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Featured Application: The Merging method might apply to publish the datasets sequentially
from the different organizations where it will ensure more data utility and privacy.

Abstract: We study the problem of privacy preservation in multiple independent data publishing.
An attack on personal privacy which uses independent datasets is called a composition attack.
For example, a patient might have visited two hospitals for the same disease, and his information is
independently anonymized and distributed by the two hospitals. Much of the published work makes
use of techniques that reduce data utility as the price of preventing composition attacks on published
datasets. In this paper, we propose an innovative approach to protecting published datasets from
composition attack. Our cell generalization approach increases both protection of individual privacy
from composition attack and data utility. Experimental results show that our approach can preserve
more data utility than the existing methods.
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1. Introduction

Data sharing helps the individual researcher and research organizations to run data analytics
operations on published databases. However, the publishing of data may jeopardize personal
privacy and disclose the sensitive values [1]. In recent decades, the sharing of personal data
has resulted in numerous incidents involving data privacy breaches [2,3], with disastrous results
for the reputations and finances of organizations. Privacy-preserving data publishing methods
are anonymizing the published data to preserve user privacy while allowing organizations to release
their datasets [4].

Personal privacy is ensured by privacy-preserving data publishing methods and anonymization
of the data at the time of widespread publication. Although identifying attributes like social security
numbers and names are never published for data mining purposes, sensitive data may still flow due
to linking attacks, whereby an attacker may reveal hidden identities or sensitive data by linking the
published data attributes with other publicly available data sources [5]. The attributes that can be
efficiently used to create such links, such as sex, zip code, and age, are called quasi-identifiers (QIs).
Anonymization requires the alteration of these attributes to prevent such attacks while preserving the
maximum possible utility of the released data.
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k-anonymity [6] is the first privacy model for privacy-preserving data publishing which
generalizes the attribute values of the quasi-identifiers so that each of the released records becomes
indistinguishable from at least k-1 other records when predicted on those attributes. As a result,
each person can be associated only with sets of records of size at least k in the anonymized table.
While the goal of k-anonymity is to prevent identity disclosure, the later privacy models l-diversity [7]
and t-closeness [8] aim at preventing disclosure of sensitive attributes by requiring restrictions on the
distribution of sensitive values in each subset of records that are indistinguishable by their QIs.

Existing anonymization methods mainly concentrate on one-time data publication [6,7,9], in which
a data publisher anonymizes a dataset without considering other published datasets. In many
cases, multiple views of a dataset [10,11] or a series of datasets in distinct time stamps [12–16]
are published. An example of the former case is the publication of data with different generalization
schemes for different purposes, and an example of the latter is a quarterly publication of hospital
data. Both examples are multiple-time data publications. Our previously published research [17]
concentrates on multiple-time data publishing for bike sharing datasets. When the information of
an individual remains in multiple datasets, an adversary may examine the intersection of some
anonymized datasets to reveal the individual’s private information even though it is preserved in each
separate publication [12,18].

Let us look at an example of how multiple publications can lay information open to a composition
attack, which uses the intersection of some published datasets to deduce the sensitive values of
individuals whose records are in multiple datasets. Tables 1 and 2 contain data segments from two
hospitals, both including the same person’s health records. Assume that Boby’s personal information
(Age = 22, Sex = Male, Zipcode = 47905), is known to the adversary. The adversary also knows that
Boby visited two hospitals for medication. We can assume that the two hospitals published their
data without consulting each other. Tables 3 and 4 are the anonymized tables published by the two
hospitals. We will see that this would result in an increased probability of breaching Boby’s privacy
from their published data. It is true that the adversary cannot find a person’s sensitive information in
either dataset since both satisfy k-anonymity or l-diversity. However, the intersection of Tables 3 and 4
shown in Table 5 comprises only those individuals who have visited both hospitals or have the same
QI and sensitive values. Now, from Table 5, the adversary can link Boby’s QI values with the sensitive
value, breaching Boby’s personal privacy.

Multiple independent data publishing poses new challenges for data privacy and the utility of the
published data. In multiple independent data publications, a data owner does not know which published
dataset may be used for a composition attack. Multiple independent data publications are different from
traditional multiple-time data publications, such as multiple-view data publication [10,11] and series data
publication [12–14], in which a data publisher is familiar with all the datasets (different views or
previous versions of the current dataset) that could be used for composition attacks and can use
information in the known datasets to anonymize the current dataset. Since there is no communication
or information sharing between data owners in multiple independent data publications, collaborative
privacy-preserving data publishing techniques [19–21] cannot be used to protect privacy in this
case. In addition, we published earlier research on privacy-preserving data publishing [15,17,22].
To reduce the likelihood of composition attacks on published datasets, existing anonymization
techniques [2,23,24] utilize generalization and perturbation, which decrease the data utility.
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Table 1. Microdata of hospital A.

Name Age Sex Zipcode Disease

Boby 22 M 47905 Gastritis
Alisa 22 F 47905 Ovarian Cancer
Tina 33 F 47901 Breast Cancer

Doug 52 M 47901 Flu
Kevin 54 M 47902 Dyspepsia
Sandy 60 F 47902 Fever
Molly 60 F 47308 Cancer
Dolly 64 F 47308 Fever

Table 2. Microdata of hospital B.

Name Age Sex Zipcode Disease

Boby 22 M 47905 Gastritis
Aron 22 M 47905 Blood Cancer

Angela 33 F 47907 Breast Cancer
Arnold 58 M 47903 Flu
Blake 30 M 47902 Dyspepsia
Sandy 60 F 47902 Fever
Camila 65 F 47308 Flu
Easter 65 F 47309 Cancer

Table 3. Anonymized table of hospital A (Mondrian).

Age Sex Zipcode Disease

22 * 47905 Gastritis
22 * 47905 Ovarian Cancer

33–52 * 47901 Breast Cancer
33–52 * 47901 Flu

54–60 * 47902 Dyspepsia
54–60 * 47902 Fever

60-64 F 47308 Cancer
60-64 F 47308 Fever

* denotes the generalization of the attribute value.

Table 4. Anonymized table of hospital B (Mondrian).

Age Sex Zipcode Disease

22 M 47905 Gastritis
22 M 47905 Blood Cancer

33–58 * 4790 * Breast Cancer
33–58 * 47905 Flu

30–60 * 47902 Dyspepsia
30–60 * 47902 Fever

65 F 4730 * Flu
65 F 4730 * Cancer

* denotes the generalization of the attribute value.
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Table 5. Intersection of Tables 3 and 4.

Age Sex Zipcode Disease

22 M 47905 Gastritis
33 * 4790 * Breast Cancer

Flu
60 * 47902 Dyspepsia

47902 Fever

* denotes the generalization of the attribute value.

In this paper, we use some ideas from [17] and propose a new approach called Merging for
protection against composition attack in various independent data publications while preserving
better data utility. It partitions the data both vertically and horizontally. In the vertical partitions,
highly correlated attributes are grouped into columns and each resulting column will then contain
a subset of attributes. In the horizontal partition, the tuples are grouped in buckets or equivalence
classes. In an equivalence class, the attribute values are randomly permuted to break the association
between different columns. We introduce the cell generalization approach to increase the privacy of
the published dataset. Hence each QI value will be linked with l distinct sensitive values, reducing
the confidence that the adversary will have when breaching personal privacy. Tables 6 and 7 are
the published tables from the two hospitals, generated using the anonymization technique proposed
in this paper.

The idea behind our approach is to increase the probability of false matches by linking the QI
values with the l distinct sensitive values [25]. When a person’s record is similar in two datasets,
there will be common values in the intersection of the anonymized datasets, including QI values and
sensitive values. When a person’s record is not in the two datasets, there may still be a common record
in both anonymized datasets, induced by two different patients having the same QI and sensitive
values. Such a match is called a false match. We consider the example as mentioned earlier where user
privacy is breached by the intersection of two published datasets. Tables 6 and 7 are published by the
Merging method, and Table 8 is the intersection of Tables 6 and 7. From the intersection, the adversary
cannot discover the actual QI values of the user. In fact, the first bucket or equivalence class of Table 8
contains 44 QI values. Now the adversary will need another publicly available data source to match
his desired QI values, which we call a true match. The adversary will want to link this true match
with the sensitive value. However, in the sensitive values column, i.e., Disease, there are three distinct
values. It will thus be difficult for him to deduce an exact sensitive value for the particular QI values.

Table 6. Anonymized table of hospital A (Merging).

(Age, Sex) Zipcode Disease

(22, *) 47905 Ovarian Cancer
(22, *) 47901 Gastritis

(33–52, *) 47905 Flu
(33–52, *) 47901 Breast Cancer

(54, M) 47308 Fever
(60, F) 47902 Dyspepsia
(60, F) 47308 Cancer
(64, F) 47902 Fever

* denotes the generalization of the attribute value.
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Table 7. Anonymized table of hospital B (Merging).

(Age, Sex) Zipcode Disease

(22, *) 4790 * Blood Cancer
(22, *) 47905 Gastritis

(33–58, *) 4790 * Breast Cancer
(33–58, *) 47905 Flu

(30, M) 4730 * Flu
(60, F) 47902 Fever
(65, F) 4730 * Cancer
(65, F) 47902 Dyspepsia

* denotes the generalization of the attribute value.

Table 8. Intersection of Tables 6 and 7.

(Age, Sex) Zipcode Disease

(22, *) 47905 Gastritis
(33, *) 4790 * Breast Cancer

Flu

(60, F) 47902 Fever
4730 * Cancer

Dyspepsia

* denotes the generalization of the attribute value.

The essential aim of our proposed Merging anonymization technique is to increase the probability
of false matches during a composition attack. In a real-world scenario, since there will be more records,
there will be a stronger probability of producing a false match for a QI value. When we consider the
ambiguity behind true and false matches, it is conceivable that the probability of a false match is higher
than that of a true one. When a significant difference in such probabilities is achieved, the privacy
of an individual is protected in multiple independent data publications. Putting this principle in
the differential privacy context, the appearance of a common record in the published datasets is
independent of whether or not the common record belongs to the same individual, and hence an
adversary cannot be sure whether the sensitive value in the common record belongs to the person.

The main contributions of the paper are summarized as follows. Equivalence classes are created,
and attribute values are randomly permuted in the equivalence class to break the cross-column relation
to increasing the published data privacy. A cell generalization approach is introduced to protect the
published datasets from composition attacks. In addition, we present the anonymization algorithm
which can successfully anonymize the dataset to ensure the protection from composition attack and
increase the data utility as well. The proposed method can protect the anonymized data from privacy
breach by satisfying the l-diversity privacy requirements. We conduct the extensive experiments on
real-world data to compare with the other state-of-art techniques to support the effectiveness of the
Merging method.

The remainder of this paper is structured as follows. Background and related work are reviewed
in Section 2. Sections 3 and 4 give the details of the proposed system and anonymization algorithm.
We present experimental analysis in Section 5 and conclude in Section 6.

2. Background and Related Work

In this section, we review the existing anonymization techniques, focusing on multiple independent
data publishing, and discuss the background knowledge for the published microdata tables.
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2.1. Privacy-Preserving Data Publishing Context

In order to preserve user privacy, an essential privacy context needs to be defined for the
privacy-preserving data publishing. For determining a particular privacy setting, recently published
studies [26–29] classified the essential privacy terminology for the cyberspace, and these include sender,
recipient, attacker, anonymity, pseudonymity, identifiability, identity confidentiality, unlinkability,
undetectability, unobservability, and identity management. Pfitzmann and Hansen [27–29] represent
a privacy context that illustrates the relationship between fundamental privacy terms.

In the privacy setting, a sender transfers his dataset to a recipient where an attacker will not be able
to gain any knowledge about that dataset. This privacy setting is followed for the privacy-preserving
data publishing event. In the privacy-preserving data publishing context, a data publisher publishes
the data to the public, and it is open to everybody. An attacker, i.e., adversary also receives the
published data, and he might use previously gained background knowledge to identify a person
by linking with some publicly available data sources [6]. Hence, the requirement for anonymity
is significantly present in the privacy-preserving data publishing context [26]. The anonymity of an
individual is the anonymous properties of the particular individual in the dataset in which an attacker
cannot recognize the record owner within a set of other records, which is called the anonymity set [29].
By applying some anonymization techniques on the published dataset, the anonymity set can be
created to protect the dataset from making such a link to identify a person. Therefore, the anonymous
dataset will be protected from privacy attacks, and it will ensure the identity confidentiality in the
published dataset.

2.2. Related Work

Numerous privacy-preserving data publishing methods have been reported in the last few
decades, based on partitioning and randomization. In partitioning methods, the data values of
quasi-identifiers (e.g., age, sex and zipcode) are generalized to create an equivalence class, so that
individuals cannot be identified with their sensitive values in the equivalence class. By contrast,
in randomization methods, the original values are changed by adding noise to make it difficult
to pinpoint an individual in a published dataset. Some popular anonymization techniques such
as k-anonymity [6], l-diversity [7], t-closeness [8], JS-reduce [30] have been developed for privacy
preservation in one-time data publishing. Among these methods, JS-reduce [30] is the only method
which models sequential background knowledge attack. The proposed method provides a better
model which considers sequential background knowledge attack and anonymizes data, which gives
better privacy protection to the individual.

For the multiple sensitive values in the dataset, a multidimensional framework was proposed
for the privacy-preserving data publishing [31]. The multidimensional framework partitions the QI
attributes and sensitive attributes in the bucket and ensures the privacy by satisfying l-diversity
and k-anonymity privacy requirements. For the multiple numerical sensitive values, the multi
sensitive bucketiazation method was proposed based on cluster technology for privacy-preserving
data publishing [32]. In addition, several recent approaches [33–35] have been proposed to anonymize
and publish a dataset while preserving more data utility. However, these methods are vulnerable to
composition attack.

Several privacy-preserving data publishing methods have been designed to take into account
known releases of related datasets, such as earlier publications by the same data owner (called
sequential, serial or incremental releases) [13,14] and multiple views of the same dataset [11]. These
methods explicitly deal with composition attacks which, by applying the intersection of two or more
published datasets, reveal the sensitive information of any individual. Generalization [36] is a popular
method that has been widely used for data anonymization. While generalization may protect personal
data privacy, it results in serious data utility issues during data publication.

In the last decade, Hybrid [2], Probabilistic [23] and Composition [24] privacy methods have been
proposed for multiple independent data publishing. Composition is the first privacy model to prevent
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against composition attacks in the multiple independent data publishing context. The proposed
method in [23] uses sampling and generalization for independent datasets to protect composition
attacks. The probabilistic approach tries to establish the linkability of sensitive values shared between
multiple independent datasets by exploring correlation the QI attributes and sensitive attributes to
simulate the anonymized data from another organization. The method in [24] works on the top
of k-anonymization [6] privacy model to protect datasets from composition attacks. Hybrid method
combines random sampling, perturbation, and generalization to protect the independent datasets from
composition attacks. Hybrid provides better privacy protection and data utility than the Composition
and Probabilistic methods.

Recently, ε − di f f erential privacy (ε − DP) [37] has received substantial attention for
privacy-preserving data publishing. In differential privacy, ε − DP provides a strong privacy
guarantee for statistical query answering. A composition attack can be protected by differential privacy
based data anonymization [18]. A survey on differential privacy can be found in [38]. An anonymization
mechanism on a dataset satisfies ε−DP privacy if the deletion or insertion of a single record from the
dataset has only a small effect on the output of the randomization technique. In ε−DP privacy, if the
independent datasets privacy are preserved by the privacy budget ε, then the smaller ε value provides the
higher privacy protection. It is observed in [2,39,40] that using ε−DP to protect from composition attacks
generates a significant amount of loss of data utility during anonymization. Most of the differential
privacy methods support interactive settings to satisfy the ε−DP requirements. Mohammed [41] proposed
the first non-interactive based approach for differentially private data release that protects information for
published datasets.

2.3. Background Knowledge

Background knowledge can be described as an experience that has already been learned formally
from previous rules regulated in the microdata of different data publishers or gleaned informally from
life experience. For example, some of the sensitive attribute values (breast cancer, ovarian cancer)
are linked with females only. Background knowledge helps the adversary to learn relevant sensitive
information from the published microdata tables. Background knowledge helps in finding records and
breaching individual privacy in published microdata tables.

An adversary may have formal and informal knowledge about the published dataset.
An adversary may know that a person visits hospital A and hospital B for medication for the same
disease. Thus, even before the datasets from A and B are published, the adversary already has the
person’s QI values. The adversary can then use the QI values of the person, that is person P in the
table T, and the following facts to breach the sensitive value S:

1. P is also in another table F
2. F∗ and T∗ are the published tables of F and T

From the facts mentioned earlier and also using some absolute facts, the adversary can determine
the individual’s sensitive value.

In this paper, we assume that data publisher A has no knowledge about data publisher B’s datasets
with respect to concurrent tuples that A’s dataset may contain. However, publisher A assumes that
the QI values and sensitive values S of B’s dataset follow the identical distributions as A’s dataset.
In addition, B’s dataset is anonymized by the same data anonymization techniques as those used by
data publisher A.

3. Preliminaries and Problem Definition

Given a microdata table T of records with d+1 attributes, AT = {AT1, AT2, ..., ATd, S} and
the attribute domains are {D[AT1], D[AT2], ..., D[ATd], D[S]}. A tuple t ∈ T can be expressed
as t = (t[AT1], t[AT2], ..., t[ATd], t[S]), where t[ATi](1 ≤ i ≤ d) is the quasi-identifier of t and t[S]
is the sensitive value of t.
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We assume that a number of other microdata tables F = {F1, F2, ..., Fn} are published by different
independent publishers whose microdata tables are also defined by the same schema as T and
published using the same anonymization method. This is a reasonable assumption since public
and private groups may have a standard method for data distribution. For example, all health care
institutions in the USA follow one law, the HIPAA, for their distribution of d-identified data [2].

3.1. Equivalence Class and Match

In a published l-diversity [25] dataset, an equivalence class or bucket consists of l distinct sensitive
values from a particular sensitive value domain S and highly similar QI attribute values. In an
equivalence class, any individual is linked with l distinct sensitive values so that the adversary cannot
learn the sensitive values of the individual with a probability greater than 1/l.

Let ET∗ and EF∗ be two equivalence classes in the published datasets T∗ and F∗, respectively.
These two equivalence classes match if their attribute value pairs QI(ET∗ ) and QI(EF∗ ) are equal or have
a non-empty intersection, and sensitive values S(ET∗)∩ S(EF∗) 6= ∅. For example, ET∗ and EF∗ are two
equivalence classes if QI(ET∗ ) = (Age = 22, Sex = *, Zipcode = 47905) and QI(EF∗ ) = (Age = 22, Sex = *,
Zipcode = 47905). Suppose that the sensitive value domains are S(ET∗ ) = (Ovarian Cancer, Gastritis,
Flu, Breast Cancer) and S(EF∗ ) = (Blood Cancer, Gastritis, Breast Cancer, Flu). The QI values of the
two equivalence classes are 22, Male, 47905 or 22, Female, 47905. Therefore, QI(ET∗)∩QI(EF∗) 6= ∅.
In addition, S(ET∗)∩ S(EF∗) = (Gastritis, Breast Cancer, Flu ) 6= ∅, and therefore, the equivalence classes
ET∗ and EF∗ are matched.

Let t be the tuples of a user in T and F, s the possible sensitive value for t. The probability of a
true match is defined as PT = P(t ∈ ET∗ ∧ t ∈ EF∗). In other words, the probability of a true match is
the probability that the records of t are in both equivalence classes.

A match can be generated by two independent persons: this is called a false match. Even If the
user is not in two published datasets, there is still a probability that two records match. This is the
probability of a match in F∗ and T∗ that is generated by the uncertainty of two independent individuals,
denoted by PF. For example, in the published dataset, two persons may have the same age, live in the
same zip code area and even have suffered from the same disease, without having visited the same
hospital for medication.

3.2. Composition Attack and Privacy Breach

Given two independently published tables, T∗ and F∗, a composition attack consists in examining
the intersection of the two tables to find the common QI values and the corresponding sensitive value
s of a person. In the composition attack, T∗ and F∗ are from two different data publishers, and there is
no information shared prior to data publishing. If there is only one common sensitive value shared by
two equivalence classes of s in T∗ and F∗, the privacy of the person is breached with 100% likelihood.

From the background knowledge, it is certain that the adversary already knows the QI values
because the adversary has the published tables T∗ and F∗. In addition, the adversary may gather
knowledge about a particular individual from publicly available data sources such as voter registration
lists. By using the QI values from the voter registration lists, the adversary may try to find the QI
values from the intersection of tables T∗ and F∗ and finally uncover the sensitive values.

In order to protect the privacy of the individual, we break the association between QI values by
segmenting the microdata table respectively into columns and rows. Breaking the association between
the QI values will confuse an adversary looking for exact QI values from the intersection of published
tables T∗ and F∗.

4. Merging Method

In this section, we formulate solutions from the problem definitions and design anonymization
algorithms. The objective of anonymization is to obtain l-diversity in possible intersections of
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independently published datasets and to enable higher probabilities of false matches than of true
matches, i.e., PF > PT.

4.1. Formulation

In this subsection, we sketch the ideas behind our algorithm development to meet the
anonymization objectives. The probability of false matches will be increased by grouping the attributes
in the equivalence class and permutation among the attribute values to break the correlations between
attribute values. Specifically, the anonymization algorithm consists of the following steps: creation of
fake tuples, attribute separation, tuple separation, and cell generalization.

4.1.1. Creation of Fake Tuples

A published table with generalization has less data utility than the published table with fake
tuples. The presence of fake tuples does not have any effect on the utility of the published dataset,
but will increase the probability of false matches during a composition attack on the published table [25].
In our anonymization method, we create n (n=1,2,3,...) fake tuples with the same QI values as in the
original table and assigned sensitive values to them based on the sensitive value distribution in the
initial dataset.

4.1.2. Attribute Separation

For attribute separation, related attributes are arranged in a subset, such that each attribute
belongs to one subset. Each grouped subset is called a column. Specifically, in a microdata table T
there will be c columns C1, C2, ..., Cc satisfying

⋃
i=1 Ci = AT and for any 1 ≤ i1 6= i2 ≤ c, Ci1 ∩Ci2 = ∅.

The sensitive attribute S forms the last column Cc, called the sensitive column. The remaining columns
{C1, C2, ..., Cc−1} contain QI attributes.

Related attributes are grouped by measuring the association between attributes. The widely used
method to measure the association between categorical attributes is the mean square contingency
coefficient [25,42]. Given two categorical attributes AT1 and AT2 with value domains {v11, v12, ..., v1d1}
and {v21, v22, ..., v2d2} respectively and domain sizes d1 and d2, the mean square contingency coefficient
between attributes AT1 and AT2 is

φ2(AT1, AT2) =
1

min{d1, d2} − 1

d1

∑
i=1

d2

∑
j=1

( fij − fi. f .j)2

fi. f .j

where, fi. and f .j are the fractions of occurrence of v1i and v2j in the data, respectively. fij is the
fraction of cooccurrence of v1i and v2j in the data. Therefore, fi. and f .j are the marginal totals of

fij : fi. = ∑d2
j=1 fij and f .j = ∑d1

i=1 fij. It can be shown that 0 ≤ φ2(AT1, AT2) ≤ 1.
For continuous attributes, we have applied discretization to partition the domain of continuous

attributes. Equal-width discretization is used for partitioning the domain into some k equal-sized intervals.
After computation of association between attributes, the widely employed k-medoid clustering

algorithm Partition Around Medoids (PAM) [43] is used for partitioning attributes into the columns. In the
anonymization algorithm, each attribute is determined as a point in the cluster space. The dissimilarity of
two attributes is defined as d(AT1, AT2) = 1− φ2(AT1, AT2), which lies in 0 and 1. In the cluster space,
two correlated attributes have a lower dissimilarity between the corresponding data points.

We arrange attributes to bring the highly correlated attributes in the same column. For the data
utility and privacy, this approach performs well. In terms of data utility, grouping highly correlated
attributes protect the relationships among those attributes. With regard to privacy, the association
between correlated attributes reduce the identification risk. Since the association between uncorrelated
attribute values are not common among the dataset and hence more distinctive, it is suitable to break
the relation between uncorrelated attributes to preserve the user privacy. That way, when an adversary
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examines the intersection of two or more published datasets, the resulting intersection data will lead
to more false matches, reducing the adversary’s confidence in breaching data privacy.

4.1.3. Tuple Separation

This entails generating different subsets of T, such that each tuple is assigned to one subset. Every
subset of tuples is called an equivalence class. Specifically, let there be e equivalence classes E1, E2, ..., Ee

such that
⋃e

i=1 Ei = T and for any 1 ≤ i1 6= i2 ≤ e; Ei1
⋂

Ei2 = ∅.
The tuple separation operation divides the records horizontally into a number of partitions,

called buckets or equivalence classes. The Mondrian [44] algorithm is applied, and it follows the
top-down approach without generalization feature to separate tuples in the equivalence classes. Within
each equivalence class, the values in each column are randomly permuted to break the cross-column
associations. Therefore, the tuple separation will minimize the linkage between the sensitive values
with the QI values which will reduce the adversary’s confidence in linking with the sensitive values.

4.1.4. Cell Generalization

A cell is the cross-section of a column and a row. In our problem definition, a cell consists of
a column and an equivalence class. Given a microdata table T, a column Cc and an equivalence
class Ee make a cell CE(i,j), where (1 ≤ i ≤ c) and (1 ≤ j ≤ e). For example, in Table 3 above,
the column {(Age, Sex)} and the first equivalence class which consists of tuples {t1, t2, t3, t4} form the
first cell of the table. A cell generalization for CE(i,j) generalizes each attribute value of CE(i,j) to satisfy
privacy requirements.

In the anonymization, the attribute values in the equivalence class will be shuffled randomly
to break the association of each tuple, in order to increase personal privacy. Random shuffling will
break the association of the tuple but it will create some invalid records and, in some cases, it may
increase the likelihood of privacy breach for a particular set of sensitive values [22]. For these special
circumstances, we have introduced cell generalization to enhance the privacy of the equivalence class.
Because cell generalization does not generalize the whole equivalence class, it allows better data utility
than column generalization or full generalization of the table.

Cell generalization satisfies the k-anonymity and l-diversity privacy requirements for the particular
cell and increases the probability of false matches of the attributes. In addition, cell generalization
helps to reduce the curse of dimensionality associated with full generalization of the microdata table,
and it certainly increases the data utility of the published dataset.

4.2. Algorithms

In this subsection, we present our merging algorithm for protecting published tables from
composition attack. Two algorithms are introduced to perform the anonymization process. The primary
objective is to increase the number of false matches by satisfying the l-diversity [25] requirement, thereby
protecting the published table from composition attack and increasing data utility.

4.2.1. Anonymization Algorithm

Our anonymization algorithm (Algorithm 1) performs the anonymization process as follows:
It creates n fake tuples at line 2 and adds them to the original microdata table T. It maintains two
data structures: a queue of equivalence classes Q and a set of anonymized equivalence classes ET.
Initially, Q contains only one equivalence class, and ET is empty. In each iteration (lines 4 to 10),
the anonymization algorithm removes an equivalence class from Q and breaks the equivalence class
into two equivalence classes according to the Mondrian [44] criterion. In line 7, privacy is checked by
the Privacy-Check algorithm and the two equivalence classes are appended at the end of the queue
Q (for more breaks of the equivalence class this is in line 8). If the equivalence class can no longer be
broken, then the anonymization algorithm puts the equivalence class into ET in line 9. Finally, in line
12, the anonymized table T∗ is published.
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Algorithm 1 Anonymization
Input: Microdata Table T
Output: Anonymized Table T∗

1: For a given table T, generate an anonymized table T∗, satisfying privacy requirement R of
l-diversity;

2: Generate datasets X with n fake tuples and combine with the dataset T = T ∪ X;
3: Q = T; ET = ∅;
4: while Q is not empty do
5: remove first equivalence class E from Q; Q = Q − E;
6: separate E into two equivalence classes E1 and E2 as in Mondrian [44].
7: if Privacy Checking (T, Q∪ {E1, E2} ∪ ET, R) then
8: Q = Q∪ {E1, E2};
9: else

10: ET = ET ∪ E;

11: T∗ = ET;
12: return T∗.

4.2.2. Algorithm for Privacy Checking

Our privacy checking algorithm assures the privacy requirement R in each equivalence class. In the
anonymization, column values are permuted randomly to break cross-column associations. There is a
possibility of creating some invalid records [22] or incompatible tuples in the process. In line 2, tuple
incompatibility is checked as in [22]. If there are incompatible tuples, we generalize the particular cell
values to satisfy k-anonymity. In line 5 we check the l-diversity privacy requirement as in slicing [25].

Algorithm 2 Privacy checking(T, T∗, R)
Input: Microdata Table T
Output: TRUE, if the equivalence class satisfies privacy requirement R

1: for each equivalence class E in T∗ do
2: check-out the tuple compatibility as in [22] incompatible tuple chek;
3: if Incompatible tuple exists then
4: generalize the cell values to satisfy k-anonymity;

5: ensure the l-diversity of all equivalence classes to satisfy privacy requirement R as executed in
[25];

6: return TRUE.

4.2.3. Anonymization Algorithm Time Complexity

To compute the time complexity of the anonymization algorithm, we need to consider the time
complexity of Mondrian method [44], incompatible tuple check [22] technique, and the l-diversity
verification technique. In the Mondrian algorithm, it requires O(nlogn) times because the whole
dataset must be scanned O(n) times and the Mondrian algorithm needs n heights of the taxonomy
tree, which is O(logn). To check incompatible tuples it requires O(n), and verifying the l-diversity
requirement takes O(n2). Therefore, the whole time complexity of the anonymization algorithm is
presented by O(n2logn).

4.3. Discussion on the Merging Method

In this subsection, we illustrate how the Merging method is able to protect the anonymization
table from composition attack while increasing the data utility and maintaining l-diversity in the
intersection of two published tables. Tables 6 and 7 are the published tables from Hospitals A and B.

Consider a tuple t with QI values (22, M, 47905), where tuple t visits both hospitals for medication.
We can create a search for the QI values of tuple t in the intersection shown in Table 8. To determine
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the QI and sensitive values of t, its matching equivalence class is examined. In the first column,
the attributes (Age, Sex) have the values (22,*), and in the second column, Zipcode has the value 47905
in the first equivalence class. Therefore, we can say the person may exist in the first equivalence class.
Because the Sex attribute value is generalized, there is a possibility that the individual could be female
even though the attribute Sex is considered to be male; the QI values (22, M, 47905) are linked to three
sensitive values. Based on negative association rules [22], a male cannot suffer from breast cancer,
so we deduct one more value and there are two values, satisfying l-diversity [25].

5. Experimental Analysis

In this section, we present experiments on real-world datasets. The experiments are divided
into two parts: the first part was designed to test the effectiveness of the proposed anonymization
algorithm against composition attack, in comparison with the ε−DP [41], Hybrid [2], Probabilistic [23],
Composition [24] and Mondrian [44] methods. Our experimental results show that the Merging method
also provides smaller privacy risks for the composition attacks. The results of this experiment are
presented in Composition Attack subsection.

In the second part, we evaluated the effectiveness of our Merging method in preserving data
utility, as compared to the same set of competing methods. The experiment demonstrates that the
Merging method preserves more data utility than the other methods. In addition, it has smaller
relative query error and better classification accuracy than the competing methods. The results of this
experiment are presented in Data Utility section.

5.1. Data Set

The US-Census Adult dataset is derived from the UC Irvine Machine Learning Repository [45],
which is composed of data accumulated from the US census. Data sets are described in Table 9.
In our experiments, we extracted two independent datasets from the Adult dataset (i) Occupation
and (ii) Education. The Adult dataset has 48842 tuples with six QI attribute values: Age, Sex, Marital
status, Work class, Relationship, and Salary. Occupation is used as the sensitive attribute value for the
Occupation dataset, and Education for the Education dataset.

Table 9. Description of US-Census Adult dataset.

Attribute Type Number of Values

1 Age Continuous 74
2 Sex Categorical 2
3 Marital status Categorical 7
4 Work class Categorical 8
5 Relationship Categorical 6
6 Salary Categorical 2
7 Occupation Categorical 14
8 Education Categorical 16

For the experiment, we needed independent datasets to simulate the independent data publishing
environment. Therefore, 10 disjoint datasets were composed from each of the Education and
Occupation datasets, each with 4 K randomly selected tuples. The remaining 8 K tuples were used to
generate the overlapping tuples pool to check for composition attack. From the remaining tuples pool,
we made five copies of each group, respectively inserting 100, 200, 300, 400, and 500 tuples into the
Education and Occupation datasets. Finally, we obtained datasets with sizes of (4.1 K, 4.1 K), (4.2 K,
4.2 K), (4.3 K, 4.3 K), (4.4 K, 4.4 K) and (4.5 K, 4.5 K) for Education and Occupation datasets respectively.

In the experiment, each group of datasets was used as input to the ε − DP [41], Hybrid [2],
Probabilistic [23], Composition [24], Mondrian [44] and Merging algorithms to calculate the privacy
risks and corresponding data utility. Privacy-preserving multiple independent data publishing is a
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non-interactive data publishing context, and for experimental analysis, we conduct the experiment on
the non-interactive privacy settings. Conversely, the majority of the work in differential privacy [37]
follows the interactive settings and a user accesses a dataset through a numerical query, while the
anonymization technique appends noise to the query answers. The interactive environments might
not always support the entire situation because in most cases datasets need to be published in public.
Therefore, we select a non-interactive setting for differential privacy experiment as discussed in [41].

We compared the proposed Merging method with the ε− DP [41], Hybrid [2], Probabilistic [23],
Composition [24] and Mondrian [44] methods. To compute privacy risks, we execute all algorithms on
the non-interactive privacy-preserving data publishing environment. In the non-interactive privacy
settings, ε− DP, Hybrid, Probabilistic, Composition and Mondrian create quasi-identifier equivalence
class as k-anonymity method [6]. For creating equivalence class, we select k = 4 and k = 6. In an
equivalence class for the differential privacy, Laplacian noise is appended to the count of sensitive
values [23]. To create the equivalence class for Merging method l-diversity [7] is chosen as discussed
earlier, and we select l = 4 and l = 6. We select ε = 0.3 for the ε− di f f erential privacy budget.

The Merging method creates n = 1 fake tuples. For this reason, the output size of the Merging
method will be larger than the all other methods. In the experimental comparison, we have therefore
calculated the percentage of the respective output for each group of datasets.

In our experiments, we used the anonymization algorithm to anonymize the datasets.
Composition attack was performed on all pairs of datasets, and data utility was measured after
anonymization of the datasets.

5.2. Composition Attack

We checked the effectiveness of an anonymization algorithm in reducing the privacy risk due
to composition attack. Privacy risk is measured by the ratio of true matches to total matches and
expressed as [2]:

Privacy risk =
True Matches (PT)

Total Matches (PT + PF)
× 100%

Composition attacks were measured by calculating privacy risk for all pairs of the extracted
dataset with identical overlapping records. In the Merging method, the false matches will be increased
because of l distinct sensitive values linked with the QI values, and it will decrease the privacy risk.

Figures 1–4 present the experimental results on the Occupation and Education datasets,
respectively. They illustrate the privacy risk resulting from different anonymization techniques.
Privacy risk indicates how confidently an adversary can learn sensitive values of a user from the
multiple independent datasets. ε− DP [41] provides the lowest privacy risk for composition attacks
among all the compared methods. Privacy risk gets smaller by increasing the false matches in the
published datasets. The breaking of cross-column relation increases the probability of false matches
in the anonymized datasets by the Merging method. As reported by the privacy risk shown in
the result, Merging yields a lower probability of inferring the user’s private information than the
Probabilistic [23], Composition [24] and Mondrian [44] methods. It has almost identical privacy risk
to that of the Hybrid [2] method. Therefore, we can say Merging also reduces the probability of
composition attack on published datasets.

According to the privacy risk shown in Figures 1–4, we see that the ε− DP method achieves
the best result for composition attacks because in an equivalence class it appends Laplacian noise to
the count of sensitive values. It thus has the highest probability of yielding false matches. However,
it reduces data utility, as discussed in Section 5.3. Conversely, the Merging method preserves more
data utility compared with all the other methods.
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Figure 1. Privacy risk on Occupation dataset (k = 4, l = 4).

Figure 2. Privacy risk on Occupation dataset (k = 6, l = 6).

Figure 3. Privacy risk on Education dataset (k = 4, l = 4).
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Figure 4. Privacy risk on Education dataset (k = 6, l = 6).

5.3. Data Utility

In the experiments in this subsection, we measured the data quality by the distortion ratio and the
aggregate query answering error. In addition, we conducted an experiment on classifier learning of
the published datasets. We observed that the Merging method has lower data loss, less relative error
and better classification accuracy than the all other methods.

5.3.1. Data Utility Comparison

There are many methods [46] for calculating the information loss in the published data. Here we
describe a simple method to illustrate the basic information loss metric.

We estimate that each attribute value of the microdata table is correlated with a generalized
taxonomy tree. The cost is calculated from the published dataset and is called the distortion ratio.
If the attribute value of a tuple is at the leaf node of the taxonomy tree, then the value is not generalized,
and the distortion of that value is 0. Consequently, if the attribute value is generalized and does not
represent the leaf node, then the distortion is defined by the position of the generalized attribute value
and the height of the taxonomy tree. For instance, the age 22 is not generalized, and it stands at the
leaf node; therefore, the height is 0, and the distortion is likewise equal to 0. While the attribute value
is generalized one level up in the taxonomy tree, the distortion is equal to 1/H. Here H represents the
height of the taxonomy tree. Let dj,k is the distortion of the attribute Aj of tuple tk. The distortion of the
entire published microdata table is equal to the sum of the distortions of all values in the generalized
dataset. In addition, the distortion is defined as discussed in [46]:

n,m

∑
j=1,k=1

dj,k

The distortion ratio is DR = DP
DG

, where DR is the distortion ratio, DP is the distortion of the
published table, and DG is the distortion of the fully generalized (i.e., all attribute values are generalized
by the root of the taxonomy trees) dataset.

Figure 5 illustrates the experimental result for data utility, based on data loss in the published
datasets. For the data loss experiment, we selected a 4.5K dataset with 6-anonymity for the Hybrid [2],
ε − DP [41], Probabilistic [23], Composition [24] and Mondrian [44] methods, and 6-diversity for
the Merging method. The results show that the Merging method yields less data loss than all the
other methods. We know the full generalization of the attribute values reduces the published data
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utility [25]. The Merging method employs selective generalization in the cell if it is necessary to meet
the privacy requirements. Therefore, it preserves more data utility than the other methods.

Figure 5. Data loss in the published dataset.

5.3.2. Aggregate Query Answering Error

In this experimental analysis, the accuracy of aggregate query answering [47] was also evaluated as
a measure of data utility. It is possible to compute aggregate query operators such as “COUNT”, “MAX”,
“AVERAGE” and so on. In the experiment, only the “COUNT” operator was evaluated, for queries
whose predicates involved the sensitive values. The query is considered in the following form:

SELECT COUNT(*) FROM Table

WHERE vi1 ∈ Vi1AND . . . vidim ∈ Vidim AND s ∈ Vs

where vij(1 ≤ j ≤ dim) is the quasi-identifier value for attribute ATij , Vij ⊆ Dij and Dij is the domain
for attribute ATij , s is the sensitive attribute value, Vs ⊆ Ds and Ds is the domain for the sensitive
attribute S. A query predicate is characterized by predicate dimension dim and query selectivity sel,
dim indicating the number of quasi-identifiers in the predicate and sel indicating the number of values
in each Vij , (1 ≤ j ≤ dim). The size of Vij , (1 ≤ j ≤ dim) was randomly chosen from 0, 1, . . . , sel ∗ |Dij |.
Each query was executed on seven tables: the original and those generated by the Merging, ε− DP,
Hybrid, Probabilistic, Composition and Mondrian methods. Count is indicated for the original and
anonymized tables, the original count denoted by orgcount and the anonymized count by anzcount, where
anzcount is Merging, ε−DP, Hybrid, Probabilistic, Composition and Mondrian respectively. To measure
the average relative error in the anonymized dataset, we compute all queries as described in [47]:

Relative error =
|anzcount − orgcount|

orgcount
× 100%

In Figure 6, relative query error is plotted on the Y-axis based on the quasi-identifier selection.
In the experiment, we selected one, two, three, four or five attributes as quasi-identifiers and calculated
the relative query error on the anonymized tables generated by Merging, ε− DP [37], Hybrid [2],
Probabilistic [23], Composition [24] and Mondrian [44] methods. For example, suppose we want to
calculate the relative query error by Merging for Table 6, and the corresponding query is

SELECT COUNT(*) FROM Table 3

WHERE (sex=‘F’) AND (Disease=‘Fever’)
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From the query answer, there is only one female person suffering from Fever. However, from
the original table, i.e., Table 1, the query answer will be two persons. Using a relative error formula,
it could be shown that Merging has a 50% relative query error for one attribute selection. For the
experiment, all possible combinations of the query were generated and executed across anonymization
tables for the 4.5 K Occupation dataset and the average relative query error was calculated, with k
set to 6 for the Mondrian, Hybrid, ε − DP, Probabilistic, Composition methods and l set to 6 for
Merging. The relative query error was calculated and is shown in Figure 6, where the value on
the Y-axis denotes relative error percentage and those on X-axis stand for different quasi-identifier
selections. While the Merging method creates fake tuples in the anonymization, it can be seen from the
experimental result that Merging still has small relative error compared with all other methods. For the
generalization of attribute values, one needs to consider all possible combinations for a particular
query answer. Therefore, the competing methods demonstrate the higher relative query error for the
anonymized datasets.

Figure 6. Aggregate query answering error.

5.3.3. Classifier Learning

Some preprocessing steps were applied on the anonymized data for classifier learning. The data
anonymized by Merging contains multiple columns, and the linking between columns is broken.
In Merging, attributes are partitioned into two or more columns. For an equivalence class that contains
k tuples and c columns, the k tuples were generated as follows: first, randomly permute the values
in each column; second, generate the ith(1 ≤ i ≤ k) tuple by linking the ith value in each column.
This procedure was applied to all equivalence classes and generated all of the tuples. The procedure
generates the linking between the two columns in a random fashion.

We measure the quality of anonymized data for classifier learning, which has been used in [25].
The Weka [48] software package was used to evaluate the classification accuracy for C4.5 (J48). Default
settings were used to do the classification task. In the experiment, we used 10-fold cross-validation. In each
experiment, one attribute was chosen as the target attribute and the others served as predictor attributes.
For performance evaluation, we selected 4,6 diversity of the Merging table and the 4,6-anonymized
versions of the ε−DP, Hybrid, Probabilistic, Composition and Mondrian tables. In the classifier learning,
Education was chosen as the sensitive attribute and Relationship was chosen as the QI attribute.

In this experiment, we built two classifiers based on sensitive attribute Education and QI attribute
Relationship. All other attributes are predictor attributes. Tables 10 and 11 present the classifier
learning for sensitive attribute Education and QI attribute Relationship, respectively. Figure 7 compares
the quality of the anonymized datasets with the comparison of original data when the target attribute
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is Education. Figure 8 presents the quality of the anonymized datasets with the comparison of original
data when the target attribute is Relationship. Classifier learning indicates the quality of the dataset in
terms of the attribute associations. We know that in the generalization, the attribute values have to
consider all possible combinations of association. Therefore, it shows the lower performance of the
classifier learning. In all experiments for classifier learning, the Merging method shows the better
classification accuracy than the other methods because it only generalizes the required cell to satisfy
the privacy requirement.

Table 10. Learning the sensitive attribute (Target: Education).

k = 4, l = 4 k = 6, l = 6

Original Data 33 33
Merging 20.23 17.23

Mondrian 19.33 16.43
Composition 19.11 16.45
Probabilistic 18.66 15.59

Hybrid 18.43 15.23
ε− DP 15.78 13.89

Table 11. Learning the QI attribute (Target: Relationship).

k = 4, l = 4 k = 6, l = 6

Original Data 40 40
Merging 37.48 36.13

Mondrian 37.13 35.89
Composition 36.13 35.45
Probabilistic 37.22 35.87

Hybrid 36.76 35.75
ε− DP 32.92 29.04

Figure 7. Learning the sensitive attribute (Target: Education).
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Figure 8. Learning the QI attribute (Target: Relationship).

5.4. Execution Time

We measure the scalability of the Merging method by evaluating the computation time to run the
anonymization algorithm. To measure the computation time, we fix l = 6 and increase the dataset sizes
for the execution time. Figure 9 presents the computation time as a function of the number of records.
The results show that the Merging algorithm scales well with the data sizes.

Figure 9. Execution time.

6. Conclusions

This paper presents an anonymization technique using cell generalization to limit the probability
of a successful composition attack when independent data publishers are unable to coordinate before
data publication. We experimentally demonstrated that the proposed Merging method satisfies the
l-diversity privacy requirements after the intersection of independently published datasets. In contrast
to most of the existing techniques, which reduce the data utility of the published datasets due to
generalization and perturbation, our approach generalizes only the required cells, and thus results in
less information loss and provides better data utility of the anonymized dataset. The experimental
results illustrate that the Merging method offers higher data utility and smaller relative query error as
compared to the state-of-the-art techniques.
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