment or some collectors. All the data CT saved in PC comes from DSs,
but DSs can’t download data from the PC. The PC distributes an identity DSid to each DS when the
system is initialized. DS’s action should be verified to prevent any attack which comes from the
DS’s side.

Appl. Sci. 2018, 8, 1836 6 of 15

3.2. Security Assumption

In our PCAC scheme, the following assumptions are built: The network in a smart grid is a local
area network with perfect security architecture, so the communication network is safe. PC, CKA,
and KSs are always online after the system is initialized, and the determined system parameters
do not change while the system is running. PC is the administrator in the system, managing and
supervising the operation of the system. All the data stored in the PC comes from the DS, and all Us can
obtain the ciphertext of the data in the way defined by the system. Our scheme assumes that CKA is
“honest-and-curious”, which means that CKA will properly execute the task assigned to it, by following
the rules. But CKA may be tricked by malicious users from either DS or U, so it is not fully trusted.
Therefore, the PC is required to audit the action of DS and U to verify the identification of DS and U.
Our PCAC scheme assumes that DS can only encrypt the data with a symmetric encryption algorithm,
the data itself is secure, and there is no security risk. During the generation and validation of access
structures, CKA is the distributor and collector of tasks and does not modify the data. Therefore, CKA
can correctly reflect the operation of U and DS.

In PCAC model, there is a risk that a malicious user may attack while DSs upload data or Us request
data. When DS uploads data, DS should send its public key to show its identification. However, a large
number of smart meters are outdoor, and lack strong supervision. These meters’ parameters may be
modified with other DS’s public key which is open to every agency. As a result, CKA will generate incorrect
access structure, and the data has a risk of being revealed. Therefore, the attacker can download the data
with his attribute sets. On the other hand, there also exists risk on the user side. When U requests data,
he is asked to send his public key to show his identification. However, an attacker may send another user’s
public key to forge identification and get access to the data.

4. Our Proposed PCAC Scheme

4.1. Overview

Our paper proposes an automatic, fast, and effective access control model both in the data
collection stage and the data obtainment stage. The flow chart of access control is shown in Figure 3.
DS encrypts the collected data with symmetric encryption algorithm, and sends the ciphertext
to PC for storage, while the symmetric key is sent to CKA for encryption in the encrypt phase.
Since attribute-based encryption consumes a large amount of time, this encrypt phase reduces the
computational burden by encrypting the symmetric key instead of the full file. CKA will distinguish
each DS by the proof of identification, and then construct an interaction to generate evidence for an
action audit, which will be executed by the PC. After the audit, CKA will generate the corresponding
access structure, and exchange the access structure into the LSSS-shared matrix for an easy operation.
When passing the audit, CKA will generate the DS’s access structure and transform the access structure
into the sharing-generating matrix, which is easy to calculate. After that, CKA will execute the encrypt
algorithm and distribute the ciphertext to KSs and PC. This marks the end of the data collection
stage. If U wants to get the data saved in PC, U needs to send his/her own identification proof to
CKA, and CKA will find the attribute set of U and verify it with access structure. After passing the
verification, CKA will construct an interaction to generate evidence for action audit, which is like the
data collection stage. After the audit is passed, CKA will communicate with the KSs and the PC to
obtain the secret key and send it to U. The ciphertext of the data saved in PC is accessible to every U.
This marks the end of the data obtainment stage.

Appl. Sci. 2018, 8, 1836 7 of 15
Appl. Sci. 2018, 8, x FOR PEER REVIEW 7 of 15

Figure 3. Flow Chart of Access Control.

4.2. Detail Procedures in PCAC

4.2.1. Init Phase

Init: The initialization phase of the system is executed by PC, where the public key PK and

the master secret key MSK are obtained through the system parameter k’. Firstly, the PC

determines a large prime p by the system parameter k’. Then, it chooses two linear groups G0

and GT, with prime order p and g as the generator of the linear group G0. Then, a pairing is

chosen, ê:G0×G0→GT, and a collection of attributes is defined, S = {s1,s2,⋯,sm}∈Zp, where all

attributes existing in the system are contained by S. A unique public key is chosen

{Sn1,Sn2,⋯,Snn}∈G0 for each KS, which is used in secret-sharing. Finally, the PC chooses α, β∈

Zp, randomly, to generate the PK and MSK. PK is:

PK = {GT,𝐺0,g,gβ,e(g,g)α,S,Sn1,Sn2,⋯,Snn}

And MSK is:

MSK = {α,β}

All agencies in the system can get the PK, but the MSK needs to be kept confidential to the other

agencies in the system.

In the initialization phase, in order to distinguish between the different DSs, the PC needs to

send a pair of public key and private key (PkDS, SkDS) to each DS. PC randomly chooses DSid∈Zp

as the identification of DS, and PkDS = gDSid, Sk = DSid. All agencies in the PCAC model can achieve

the DS’s public key, and DS’s private key is only owned by the DS itself, which is used to verify the

DS’s identity. Like DS, for each U, the PC generates a pair of public key and private key (PkU, SkU),

and PkU = gUid,Sk = Uid, where Uid∈Zp is randomly chosen. In general, during initialization phase,

all DSs and Us can obtain a pair of public key and private key (Pk, Sk) from the PC, and the proof of

identification of every DS and U is Pro = gid.

4.2.2. Data Collection Stage

Data collection stage shows the flow when the DS uploads the collected data to the PC. There

are three phases. First of all, DS,s identity should be audited by the PC. And then, the CKA generates

the access structure for the data. At last, the collected data is encrypted with a symmetric encryption

and the symmetric key is encrypted with CP-ABE.

PCU CKADS KS

Init

Send PK

Send PK,(PKU,SKU)

Send PK,(PKDS,SKDS)

Send PK

Gen_Stru
Send ciphertext message CM

Send Symmetric key k，proof of identity ProDS

Interactive for audit Action Audit

REJ or ACC

Send Ci
Encrypt

Gen_Key

Send ProU

Verify trapdoor

Interactive for audit Action Audit

REJ or C

Send Ci,Ki

Send SK,Ci

SendCM,CK,C ,Ci Decrypt

Send CK,C ,Ci

Act_Audit

Act_Audit

Data

collection

stage

Data

obtainment

stage

Figure 3. Flow Chart of Access Control.

4.2. Detail Procedures in PCAC

4.2.1. Init Phase

Init: The initialization phase of the system is executed by PC, where the public key PK and the
master secret key MSK are obtained through the system parameter k’. Firstly, the PC determines a
large prime p by the system parameter k’. Then, it chooses two linear groups G0 and GT , with prime
order p and g as the generator of the linear group G0. Then, a pairing is chosen, ê : G0 × G0 → GT ,
and a collection of attributes is defined, S = {s1, s2, · · · , sm} ∈ Zp, where all attributes existing in
the system are contained by S. A unique public key is chosen {Sn1, Sn2, · · · , Snn} ∈ G0 for each KS,
which is used in secret-sharing. Finally, the PC chooses α, β ∈ Zp, randomly, to generate the PK and
MSK. PK is:

PK =
{

GT , G0, g, gβ, e(g, g)α, S, Sn1, Sn2, · · · , Snn

}
And MSK is:

MSK = {α, β}

All agencies in the system can get the PK, but the MSK needs to be kept confidential to the other
agencies in the system.

In the initialization phase, in order to distinguish between the different DSs, the PC needs to send
a pair of public key and private key (Pk DS, SkDS) to each DS. PC randomly chooses DSid ∈ Zp as the
identification of DS, and PkDS = gDSid , Sk = DSid. All agencies in the PCAC model can achieve
the DS’s public key, and DS’s private key is only owned by the DS itself, which is used to verify the
DS’s identity. Like DS, for each U, the PC generates a pair of public key and private key (PkU , SkU),
and PkU = gUid , Sk = Uid, where Uid ∈ Zp is randomly chosen. In general, during initialization
phase, all DSs and Us can obtain a pair of public key and private key (Pk, Sk) from the PC, and the
proof of identification of every DS and U is Pro = gid.

4.2.2. Data Collection Stage

Data collection stage shows the flow when the DS uploads the collected data to the PC. There are
three phases. First of all, DS,s identity should be audited by the PC. And then, the CKA generates the
access structure for the data. At last, the collected data is encrypted with a symmetric encryption and
the symmetric key is encrypted with CP-ABE.

Act_Audit: An action audit phase in the data collection stage is executed by three parties, the CKA,
the DS, and the PC. CKA may be cheated with other DS’s identity information. Our action audit phase

Appl. Sci. 2018, 8, 1836 8 of 15

is aimed to ensure that the DS catches the private key associated with the identification that he/she
has sent to the CKA. Different from the RAAC scheme [5], the phase in our PCAC scheme is executed
before the Gen_key phase. If the audit fails, Gen_key phase is not executed and the computation
overhead is reduced. Since the DS’s private key must be kept absolutely secret, our action audit phase
proves the identity of the DS with zero-knowledge proof, protecting the privacy of the DS. This phase
is based on the chameleon hash, and a specific interaction is designed between the CKA and the DS.
First of all, when the DS uploads data, Pro needs to be uploaded to show its identification. In addition,
DS also needs to select a random number r ∈ Zp and upload R = gr to the CKA. So the message
that the DS needs to send to the CKA, when the data is uploaded, is {k, Pro, R} (k is a symmetric key
chosen by DS, which is used in the encrypt phase). Then, the CKA randomly chooses r′ and sends
it to the DS. DS gets r′ and calculates m = r−r′

DSid
. Since r is a random number for CKA (as it is hard

to discover r with gr), DSid can be kept secret with r. DS generates the time stamp TS and sends a
message, which contains m and TS, to CKA. CKA sends an audit message AM = {Pro, R, m, TS, r′} to
the PC for audit. The PC may set a transmission delay threshold ∆TS. Upon receiving AM sent by the
CKA, the PC first determines whether the transmission delay is within this threshold. Suppose the
time that PC receives AM is TS′. If TS′ − TS > ∆TS, PC will send CKA a REJ audit results. This means
there may be some trouble with this DS, and it requires an overhaul. In addition, the audit is operated
according to Equation (1):

e(gm, Pro) = e(R/gr′ , g) (1)

If the audit is passed, it means that DS catches the identification associated to itself. And then,
the CKA generates the access structure for the DS.

Gen_Stru: In this phase, there are two tasks: generate the access tree and convert access tree to
LSSS-sharing matrix.

The access structure generation phase generates a specific access structure based on the DS’s ID
and is executed by CKA. The static general access structure T1 and the dynamic restrictive access
structure T2 are stored in the CKA, in the form of access trees. As the data’s access structure may
change according to different situations, the access structure is divided into two parts T1 and T2. T1 is
static access structure that gives the limitation, which should be met in all situations. It means that
any U with attribute sets that do not satisfy T1 can’t get access to the data, at all times. T1 should be
saved in the CKA, in advance, and does not change when the system is running. T2 does change in
different situations, it further restricts the attribute set. When T2 changes, there should be a time limit
{Time1,Time2|Time1 < Time2}, and it means that when Time1 < Time < Time2, the T2 changes. The access
tree should combine the T1’s limitations and T2’s, so T = T1 and T2.

After the access tree is generated, it is converted to an LSSS-sharing matrix. Every attribute a
can be denoted as Ma ∈ Z1×1, and Ma = [1]. Every access structure Ai can be denoted as a matrix
Mi ∈ Zdi×ei . Ci is denoted as the first column of Mi; Ri is denoted as all other columns of Mi. To handle
access structures with “OR” door, denoted as Ac = Ab∨Ac, the generated matrix Mc is denoted as
Equation (2):

Mc =
Ca Ra 0
Cb 0 Rb

(2)

To handle access structure with “AND” door, denoted as Ac = Ab ∧ Ac, the generated matrix Mc is
denoted as Equation (3):

Mc =
Ca Ca Ra 0
0 Cb 0 Rb

(3)

Therefore, in an LSSS share-generating matrix MLSSS with l × n, the number of specific attributes
associated with the access structure, is l and n is a value related to the trapped function-parameters.
Each row of MLSSS is associated with every attribute in the access structure. Therefore, when T2

changes, the rows associated to attributes, which exist in T2, must change, as shown in Figure 4.

Appl. Sci. 2018, 8, 1836 9 of 15

T1 = {{A, B, C}, D} and T2 = {E, F, G}, and the final access tree generated in this phase is
T = {T1,T2} = {{A, B, C}, D, E, F, G}. Each row of matrix is associated to attribute {A,B,C,D,E,F,G}.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 15

a a a

c

b b

C C R 0
M

0 C 0 R
 (3)

Therefore, in an LSSS share-generating matrix MLSSSwith l×n, the number of specific attributes

associated with the access structure, is l and n is a value related to the trapped function-parameters.

Each row of MLSSS is associated with every attribute in the access structure. Therefore, when T2

changes, the rows associated to attributes, which exist in T2, must change, as shown in Figure 4.

T1 = {{A,B,C},D} and T2 = {E,F,G} , and the final access tree generated in this phase is

T = {𝑇1,𝑇2} = {{A,B,C},D,E,F,G}. Each row of matrix is associated to attribute {A,B,C,D,E,F,G}.

Figure 4. The Process of Generating the Access Tree.

Encrypt: Encryption algorithm is executed by CKA. Due to the heavy computation overhead of

CP-ABE, our PCAC scheme uses symmetric encryption to encrypt the plaintext data MT, and then

uses CP-ABE to encrypt the key used to encrypt symmetrically. The DS randomly selects the

symmetric key k and encrypts the data MT with it, and then sends the ciphertext CT and k to the PC

and the CKA, respectively. CKA encrypts k with CP-ABE and shares the secret s with LSSS. An LSSS

scheme can be expressed as(MLSSS,ρ), where ρ is a specific hash function and it maps each row in the

M matrix to a specific KS, denoted as ρ[i] (it can be understood that CKA distributes trapdoors to

different KS, for storage by function ρ). CKA randomly selects a secret s for encrypting the symmetric

key k, denoted as C = ke(g,g)sα. In order to hide and share the secret s, we randomly select y
2
,y

3
,⋯,y

l

∈Zp and construct vector v⃗ = (s,y
2
,y

3
,⋯,y

l
). Same as the commonly used LSSS scheme, we share the

secret s and send them to specific KSs for storage, denoted as λi = MLSSSi
∙v⃗ (MLSSSi

 is the ith row of

sharing-generating MLSSS and i = 1,2,⋯,l). Finally, we add a random factor r1,r2,⋯,rl∈Zp as part of

the ciphertext. Therefore, our scheme finally calculates the ciphertext CT, as shown in Equation 4.

ligC

liSngC

gC

ggekCK

CT

i

i

i

i

r

i

r

i

s

s

,,2,1,''

,,2,1,)(

'

)),((

(4)

In Equation 4, CK is used to hide the symmetric key k, and C’ , Ci , and Ci’’ are used for

decryption. Ci is distributed stored by KSs. After this algorithm, CKA does not hold any part of

ciphertext CT, nor does it save the shared secret s. KS only stores part of Ci, and single KS cannot

recover the secret s.

4.2.3. Data Obtainment Stage

The data obtainment stage shows the flow when U requests data from PC. There are three

phases. First of all, U’s identity should be audited by PC and then, CKA generates a secret key for U.

At last, U can decrypt the data with a secret key.

Act_Audit: Action audit phase in the data obtainment stage is executed by three parties, CKA,

U, and PC. This phase is similar to the Act_Audit phase in the data collection stage. First of all, U

needs to uploaded Pro, to prove its identity. In addition, U also needs to select a random number r∈

Zp and upload R = gr to CKA. And the message U needs to send to CKA is {Pro,R}. Then, CKA

randomly chooses r’ and sends it to U. U gets r’ and calculates m =
r-r’

Uid
 . U generates the time stamp

TS and sends a message, which contains m and TS, to CKA. CKA sends an audit message

T1

T2

AND

AND

OR

A B C

D AND

E F G

T1 T2AND

OR

A B C

D

AND

E F G

AND
1 1 1 0 0 0 0

1 1 1 0 0 0 0

1 1 1 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 1 1

0 0 0 0 0 0 1

0 0 0 0 0 1 0

A

B

C

D

E

F

G

Figure 4. The Process of Generating the Access Tree.

Encrypt: Encryption algorithm is executed by CKA. Due to the heavy computation overhead of
CP-ABE, our PCAC scheme uses symmetric encryption to encrypt the plaintext data MT , and then uses
CP-ABE to encrypt the key used to encrypt symmetrically. The DS randomly selects the symmetric key
k and encrypts the data MT with it, and then sends the ciphertext CT and k to the PC and the CKA,
respectively. CKA encrypts k with CP-ABE and shares the secret s with LSSS. An LSSS scheme can
be expressed as (M LSSS, ρ), where ρ is a specific hash function and it maps each row in the M matrix
to a specific KS, denoted as ρ[i] (it can be understood that CKA distributes trapdoors to different KS,
for storage by function ρ). CKA randomly selects a secret s for encrypting the symmetric key k, denoted
as C = ke(g, g)sα. In order to hide and share the secret s, we randomly select y2, y3, · · · , yl ∈ Zp and

construct vector
→
v = (s, y2, y3,∈, yl). Same as the commonly used LSSS scheme, we share the secret

s and send them to specific KSs for storage, denoted as λi = MLSSSi ·
→
v (MLSSSi is the ith row of

sharing-generating MLSSS and i = 1, 2, · · · , l). Finally, we add a random factor r1, r2, · · · , rl ∈ Zp

as part of the ciphertext. Therefore, our scheme finally calculates the ciphertext CT, as shown in
Equation (4).

CT =

CK = k(e(g, g)α)

s

C′ = gs

Ci = (gβ)
λi · Sn−ri

ρi , i = 1, 2, . . . , l
Ci
′′ = gri , i = 1, 2, . . . , l

(4)

In Equation (4), CK is used to hide the symmetric key k, and C′, Ci, and Ci
′′ are used for decryption.

Ci is distributed stored by KSs. After this algorithm, CKA does not hold any part of ciphertext CT,
nor does it save the shared secret s. KS only stores part of Ci, and single KS cannot recover the secret s.

4.2.3. Data Obtainment Stage

The data obtainment stage shows the flow when U requests data from PC. There are three phases.
First of all, U’s identity should be audited by PC and then, CKA generates a secret key for U. At last, U
can decrypt the data with a secret key.

Act_Audit: Action audit phase in the data obtainment stage is executed by three parties, CKA,
U, and PC. This phase is similar to the Act_Audit phase in the data collection stage. First of all, U
needs to uploaded Pro, to prove its identity. In addition, U also needs to select a random number
r ∈ Zp and upload R = gr to CKA. And the message U needs to send to CKA is {Pro, R}. Then, CKA
randomly chooses r′ and sends it to U. U gets r’ and calculates m = r−r′

Uid
. U generates the time

stamp TS and sends a message, which contains m and TS, to CKA. CKA sends an audit message
AM = {Pro, R, m, TS, r′} to PC for audit. PC may judge if the U’s action is in overtime. In addition,
the audit is operated according to Equation (1).

If the audit is passed, it means that U has caught the identification associated to himself/herself.
Then, the CKA generates a secret key for U. The communication network between U and CKA is a
wide area network, which has a risk of being wiretapped, so our Act_Audit phase contains randomness
r’ and Uid, which is difficult to be discovered by the listener, in multiple communications.

Gen_key: The secret key generation phase is executed by the CKA, aimed to generate the secret
key, based on the CT. When U requests files, he/she needs to upload ProU , as long as some proof of
his/her attribute set is obtained, in order to express their identity. CKA receives the message from U

Appl. Sci. 2018, 8, 1836 10 of 15

and verifies the attribute set. If the verification is passed, CKA constructs an interaction to achieve
specific message for Act_Audit phase. After passing the action audit, the PC calculates the SK with
Equation (5), otherwise the PC sends REJ to the CKA. CKA makes further calculations to generate a
secret key, which is used to decrypt the symmetric key. In order to resist replay attacks, the PCAC
scheme introduces a random factor to further hide the shared secret s. CKA selects a random number
d∈Z, and combines d with the time stamp TS and the user’s ProU to generate a random factor A in the
secret key, denoted as A = H(d||TS||Pro U). The secret key is calculated with Equation (5).

SK =

K = (gβ)

A · gα

K′ = gA

K′′ = SnA
ρi

, i = 1, 2, . . . , l
(5)

After this, CKA asks the KSs and the PC for the CT. Then, CKA sends the SK and the CT to U
for decryption.

Decrypt: The decrypt phase is executed by U. U is free to get the ciphertext from PC, and decrypt
the symmetric key k with SK and CT, so that U is able to get the data he/she wants. If U’s attribute
set does not satisfy the access structure, U cannot get the secret key SK and cannot decrypt the
data. For a U, holding an attribute set SU = {S I1

, SI2 , SIi |I i ∈ U
}

, if SU satisfies the access structure,
it is able to construct a matrix MU (MU is a sub-matrix of MLSSS, and it is combined with the rows

in MLSSS, which is associated to the attributes that exist in SU). Then, λUi = MU ·
→
v

T
and λU is

calculated, which are sub-vectors of vector λ. There exists a vector
→
e = (1, 0, · · · , 0), and a new vector

→
v = (w1, w2, · · · , wi)

(
wi ∈ Zp

)
can be constructed, which satisfies

→
e =

→
w·MU . The secret key s can be

recovered from vector
→
w and

→
λU , as shown in Equation (6).

s = (1, 0, 0, . . . , 0) · (s, y1, y2, . . . , yi)

=
→
e ·→v

T

=
→
w ·MU ·

→
v

T

=
→
w ·

→
λU

T

= ∑
i∈I

wi · λUi

(6)

Then, the further calculations are based on Equations (4)–(6).

Ck = e(C′ ,K)
∏
i∈I

(e(Ci ,K′)·e(Ci
′′ ,Ki

′′))wi

= e(gs ,gβA+α)

∏
i∈I

(e(gβλi ·Sn
−ri
ρi ,gA)·e(gri ,SnA

ρi))
wi

= e(g,g)s(βA+α)

∏
i∈I

(e(g,gβAλi ·Sn
−ri A
ρi)·e(g,Sn

ri A
ρi))

wi

= e(g,g)s(βA+α)

e(g,g)
βA ∑

i∈I
wi ·λi

= e(g, g)αs

(7)

Finally, U can get symmetric key k:

CK/Ck = ke(g, g)αs/e(g, g)αs = k (8)

So, U can use the symmetric key k to decrypt the ciphertext that CT got from PC.

Appl. Sci. 2018, 8, 1836 11 of 15

5. Security Analysis and Performance Analysis

5.1. Data Confidentiality and Resist Collusion Attack

Our PCAC scheme is improved from the CP-ABE scheme, and also has CP-ABE’s security
properties: data confidentiality and resist collusion attack.

Data confidentiality: File data must be kept confidential to users who do not have access.
Additionally, our scheme must be able to defend Chose Plaintext Attack (CPA).

The proof of our PCAC scheme is similar to Waters [12]. The power cloud only saves ciphertext
encrypted by the symmetric key and the encrypted symmetric key, in the encrypt phase. PC does
not take part in generation of the secret key. It is hard to recover the plaintext without the secret key.
It means that the data saved in power cloud is safe from an outside attacker.

Resist collusion attack: Multiple malicious users cannot combine with each other to decrypt the
file ciphertext which a single user cannot decrypt.

Our PCAC scheme is able to effectively resist collusion attacks. In our scheme, the user does
not need to upload his\her own attribute set and only needs to upload his own proof of identity.
Therefore, the PC cannot be attacked by forging the attribute set. Additioanlly, in order to prevent
to an attacked by forging proof of identity, our PCAC scheme designs Act_Audit phase based on
zero-knowledge proof, and is executed before the Gen_key phase, so that malicious users cannot
obtain the secret key generated by the CKA.

5.2. Storage Overhead

In this section, our PCAC scheme is compared with the scheme proposed by Waters [12] and the
RAAC scheme [5], to test the storage overhead on each agency in our PCAC scheme. The comparison
results are shown in Table 1. In the table, |*| is the number of elements in the group *, Lp is the average
element length in the linear group of order p. NKS is the number of KSs, S is the collection of attributes,
which is defined at initialization, SU is the attribute set held by the user. To make the comparison fair,
a little change needed to be made on the RAAC model. There exists several attribute authorities (AAs)
in the model of RAAC, and we assumed that the number of AAs is the same as the number of KSs in
our PCAC scheme.

Table 1. The Storage Overhead of Our PCAC, the Waters Scheme, and the RAAC model.

Agencies PC CKA KS U DS/Owner

Waters [12] N/A 2Lp N/A (|SU| + 3)Lp + LZp (|S| + 3)Lp + LZp
RAAC [5] (6 + 2|S|)Lp + 4LZp N/A N/A (|SU| + 5)Lp + LZp (|S| + 5)Lp + LZp

PCAC (3 + |NKS|)Lp + 2LZp 3Lp + |S|Lp Lp 4Lp + LZp LZp + Lp

As can be seen in Table 1, the PC only stores the symmetric encrypted data, while the symmetric
key is encrypted by CKA and distributed stored by KSs. Besides, the PC is only responsible for
initializing all the attributes in the system and does not participate in the validation of the attribute
set, so the attribute data does not need to be stored in PC. Therefore, the data complexity of our
PCAC scheme is less than the RAAC. Since CKA is not completely trusted, SK needs to be assigned
to different KSs for distributed storage. At the same time, the storage overhead on CKA is reduced.
U and DS in the PCAC scheme only saves a pair of public key and private keys, which are assigned by
the PC. This reduces the storage of the attribute set.

5.3. Computation Overhead

In this section, our PCAC scheme is compared with the Waters’ scheme [12] and the RAAC
scheme [5]. The computation overhead of them is analyzed. The result is shown in Table 2. In the table,
NU is the number of users, NS is the number of attributes in the system, and Nas is the average number
of attributes in the user’s attribute set (these attributes are also contained in the access structure). O(1)

Appl. Sci. 2018, 8, 1836 12 of 15

means that the computation overhead is the same irrespective of the number of times the input data
is increased.

Table 2. The Computation Overhead of Our PCAC, the Waters Scheme, and the RAAC model.

Phases Init Gen Stru Encrypt Gen_key Decrypt Act_Audit

agencies PC CKA CKA CKA DS CKA KS PC U PC CKA U

Waters [12] N/A O(NU) N/A N/A O(NSK) N/A N/A O(Nas) O(NSK) N/A N/A N/A
RAAC [5] O(NS + NDS + NU) N/A N/A N/A O(NSK) O(Nas) N/A O(Nas) O(NSK) O(1) O(1) O(1)

PCAC O(NS + NDS + NU) N/A O(1) O(NSK) O(1) O(Nas) O(1) O(1) O(NSK) O(1) O(1) O(1)

As can be seen in the table, the computation overhead of the encryption and decryption phases
is the same as that in the Waters scheme and the RAAC scheme. The Gen_Stru phase consumes
low computational complexity. The computation overhead of Act_Audit phase in the PCAC is the
same as that in the RAAC. However, in RAAC it needs to be executed after the key-generation phase,
so that if the audit fails, the computation overhead is wasted. Our audit phase is executed before the
key-generation phase, so the PCAC can reduce some unnecessary computation overhead.

6. Experiment Analysis

In this section, our scheme has been experimentally compared with that of the RAAC, to test the
operational efficiency of our PCAC scheme. The experiments were implemented in an environment of
Windows 10 (in a PC with Core i7-7500U and 2.7 GHz) and programmed with JPBC [20]. The algorithm
in the RAAC scheme was programmed by the description in the reference [5]. As the RAAC scheme
was the first to propose the audit and tracking phase based on the CP-ABE, we chose it for the
comparison experiments. Therefore, the computational efficiency of our Act_Audit phase could be
tested as a comparison with the RAAC scheme.

6.1. Time Consumption in the Data Collection Stage and the Data Obtainment Stage

In this experiment, our PCAC scheme was compared with the RAAC when the DSs uploaded
the data and Us requested the data. When the DSs uploaded the data, our PCAC scheme counted
the Encrypt and Act_Audit phase, while RAAC counted the Encrypt phase. When requesting the
data, PCAC counted the Act_Audit, the Gen_key, and the Decrypt phase, while RAAC counted
the Gen_key, the Decrypt, and the Audit phase. As the Init phase was executed once the system
was running, it has not been counted here. The RAAC scheme does not take the generation of the
access structure into consideration, so the performance of Gen_Stru phase was not analyzed here.
Instead, the time consumption of the Gen_Stru phase was counted alone, and it was found to be at
least 2 ms. This experiment ignored the influence of network communication. The results are shown in
Figures 5 and 6.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 12 of 15

table, NU is the number of users, NS is the number of attributes in the system, and Nas is the average
number of attributes in the user’s attribute set (these attributes are also contained in the access
structure). O(1) means that the computation overhead is the same irrespective of the number of times
the input data is increased.

Table 2. The Computation Overhead of Our PCAC, the Waters Scheme, and the RAAC model.

Phases Init Gen Stru Encrypt Gen_key Decrypt Act_Audit
agencies PC CKA CKA CKA DS CKA KS PC U PC CKA U
Waters

[12] N/A O(NU) N/A N/A O(NSK) N/A N/A O(Nas) O(NSK) N/A N/A N/A

RAAC [5] O(NS + NDS + NU) N/A N/A N/A O(NSK) O(Nas) N/A O(Nas) O(NSK) O(1) O(1) O(1)
PCAC O(NS + NDS + NU) N/A O(1) O(NSK) O(1) O(Nas) O(1) O(1) O(NSK) O(1) O(1) O(1)

As can be seen in the table, the computation overhead of the encryption and decryption phases
is the same as that in the Waters scheme and the RAAC scheme. The Gen_Stru phase consumes low
computational complexity. The computation overhead of Act_Audit phase in the PCAC is the same
as that in the RAAC. However, in RAAC it needs to be executed after the key-generation phase, so
that if the audit fails, the computation overhead is wasted. Our audit phase is executed before the
key-generation phase, so the PCAC can reduce some unnecessary computation overhead.

6. Experiment Analysis

In this section, our scheme has been experimentally compared with that of the RAAC, to test the
operational efficiency of our PCAC scheme. The experiments were implemented in an environment
of Windows 10 (in a PC with Core i7-7500U and 2.7 GHz) and programmed with JPBC [20]. The
algorithm in the RAAC scheme was programmed by the description in the reference [5]. As the RAAC
scheme was the first to propose the audit and tracking phase based on the CP-ABE, we chose it for
the comparison experiments. Therefore, the computational efficiency of our Act_Audit phase could
be tested as a comparison with the RAAC scheme.

6.1. Time Consumption in the Data Collection Stage and the Data Obtainment Stage

In this experiment, our PCAC scheme was compared with the RAAC when the DSs uploaded
the data and Us requested the data. When the DSs uploaded the data, our PCAC scheme counted the
Encrypt and Act_Audit phase, while RAAC counted the Encrypt phase. When requesting the data,
PCAC counted the Act_Audit, the Gen_key, and the Decrypt phase, while RAAC counted the
Gen_key, the Decrypt, and the Audit phase. As the Init phase was executed once the system was
running, it has not been counted here. The RAAC scheme does not take the generation of the access
structure into consideration, so the performance of Gen_Stru phase was not analyzed here. Instead,
the time consumption of the Gen_Stru phase was counted alone, and it was found to be at least 2 ms.
This experiment ignored the influence of network communication. The results are shown in Figures
5 and 6.

5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

800

900

1000

the Number of Key Sharing Parties

Ti
m

e
C

on
su

m
pt

io
n/

m
s

PCAC
RAAC

Figure 5. Time Consumption in the Data collection stage.

Appl. Sci. 2018, 8, 1836 13 of 15

Appl. Sci. 2018, 8, x FOR PEER REVIEW 13 of 15

Figure 5. Time Consumption in the Data collection stage.

Figure 6. Time Consumption in the Data Obtainment Stage.

As can be seen from the comparison, the time consumption of our PCAC scheme increased with
the increase of the number of secret-sharing parties (the number of KSs), in both stages. The number
of secret-sharing parties was determined by the row number of the sharing matrix, and the row
number of the matrix determined the number of Ci in CT. Therefore, the time consumption of the
PCAC was proportional to the number of KSs. As can be seen from Figure 6, in the data obtainment
stage, the time consumption in the PCAC was almost half of that in the RAAC.

6.2. Time Consumption of the Encrypt and the Decrypt Phase

In this section, the PCAC scheme has been compared with RAAC in the Encrypt and the Decrypt
phase. The result is shown in Figure 7.

As can be seen in the figure, the time cost in the Encrypt and the Decrypt phase increased with
the increase of the number of secret-sharing parties. In the Encrypt phase, the secret-sharing parties
were mapped to the SKs directly, instead of using other elements to mark the KSs. Therefore, the
Decrypt phase of the PCAC scheme consumed relatively less time.

Figure 7. Time Consumption in the Encrypt and Decrypt Phase.

6.3. Time Consumption of the Act_Audit Phase

The comparison results of the Act_Audit phase is shown in Figure 8. In this phase, the RAAC
scheme used zero-knowledge proof, on the basis of the chameleon hash algorithm to verify the user’s
identity. To make the comparison fair, the time consumption of the trace phase in RAAC scheme was
not counted. The Act_Audit phase in the PCAC was less burdensome than that in the RAAC. In the
PCAC, the Act_Audit phase took about 30 ms, in average, while it cost more than 60 ms in the RAAC
scheme.

5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1000

1200

1400

1600

1800

2000

the Number of Key Sharing Parties

Ti
m

e
C

on
su

m
pt

io
n/

m
s

RAAC
PCAC

5 10 15
100

200

300

400

500

600

700

Number of Key Sharing Parties

Ti
m

e
C

on
su

m
pt

io
n/

m
s

PCAC-Encrypt
PCAC-Decrypt
RAAC-Encrypt
RAAC-Decrypt

Figure 6. Time Consumption in the Data Obtainment Stage.

As can be seen from the comparison, the time consumption of our PCAC scheme increased with
the increase of the number of secret-sharing parties (the number of KSs), in both stages. The number of
secret-sharing parties was determined by the row number of the sharing matrix, and the row number
of the matrix determined the number of Ci in CT. Therefore, the time consumption of the PCAC was
proportional to the number of KSs. As can be seen from Figure 6, in the data obtainment stage, the time
consumption in the PCAC was almost half of that in the RAAC.

6.2. Time Consumption of the Encrypt and the Decrypt Phase

In this section, the PCAC scheme has been compared with RAAC in the Encrypt and the Decrypt
phase. The result is shown in Figure 7.

As can be seen in the figure, the time cost in the Encrypt and the Decrypt phase increased with the
increase of the number of secret-sharing parties. In the Encrypt phase, the secret-sharing parties were
mapped to the SKs directly, instead of using other elements to mark the KSs. Therefore, the Decrypt
phase of the PCAC scheme consumed relatively less time.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 13 of 15

Figure 5. Time Consumption in the Data collection stage.

Figure 6. Time Consumption in the Data Obtainment Stage.

As can be seen from the comparison, the time consumption of our PCAC scheme increased with
the increase of the number of secret-sharing parties (the number of KSs), in both stages. The number
of secret-sharing parties was determined by the row number of the sharing matrix, and the row
number of the matrix determined the number of Ci in CT. Therefore, the time consumption of the
PCAC was proportional to the number of KSs. As can be seen from Figure 6, in the data obtainment
stage, the time consumption in the PCAC was almost half of that in the RAAC.

6.2. Time Consumption of the Encrypt and the Decrypt Phase

In this section, the PCAC scheme has been compared with RAAC in the Encrypt and the Decrypt
phase. The result is shown in Figure 7.

As can be seen in the figure, the time cost in the Encrypt and the Decrypt phase increased with
the increase of the number of secret-sharing parties. In the Encrypt phase, the secret-sharing parties
were mapped to the SKs directly, instead of using other elements to mark the KSs. Therefore, the
Decrypt phase of the PCAC scheme consumed relatively less time.

Figure 7. Time Consumption in the Encrypt and Decrypt Phase.

6.3. Time Consumption of the Act_Audit Phase

The comparison results of the Act_Audit phase is shown in Figure 8. In this phase, the RAAC
scheme used zero-knowledge proof, on the basis of the chameleon hash algorithm to verify the user’s
identity. To make the comparison fair, the time consumption of the trace phase in RAAC scheme was
not counted. The Act_Audit phase in the PCAC was less burdensome than that in the RAAC. In the
PCAC, the Act_Audit phase took about 30 ms, in average, while it cost more than 60 ms in the RAAC
scheme.

5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1000

1200

1400

1600

1800

2000

the Number of Key Sharing Parties

Ti
m

e
C

on
su

m
pt

io
n/

m
s

RAAC
PCAC

5 10 15
100

200

300

400

500

600

700

Number of Key Sharing Parties

Ti
m

e
C

on
su

m
pt

io
n/

m
s

PCAC-Encrypt
PCAC-Decrypt
RAAC-Encrypt
RAAC-Decrypt

Figure 7. Time Consumption in the Encrypt and Decrypt Phase.

6.3. Time Consumption of the Act_Audit Phase

The comparison results of the Act_Audit phase is shown in Figure 8. In this phase, the RAAC
scheme used zero-knowledge proof, on the basis of the chameleon hash algorithm to verify the user’s
identity. To make the comparison fair, the time consumption of the trace phase in RAAC scheme
was not counted. The Act_Audit phase in the PCAC was less burdensome than that in the RAAC.
In the PCAC, the Act_Audit phase took about 30 ms, in average, while it cost more than 60 ms in the
RAAC scheme.

Appl. Sci. 2018, 8, 1836 14 of 15Appl. Sci. 2018, 8, x FOR PEER REVIEW 14 of 15

Figure 8. Time Consumption in the Act_Audit Phase.

6.4. Storage Consumption of CKA

In the data obtainment stage, U needed to send his/her Pk, and CKA was the first to verify the
attribute set with his/her Pk, so the CKA needs to save Us’ Pk and Us’ attribute sets. In this section,
the experiment on the storage consumption of CKA has been discussed, and the results are shown in
Table 3.

Table 3. Data Size Saved in the CKA.

Number of Us
Number of Attributes 100,000 300,000 500,000 1,000,000

10 122 MB 366 MB 615 MB 1.18 GB
15 168 MB 505 MB 842 MB 1.65 GB
20 216 MB 644 MB 1.04 GB 2.07 GB
25 260 MB 789 MB 1.28 GB 2.57 GB
30 309 MB 930 MB 1.51 GB 2.99 GB

As can be seen from the table, the data size saved in CKA was proportional to the number of U.
When there were 30 attributes and 1 million Us, the data size CKA needed to be save was less than 3
GB. This was easy to meet with the storage technology today.

7. Conclusions

In this paper, we proposed a PCAC access control scheme that is suitable for power cloud
environment. The PCAC scheme achieved access control from the data collection to data obtainment.
A new action audit phase based on zero-knowledge proof, was also proposed, which verifies the
user’s identity without infringing on the privacy of Us. Finally, the storage and computation
overhead of the PCAC were analyzed through both theoretical and experimental analyses. Compared
to the existing CP-ABE access control schemes, the length of the master secret key in our scheme was
shorter and the storage pressure of the power cloud was lower, and the time occupied by action audit
was relatively low. Therefore, the PCAC scheme could satisfy high-frequency access control
requirement in the power cloud. However, there were still some shortcomings in our scheme. In the
access structure generation phase, our trapdoor also had a lot of limitations. Our access structure
could not achieve “NOT” door and comparable attributes. Therefore, our future work will focus on
the construction of these access structure.

Author Contributions: Y.L. and P.Z. designed the framework and wrote the manuscript. Y.L. and P.Z. collected
the data. Y.L. and B.W. mainly responsible for the formula analysis. B.W. verified the results of our work and
conceived the experiments together. Y.L. and P.Z. discussed the results and contributed to the final manuscript.

Funding: This work was supported by the Fundamental Research Funds for the Central Universities (2018ZD06).

Conflicts of Interest: The authors declare no conflict of interest.

5 10 15
0

50

100

150

200

the Number of Key Sharing Parties

Ti
m

e
C

on
su

m
pt

io
n/

m
s

RAAC
PCAC

Figure 8. Time Consumption in the Act_Audit Phase.

6.4. Storage Consumption of CKA

In the data obtainment stage, U needed to send his/her Pk, and CKA was the first to verify the
attribute set with his/her Pk, so the CKA needs to save Us’ Pk and Us’ attribute sets. In this section,
the experiment on the storage consumption of CKA has been discussed, and the results are shown in
Table 3.

Table 3. Data Size Saved in the CKA.

Number of Attributes
Number of Us

100,000 300,000 500,000 1,000,000

10 122 MB 366 MB 615 MB 1.18 GB
15 168 MB 505 MB 842 MB 1.65 GB
20 216 MB 644 MB 1.04 GB 2.07 GB
25 260 MB 789 MB 1.28 GB 2.57 GB
30 309 MB 930 MB 1.51 GB 2.99 GB

As can be seen from the table, the data size saved in CKA was proportional to the number of U.
When there were 30 attributes and 1 million Us, the data size CKA needed to be save was less than
3 GB. This was easy to meet with the storage technology today.

7. Conclusions

In this paper, we proposed a PCAC access control scheme that is suitable for power cloud
environment. The PCAC scheme achieved access control from the data collection to data obtainment.
A new action audit phase based on zero-knowledge proof, was also proposed, which verifies the
user’s identity without infringing on the privacy of Us. Finally, the storage and computation overhead
of the PCAC were analyzed through both theoretical and experimental analyses. Compared to the
existing CP-ABE access control schemes, the length of the master secret key in our scheme was shorter
and the storage pressure of the power cloud was lower, and the time occupied by action audit was
relatively low. Therefore, the PCAC scheme could satisfy high-frequency access control requirement in
the power cloud. However, there were still some shortcomings in our scheme. In the access structure
generation phase, our trapdoor also had a lot of limitations. Our access structure could not achieve
“NOT” door and comparable attributes. Therefore, our future work will focus on the construction of
these access structure.

Author Contributions: Y.L. and P.Z. designed the framework and wrote the manuscript. Y.L. and P.Z. collected
the data. Y.L. and B.W. mainly responsible for the formula analysis. B.W. verified the results of our work and
conceived the experiments together. Y.L. and P.Z. discussed the results and contributed to the final manuscript.

Funding: This work was supported by the Fundamental Research Funds for the Central Universities (2018ZD06).

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2018, 8, 1836 15 of 15

References

1. US Department of Commerce, NIST. NIST Framework and Roadmap for Smart Grid Interoperability Standards,
Release 3.0; US Department of Commerce: Washington, DC, USA, 2014.

2. Bethencourt, J.; Sahai, A.; Waters, B. Ciphertext-Policy Attribute-Based Encryption. In Proceedings of the
2007 IEEE Symposium on Security and Privacy (SP’07), Berkeley, CA, USA, 20–23 May 2007; pp. 321–334.

3. Li, L.; Gu, T.; Chang, L.; Xu, Z.; Liu, Y.; Qian, J. A Ciphertext-Policy Attribute-Based Encryption Based on an
Ordered Binary Decision Diagram. Proc. IEEE Access 2017, 5, 1137–1145. [CrossRef]

4. Wang, S.; Zhou, J.; Liu, J.K.; Yu, J.; Chen, J.; Xie, W. An Efficient File Hierarchy Attribute-Based Encryption
Scheme in Cloud Computing. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1265–1277. [CrossRef]

5. Xue, K.; Xue, Y.; Hong, J.; Li, W.; Yue, H.; Wei, D.S.; Hong, P. RAAC: Robust and Auditable Access Control
with Multiple Attribute Authorities for Public Cloud Storage. IEEE Trans. Inf. Forensics Secur. 2017, 12,
953–967. [CrossRef]

6. Wang, S.; Liang, K.; Liu, J.K.; Chen, J.; Yu, J.; Xie, W. Attribute-Based Data Sharing Scheme Revisited in
Cloud Computing. IEEE Trans. Inf. Forensics Secur. 2016, 11, 1661–1673. [CrossRef]

7. Alrawais, A.; Alhothaily, A.; Hu, C.; Xing, X.; Cheng, X. An Attribute-Based Encryption Scheme to Secure
Fog Communications. IEEE Access 2017, 5, 9131–9138. [CrossRef]

8. Xue, K.; Hong, J.; Xue, Y.; Wei, D.S.; Yu, N.; Hong, P. CABE: A New Comparable Attribute-Based Encryption
Construction with 0-Encoding and 1-Encoding. IEEE Trans. Comput. 2017, 66, 1491–1503. [CrossRef]

9. Zhang, R.; Hui, L.; Yiu, S.; Yu, X.; Liu, Z.; Jiang, Z.L. A Traceable Outsourcing CP-ABE Scheme with
Attribute Revocation. In Proceedings of the 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, NSW, Australia,
1–4 August 2017; pp. 363–370.

10. Zhou, Z.; Huang, D.; Wang, Z. Efficient Privacy-Preserving Ciphertext-Policy Attribute Based-Encryption
and Broadcast Encryption. IEEE Trans. Comput. 2015, 64, 126–138. [CrossRef]

11. Yan, Z.; Li, X.; Wang, M.; Vasilakos, A.V. Flexible Data Access Control Based on Trust and Reputation in
Cloud Computing. IEEE Trans. Cloud Comput. 2017, 5, 485–498. [CrossRef]

12. Waters, B. Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure
Realization. Lect. Notes Comput. Sci. 2011, 2008, 321–334.

13. Han, J.; Susilo, W.; Mu, Y.; Zhou, J.; Au, M.H.A. Improving Privacy and Security in Decentralized
Ciphertext-Policy Attribute-Based Encryption. IEEE Trans. Inf. Forensics Secur. 2015, 10, 665–678.

14. Guo, F.; Mu, Y.; Susilo, W.; Wong, D.S.; Varadharajan, V. CP-ABE with Constant-Size Keys for Lightweight
Devices. IEEE Trans. Inf. Forensics Secur. 2014, 9, 763–771.

15. Lin, G.; Hong, H.; Sun, Z. A Collaborative Key Management Protocol in Ciphertext Policy Attribute-Based
Encryption for Cloud Data Sharing. IEEE Access 2017, 5, 9464–9475. [CrossRef]

16. Ning, J.; Cao, Z.; Dong, X.; Liang, K.; Ma, H.; Wei, L. Auditable sigma-Time Outsourced Attribute-Based
Encryption for Access Control in Cloud Computing. IEEE Trans. Inf. Forensics Secur. 2018, 13, 94–105.
[CrossRef]

17. Liu, J.K.; Au, M.H.; Huang, X.; Lu, R.; Li, J. Fine-Grained Two-Factor Access Control for Web-Based Cloud
Computing Services. IEEE Trans. Inf. Forensics Secur. 2016, 11, 484–497. [CrossRef]

18. Li, J.; Lin, X.; Zhang, Y.; Han, J. KSF-OABE: Outsourced Attribute-Based Encryption with Keyword Search
Function for Cloud Storage. IEEE Trans. Serv. Comput. 2017, 10, 715–725. [CrossRef]

19. Balu, A.; Kuppusamy, K. An expressive and provably secure Ciphertext-Policy Attribute-Based Encryption.
Inf. Sci. 2014, 276, 354–362. [CrossRef]

20. De Caro, A.; Iovino, V. JPBC: Java pairing based cryptography. In Proceedings of the 2011 IEEE Symposium
on Computers and Communications (ISCC), Kerkyra, Greece, 28 June–1 July 2011; pp. 850–855.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2017.2651904
http://dx.doi.org/10.1109/TIFS.2016.2523941
http://dx.doi.org/10.1109/TIFS.2016.2647222
http://dx.doi.org/10.1109/TIFS.2016.2549004
http://dx.doi.org/10.1109/ACCESS.2017.2705076
http://dx.doi.org/10.1109/TC.2017.2693265
http://dx.doi.org/10.1109/TC.2013.200
http://dx.doi.org/10.1109/TCC.2015.2469662
http://dx.doi.org/10.1109/ACCESS.2017.2707126
http://dx.doi.org/10.1109/TIFS.2017.2738601
http://dx.doi.org/10.1109/TIFS.2015.2493983
http://dx.doi.org/10.1109/TSC.2016.2542813
http://dx.doi.org/10.1016/j.ins.2013.12.027
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries and Definitions
	Ciphertext-Policy Attribute-Based Encryption (CP-ABE)
	Attributes and Access Structures
	Bilinear Pairing
	Linear Secret-Sharing Schemes
	Access Tree Structure

	Our Proposed Scheme Model
	System Model
	Security Assumption

	Our Proposed PCAC Scheme
	Overview
	Detail Procedures in PCAC
	Init Phase
	Data Collection Stage
	Data Obtainment Stage

	Security Analysis and Performance Analysis
	Data Confidentiality and Resist Collusion Attack
	Storage Overhead
	Computation Overhead

	Experiment Analysis
	Time Consumption in the Data Collection Stage and the Data Obtainment Stage
	Time Consumption of the Encrypt and the Decrypt Phase
	Time Consumption of the Act_Audit Phase
	Storage Consumption of CKA

	Conclusions
	References

