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Abstract

Robot-based compact storage and retrieval systems (RCSRS) have seen many implementations over the last

few years. In such a system, the inventory items are stored in bins, organized in a grid. In each cell of the grid,

a certain number of bins are stored on top of each other. Robots with transport and lifting capabilities move on

the grid roof to transport bins between manual workstations and storage stacks. We estimate performance and

evaluate storage policies of RCSRS, considering both dedicated and shared storage policies coupled with random

and zoned storage stacks. Semi-open queueing networks (SOQNs) are built to estimate the system performance,

which can handle both immediate and delayed reshuffling processes. We approximate the models by reduced

SOQNs with two load-dependent service nodes and use the Matrix-Geometric Method (MGM) to solve them.

Both simulations and a real case are used to validate the analytical models. Assuming a given number of stored

products, our models can be used to optimize not only the length to width ratio of the system, but also the stack

height, depending on the storage strategy used. For a given inventory and optimal system configuration, we

demonstrate that the dedicated storage policy outperforms the shared storage policy in terms of dual command

throughput time. However, from a cost perspective, with a maximum dual command throughput time as a

constraint, we show that shared storage substantially outperforms dedicated storage. The annualized costs

of dedicated storage are up to twice as large as those of shared storage, due to the larger number of storage

positions required by dedicated storage and the relatively lower filling degree of storage stacks.

Keywords: Material handling; compact storage; robot technology; queueing networks; performance analysis

1. Introduction

A Robot-based compact storage and retrieval system (RCSRS) is an automated unit-load storage and order

picking system using robotic technology (Fig.1). In this system, the inventoried items are stored in bins that

are organized in a grid. In each cell of the grid, bins are stored on top of each other, forming a storage stack.

Robots with transport and lifting capabilities move on the grid roof, transporting bins between storage stacks

and workstations that are located at the bottom level of the system. Combining very high storage density (no

aisles) with high flexibility due to the expandability of robot fleet and workstations, an RCSRS can be used as
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an alternative to traditional automated storage and retrieval systems. Many companies have recently started

using such systems, e.g. ASDA and Ocado in the United Kingdom, Active Ants in the Netherlands, Catch of

The Day in Australia, and so on, particularly in e-commerce retailers.

(a) Schematic view (b) Robot

(c) Storage stack (d) Workstation

Figure 1: Robot-based compact storage and retrieval system (Hatteland (2016))

The popularity of this system is due to a number of reasons (ElementLogic (2016a,b,c), Swisslog (2016a,b)):

1. Flexible, modular structure. A company can start with a small grid, which can be built within any existing

warehouse, and then gradually expand it over time, without stopping production.

2. Flexible throughput capacity. By inserting more robots and workstations, throughput capacity can be

expanded, even over a short horizon.

3. Relatively low costs. Compared with some other automated storage systems, the robots are small and

relatively inexpensive.

4. Compact storage space. Bins are put on top of each other and robots transport bins on the grid roof,

which eliminates travel aisles.

5. Short response times. Robots can move flexibly, in x- and y-directions, using congestion-free shortest

paths between locations. This makes the system particularly attractive for e.g. e-commerce companies.

Performance analysis is important to evaluate various alternative scenarios and to determine those with the

required throughput capacity and costs. The performance of an RCSRS may be affected by several factors,
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including the number of robots, the system structure (width, length and height), the reshuffling processes, the

robot dwell point policy, and so on. The combination of all these factors leads to a variety of system scenarios

which are hard to evaluate by simulation in reasonable time. Therefore, accurate and efficient analytical

performance estimation tools are needed for the potential adopters of an RCSRS.

A particular issue for many RCSRS adopters is the storage policy. As a system using high-level storage

stacks, the storage policy applied in the RCSRS will determine the storage space required and the system

throughput time. Specifically, storing one product in one storage stack (i.e., a dedicated storage policy) can

eliminate the reshuffling of blocking bins while retrieving a requested bin, but more stacks will be required for

products with large inventories, or for new incoming products. Allowing multiple products to share one storage

stack (i.e., a shared storage policy) can save storage space, but the retrieval time will go up since the robot

may need to reshuffle the blocking bins before it can reach the target bin. We therefore examine both dedicated

and shared storage policies per stack and, in addition, random and zoned storage stacks within the grid. A

zoned stack policy groups stacks storing products of the same turnover class, while within the zone products

are assigned randomly. Moreover, two reshuffling processes will be investigated under the shared storage policy

(see Fig.2)
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Figure 2: The storage policies and reshuffling processes investigated in this paper

This paper answers the following research questions:

1. How to build accurate and efficient analytical models for the analysis and evaluation of storage policies

for an RCSRS?

2. What structure (width, length and height) is most beneficial for an RCSRS, for different storage policies?

3. When should the system use a dedicated storage policy (one stack holds one product), and when should

it use a shared storage policy (multiple products share one stack)?

The system throughput time is one of the most critical performance measures of an RCSRS. It determines

how long it takes to finish an order, which reflects the system service level. Also, the utilizations of robots and

workstations are important performance measures. To estimate these performance measures accurately, we build

SOQNs that can capture the synchronization process of robots with orders. We first approximate the original
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SOQNs by reduced SOQNs with two load-dependent service nodes, using Approximate Mean Value Analysis

(AMVA). Then, we use the Matrix-Geometric Method (MGM) to solve the reduced SOQNs. Analytical models

are validated by both simulations and a real case. The relative errors are acceptable. For a system with a given

number of stored products, we use the models to optimize the width-to-length ratio and the stack height. We

also find that for a given number of products with a fixed replenishment policy, a high grid (with optimal height)

fits the dedicated storage policy better, and a flat one benefits the shared storage policy more. It appears that a

dedicated storage policy outperforms a shared storage policy, and the optimal zoned storage stacks outperform

the random storage stacks in terms of system throughput time. However, using a cost minimization approach

for the RCSRS, with a throughput time constraint, we show that shared storage can substantially reduce the

system costs. The annualized costs of dedicated storage are up to twice as large as those of shared storage, due

to the much larger total number of storage positions required by dedicated storage.

The remaining part of the paper is organized as follows: Section 2 presents a literature review. Section 3

describes the system and the storage and reshuffling policies. Section 4 builds the performance analysis models

and Section 5 validates them by simulations and a real case. Section 6 includes the results. Section 7 draws the

conclusions and suggests future work.

2. Literature review

Many papers study compact storage systems that use cranes or shuttle technology, including the 3-dimensional

compact storage and retrieval systems (3DCAS), very high-density storage and retrieval systems (also called

Puzzle-based storage systems PBSS), and autonomous vehicle-based storage and retrieval systems (AVS/RS)

with compact storage. Different from these compact systems, an RCSRS uses robots and stores goods in bins

that are organized in a grid, instead of traditional racks. We review literature on performance analysis and

storage policies of these systems with an overview included in Table 1.

A 3DCAS is a compact unit-load storage and retrieval system mostly using conveyors in the depth direction

and a storage and retrieval (S/R) machine at the picking face. De Koster et al. (2008) were the first to study

3DCAS. They considered a random storage policy and derived the optimal storage rack dimensions to minimize

the expected travel time of the S/R machine. Yu & De Koster (2009b) investigated a two-class based storage

policy and found the optimal storage zone boundaries. In addition, Yu & De Koster (2009a) studied a full-

turnover storage policy and also obtained the optimal storage rack shape. Yang et al. (2015) explored the

optimal storage rack dimensions, considering the acceleration and deceleration of the S/R machine. Hao et al.

(2015) studied a system with I/O point at the lower mid-point of the storage rack and optimized the system

dimensions. They found that the lower mid-point I/O point outperforms the lower left-corner I/O point in terms

of expected travel time of the S/R machine. Zaerpour et al. (2015b) studied the storage of fresh product in a

3DCAS where the horizontal load movement is performed by satellites, instead of conveyors. They considered

both dedicated and shared storage policies, and proposed a heuristic to minimize the total retrieval time with

a given number of orders. The results show that the shared storage policy performs better for most practical
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Table 1: Overview of literature on performance analysis and storage policies of compact storage systems

Reference Storage area Load movement Storage policy
AVS/RS: Malmborg (2002); Fukunar-
i and Malmborg (2008); Fukunari and
Malmborg (2009); Heragu et al. (2011);
Marchet et al. (2012); Cai, Heragu and
Liu (2014); Roy et al. (2015); Lerher
(2015)

multi-tier single-
deep

horizontal: vehicle, verti-
cal: lift

random

Roy et al. (2012) single-tier, single-
deep

horizontal: vehicle random

Lerher et al. (2015) multi-tier, double-
deep

horizontal: vehicle, verti-
cal: lift

random

Tappia et al. (2016) single/multi-tier,
multi-deep

horizontal: vehicle, verti-
cal: lift

random

3DCAS: De Koster, Le-Duc and Yu
(2008); Yang et al. (2015); Hao, Yu
and Zhang (2015)

multi-tier, multi-
deep

horizontal: conveyor, ver-
tical: crane

random

Yu and De Koster (2009a) multi-tier, multi-
deep

horizontal: conveyor, ver-
tical: crane

two-class based

Yu and De Koster (2009b) multi-tier, multi-
deep

horizontal: conveyor, ver-
tical: crane

turnover-based

Zaerpour, Yu and De Koster (2015b) multi-tier, multi-
deep

horizontal: satellite, verti-
cal: crane

dedicated and
shared

PBSS: Gue (2006); Gue and Kim
(2007); Zaerpour, Yu and De Koster
(2015a)

multi-tier, multi-
deep

horizontal: vehicle, verti-
cal: lift

random

This paper:RCSRS multi-tier stacks horizontal and vertical:
vehicle

vertical: dedicated
and shared, hori-
zontal: random and
zoned

cases.

Different from a 3DCAS, a PBSS uses load-captive shuttles to transport loads horizontally, and lifts to

transport loads vertically. Multiple moving shuttles can form a virtual aisle which is used to transport the

requested load rapidly. Gue & Kim (2007) were the first to study a PBSS. They focused on a single-tier PBSS

and derived the closed-form expression of the expected retrieval time (expressed in number of movements) for

systems with one empty location located near the I/O point. Heuristics were proposed for systems with multiple

empty locations located near the I/O point. Kota et al. (2015) considered a single-tier PBSS with randomly

located empty locations. They derived a closed-form expression of the expected retrieval time for systems with

one or two empty locations, and proposed heuristics with worst case bounds for systems with more than two

empty locations. Zaerpour et al. (2015a) studied a multi-tier PBSS with many empty locations and derived

closed-form formulas for the expected retrieval time for any system configuration. Moreover, they obtained the

optimal system dimensions to minimize the system response time.

The AVS/RS is a new shuttle-based storage system introduced at the end of 20st century. Research on

such systems uses both probabilistic and queuing models for performance estimation. Probabilistic models
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can provide closed-form expressions for the single (i.e. storage or retrieval transaction) or dual-command (i.e.

a combination of storage followed by retrieval) cycle time. Malmborg (2002) was the first to study AVS/R

systems. He built continuous markov chain models to calculate the expected S/R machine cycle time (weighted

sum of single and dual command cycle times). Lerher (2015) derived closed-form expressions for both single

and dual-command cycle time. Lerher et al. (2015) extended these models to AVS/R systems with double-deep

storage racks.

Due to the queuing effects between different resources in the system (vehicles, lifts), probabilistic models

cannot estimate the response time of AVS/R systems accurately. Many papers have emerged using queuing

models. Fukunari & Malmborg (2008) modeled the lift service process (lifts transport vehicles vertically) as an

M/G/L queue (L lifts), nested within an M/G/V queue (V vehicles) that models the vehicle service process

(vehicles transport loads horizontally). To address the drawbacks of nested queuing models (e.g. they cannot

capture the interfaces with outside systems), Fukunari & Malmborg (2009) built closed queuing networks, while

also considering maintenance and repair of vehicles.

Besides single queueing systems and closed queuing networks, open queuing networks are also used for per-

formance estimation since they can capture the effect of waiting jobs on the system response time. Heragu et al.

(2011) developed open queuing networks for AVS/R systems using tier-captive shuttles, and investigated the ad-

vantages of AVS/R systems over a traditional aisle-based automated storage and retrieval system. Marchet et al.

(2012) also formulated open queuing networks to estimate the system response time of tier-captive systems,

considering the acceleration and deceleration of lifts and vehicles.

Although open queuing networks can accurately estimate the system response time and throughput capacity,

modeling vehicles as a circulating resource may be a better approach to investigate the effect of the number

of vehicles on system performance. Based on this idea, recent studies use semi-open queuing networks for

performance estimation of AVS/R systems. Roy et al. (2012) built semi-open queuing networks for a single-

tier AVS/RS and developed an approximation method to derive the transaction cycle times and utilizations of

vehicles and lifts. Roy et al. (2015) investigated the effect of vehicle dwell point and cross-aisle location on the

system performance. They found that the end-of-aisle location of the cross-aisle is a good dwell-point location

choice, as well as the load/unload point. Cai et al. (2014) studied semi-open queuing networks for multi-tier

AVS/R systems and used matrix-geometric methods to derive the system performance.

The system examined in this study differs from above systems in storage area layout, load movement pattern,

and storage policies. The bins in an RCSRS are organized in a grid, forming storage stacks, and are accessed

by robots from the grid roof. Moreover, we consider different storage policies on the horizontal and vertical

level, respectively. An RCSRS bears some resemblance with automated block stack systems (ABSS) that can

be found in some warehouses, and particularly also at container terminals. Container stacks are also operated

from the top, by gantry cranes. In the newest stacks, two or even three automated cranes are used per stack

block with up to 5 tiers (CIMCORP (2016)). Several authors have studied storage and retrieval policies and the

scheduling of cranes in ABSS (Vis & Carlo (2010), Gharehgozli et al. (2014a,b,c), Gharehgozli et al. (2015)).
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However, a main difference between an ABSS and an RCSRS is that the cranes in an ABSS drive on the same

rail (two directional), leading to substantial interference, while the robots in our system have more degrees of

freedom (four directional), thereby reducing congestion, even with a large number of robots.

This paper makes the following contributions:

1. We are the first to study very topical robot-based storage systems consisting of block stacks operated

by automated robots from the top and integrated manual workstations. We develop accurate analytical

models for different storage and reshuffling policies, which can be used for system dimension optimization.

2. We investigate dedicated and shared storage policies and show that although dedicated storage outperforms

shared storage in terms of dual command throughput time, from a cost perspective, shared storage is much

cheaper. Therefore, in general, managers should not use dedicated storage.

3. We are the first to investigate reshuffling processes in a queueing network approach. We develop different

reshuffling strategies and model the effect of reshuffling processes on system throughput time, which is

shown to be substantial and cannot be neglected. Authors usually neglect reshuffling in block stacks (e.g.

Gharehgozli et al. (2014b),Gharehgozli et al. (2015)).

3. System Description

Section 3.1 describes the system and presents the assumptions and notations. Section 3.2 specifies the

storage policies investigated in this study. The reshuffling strategies are discussed in Section 3.3.

3.1. Robot-based compact storage and retrieval systems

An RCSRS is a compact automated storage and order-picking system, where robots (vehicles) are used to

transport and store the products (Fig.1). In this system, the inventoried items are stored in standard plastic

bins and a grid provides a high, dense storage space for the bins. Each cell of the grid corresponds to the

entrance of a storage stack where bins are put on top of each other. Robots move on the grid roof to transport

bins between storage stacks and workstations where goods enter and leave the system. The robot can lift and

load bins in a storage stack, or in the workstation.

The workstations are located at the lowest level at the side of the grid (Fig.3). At the entrance of the

workstation, robots can wait in a queue in a buffer area. Each workstation has one work position for the picker

plus one pick-up and one drop off position for the robot. After the robot drops off a bin with items to be

picked, a switching system rapidly swaps it with the previous pick bin which needs re-storage and the released

bin is swapped to the picker’s work position. In this way, a storage transaction immediately follows the retrieval

transaction (dual-command cycles).

To facilitate the system description, we first present the main notations used in this study in Table 2.

Compared with single storage or retrieval cycles (single-command, or SC cycles), dual-command cycles (DC)

can bring approximately 30% travel time reduction per cycle command in AS/R systems (Graves et al. (1977)).

Also in multi-robot systems, benefits can be expected from DC cycles over SC operations. A DC cycle consists

of the following steps (Fig.3):
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Figure 3: Top view of an RCSRS

(a) When a customer order arrives, it will wait in the order queue if all robots are busy, otherwise, the system

will assign an available robot to it. The expected waiting time of orders for robots is WR. We assume that

a customer order can be picked from a single storage bin and the assignment of robots to orders is random.

Specifically, the system will randomly select an available robot for the order, if more than one is idle. Otherwise,

the first available robot will be claimed.

(b) The claimed robot moves from its dwell point to the retrieval position (Td,r). We ignore the congestion and

blocking effects of robots, which are minor, as the number of robots is small compared with the number of cells

on the grid and the robot can choose multiple shortest paths between the starting point and the destination to

avoid blocking.

(c) The robot digs out the retrieval bin (Tr). If the retrieval bin is at a deep level of the stack, reshuffling may

be required, depending on the storage policy applied. This will be worked out in Section 3.2.

(d) The robot transports the retrieval bin to the designated workstation (Tr,wi). We assume that the assignment

rule of workstations to robots follows the random rule, i.e., any order may be picked at any workstation.

(e) The robot waits in the buffer area with the bin if the workstation is occupied, the expected waiting time of

robots for the ith workstation is Wwi . This time depends on the work time of the picker and the robot queue

length.

(f) When the drop-off position is available, the robot drops the retrieval bin (Hhb

vl
+ tlu). If the previous

picking-order is finished, i.e., the picker is idle now (probability pidlep ), the switching system rapidly swaps the

new bin with the previous pick bin needing re-storage, and the new bin is moved to the picker’s work position.
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Table 2: Main Notations

Notation Description Notation Description
W,L,H System width, length (by the number of

cells) and height (by the number of stor-
age tiers)

w, l, hb Width and length of a cell, height of a bin
(m)

vr, vl Velocity of the robot and its lift (m/s2) tlu, tt Time for the lift to load/unload a bin and
for a robot to turn its direction (s)

C Storage capacity, C = LWH λ Orders arrival rate (per hour)
R Number of robots τ Fraction of total storage space reserved

for further growth
nw Number of workstations. We assume the

workstations are evenly distributed along
the length sides, i.e., the distance of two
neighboring workstations is L

nw
2 +1

γ Honeycombing effect factor, 0 < γ < 1.
The honeycombing effect is the wasted s-
torage space fraction due to the unavail-
ability of a storage position to the prod-
ucts that are not dedicated to it.

N,Ni Total number of products, number of
products in the class that product i be-
longs to

Nst, N
i
st Total number of storage stacks, number

of storage stacks required by product i

Di Demand rate of product i, by the number
of bins per unit time

K Ratio of ordering cost to holding cost
rate. Without loss of generality, we as-
sume that K is the same for all products

SSi Safety stock of product i, by the number
of bins

ai Required storage space for product i (in
bins)

TD
lu Time for the robot to get the retrieval

bin or release the storage bin under the
dedicated storage policy

TS
lu Time for the robot to release the storage

bin under the shared storage policy

TSI
lu Time for the robot to fetch the retrieval

bin after immediate reshuffling
TSD
lu Time for the robot to fetch the retrieval

bin after delayed reshuffling
Td,r Time for the robot to move from its dwell

point to the retrieval position
Tr Time for the robot to dig out the retrieval

bin
Tr,wi Time for the robot to move from the re-

trieval position to workstation i
Tp Time for a picker to finish an order from

a bin. It is assumed to follow a uniform
distribution U [a, b], the same for all pick-
ers

Twi,s Time for the robot to move from work-
station i to the storage position

Ts Time for the robot to release the storage
bin

wA, wB , wC Width of A, B, C zone (in cells) PA, PB , PC Probability that the retrieval product be-
longs to A, B, C class

pi Probability that product i is to be re-
trieved, pi =

Di∑N
i=1 Di

, i = 1, 2, · · · , N
pwi Probability that the order is assigned to

workstation i, i = 1, 2, · · · , nw

Then, the robot loads the previous pick bin and moves to the top of the grid (Hhb

vl
+ tlu). If the picker is still

working on the previous picking-order, i.e., the picker is busy (probability 1− pidlep ), the robot has to wait for

the remaining pick time (denoted by T rem
p ) before loading the bin needing re-storage. Therefore, the service

time at the workstation is Tw = pidlep [2(Hhb

vl
+ tlu)] + (1− pidlep )[2(Hhb

vl
+ tlu)+T rem

p ]. We specify both pidlep and

T rem
p in next section.

(g) The robot transports the storage bin to the designated storage stack (Twi,s). Congestion and blocking

effects of robots are ignored.

(h) The robot releases the storage bin on the top of the storage stack (Ts) and then dwells there. The robots

follow the POSC (Point-of-Service-Completion) dwell point policy, i.e., they will dwell at the cell where the last

order is finished.
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Note that steps (c) and (g) depend on the storage policy applied, we will specify this in next section.

3.2. Dedicated vs. shared storage policies and random vs. zoned storage stacks

An RCSRS uses multi-tier storage stacks that can hold multiple bins, each for one product. We consider

both dedicated (one stack holds one product) and shared (one stack holds multiple products) storage policies

per storage stack. Within the grid, we consider both random (all products are randomly distributed among all

stacks) and zoned (one turnover class of products is stored in the stacks within one zone) storage stacks. In the

case of zoned storage stacks, we divide the products into 3 turnover classes, each of which is grouped in one

zone (A, B and C) (Fig.4). The product class with the highest turnover is stored in zone A, which is located in

the middle and has width wA and NA products. The product class with the lowest turnover is stored in zone

C, which is nearby the workstations and has width wC (wC

2 at each side) and NC products. The remaining

products are stored in zone B, which is between zone A and zone C and has width wB (wB

2 at each side) and

NB products.

1 2
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j
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AB BC C

w1

w2 w3
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Figure 4: Top view of the grid with zoned storage stacks

Under the dedicated storage policy, one stack contains only one product, both in the cases of random and

zoned storage stacks. The robot always picks up the top bin or drops off the storage bin on the top of the

storage stack. So, reshuffling is avoided. However, the situation is different under the shared storage policy,

and also differs between the cases of random and zoned storage stacks. In the case of random storage stacks,

products are distributed randomly over all storage stacks. In the case of zoned storage stack, one turnover class

of products (A, B or C) shares one zone. Reshuffling is required if the robot wants to retrieve a bin that is not

on the top of the stack. In contrast, a storage bin is always dropped off on the top of a storage stack.

The storage policies applied in the storage stacks affect the robot movement on the grid roof. Let xs be

the x-axis coordinate of the stack to hold the storage bin. Under the shared storage policy coupled with zoned

storage stacks, the x-axis distance between the designated workstation and the stack to hold the storage bin

is less than W
2 . Specifically, if the designated workstation is at the left side, xs = 1, 2, · · · , W

2 , otherwise,
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xs = W
2 + 1, W

2 + 2, · · · ,W . Note that we assume a bin is stored in the closest zone belonging to its turnover

class in the case of shared storage and zoning.

Also, the storage capacity required to store a given number of products differs between these two storage

policies. Less storage space is required by the shared storage policy, due to space sharing (Yu et al. (2015)).

Assuming that the Economic Ordering Quantity (EOQ) conditions hold, then, following Yu et al. (2015), the

required storage space of product i, given that product i shares its storage class with Ni products in total, can

be obtained by Eq.(1)

ai(Ni) = 0.5(1 +N−ε
i )

√
2KDi + SSi, (1)

where Ni = 1 for dedicated storage policy (for both random and zoned storage stacks), and Ni = N for the

shared storage policy coupled with random storage stacks. ε is the storage space sharing factor that can be

obtained through Monte Carlo simulations like done by Yu et al. (2015). They found that ε is independent

from the demand curves or replenishment policies, but it depends on the index of the item in the class with the

largest turnover. However, it turns out that ε is rather insensitive to this index. The estimated average value

of ε ranges between 0.15 and 0.25. We use the average value ε = 0.23, similar as in Yu et al. (2015).

Next, we will specify the number of storage stacks required by an RCSRS with height H and the average

inventory level in each stack. Considering the percentage of total storage positions reserved for future growth

(τ), the number of available storage positions in one stack is H̄ = H(1− τ). Without loss of generality, we set

H̄ as an integer.

Under the dedicated storage policy coupled with random storage stacks, each stack can store only one

product. The number of storage stacks required by product i is

N i
st = ⌈ai(1)

H̄
⌉, (2)

where ⌈⌉ means rounding upward to the nearest integer.

Then, the total number of storage stacks required by the RCSRS is Nst =
N∑
i=1

N i
st. Let the width to length

ratio of the system be r = W
L , then, we can get the length and width of the grid by Eq.(3)

L = ⌈(Nst/r)
1
2 ⌉, W = rL. (3)

Under the dedicated storage policy coupled with zoned storage stacks, we have given the number of products

per class NA, NB and NC . Now, assume products are sorted in increasing turnover speed, the number of storage

stacks required by each product class are

NC
st =

NC∑
i=1

N i
st, NB

st =

NB+NC∑
i=NC+1

N i
st, NA

st =

N∑
i=NB+NC+1

N i
st, (4)

Then, the total number of storage stacks required by the RCSRS is Nst = NA
st +NB

st +NC
st , and the length

and width of the grid can also be obtained by Eq.(3). Moreover, we have wA = ⌈WNA
st

Nst
⌉, wB = ⌈WNB

st

Nst
⌉ and
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wC = ⌈WNC
st

Nst
⌉.

Note that the storage positions in one stack are not always fully utilized under the dedicated storage policy

(in both the random and zoned storage stack cases). The maximum number of bins stored in the stack of

product i is given by

Ii = ⌈ai(1)
N i

st

⌉. (5)

Under the shared storage policy coupled with random storage stacks, all products share the storage stacks.

So, the number of storage stacks required by all products can be obtained by Eq.(6), and the length and width

of the grid can be obtained by Eq.(3).

Nst = ⌈

N∑
i=1

ai(N)

H̄
⌉. (6)

Under the shared storage policy coupled with zoned storage stacks, storage stacks in a specific zone are

shared by the products belong to this zone. So, the number of storage stacks included in each zone can be

obtained by Eq.(7), the total number of storage stacks required is Nst = NA
st +NB

st +NC
st , and the length and

width of each zone can be obtained by Eq.(3)

NC
st = ⌈

NC∑
i=1

ai(NC)

H̄
⌉, NB

st = ⌈

NB+NC∑
i=NC+1

ai(NB)

H̄
⌉, NA

st = ⌈

N∑
i=NB+NC+1

ai(NA)

H̄
⌉. (7)

Since one stack can hold multiple products under the shared storage policy, the storage positions in one

stack can be fully utilized. So, the number of bins stored in a storage stack (in both cases of random and zoned

storage stacks) is H̄.

3.3. Reshuffling the blocking bins

Under the shared storage policy, the robot first needs to relocate the blocking bins to other locations in order

to obtain a requested deep-stored bin. We assume that the blocking bins will be put on the top of neighboring

stacks, and will be returned into the same storage stack after the robot has retrieved the target bin. Two

reshuffling processes are considered:

1. Immediate Reshuffling: the robot returns the blocking bins into the storage stack immediately after it has

retrieved the target bin. The target bin will be put on the grid temporarily.

2. Delayed Reshuffling: the robot returns the blocking bins into the retrieval storage stack after it finishes

the next storage transaction.

The blocking bins will be put on the top of neighboring stacks forming a line according to their storage

sequence, i.e., the top bin at the farthest cell and the bottom bin at the cell nearby the retrieval stack. They

will be returned into the original storage stack following their previous storage sequence. Without loss of

generality, we assume that the blocking bins always form a line along the width direction. In the immediate

12



reshuffling situation, the step (c) of section 3.1 includes 3 components: the time to reshuffle the blocking bins

on the grid roof Tre1 , the time to obtain the retrieval bin TSI
lu and the time to return the blocking bins back into

the storage stack Tre2 . In the delayed reshuffling situation, the step (c) contains Tre1 and the time to obtain

the retrieval bin TSD
lu , while another step (i) follows the step (h): the robot moves from the storage position to

the retrieval position Ts,r and then returns the blocking bins into the storage stack Tre2 . Note that the time

for the robot to retrieve and store a bin in the storage stack may be different, depending on the storage policy

applied. Under the dedicated storage policy, the time for both retrieval and storage are TD
lu , since the robot will

always access the top of the storage stack. Under the shared storage policy, the time for the robot to get the

retrieval bin (after reshuffling) is TSI
lu for immediate reshuffling policy and TSD

lu for delayed reshuffling policy,

and the time for the robot to release the storage bin is TS
lu. We will specify these operational times in Section

4.2.

4. Performance estimation models for RCSRS

In this section, we build semi-open queueing networks to estimate the performance measures of an RCSRS.

Section 4.1 develops the semi-open queueing networks (SOQN). Section 4.2 calculates the first two moments of

the service time at each node of the SOQN and Section 4.3 gives the solution approaches.

4.1. Semi-open queueing network

We model the service processes of the RCSRS for dual-command orders as a SOQN. Each order consists of

a storage and a retrieval transaction. The robots are modeled as an additional resource that will be matched

with the arrival orders (see Fig.5). The synchronization node contains two queues where the robots are matched

with orders. The idle robots wait for the orders in the robot queue (QR) and the arrival orders wait for the

robots in the order queue (QO).

Table 3 gives detailed descriptions of the service nodes in the SOQN. The SOQN can handle both immediate

and delayed reshuffling policies and the storage policies proposed above, by varying the structure of service nodes

µs and µr. The claimed robot first moves from its dwell point to the stack that holds the retrieval bin. This is

modeled as the service node µd,r with infinite servers (IS), since no waiting time is needed here. Then, the robot

digs out the retrieval bin from the stack (modeled as the service node µr), where reshuffling of the blocking

bins may be required based on the storage policy applied. Under the dedicated storage policy, one stack holds

only one product; the robot always picks up the top bin and reshuffling is avoided. So, the service node µr only

includes the retrieval operation µD
lu. Under the shared storage policy, to retrieve a bin from a deep level, the

robot needs to reshuffle the blocking bins to the top of neighboring stacks temporarily, and then to return them

into the retrieval stack by their previous storage order.

The reshuffling processes depend on the reshuffling policy applied. Under the immediate reshuffling policy,

the robot first reshuffles the blocking bins on the top of neighboring stacks (service node µre1), then retrieves

the requested bin and puts it on the top of a neighboring stack (service node µSI
lu ). Finally, it returns the

blocking bins into the retrieval stack (service node µre2). So, µr corresponds to three sequential nodes µre1 ,

13
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.
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=

µr
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=

µS
lu

µSI
lu

µre2 µr

µD
lu

µs

=

µre1 µSD
lu

µS
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µs,r µre2

µwi = µdrop µpi µpick

R Robots

Figure 5: A semi-open queueing network for RCSRS

Table 3: Service nodes in the SOQN

Node Description Node Description

µd,r Robot travels from its dwell point to the

retrieval point

µr,wi Robot travels from the retrieval point to

workstation i

µwi Lift drops off the retrieval bin at worksta-

tion i, then, picks up a bin needing re-

storage

µwi,s Robot travels from workstation i to the s-

torage point

µD
lu Lift picks up or drops off a bin from or into

a storage stack under the dedicated storage

policy

µS
lu Lift drops off a bin into a storage stack

under the shared storage policy

µSI
lu Lift gets the retrieval bin in the case of

shared storage and immediate reshuffling

µSD
lu Lift gets the retrieval bin in the case of

shared storage and delayed reshuffling

µre1 Robot reshuffles the blocking bins on the

top of neighboring stacks

µre2 Robot returns the blocking bins into the

retrieval storage stack

µdrop Robot drops off the retrieval bin at a work-

station

µpick Robot picks up the bin needing re-storage

at a workstation

µpi Picker of workstation i finishes a picking

order
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µSI
lu and µre2 . Under the delayed reshuffling policy, the robot will transport the requested bin to the designated

workstation immediately upon retrieval. After finishing the storage transaction, the robot travels back to the

retrieval point and returns the blocking bins into the retrieval stack. So, the service node µr corresponds to two

sequential nodes µre1 and µSD
lu .

After the robot has retrieved the requested bin, it moves to the destination workstation (service node µr,wi).

Since robots are assigned randomly to workstations, the visiting probability of the service node µr,wi is pwi=
1

nw
.

The robot will wait in the queue of the buffer area for the workstation to become available. Then, as specified

in Section 3.1, the robot will drop off the retrieval bin and pick up the bin needing re-storage if the picker is

idle, otherwise, the robot needs to wait for the remaining service time of the previous picking-order T rem
p . The

operational process at workstation i is modeled as the service node µwi which consists of three components: drop

off µdrop (IS), picker service µpi (single queuing system) and pick up µpick (IS). We assume that the working

time of the picker on an order Tp follows a uniform distribution U [a, b] and is identical for all workstations.

So, µw := µwi . The robot transports the storage bin to the storage position (service node µwi,s), and drops

off the bin into the stack (service node µs). The service at node µs depends on the reshuffling policy applied.

Specifically, it only contains the service node µS
lu under the immediate reshuffling policy, while it corresponds to

three sequential nodes µS
lu, µs,r and µre2 under the delayed reshuffling policy. µs,r models the robot traveling

from the storage position to the retrieval position.

The robot will be released after the completion of the order and move into QR while it dwells at the point

of service completion. Next, we specify the calculation of the service time expressions.

4.2. Service time expressions

In this section, we calculate the service times of service nodes in the SOQN, which depend on the storage

policies applied.

Let the left bottom corner of the system be the origin (0, 0) and the coordinates of workstation i be (xwi , ywi).

Since the workstations are evenly distributed at the left and right sides of the system, the coordinates of

workstations are given by Eq.(8),

xwi =

0, i = 1, 2, · · · , nw

2

W, i = nw

2 + 1, nw

2 + 2, · · · , nw

, ywi =


L

nw
2 +1

· i, i = 1, 2, · · · , nw

2

L
nw
2 +1

· (i− nw

2 ), i = nw

2 + 1, nw

2 + 2, · · · , nw.

(8)

Denote the robot dwell point as (xd, yd), the coordinates of the storage stack that holds the retrieval bin

and the storage stack that will hold the storage bin as (xr, yr) and (xs, ys), respectively. In the case of random

storage stacks (both dedicated and shared storage policies), the coordinate distributions of the robot dwell point

and the storage and retrieval positions are

P (x) =
1

W
,x = 1, 2, · · · ,W

P (y) =
1

L
, y = 1, 2, · · · , L.

(9)

15



In the case of zoned storage stacks (under both dedicated and shared storage policies), the coordinate

distributions are different from Eq.(9). First, the probability that the retrieval item belongs to a specific class

is given by

PA =

NA∑
i=1

Di

N∑
i=1

Di

, PB =

NA+NB∑
i=NA+1

Di

N∑
i=1

Di

, PC =

N∑
i=NA+NB+1

Di

N∑
i=1

Di

. (10)

The coordinate distributions of the robot dwell point and the storage and retrieval positions can now be

obtained by

P (x) =


PC

wC
, 1 ≤ x ≤ wC

2 or wC

2 + wB + wA < x ≤ W

PB

wB
, wC

2 < x ≤ wC

2 + wB

2 or wC

2 + wB

2 + wA < x ≤ wC

2 + wB + wA

PA

wA
, wC

2 + wB

2 < x ≤ wC

2 + wB

2 + wA,

P (y) =
1

L
, 0 < y ≤ L.

(11)

With the coordinate distributions of the robot dwell point and the storage and retrieval positions, we can

calculate the service times of service stations µd,r, µr,wi and µwi,s. The travel time from the robot dwell point

to the retrieval position equals

Td,r =
| xd − xr | ·w+ | yd − yr | ·l

vr
+ g · tt, (12)

where g is the binary variable that determines whether the robot needs to turn its direction during the traveling

period, and

g =

0, xd = xr or yd = yr

1, xd ̸= xr and yd ̸= yr.

The robot travel time from the retrieval position to workstation i, Tr,wi , and the travel time from workstation

i to the storage position Twi,s can be calculated by Eq.(13) and Eq.(14), respectively.

Tr,wi =
| xr − xwi | ·w+ | yr − ywi | ·l

vr
+ g · tt. (13)

Twi,s =
| xwi − xs | ·w+ | ywi − ys | ·l

vr
+ g · tt. (14)

With some calculation, it is now possible to obtain the first two moments of Td,r, Tr,wi and Twi,s, using the

probability distributions of the coordinates (see Table 10 in Appendix A).

As mentioned in Section 3.1, the service time at the workstation is

Tw = pidlep [2(
Hhb

vl
+ tlu)] + (1− pidlep )[2(

Hhb

vl
+ tlu) + T rem

p ] = 2(
Hhb

vl
+ tlu) + (1− pidlep )T rem

p .

To estimate the probability of the picker being idle pidlep and the remaining service time of a picking order

T rem
p , we approximate the service process of the picker as an M/G/1 queueing system with customer arrival rate
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λ
nw

and service time Tp ∼ U [a, b]. The validation results in Section 5 show that the error of this approximation

is acceptable. Then, we have pidlep = 1−
λ

nw
2

a+b

and the mean value of T rem
p is (Kleinrock (1976))

T̄ rem
p =

T̄p

2
(1 + cv2p) =

(b− a)2 + 6(a+ b)

24
.

So, the first two moments of the service time at the workstation are

µ−1
w = 2(

Hhb

vl
+ tlu) + (1− pidlep )T̄ rem

p ,

cv2w =
(1− pidlep )2D(T rem

p )

µ−1
w

,

(15)

where D(T rem
p ) is the deviation of T rem

p , which can be obtained by D(T rem
p ) = cv2p × T̄ rem

p . The detailed

expressions of µw and cv2w are included in Appendix A.

Next, we focus on the service times of the service nodes µr and µs, which depend on the storage and

reshuffling policies applied.

Under the dedicated storage policy, both service nodes µr and µs only consist of service node µD
lu. Assume

that the robot needs to retrieve or store product i from or into a stack of product i with h bins (h = 1, 2, · · · , Ii
where Ii is given by Eq.(5)). Then the time for the robot to retrieve or store this product i is given by

T i
lu =

2(H − h)hb

vl
+ tlu, h = 1, 2, · · · , Ii. (16)

Since the probability that product i is targeted is pi =
Di

N∑
i=1

Di

, the first two moments of the service node µD
lu

can be calculated by Eq.(17),

µ−1
luD =

N∑
i=1

piT̄
i
lu =

N∑
i=1

pi
Ii

Ii∑
h=1

2(H − h)hb

vl
+ tlu,

cv2luD =

N∑
i=1

pi

Ii

Ii∑
h=1

[ 2(H−h)hb

vl
+ tlu]

2 − µ−2
luD

µ−1
luD

.

(17)

Under the shared storage policy, the service processes of service nodes µr and µs consist of reshuffling

operations (µre1 and µre2) and loading/unloading operation (µSI
lu for the immediate reshuffling policy and µSD

lu

for the delayed reshuffling policy). Assume that the target bin is the ith deep one (numbering from top down)

of a storage stack with h bins (i = 1, 2, · · · , h;h = 1, 2, · · · , H̄), then, the robot needs to reshuffle the top i− 1

bins. The service times of service nodes µre1 and µre2 can be calculated by Eq.(18) and Eq.(19), respectively.

Tre1 =
i−1∑
j=1

[
2(H − h+ j)hb

vl
+

2jw

vr
+ 2tlu] = [

2(H − h)hb

vl
+ 2tlu](i− 1) +

(wvl + hbvr)i(i− 1)

vlvr
(18)

Tre2 =
i−1∑
j=1

[
2(H − h+ j + 1)hb

vl
+

2jw

vr
+ 2tlu] = [

2(H − h+ 1)hb

vl
+ 2tlu](i− 1) +

(wvl + hbvr)i(i− 1)

vlvr
(19)
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The first two moments of Tre1 and Tre2 can be obtained by Eq.(20) and Eq.(21), respectively.

µ−1
re1 = T̄re1 =

1

H̄

H̄∑
h=1

1

h

h∑
i=1

[
2(H − h)hb

vl
+ 2tlu](i− 1) +

(wvl + hbvr)i(i− 1)

vlvr
, cv2re1 =

E[T 2
re1 ]− T̄ 2

re1

T̄re1

(20)

µ−1
re2 = T̄re2 =

1

H̄

H̄∑
h=1

1

h

h∑
i=1

[
2(H − h+ 1)hb

vl
+ 2tlu](i− 1) +

(wvl + hbvr)i(i− 1)

vlvr
, cv2re2 =

E[T 2
re2 ]− T̄ 2

re2

T̄re2

(21)

Under the immediate reshuffling policy, the robot will just pick up the retrieval bin in the storage stack,

puts it on a neighboring cell and moves back to load it after the reshuffling is finished. The operational time is

TSI
lu =

2(H − h+ i)hb

vl
+ tlu +

l

vr
+ tlu +

2l

vr
+ tlu, (22)

Under the delayed reshuffling policy, the operations for the robot to load the retrieval bin corresponds to

the robot will picks up the retrieval bin from the storage stack. The operational time is

TSD
lu =

2(H − h+ i)hb

vl
+ tlu. (23)

The first two moments of TSI
lu and TSD

lu can now be obtained as follows

µ−1
luSI = T̄SI

lu =
1

H̄

H̄∑
h=1

1

h

h∑
i=1

2(H − h+ i)hb

vl
+ 3tlu +

3l

vr
, cv2luSI =

E[TSI2

lu ]− T̄SI2

lu

T̄SI
lu

(24)

µ−1
luSD = T̄SD

lu =
1

H̄

H̄∑
h=1

1

h

h∑
i=1

2(H − h+ i)hb

vl
+ tlu, cv

2
luSD =

E[TSD2

lu ]− T̄SD2

lu

T̄SD
lu

(25)

The first two moments of the service time at each service node are presented in Appendix A, Table 10.

4.3. Solution approaches for the SOQN

The SOQN has a single customer and multiple service nodes with general distributed service times. Unfor-

tunately, no product-form solutions are available for such SOQNs (Jia & Heragu (2009)). In this section, we

therefore use the following approximate method (called AM-SOQN ) to solve the SOQN:

1. We build a closed queueing network made up of service nodes µr,wi , µw and µwi,s (Fig.6). Then, we

derive the load-dependent throughput of the closed queueing network, denoted by TH1(n1), using the

Approximate Mean Value Method (AMVA) (Appendix B), and replace this part by a composite service

node with load-dependent service rates µc1(n1) = TH1(n1).

2. We build a closed queueing network made up of service nodes µd,r, µr and µs, derive its load-dependent

throughput TH2(n2). We replace this part by a composite service node with load-dependent service rates

µc2(n2) = TH2(n2) (Fig.7).

3. We now obtain a reduced semi-open queueing network with two load-dependent service nodes (Fig.8), and

solve it by the Matrix-Geometric Method (MGM).
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We define the state variable of the reduced SOQN as sk = (noq, n1, n2), where noq is the number of waiting

orders in the orders queue and the state index k is given by Eq.(26)

k =


(n1+n2)(n1+n2+1)

2 + n2, noq = 0

noq(R+ 1) + R(R+1)
2 + n2, noq > 0.

(26)

The state transition processes is depicted in Fig.9.

Let πk be the steady state probability of state sk. We define the steady state probability vectors as

π0 = (π0, π1, · · · , πR(R+3)
2

) and πi = (πR(R+3)
2 +(i−1)(R+1)+1

, · · · , πR(R+3)
2 +i(R+1)

), i ≥ 1, where the index of
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Figure 9: The state transition process

πi represents that i orders are waiting in the order queue. Then, the generator matrix equals

Q =



B00 B01 0 0 0 · · ·

B10 B A 0 0 · · ·

0 C B A 0 · · ·

0 0 C B A · · ·
...

...
...

...
...

. . .


, (27)

where B00 is the transition matrix from π0 to π0, B01 is the transition matrix from π0 to π1, B10 is the

transition matrix from π1 to π0, A is the transition matrix from πi to πi+1, B is the transition matrix from πi

to πi and C is the transition matrix from πi+1 to πi (The details of these sub-matrixes are given in Appendix

C).

With the generator matrixQ, we can obtain the so-called rate matrixR by the iterative procedures presented

in Appendix C, based on Eq.(28)

A+R ·B+R2 ·C = 0 (28)

From this, we can find the steady state probability vectors π0 and π1 by solving the equation set (29)

[
π0 π1

]B00 B01

B10 B+R ·C

 = 0

[
π0 π1

] e (R+1)(R+2)
2 ×1

(I−R)−1 · e(R+1)×1

 = 1,

(29)
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where e is the unit vector.

The other steady state probability vectors can be obtained by πi+1 = πiR, i = 1, 2, · · · .

The expected number of waiting orders in the orders queue can now be obtained by Eq.(30)

Loq =
+∞∑
i=1

| πi |, (30)

where | πi | is the sum of all elements included in probability vector πi.

The expected number of busy robots, i.e., the expected number of orders being processed in the system, can

be obtained by Eq.(31)

LDC =
∑

i+j≤R

(i+ j) · π(0, i, j) +
+∞∑
k=1

R· | πk | . (31)

The expected number of waiting robots in the buffer area of one workstation can be obtained by

Lw =
∑

i+j≤R

ELw(i) · π0(i, j) +
+∞∑
k=1

∑
i+j=R

ELw(i) · πk(i, j), (32)

where ELw(i) is the expected number of waiting robots in the buffer area of one workstation when the composite

service node µc1(·) has i customers, which can be obtained by the AMVA (see Appendix B).

According to Little’s Law, the expected waiting time of orders for robots and robots for workstations can

be obtained by Eq.(33) and Eq.(34), respectively.

WR =
Loq

λ
(33)

Ww =
nwLw

λ
(34)

The system throughput time can be calculated by

THTDC =
Loq + LDC

λ
. (35)

The utilizations of robots and pickers can be obtained by Eq.(36) and Eq.(37), respectively.

ρR =
LDC

R
· 100%, (36)

ρp =
∑

i+j≤R

Qw(i) · π0(i, j) +
+∞∑
k=1

∑
i+j=R

Qw(i) · πk(i, j), (37)

where Qw(i) is the probability that a workstation is busy when the first composite service node has i customers.

It can be obtained through the AMVA method (see Appendix B).

5. Analytical model validation

In this section, we validate the analytical models by both simulation and a real case.
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5.1. Simulation validation

The simulation models are built in Arena (version 14.7). The details are presented in Appendix E. The

system parameters (e.g., bin size, robot velocities and loading/unloading times) are presented in Table 4, and

are obtained from a European paper and packaging material distributor in Switzerland, using a robotic-based

compact storage and retrieval system.

Table 4: System parameters used in the simulation validation

N w l hb R nw vr vl Tp tlu tt s K τ γ

5000 0.8m 0.6m 0.33m 30 4 3 m/s 1.6 m/s U [5, 15] 1.2sec1sec 0.222 500 0.2 0.2

Notes: The product demand Di follows an ABC curve with skewness parameter s = 0.222. That is Di = s(i/N)s−1. The safety

stock SSi is generated from a uniform distribution U [10, 100]

Several scenarios are generated by varying the system height H, the order arrival rate λ and the storage

and reshuffling policies applied in the system. Specifically, H equals 10 or 15, the width to length ratio r

equals one. Under a given storage policy, we can first obtain the required storage capacity C (see Section 3.2),

and then the system width W and length L (Eq.(3)). The order arrival rate λ takes 3 levels for each system

configuration, corresponding to workstation utilization ranging from 60% to 80%. In total, we have 36 scenarios

in the simulation validation (see Table 12 in Appendix F). For each scenario, 100 replications are run with a

warm-up period of 100 hours and a running time of 1000 hours, leading to a 95% confidence interval where

the half-width is less than 2% of the average. Five performance measures are collected and compared with the

analytical results, i.e., the system throughput time of dual-command orders THTDC , the expected waiting time

of robots for workstations Ww, the utilization of robots ρR, the utilization of pickers ρp and the filling degree of

all storage stacks (denoted by FD, FD =

N∑
i=1

ai

L·W ·H̄ ). The accuracy of the analytical models is measured by the

absolute relative errors δ,

δ =
| A− S |

S
· 100%

where A and S are the analytical and simulation results, respectively.

The average value and the range of δ are presented in Table 5. These results show that the analytical models

can estimate the performance of the RCSRS under different storage and reshuffling policies accurately, except

for the expected waiting time of robots for workstations Ww. However, note that since Ww is relatively small,

a small absolute error will result to a large relative error (see Table 6).

Table 6 presents the average analytical and simulation results, from which we can get the following obser-

vations:

1. Compared with random storage stacks, zoning the storage stacks improves the system throughput time

with 4.5% for the dedicated storage policy and 7.7% for the shared storage policy, on average.

2. The dedicated storage policy outperforms the shared storage policy with 24.5% on average in terms

of system throughput time, while it needs about 51.9% more storage positions. Immediate reshuffling

outperforms delayed reshuffling with 12.1% on average in terms of dual command throughput time.
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Table 5: Average and range of relative errors of analytical results to simulation results

SP Zoning Resh H,W,L THTDC Ww ρR ρp FD

δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ

Ded

Rand
- 10,134,134 4.28 1.02 8.53 9.23 2.33 24.43 2.51 0.55 4.45 0.10 0.00 0.84 1.67 0.22 2.39

- 15,113,113 5.11 2.01 9.78 14.23 4.77 25.58 3.46 1.82 6.82 0.11 0.09 0.56 0.87 0.23 3.12

Zoned
- 10,134,134 1.78 0.13 5.21 12.80 3.07 27.07 2.43 0.95 3.95 0.08 0.01 0.41 2.12 1.50 4.12

- 15,113,113 4.09 2.09 7.83 13.47 2.19 25.08 3.76 1.95 4.68 0.10 0.06 0.32 1.91 0.50 2.84

Shared

Rand

Imm
10,94,94 3.02 1.05 5.55 8.91 1.25 13.22 2.51 1.30 4.14 0.56 0.12 1.28 1.45 0.32 4.33

15,76,76 1.36 0.06 4.61 18.64 6.43 34.80 1.61 1.01 3.27 0.36 0.05 1.22 1.87 0.54 3.55

Del
10,94,94 4.54 1.14 10.18 8.42 3.36 15.82 2.05 1.05 3.88 0.34 0.10 2.41 1.15 0.78 1.43

15,76,76 0.95 0.39 4.34 18.28 7.20 31.77 0.84 0.32 1.89 0.08 0.06 0.50 1.56 1.10 3.36

Zoned

Imm
10,95,95 1.69 0.08 4.21 15.12 2.05 21.99 1.44 0.12 3.40 0.14 0.00 0.87 1.97 0.98 3.78

15,78,78 1.33 0.02 5.72 19.83 5.62 40.30 1.45 0.41 3.59 0.15 0.04 0.46 1.15 0.22 2.54

Del
10,95,95 1.03 0.15 3.92 11.12 4.69 20.91 1.02 0.44 1.99 0.53 0.09 1.45 2.54 0.78 3.78

15,78,78 2.34 0.85 5.87 20.62 6.71 37.97 1.17 0.28 4.74 0.14 0.02 2.12 1.17 0.45 2.39

Notes: ’SP’ means storage policy, ’Ded’ means dedicated storage policy, ’Shared’ means shared storage policy, ’Rand’ means

random storage stacks, ’Zoned’ means zoned storage stacks, ’Resh’ means reshuffling policy, ’Imm’ means immediate reshuffling

and ’Del’ means delayed reshuffling. δ is the minimum percentage error, δ is the maximum percentage error.

Table 6: Average analytical and simulation results under the dedicated and shared storage policies

SP Zoning Resh H,W,L λ THTA
DC THTS

DC WA
w WS

w ρAR(%) ρSR(%) ρAp (%) ρSp (%) FDA(%) FDS(%)

Ded

Rand

-

10,134,134

650 95.07 99.41 3.49 3.26 57.20 59.68 65.56 65.43 84.57 83.22

- 750 95.71 102.13 4.80 5.61 66.31 70.50 75.65 75.67 84.57 82.90

- 850 97.29 108.45 6.34 8.67 75.57 80.34 85.73 85.80 84.57 83.42

-

15,113,113

550 88.74 90.15 3.70 3.23 45.19 46.03 63.36 63.51 79.28 80.01

- 650 89.32 92.89 5.40 5.94 53.75 55.83 74.87 74.80 79.28 79.88

- 750 90.19 100.14 7.56 10.19 62.55 65.72 86.39 86.29 79.28 80.03

Zoned

-

10,134,134

650 89.29 89.41 3.46 3.06 54.94 53.70 65.56 65.44 84.57 83.32

- 750 90.71 91.77 4.59 5.23 62.98 63.58 75.65 75.62 84.57 82.30

- 850 93.23 97.16 6.03 7.81 71.47 74.24 85.73 85.74 84.57 82.82

-

15,113,113

550 85.63 81.72 3.70 3.27 43.61 41.66 63.36 63.42 79.28 80.31

- 650 86.11 84.35 5.37 5.49 51.82 50.83 74.87 74.97 79.28 79.68

- 750 86.24 91.16 7.32 9.77 59.98 62.90 86.39 86.34 79.28 80.03

Shared

Rand

Imm

10,94,94

650 103.44 104.54 3.48 3.10 62.20 63.02 65.56 65.74 98.05 97.65

750 104.46 107.10 4.74 4.80 72.06 73.72 76.65 75.68 98.05 97.55

850 107.91 114.25 6.17 7.11 82.05 85.46 85.74 85.84 98.05 97.64

15,76,76

550 125.52 125.60 3.68 2.73 63.71 63.07 63.36 63.38 99.97 98.10

650 127.21 128.83 5.23 4.56 75.59 76.72 74.87 74.97 99.97 98.40

750 137.00 140.88 6.95 6.53 87.63 89.73 86.39 86.37 99.97 98.00

Del

10,94,94

650 116.51 117.85 3.44 2.97 69.82 65.52 65.56 65.52 98.05 96.78

750 119.64 122.47 4.61 4.46 80.83 82.50 75.65 75.66 98.05 96.99

850 138.32 154.00 5.87 6.25 91.94 94.86 85.74 85.68 98.05 97.30

15,76,76

550 135.38 134.85 3.65 2.77 68.71 68.49 63.36 63.38 99.97 98.40

650 139.62 139.80 5.11 4.41 81.49 81.92 74.87 74.87 99.97 98.10

750 179.84 184.15 6.71 6.26 94.40 95.63 86.39 86.26 99.97 98.80

Zoned

Imm

10,95,95

650 97.42 95.69 3.47 2.86 58.61 57.57 65.56 65.56 99.87 98.43

750 98.12 98.04 4.78 4.88 67.93 68.01 75.65 75.83 99.87 96.55

850 100.01 103.29 6.28 8.05 77.39 79.29 85.74 85.65 99.87 98.89

15,78,78

550 120.92 117.89 3.69 2.63 61.53 60.10 63.36 63.45 98.77 98.10

650 122.30 120.60 5.27 4.64 73.30 72.18 74.87 74.90 98.77 98.99

750 128.46 128.44 7.05 7.47 84.69 85.04 86.39 86.25 98.77 96.33

Del

10,95,95

650 108.19 106.62 3.47 2.87 65.00 64.13 65.56 65.62 99.87 96.35

750 109.65 109.81 4.69 4.48 75.29 74.96 75.65 75.57 99.87 96.78

850 115.61 117.32 6.05 6.56 85.69 86.75 85.74 85.81 99.87 99.10

15,78,78

550 129.41 126.56 3.67 2.66 65.77 64.38 63.36 63.37 98.77 99.22

650 131.98 129.81 5.18 4.42 78.03 77.19 74.87 74.98 98.77 96.78

750 148.47 144.00 6.84 6.41 90.42 90.17 86.39 86.20 98.77 97.77
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5.2. Real case validation

In this section, we validate the analytical models through a real case. The real system refers to an Autostore

system implemented in a sportswear company, headquartered in Oudenaarde, Belgium (see Lalesse (2016)).

The system stores about 45,000 bins that are stacked in a grid with size 84× 38× 14 (width× length × height),

and uses 8 robots and 3 workstations to process the picking orders with an arrival rate 600 per hour. Other

system parameters include vr = 3.51m/s, vl = 1.4m/s, w = 0.65m, l = 0.45m,hb = 0.35m,Tp = 7s, tlu = 1.2s

and tt = 1s. The system uses totally mixed storage, i.e., a shared storage policy coupled with random storage

stacks, and reshuffles the blocking bins immediately. To compare our analytical model with the real system,

we adjust the travel time of the robots in the analytical model, considering the acceleration and deceleration

effects. Let D be the travel distance, vmax be the maximum velocity (either vr for the robot or vl for the lifting

mechanism) and a be the acceleration and deceleration rate (ar for the robot and al for the lifting mechanism).

Based on whether the robot or the lifting mechanism can reach its maximum velocity in the distance D or not,

the travel time can be calculated by Eq.(38) (see Tappia et al. (2016))

t =

2vmax/a+ (D − v2
max

a )/vmax, D >
v2
max

a

2
√

D
a , D ≤ v2

max

a .

(38)

For this system, the robot acceleration and deceleration rate is ar = 5m/s2 and the lifting mechanism

acceleration and deceleration rate is al = 3m/s2. Three performance measures are collected to compare the

analytical models with the real case, including the throughput capacity per workstation (denoted by TCw), the

expected waiting time of robots for workstations Ww and the utilization of pickers ρp.

Table 7: The results of the real case validation

TCRC
w TCA

w δTCw WRC
w WA

w δWw ρRC
p ρAp δρp

235.12 orders/hour 227.74 orders/hour 3.14% 3.43 s 3.89 s 13.41% 85.11% 87.05% 2.28%

Notes: ’RC’ means real case result and ’A’ means analytical result.

Table 7 presents the analytical and real case results, it shows that our analytical model can estimate the

system performance of the real system with accuracy.

These validation results motivate us to investigate the following questions in Section 6: the optimal system

dimensions under different storage policies, the performance comparison of dedicated vs. shared and random

vs. zoned storage policies.

6. Results

This section presents some insights for the system design and storage and operational policies of an RCSRS.

Section 6.1 investigates the optimal system dimensions under different storage policies. Section 6.2 compares

the performance of the storage policies examined in this study. In Section 6.3, we consider a cost minimization

problem for an RCSRS with a system throughput time requirement.
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6.1. Optimal system dimensions

We investigate the optimal system dimensions (length, width and height) for an RCSRS with given inventory

level. The number of products N , the fractional product bin demand rates D(i) and the setup cost to holding

cost ratio K are given and the conditions of EOQ replenishment hold. The objective is to minimize the system

throughput time THTDC . So, we have model (M.1).

min THTDC(H, r, PA, PB)

s.t.



D(i) = s(i/N)(s−1), i = 1, 2, · · · , N

Nst ≤ L ·W

L ≤ L̂,W ≤ Ŵ ,H ≤ Ĥ

r = W
L

PA + PB + PC = 1, 0 < PA < 1, 0 < PB < 1, 0 < PC < 1

N,R, λ, nw,K, s, τ are given,

(M.1)

where the number of workstations nw satisfies the stability condition µwnw > λ. The first equation is the

demand of product i, which is assumed to follow an ABC curve with parameter s. The second inequality

secures that the floor space (by the number of storage stacks) is adequate for all products, and the third

inequality limits the size of the grid.

What should be noted is that the percentage of products included in each class, i.e., PA, PB and PC , are

not included in the case of random storage stacks. So the decision variables are the grid size H and r for the

case of random storage stacks, but the grid size H and r plus PA and PB for the case of zoned storage stacks.

We use the following search procedure to solve Model (M.1):

1. In the case of random storage stacks, we calculate the storage space required by product i, i.e., ai by

Eq.(1) and then go to step 2. In the case of zoned storage stacks, we vary PA, PB and PC from 0.1 to

0.8 with a stepsize of 0.1 and get all (PA, PB, PC) combinations that satisfy PA + PB + PC = 1. For each

combination, we obtain the number of products included in each class NA, NB , NC by Eq.(10), calculate

ai and go to step 2.

2. We vary H from 1 to an upper bound, which is min{max
i

{ai}, Ĥ} for the case of random storage stacks

and Ĥ for the case of zoned storage stacks, with a stepsize of one. Note that the upper bound of H in the

case of random storage stacks is min{Ĥ,max
i

{ai}} since a larger H will not reduce the number of storage

stacks required, but waste storage space. For each H, we calculate the total storage stacks Nst and do

the following steps:

(a) In the case of random storage stacks, the width-to-length ratio r takes (3nw+4)l
(4nw+8)w (this is proved in

Appendix D). In the case of zoned storage stacks, we vary r from a lower bound r to an upper bound
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r with a stepsize of 0.1. For each r, L = ⌈Nst

r ⌉ and W = ⌈r · L⌉, if W ≤ Ŵ and L ≤ L̂, (H, r) or

(H, r, PA, PB) is a feasible solution of Model (M.1).

(b) We calculate the system throughput time THTDC of the feasible solution by the AM-SOQN.

3. Among all feasible solutions, we find the one with the minimum system throughput time THT ∗
DC , which

is the optimal system scenario (H∗, r∗) or (H∗, r∗, P ∗
A, P

∗
B , P

∗
C).

Several cases are examined to show the optimal system dimensions. The number of products to be stored

is N = 10000, the ABC curve skewness parameter s takes five levels, s = 1(20%/20%), 0.748(20%/30%),

0.431(20%/50%), 0.222(20%/70%), and 0.065(20%/90%). The fraction of the total storage positions reserved

for future growth is τ = 20%, the order arrival rate is λ = 300 per hour. The system dimension limitation is

Ĥ = 40, Ŵ = 250 and L̂ = 250. The system has 4 workstations and uses 20 robots, corresponding to a picker

utilization larger than 75%. Other system parameters are taken from Table 4. r varies from 0.1 to 2.5 with a

stepsize of 0.1. To reflect the effect of storage policy on the usage of storage stacks, we introduce Nst,max: the

number of storage stacks required by the product with the largest required space, i.e., max
i

{N i
st}. Moreover, we

calculate the retrieval throughput time THTR by Eq.(39) to investigate the trade-off between the immediate

and delayed reshuffling policies.

THTR =


WR + T̄d,r + T̄D

lu + T̄r,w +Ww + T̄w

2 , Dedicated storage

WR + T̄d,r + T̄re1 + T̄SI
lu + T̄re2 + T̄r,w +Ww + T̄w

2 , Shared storage, Immediate reshuffling

WR + T̄d,r + T̄re1 + T̄SD
lu + T̄r,w +Ww + T̄w

2 , Shared storage, Delayed reshuffling

(39)

Table 8: Optimal system dimensions in the case of random storage stacks

SP Resh s H∗ W ∗ L∗ C r∗ Nst,maxTHTDC THTR FD (%)

Ded

– 0.065 18 85 170 260100 0.5 42 91.06 56.00 72.38

– 0.222 27 87 174 408726 0.5 25 101.67 61.91 74.40

– 0.431 34 85 170 491300 0.5 11 107.80 65.15 73.76

– 0.748 21 105 210 463050 0.5 6 108.32 66.96 84.46

– 1 40 71 142 403280 0.5 1 101.38 60.83 98.02

Shared

Imm

0.065 7 87 174 105966 0.5 – 97.57 66.96 99.51

0.222 7 111 221 171717 0.5 – 114.47 78.05 99.19

0.431 8 113 226 204304 0.5 – 121.33 83.86 99.35

0.748 8 118 235 221840 0.5 – 124.73 86.19 98.75

1 8 118 236 222784 0.5 – 124.91 86.32 99.38

Del

0.065 7 87 174 105966 0.5 – 115.09 57.75 99.51

0.222 9 98 195 171990 0.5 – 135.83 68.28 99.37

0.431 11 97 193 205931 0.5 – 144.07 72.50 98.91

0.748 11 100 200 220000 0.5 – 147.38 74.13 99.57

1 11 101 201 223311 0.5 – 148.09 74.50 99.15
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Table 9: Optimal system dimensions in the case of zoned storage stacks

SP Resh s H∗ W ∗ L∗ C r∗ P ∗
A P ∗

B P ∗
C THTDC THTR FD (%)

Ded

– 0.065 18 93 155 259470 0.6 0.1 0.4 0.5 87.22 52.31 72.55

– 0.222 26 97 161 406042 0.6 0.1 0.2 0.7 99.33 59.39 74.89

– 0.431 32 88 176 495616 0.5 0.1 0.1 0.8 106.66 64.15 73.22

– 0.748 21 105 210 463050 0.5 0.1 0.5 0.4 107.89 66.50 84.46

– 1 40 71 142 403280 0.5 - - - 100.92 60.83 98.02

Shared

Imm

0.065 6 104 173 107952 0.6 0.6 0.2 0.2 91.02 64.51 99.34

0.222 7 122 203 173362 0.6 0.8 0.1 0.1 106.85 77.43 99.51

0.431 7 134 222 208236 0.6 0.8 0.1 0.1 113.74 82.56 99.58

0.748 8 130 216 224640 0.6 0.7 0.2 0.1 116.85 86.06 99.72

1 8 131 217 227416 0.6 - - - 117.36 86.27 99.26

Del

0.065 7 112 140 109760 0.8 0.1 0.3 0.6 106.10 55.37 99.34

0.222 8 124 177 175584 0.7 0.2 0.7 0.1 126.29 66.32 99.31

0.431 9 128 182 209664 0.7 0.3 0.6 0.1 135.67 71.80 99.48

0.748 8 140 200 224000 0.7 0.7 0.2 0.1 140.55 74.06 99.12

1 9 123 205 226935 0.6 - - - 141.33 74.27 99.46

Table 8 and Table 9 presents the optimal system dimensions in the case of random and zoned storage stacks,

respectively. We make the following observations:

1. For the RCSRS examined in this section, the optimal width-to-length ratio r∗ is 0.5 in the case of random

storage stacks, corresponding to an optimal width-to-length ratio (in travel time) of 2
3 (this is proven in

Appendix D). In the case of zoned storage stacks, the optimal width-to-length ratio r∗ is slightly larger

than 0.5, which can be explained since zoning storage stacks on x-axis direction will reduce the width

travel time.

2. For both random and zoned storage stacks, the total number of storage positions required by the dedicated

storage policy is about twice those that are required by the shared storage policy, due to two reasons: the

shared storage policy allows space sharing and the filling degree of storage stacks is higher. Moreover,

a high grid (with optimal height H∗) fits the dedicated storage policy better, while a flat one (with

optimal height H∗) benefits the shared storage policy more. This can be explained as the horizontal robot

movement time dominates the vertical lift movement time under the dedicated storage policy, while the

vertical lift movement time, especially the reshuffling time, will dominate the horizontal robot movement

time under the shared storage policy. Note that H∗ should be as high as possible when s = 1, i.e.,

min{Ĥ,max
i

{ai}}, to minimize the system throughput time.

3. In terms of dual command throughput time, the dedicated storage policy outperforms the shared storage

policy coupled with immediate reshuffling by 10% and zoning storage stacks outperforms random storage

stacks by 4.6%, on average. Moreover, compared with delayed reshuffling, immediate reshuffling improves

the dual command throughput time by 15.7%, but increases the retrieval throughput time by 13.7%, on

average. This means that if an RCSRS is facing high pick demand, it can use delayed reshuffling to

improve the retrieval throughput capacity. Otherwise, immediate reshuffling is preferred due to the saving
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on dual command throughput time.

6.2. Optimal storage stack height under different storage policies

In Section 6.1, we have analyzed the optimal system dimensions under different storage policies. It appears

that the optimal storage stack height H∗ varies with the storage policy applied in the system and the charac-

teristics of the storage products, i.e., the skewness parameter s. We also note that product replenishment, in

particular, the ratio of ordering cost to holding cost K may also affect the system performance and the optimal

system dimensions of the RCSRS. So, we investigate the relationship between the optimal storage stack H∗ and

K under different storage policies in this section.

We carry out a series of experiments by varying the number of storage products N and the storage policy

applied. Specifically, N = 5000 or 15000, and both the dedicated and shared storage policies and both random

and zoning storage stacks are examined. The product demand follows an ABC curve with skewness parameter

s = 0.065. For the shared storage policy, we use the immediate reshuffling strategy. K varies from 100 to 1000

with a stepsize of 100 and other system parameters are the same as Section 6.1. We use Model (M.1) to derive

the optimal storage stacks height H∗ and present the results in Fig.10.
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Figure 10: Optimal storage stack height

The results show that the optimal storage stack height H∗ increases significantly with the ratio of setup cost

to holding cost K under the dedicated storage policy, while it increases only slightly under the shared storage

policy. This means that if the replenishment cost goes up, the replenishment period will become longer and

the replenishment quantity will become larger based on the EOQ. As a result, the RCSRS should use a higher

grid to increase the inventory level in the storage stacks. Conversely, when the replenishment period shortens

and the replenishment quantity reduces, the RCSRS should lower the grid to reduce the inventory level in the

storage stacks. Compared with the dedicated storage policy, the optimal storage stack height under the shared

storage policy is relatively smaller and much less sensitive to K. This means that a high grid fits the dedicated

storage policy better, while a low grid is more beneficial for the shared storage policy. The optimal storage
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stack height obtained for the shared storage policy is much more robust to changes in K than that obtained for

the dedicated storage policy.

6.3. Cost minimization models

The results of Section 6.1 show that the dedicated storage policy outperforms the shared storage policy in

terms of the system throughput time THTDC , which can be explained since the reshuffling of blocking bins

under the shared storage policy increases the system throughput time, while no reshuffling is required under the

dedicated storage policy. However, despite the disadvantage of a shared storage policy on system throughput

time, it can save cost since less storage space is required due to space sharing. Therefore, the selection between

these two storage policies is actually a trade-off between the operational efficiency and the system costs. In

this section, we study the cost minimization problem in RCSRSs under both the dedicated and shared storage

policies.

The number of products stored in the system (N) and their demands (Di) are given. The order arrival rate

λ is known and the number of workstations nw is the minimum number that satisfies the stability condition

nw · µw > λ. The objective is to design the system to minimize the system total annual cost TC, with the

constraint that the system throughput time THTDC should be less than a critical level THTDCmax . The system

cost consists of three parts: the cost of robots, the cost of storage positions and the cost of floor space. Since

the number of workstations is fixed, we exclude the picking labor cost from the objective in model (M.2). The

results of Section 6.2 show that zoning storage stacks can improve the system throughput time, compared with

random storage stacks. So, to minimize the system total cost, we use the optimal zoning method under both

the dedicated and shared storage policies. This results in the total annual cost minimization model (M.2)

min TC(H, r,R, PA, PB) = CR ·R+ CSP · L ·W + CFS · L ·W ·H

s.t.



Nst ≤ L ·W

THTDC(L,W,H,R) ≤ THTDCmax

L ≤ L̂,W ≤ Ŵ ,H ≤ Ĥ

Di = s(i/N)(s−1), i = 1, 2, · · · , N

r = W
L

PA + PB + PC = 1, 0 < PA < 1, 0 < PB < 1, 0 < PC < 1

N,λ, nw,K, τ are given

(M.2)

where CR is the annualized cost per robot, CSP is the annual cost per storage position and CFS is the annual

cost per square meter floor space. The first constraint is to ensure that the total number of storage stacks is

adequate for all products. The second constraint is to ensure that the system throughput time of the RCSRS is

smaller than the maximum throughput time required, i.e., THTDC ≤ THTDCmax . The third constraint is the

limitation on the size of the grid. The decision variables are the number of robots R, the percentage of products

included in class A and B, i.e., PA, PB , and the grid size H and r.
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We use a grid search procedure to solve the Model (M.2):

1. We vary PA, PB and PC from 0.1 to 0.8 with a stepsize of 0.1 and obtain all (PA, PB , PC) combinations

that satisfy PA +PB +PC = 1. For each combination, we calculate the storage space required by product

i, i.e., ai by Eq.(1) and then go to step 2.

2. We vary H from 1 to an upper bound, which is min{max
i

{ai}, Ĥ} for the dedicated storage policy and

Ĥ for the shared storage policy, with a stepsize of one. For each H, we get the total storage stacks Nst

by Eq.(4) for the dedicated storage policy and by Eq.(7) for the shared storage policy, and then do the

following steps:

(a) We vary r from a lower bound r to an upper bound r with a stepsize of 0.1. For each r, we take

L = ⌈Nst

r ⌉ and W = ⌈r · L⌉. If W ≤ Ŵ and L ≤ L̂, go to step b.

(b) We find the minimum number of robots R that satisfies THTDC(H, r,R, PA, PB) ≤ THTDCmax
by

the AM-SOQN, and then record the (H, r,R, PA, PB) as a feasible solution of Model (M.2).

3. We calculate the total annual cost of all feasible solutions, and select the one with the minimum total

annual cost.

As an example, we consider an RCSRS that needs to store N = 10, 000 products whose demand follow

ABC curves with skewness parameters s = 0.065, 0.222 or 0.576. The investment cost per robot is e 30,000

(annualization in 7 years), the investment cost per storage position is e 40 (annualization in 10 years) and the

investment cost of floor space in a warehouse per square meter is e 500 (annualization in 30 years). We consider

an interest rate IR = 0.5%. Then, the annual costs of a robot, a storage position and a square meter warehouse

floor space are

CR =
7∑

t=1

30000(1 + IR)t−1

7
, CSP =

10∑
t=1

40(1 + IR)t−1

10
, CFS =

30∑
t=1

500(1 + IR)t−1

30

The picking order arrival rate is λ = 300 per hour and other system parameters come from Table 4. We solve

Model (M.2) and present the trade-off curves between optimal system cost and the required system throughput

time in Fig.11. The optimal system scenarios (system dimensions W ∗, L∗,H∗ and number of robots R∗) for

each required system throughput time THTDCmax are included in Table 13 in Appendix G.

Fig.11 shows that, for a given maximum system throughput time THTDCmax
, the shared storage policy can

substantially reduce the system cost of an RCSRS, compared with the dedicated storage policy. The optimal

annualized system costs offered by the shared storage policy are almost 50% (on average) lower than that offered

by the dedicated storage policy, i.e. the costs under dedicated storage are twice as large as that under shared

storage. The reasons are twofold: compared with the shared storage policy, much larger storage space is required

by the dedicated storage policy and the filling degree of storage stacks is relatively lower (see Table 13)

Except for the advantage of the shared storage policy on system cost, Fig.11 also reflects the advantage of

the dedicated storage policy on the system throughput time. The dedicated storage policy can offer a system
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Figure 11: Optimal cost of RCSRS with throughput time constraint

throughput time shorter than that of the shared storage policy. Specifically, by using the dedicated storage

policy, the system throughput time THTDC can be between [90, 95) when s = 0.065, [95, 110) when s = 0.222

and [110, 120) when s = 0.576. Therefore, the trade-off between these two storage policies is that the shared

storage policy can save the system cost substantially, while the dedicated storage policy can offer a very short

system throughput time that the shared storage policy can not achieve.

7. Conclusions and Further work

This study considers a new material-handling technology: robot-based compact storage and retrieval systems

(RCSRS). In such a system, the inventory items are stored in standard plastic bins, and the roof is a grid formed

by rectangular cells under which bins are stored on top of each other. Robots with transporting and lifting

functionalities are used to transport bins on the grid. Several workstations are located at the lowest level of

several side storage stacks, where goods enter and leave the system. With high storage space utilization and

outstanding throughput capacity, RCSRSs have seen many implementations in recent years, particularly in

e-commerce retailers.
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This study focuses on performance estimation and storage policy evaluation of RCSRS. We consider both

dedicated and shared storage policies per storage stack, and random and zoned storage stacks within the grid.

Under the shared storage policy, we propose immediate and delayed reshuffling strategies for the reshuffling

process that is required before getting a bin in the deep level. Semi-open queueing networks are built to

estimate the performance of RCSRS under various storage policies and reshuffling policies, including the system

throughput time, the expected waiting time of orders for robots, the expected waiting time of robots for

workstations and the utilizations of robots and workstations. We first approximate the original models by

reduced SOQNs with two load-dependent service nodes, and then use Matrix-Geometric Method to solve them.

Both simulations and a real case are used to validate the analytical models. The relative errors show that the

analytical models can estimate the system performance with accuracy.

We built system dimensions optimization models to minimize the system throughput time. The results show

that the optimal ratio of width-to-length in traveling time is around 2
3 in the case of random storage stacks, and

slightly larger in the case of zoned storage stack. A high grid (with an optimal height) fits the dedicated storage

policy better, while a flat grid (with an optimal height) is more beneficial for the shared storage policy. We

also compare the performance of the immediate and delayed reshuffling policies and found that the immediate

reshuffling policy can improve the dual command throughput time by sacrificing the retrieval throughput time.

To decide between the dedicated and shared storage policies, we also consider the cost minimization problem

of the RCSRSs with a requirement on system throughput time. We examined a series of cases and found that

the shared storage policy dominates the dedicated storage policy in terms of system cost, due to its substantial

saving on total storage space, while the dedicated storage policy can offer a short system throughput time that

the shared storage policy can not.

For future studies, it is interesting to apply uni-directional routes on the grid to avoid congestion and blocking

of robots. The assignment rules of orders to robots and robots to workstations can also be investigated, as it

may improve the system performance.
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Appendix A. Service time expressions in the SOQN

The mean value of the movement time Td,r (under both dedicated and mixed storage policies) can be

calculated by the following equation.

T̄d,r =
W∑

xd=1

L∑
yd=1

W∑
xr=1

L∑
yr=1

[
| xd − xr | ·w+ | yd − yr | ·l

vr
+ g · tt] · P (xd)P (yd)P (xr)P (yr)

We can obtain the mean values of both movement times Tr,wi and Twi,s by the same logic. The resulting

first two moments of service times of the service nodes in the SOQN are presented in Table 10

Appendix B. Approximate Mean Value Method (AMVA)

Table 11 presents the notations used in the AMVA

The AMVA method includes the following steps:

1. Initialize. Let pm(0 | 0) = 1, Qm(0) = 0, ELm(0) = 0,m = 1, 2, · · · ,M .

2. Preprocessing. Enumerate n from 0 to N , do the following procedures:

(a) For m = 1, 2, · · · ,M , calculate

ETm(n) = Qm(n− 1)ESrem,m + ELm(n− 1)
ESm

cm
+ ESm,

where ESr
rem,m(n⃗) is given by the following equation

ESrem,m =
cm − 1

cm + 1
· ESm

cm
+

2

cm + 1
· 1

cm
· ES2

m

2ESm
.

(b) Calculate the load-dependent throughput

TH(n) =
n

M∑
m=1

vmETm(n)

,

(c) For m = 1, 2, · · · ,M and l = 1, 2, · · · ,min(cm − 1, n), calculate

pm(l | n) = ESm(n)

l
vmTH(n)pm(l − 1 | n− 1).

(d) For m = 1, 2, · · · ,M , if n < cm, Qm(n) = 0, otherwise,

Qm(n) =
ESm

cm
vmTH(n) · [Qm(n− 1) + pm(cm − 1 | n− 1)].
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Table 10: The first two moments of service times of service nodes in the SOQN

Service n-

ode

Storage policy Mean value of service time scv of service time

µd,r random stacks Ww+Ll
3vr

+ (LW−W−L−3)tt
LW−1

zoned stacks [
P 2

AwA

3 + P 2
B(

wB

3 + wA

2 ) + P 2
C(

wC

3 + wB

2 + wA

2 ) +

2PAPB(wA + wB

2 ) + 2PAPC(wA + wB + wC

2 ) +

PBPC(wA + wB + wC

2 )] wvr
+Ll

3 + (LW−W−L−3)tt
LW−1

cv2d,r =
E[T 2

d,r ]−T̄ 2
d,r

T̄d,r

µr,wi random stacks Ww
2vr

+ 1
L

L∑
j=1

|j−ywi
|l

vr
+ tt

L cv2r,wi
=

E[T 2
r,wi

]−T̄ 2
r,wi

T̄r,wi

zoned stacks Ww
2vr

+ 1
L

L∑
j=1

|j−ywi
|l

vr
+ tt

L

µwi,s random stacks Ww
2vr

+ 1
L

L∑
j=1

|j−ywi
|l

vr
+ tt

L

zoned, dedicated Ww
2vr

+ 1
L

L∑
j=1

|j−ywi
|l

vr
+ tt

L

cv2wi,s =
E[T 2

wi,s
]−T̄ 2

wi,s

T̄wi,szoned, shared [PA(
wA

4 + wB

2 + wC

2 )+PB(
wB

4 + wC

2 )+ PCwC

4 ] wvr
+

L∑
j=1

|j−ywi
|l

vr
+ tt

L

µw - 1

2(
Hhb
vl

+tlu)+
λ(a+b)
2nw

· (b−a)2+6(a+b)
24

λ2(b−a)2

12λnw+
1152n2

w(
Hhb
vl

+tlu)

(a+b)[6(a+b)+(b−a)2]

µre1 shared [(wτ2

9vr
− 2hbτ

2

9vl
+ hbτ

2vl
)H2 + ( wτ

6vr
− hb

2vl
+ hbτ

6vl
)H +

hb

6vl
− w

3vr
](1 + γ) + tluτH

2 − tlu
2

cv2re1 =
E[T 2

re1
]−T̄ 2

re1

T̄re1

µre2 shared [(wτ2

9vr
− 2hbτ

2

9vl
+ hbτ

2vl
)H2 + ( wτ

6vr
− hb

2vl
+ 2hbτ

3vl
)H +

hb

6vl
− w

3vr
](1 + γ) + tluτH

2 − tlu
2

cv2re2 =
E[T 2

re2
]−T̄ 2

re2

T̄re2

µD
lu dedicated

N∑
i=1

pi

Ii

Ii∑
h=1

2(H−h)hb

vl
+ tlu

cv2lu =
E[T 2

lu]−T̄ 2
lu

T̄lu
µS
lu shared [ (2−τ)hbH

vl
− hb

vl
](1 + γ) + tlu

µSI
lu shared, immediate [ (2−τ)hbH

vl
− hb

vl
](1 + γ) + 3tlu + 3l

vr

µSD
lu shared, delay [ (2−τ)hbH

vl
− hb

vl
](1 + γ) + tlu

Notes: The parameter γ models the honeycombing effect, which allows inflating the travel time in the storage stack.

(e) For m = 1, 2, · · · ,M , calculate

pm(0 | n) = 1−
min(cm−1,n)∑

l=1

pm(l | n)−Qm(n).

(f) For m = 1, 2, · · · ,M and r = 1, 2, if n < cm, ELm(n) = 0, otherwise,

ELm(n) =
ESm(n)

cm
vmTH(n)[ELm(n− 1) +Qm(n− 1)].
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Table 11: Notations used in AMVA

Notations Meaning
M Number of service stations in the closed queueing network.
cm the number of servers in service station m. For infinite server, we let cm be an infinite number.
vm the visit ratio of customer at service station m.
N the number of customers in the closed queueing network.

ESrem,m the expected time remaining until the first departure of customer at service station m.
ESm the service time of service station m (the first moment).
ES2

m the squared coefficient of variation of service station m (the second moment).
pm(l | n) the probability that there are l customers in service station m when the system contains n

customers.
Qm(n) the probability that all servers at service station m are busy when the system contains ns storage

transactions and nr retrieval transactions.
ELm(n) the mean number of customers in the queue of service station m (excluding jobs in service) when

the system contains n customers.
ETm(n) the lead time of service station m when the system contains n customers.
TH(n) the system throughput when the system contains n customers.

Appendix C. Matrix-Geometric Method

We specify the details of the generator matrix Q. B00 is the transition matrix from state π0 to state π0,

B00 =



−λ λ

0 −λ− µc1(1) µc1(1) λ 0 0

µc2(1) 0 −λ− µc2(1) 0 λ 0

0 0 −λ− µc1(2) µc1(2) 0 λ 0 0 0

µc2(1) 0 0 −λ− µc1(1)− µc2(1) µc1(1) 0 λ 0 0

0 µc2(2) 0 0 −λ− µc2(2) 0 0 λ 0

. . .
. . .

. . .

0 · · · 0 −λ− µc1(R) 0 · · · 0

µc2(1) 0
... 0 −λ− µc1(R− 1)− µc2(1) 0

...

. . .
...

. . .
...

µc2(R) −λ− µc2(R)


.

B01 is the transition matrix from state π0 to state π1,

B01 =


0R(R+1)

2 ×(R+1)

λ

. . .

λ


(R+1)(R+2)

2 ×(R+1)

.

B10 is the transition matrix from state π1 to state π0,

B10 =


0

µc2(1) 0

0
(R+1)×R(R+1)

2

. . .
. . .

µc2(R− 1) 0

µc2(R) 0


(R+1)× (R+1)(R+2)

2

.
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A is the transition matrix from state πi to state πi+1, i ≥ 1,

A =


λ

. . .

λ


(R+1)×(R+1)

.

B is the transition matrix from state πi to state πi, i ≥ 1,

B =


−λ− µc1(R) µc1(R)

−λ− µc1(R− 1)− µc2(1) µc1(R− 1)

. . .

−λ− µc1(1)− µc2(R− 1) µc1(1)

−λ− µc2(R)


(R+1)×(R+1)

.

C is the transition matrix from state πi+1 to state πi, i ≥ 1,

C =


0

µc2(1) 0

. . .
. . .

µc2(R− 1) 0

µc2(R) 0


(R+1)×(R+1)

.

The repetitive structure of the generator matrix Q secures that the following equation holds for steady state

probability πi (Neuts 1980)

πi+1 = πiR, i ≥ 1,

where R is the transition rate matrix and

π1R
i ·A+ π1R

i+1 ·B+ π1R
i+2 ·C = 0, i ≥ 1.

After some simplification, we get

R = −(A+R2C)B−1. (40)

Based on Eq (40), we can obtain R by the following iterative method (Tappia et al. (2016), Cai et al. (2014))

R0 = 0, R1 = −(A+R2
0C)B−1, k = 0

while || Rk+1 | − | Rk ||> ε

k ++;

Rk+1 = −(A+R2
kC)B−1;

end

R=Rk

Appendix D. Proof of optimal width to length ratio in the case of random storage stacks

The objective of optimizing the width to length ratio (in traveling time) is to minimize the expected move-

ment time of robots on the grid in a dual command cycle, i.e., T = T̄d,r + T̄r,w + T̄w,s. In the case of random
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storage stacks, both storage and retrieval positions could be in any cell with the same probability. Moreover,

any workstation will be equally likely assigned to the robot. So, we can write T as Eq.(D.1)

T =
1

vr
[
W · w

3
+

L · l
3

+ 2(
W · w

2
+

1

n

n∑
i=1

1

L

L∑
j=1

| j − ywi | ·l)], (D.1)

where n = nw

2 , ywi is the y-axis coordinate of the ith workstation and ywi =
iL
n+1 .

After some simplification, we get

T =
1

vr
[
4Ww

3
+

(3n+ 2)Ll

3n+ 3
] ≥ 2

vr

√
4Ww

3
· (3n+ 2)Ll

3n+ 3
=

2

vr

√
4(3nw + 2)wl CH

3(3n+ 3)
.

Therefor, T takes the minimum value when 4Ww
3 = (3n+2)Ll

3n+3 . So, the optimal width to length ratio (in

traveling time) is r∗t = W ·w
L·l = (3nw+4)

(4nw+8) . In a RCSRS with 4 workstations, r∗t = 2
3 and r∗ = 1

2 .

Appendix E. Simulation model

The simulation model contains the following processes (see Fig.12 for a flow diagram):

1. The orders arrive at the system, following a Poisson process with mean inter-arrival time 1
λ .

2. The system randomly assigns an available robot to the order. If all robots are busy, the order will wait in

the order queue.

3. The seized robot moves from its dwell point to the retrieval point according to a shortest path. In the case

of random storage stacks, both the robot dwell point and the retrieval point are uniformly distributed over

the stacks. In the case of zoned storage stacks, they will be in each zone with a probability proportional

to the percentage of the turnover of products in that zone.

4. The robot fetches the retrieval bin. This process may include reshuffling of blocking bins. Under the

dedicated storage policy, the robot directly picks up the top bin. Under the shared storage policy, the

system will first identify whether the retrieval bin is on the top of the storage stack. If not, the robot

will first reshuffle the blocking bins on the grid and then fetch the retrieval bin. The blocking bins will

be returned according to the original stack sequence. If immediate reshuffling is used, the robot will put

the retrieval bin on the grid temporarily, and then return the blocking bins into the stack. If delayed

reshuffling is used, returning of the blocking bins will be done afterwards.

5. The robot transports the retrieval bin to the designated workstation according to a shortest path. There,

the robot drops off the retrieval bin and picks up a storage bin.

6. The robot transports the storage bin to the storage point. In the case of random stacks, the stack that

will hold the storage bin will be located equally likely at any position. In the case of zoned stacks, the

probability that the robot will go to one zone is determined by the turnover of products in it.

7. The robot drops off the bin on the top of the storage stack.

8. If the previous retrieval operation includes reshuffling of blocking bins and the delayed reshuffling rule is

used, the robot will move back to the retrieval point and returns the blocking bins into the storage stack.
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Figure 12: Flowchart of simulation models
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Appendix F. System scenarios for simulation validation

Table 12: System scenarios examined in simulation validation

Scenario H W L R horizontal vertical reshuffle zone λ (per hour)
1-3 10 134 134 30 Random Dedicated – – 650,750,850
4-6 15 113 113 30 Random Dedicated – – 550,650,750
7-9 10 134 134 30 Zoned Dedicated – [0.6,0.3,0.1] 650,750,850
10-12 15 113 113 30 Zoned Dedicated – [0.6,0.3,0.1] 550,650,750
13-15 10 94 94 30 Random Shared Immediate – 650,750,850
16-18 15 76 76 30 Random Shared Immediate – 550,650,750
19-21 10 94 94 30 Random Shared Delayed – 650,750,850
22-24 15 76 76 30 Random Shared Delayed – 550,650,750
25-27 10 95 95 30 Zoned Shared Immediate [0.6,0.3,0.1] 650,750,850
28-30 15 78 78 30 Zoned Shared Immediate [0.6,0.3,0.1] 550,650,750
31-33 10 95 95 30 Zoned Shared Delayed [0.6,0.3,0.1] 650,750,850
34-36 15 78 78 30 Zoned Shared Delayed [0.6,0.3,0.1] 550,650,750

Notes: S mean Scenarios. R takes different values for dedicated and shared storage policies to ensure that ρR < 1.

Appendix G. Optimal system scenarios to minimize the total system cost
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Table 13: The optimal system scenarios to minimize the total costs

THTDCmax

SP s 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

Ded

0.065

W∗ 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112
L∗ 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140
H∗ 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
R∗ 13 10 10 9 9 9 9 9 9 9 8 8 8 8 8 8 8
P∗

A 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P∗

B 0.7 0.6 0.1 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.8 0.7 0.6 0.6 0.5 0.4 0.4
P∗

C 0.1 0.3 0.8 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.1 0.2 0.3 0.3 0.4 0.5 0.5

0.222

W∗ NaN 153 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140
L∗ NaN 153 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200
H∗ NaN 18 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
R∗ NaN 9 14 12 11 11 11 10 10 10 10 10 10 10 10 10 10
P∗

A NaN 0.2 0.1 0.1 0.1 0.1 0.1 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P∗

B NaN 0.6 0.5 0.1 0.3 0.1 0.1 0.5 0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P∗

C NaN 0.2 0.4 0.8 0.6 0.8 0.8 0.1 0.4 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8

0.576

W∗ NaN NaN 121 155 155 155 155 155 155 155 155 155 155 155 155 155 155
L∗ NaN NaN 200 155 155 155 155 155 155 155 155 155 155 155 155 155 155
H∗ NaN NaN 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
R∗ NaN NaN 16 13 12 12 11 11 11 11 11 11 11 11 11 10 10
P∗

A NaN NaN 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P∗

B NaN NaN 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.2
P∗

C NaN NaN 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.5 0.7

Shared

0.065

W∗ NaN 87 67 68 82 58 55 63 63 64 64 64 64 64 64 64 64
L∗ NaN 124 134 113 82 116 109 90 90 80 80 80 80 80 80 80 80
H∗ NaN 10 12 14 16 16 18 19 19 21 21 21 21 21 21 21 21
R∗ NaN 15 13 14 15 13 15 16 15 17 16 16 15 15 15 15 15
P∗

A NaN 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P∗

B NaN 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1
P∗

C NaN 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.8

0.222

W∗ NaN NaN 98 85 79 104 101 98 62 93 93 93 93 93 93 93 93
L∗ NaN NaN 196 170 158 104 101 98 155 93 93 93 93 93 93 93 93
H∗ NaN NaN 9 12 14 16 17 18 18 20 20 20 20 20 20 20 20
R∗ NaN NaN 16 14 16 16 16 16 15 18 17 16 16 16 16 16 15
P∗

A NaN NaN 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P∗

B NaN NaN 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P∗

C NaN NaN 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

0.576

W∗ NaN NaN NaN 118 116 88 80 110 107 72 89 89 89 89 89 89 89
L∗ NaN NaN NaN 168 145 176 160 110 107 144 111 111 111 111 111 111 111
H∗ NaN NaN NaN 11 13 14 17 18 19 21 22 22 22 22 22 22 22
R∗ NaN NaN NaN 17 16 15 18 18 18 20 20 19 18 18 18 17 17
P∗

A NaN NaN NaN 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P∗

B NaN NaN NaN 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P∗

C NaN NaN NaN 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
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