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ABSTRACT Cognitive radio networks (CRNs) are an emerging paradigm for next generation wireless
communication systems allowing for more efficient radio spectrum utilization. In order to harness the full
potential that CRNs may offer, many challenges and problems need to be overcome and addressed. One of the
critical questions is the performance of secondary networks under primary user activity constraints. In this
respect, queueing assumes a primary role in characterizing the delay, throughput and other performance
metrics for secondary users, which in turn has implications for resource allocation, medium access control
and quality of service provisioning. This survey presents an overview and classification of the various
queueing models and techniques which have been proposed in the literature in the context of CRNs.
Furthermore, open problems, future research directions and further potential applications related to queueing

for CRNss are identified.

INDEX TERMS Cognitive radio networks, queueing models, queueing theory.

I. INTRODUCTION
The ever-growing demand for wireless services is leading to
the overburdening of a precious, but limited, resource — the
radio spectrum. Even though the available radio spectrum is
a limited resource, the real culprit for this situation is the
severe underutilization of the licensed spectrum [1]. In order
to meet the demands of wireless communications in the near
future, cognitive radio networks (CRNs) are a promising
paradigm for greatly improved spectrum utilization, which
leverage the power of software defined radios, whose oper-
ating parameters, such as transmission/reception frequency
band, transmit power, modulation and coding schemes, etc.,
can be dynamically adjusted [2]. The premise of CRN is
that the incumbent primary network(s) consisting of licensed
users (or primary users — PUs) can coexist with secondary
network(s), whereby the secondary users (SUs) opportunisti-
cally and dynamically access the spectrum in such a manner
as not to interfere or degrade the performance of primary
users. Therefore, primary users have priority to spectrum
access and use.

While the immense benefits of CRN are self-evident,
the realization of CRNs’ full potential requires appropriate

solutions to many non-trivial challenges and limitations.
Since SUs’ access and use of the spectrum is dependent on
and limited by PU activity, the analysis and quantification of
the secondary network’s performance in terms of capacity,
throughput and delay is of paramount importance. In this
respect, since a SU cannot be guaranteed instant access to
the network, some form of queueing modeling is necessary
to reflect the realistic situation of delayed network access
(queueing delay) and varying network conditions (varying
service times) once access is achieved. In fact, queueing
models and their analysis are the primary means by which
the average throughput and delay of secondary networks are
derived. Furthermore, the construction of efficient resource
allocation and medium access control schemes and Quality
of Service (QoS) provisioning is directly coupled to and
influenced by metrics derived from queueing models. There-
fore, it is fair to say that realistic evaluations of CRNs’
performance need to incorporate a queueing model in one
form or another.

CRNs have garnered immense interest within the academic
community. This is demonstrated by the plurality of sur-
veys related to CRNs, both older (a selection being [3]-[6])
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and of recent date (a selection being [7]-[13]). Although
some surveys have touched upon queueing models for
cognitive radio networks in particular sections or contexts
(e.g. [14, §5], where queueing models for PU activity are
surveyed, or [15, §2.4], where a section is dedicated to CRN
in the context of a survey on retrial queueing models), as far
as we are aware, no survey in literature has been dedicated
exclusively to queueing models for cognitive radio networks.
In this survey, we fill this gap by providing a comprehensive
overview and classification of queueing models as applied in
the context of cognitive radio networks. We believe that this is
timely given the fundamental role queueing theory and mod-
els play in the evaluation and description of key performance
measures of cognitive radio networks, a role it is certain to
continue to play in the foreseeable future. The importance
of queueing theory and models as a fundamental tool in the
analysis of cognitive radio networks in a plethora of scenarios
is demonstrated by the exponential rise in publications on
CRNs incorporating queueing models over the last decade
as evidenced by the references herein. Furthermore, numer-
ous open problems, future research directions, understudied
aspects and other potential applications of queueing theory
and models exist for cognitive radio networks.

The main objective of this article is to describe and classify
various queueing models, both continuous-time and discrete-
time, and queueing-theoretic tools applied in the analysis
of cognitive radio networks. The rest of this article is orga-
nized as follows. Section II gives a short introduction to
dynamic spectrum access and cognitive radio networks, while
Section IIT gives a short overview of queueing theory. The
relevant literature is surveyed in Section IV, where the pri-
mary classification is into continuous-time and discrete-time
queueing models. Section V discusses open problems and
possible future research directions. The conclusion is pre-
sented in Section VI.

Il. DYNAMIC SPECTRUM ACCESS AND COGNITIVE

RADIO NETWORKS

Dynamic spectrum access represents a paradigm shift in
wireless communications and is the cornerstone of cognitive
radio networks. Dynamic spectrum access entails the ability
of network nodes to access the spectrum in a dynamic manner,
meaning that such nodes must be capable of spectrum sens-
ing, spectrum occupancy estimation and dynamically chang-
ing its operating parameters.

Cognitive radio networks leverage the concept of dynamic
spectrum access to permit the temporal and spatial co-
existence of primary networks, which represent the incum-
bent owners of the spectrum, and secondary networks, which
access the primary network channels in an opportunistic
manner. The primary network users have absolute priority in
accessing and using the primary channels, while secondary
network users are permitted to use these channels only when
they are vacant or if the interference to the primary users is
below a set threshold. The three types of spectrum sharing
paradigms for cognitive radio networks are:
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1) Interweave: The SUs access a channel only when the
channel is not occupied by any PU. The SU traffic is
“interweaved” with that of the PUs.

2) Underlay: The SU is permitted to transmit concurrently
with a PU provided that the interference at the PU
receiver due to SU transmissions is below a certain
predefined threshold.

3) Overlay: The SU cooperatively relays PU transmis-
sions in order to improve the SNR at the PU receiver,
thereby allowing it to transmit its own data simultane-
ously.

Cognitive radio networks introduce numerous novel
research challenges:

1) Spectrum Sensing: SUs must be able to perform spec-
trum sensing in order to determine/estimate the channel
occupancy by PUs (and also other SUs). The accu-
racy of spectrum sensing affects the overall network
performance — missed detections result in undesired
PU interference, while false alarms result in actual
spectrum opportunities being unutilized, affecting the
secondary network throughput.

2) Spectrum Handoff: Once the channel being used by a
SU is re-occupied by a PU, the secondary user needs to
vacate the channel immediately. In order to complete
its interrupted transmission, the SU may wait until that
same channel becomes vacant again, or it may switch
to another channel. Since there is overhead associated
with channel switching, there is a trade-off between
these two options.

3) Resource Allocation: Given the available resources
(channels) at any given time, resource allocation tries
to establish the optimal assignment and utilization of
these resources by the SUs as a collective in order to
maximize certain overall network performance param-
eter(s), e.g. throughput, transmission delay, etc.

4) Medium Access Control: A certain common protocol
is needed to regulate how the SUs access the network.

Many of these elements are interlinked and interdependent.

Ill. QUEUEING THEORY

Queueing theory has its origins in the seminal work of
Erlang [16] in the context of early telephone exchange net-
works. Since then, interest in queueing theory has been fueled
by its application in diverse contexts, such as operations
research, telecommunication and data networks, industrial
engineering, etc. For a concise historical overview of queue-
ing theory, see Bhat [17, §1.3].

Queueing systems consist of customers (e.g. persons,
users, systems, packets, connections, etc.) that require some
form of service and servers who provide the desired service.
A queueing model is defined in terms of the probability
distribution of the inter-arrival times of customers, the prob-
ability distribution of the service time, the number of servers
and the queue capacity (if an infinite queue length is not
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FIGURE 1. Queueing model for a decentralized SU network.

assumed). These queueing parameters are succinctly captured
using Kendall’s notation.

Given the stochastic nature of queueing models, and the
general complexity of obtaining the system characterization
for any time, it is generally sufficient to obtain typical perfor-
mance measures of interest under steady-state (equilibrium)
conditions, provided that the system is stable. The mean val-
ues of the queueing delay time, system time (sum of queueing
and service times) for a customer and the busy period (the
time that a server is continuously busy) are the typical mea-
sures of interest from which other relevant measures can be
derived.

Broadly speaking, queueing analysis can be divided into
continuous-time and discrete-time. While continuous-time
analysis allows for the characterization of the queueing sys-
tem at any instant of time, discrete-time analysis gives the sys-
tem state only at discrete time points. While continuous-time
analysis is simpler in many cases, for digital systems which
are time-slotted, discrete-time analysis is more appropriate.

Queueing theory and models have found wide
applicability in telecommunications and data net-
works [18]-[20]. Therefore, it is no surprise that it has also
found equal applicability in cognitive radio networks. The
following queueing-theoretic and queueing related works are
of particular significance with regard to queueing models in
CRNs: [18], [20]-[29].

IFor example, M /G/1/K denotes a queueing model with exponentially
distributed inter-arrival times, general distribution for service times, a single
server and a queue with a maximum length of K.
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IV. QUEUEING MODELS FOR COGNITIVE RADIO
NETWORKS

The prevalent queueing models used for cognitive radio net-
works are the priority queueing models, where higher-priority
customers can preempt the service of lower-priority cus-
tomers, and vacation models, where a server can go on ‘‘vaca-
tion” and cease providing service for some period. These are
appropriate models for the CRN paradigm, where PUs can
preempt the transmissions of SUs. The server(s) are the PU
channel(s), which can be opportunistically and dynamically
accessed by SUs under prescribed conditions. The customers
are PUs’ and SUs’ data packets, sessions or connections,
which are queued if they cannot obtain instant access to the
required channel(s). In the most general setting, the service
time of a SU customer is dependent on the channel trans-
mission rate (which is time-varying), PU activity, data packet
length, medium access control (MAC) mechanism, resource
allocation scheme, number of SUs, number of PU channels,
sensing errors, etc. The presence of so many inter-related
and interacting factors which influence the queueing analy-
sis for CRNs makes the extraction of relevant performance
measures from such models, at least in the more generic
contexts, extremely complex or even intractable. As a result,
many researchers have made simplifying assumptions of
one form or another: homogeneous channels, PU and/or SU
homogeneity, perfect spectrum sensing, negligible spectrum
sensing and channel contention time, etc. Another simplify-
ing assumption commonly made is that of an infinite buffer
size (queue capacity).
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Fig. 1 depicts a common queueing architecture as applica-
ble to SU networks. Each of the N SU transmitters has a queue
of size K; (which may be infinite), i = 1,2,..., N, where
the SU; arrival rate (of data packets/sessions/connections)
is Asy;. While a decentralized network is depicted here,
it can be easily modified for a centralized network. The
servers are the M PU channels. Since various SU’s data pack-
ets/sessions/connections may join the queue of any channel,
the channel queues are ““virtual” given that the actual queues
are at the SU transmitters. This is depicted in Fig. 2, where the
arrival rate ACHJ. at channel j, wherej = 1,2, ..., M, encom-
passes the arrivals of data packets/sessions/connections from
the N SUs. The service rates of the M servers (channels) are
wj, where j=1,2,..., M.

Queueing models have been proposed and analyzed for
various CRN topics: resource allocation (e.g. [30]-[33]),
medium access control (MAC) protocols (e.g. [34]-[36]),
spectrum sensing (e.g. [37]), spectrum handoff (e.g. [38],
[39]), underlay/overlay network (e.g. [40]), energy har-
vesting (e.g. [41]) and game-theoretic formulations (e.g.
[42]-[44]), or a combination of some of the above topics
(e.g. [45]).

Both continuous-time and discrete-time queueing models
have been applied in the context of CRNs. This distinction
is typically, though not exclusively, linked to whether or not
time-slotting is assumed for the CRN. In the case of time-
slotted CRN, synchronization is required between the pri-
mary and secondary network. Such a case is typically mod-
eled using discrete-time queueing. However, there are also
instances where time-slotted CRN queueing performance is
approximated using continuous-time analysis [36].

In the analysis of proposed queueing models for CRNs,
the two most common approaches to determining the queue-
ing performance measures of interest are:

1) Leveraging and adapting known and existing results
from queueing theory and literature with respect to the
selected queueing model;

2) Using known and existing queueing-theoretic tools and
techniques to analyze the proposed queueing model.

PU activity is almost ubiquitously modeled in the relevant
literature using the ON-OFF process, a two-state Markov
process where a PU occupies the transmission channel during
the ON state and is idle during the OFF state. For an overview
of PU activity models based on queueing theory, see the
survey by Saleem and Rehmani [14, §5].

Before presenting an overview of the literature on queueing
models for CRN, we give a few select examples of queueing
models used in the context of CRN in order to give a sense
of how queueing theory is applied in this field. The exam-
ples encompass both continuous- and discrete-time models.
Naturally, it is not possible to go into as much detail as in
these examples in the subsequent sections when describing
the various contributions to queueing models in CRN.

Continuous-time queueing models consist of a continuous-
time Markov chain (MC) such as {X(¢) : t > 0}, where X (¢)
denotes some state of interest (e.g. number of customers in the
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FIGURE 2. Queueing model with M virtual queues corresponding to M PU
channels.

queueing system) at any time ¢ > 0. Similarly, discrete-time
queueing models consist of a discrete-time Markov chain
suchas {X(n) : n =0, 1, ...}, where X (n) denotes some state
of interest at discrete time instances. The previous examples
are single-state, one-dimensional Markov chains. However,
in many queueing systems, multi-state, multi-dimensional
Markov chains are required to accurately model the queueing
dynamics. Generally, as the number of Markov chain states
increases, so does the complexity of analysis.

In what follows, we consider some specific queueing mod-
els from literature. We begin with the continuous-time queue-
ing model by Doost-Mohammady et al. [33], where resource
allocation in CRN with streaming and non-streaming SUs is
considered (see also Sec. IV-A for a more detailed description
of this work). Here, we only present the queueing model
for the streaming case. In this case, the M streaming SUs
receive a dedicated channel. However, since PUs can reclaim
these channels at any time, a further N backup channels are
needed to guarantee desired QoS. Queueing occurs if a SU’s
dedicated channel is occupied by a PU and all N backup
channels are occupied by PUs/SUs. This scenario can be
modeled by a continuous-time Markov process with a state
space {(m(t),n(t)) : 0 < m(t) < M,0 < n(t) < N}, where
m(t) is the number of dedicated channels occupied by PUs
and n(t) is the number of backup channels not occupied by
PUs at an arbitrary time ¢. The state transition diagram is
depicted in [33, Fig. 2]. Assuming a Poisson PU arrival rate
A1 and service rate 1 for the M dedicated channels, and a
corresponding arrival rate A, and service rate uy for the N
backup channels, the generator matrix Q is

AP AD o
AP Al Al o

Q=19 . AD AW AW ’
Lo AP AL
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where the sub-matrices Aék), A(lk), A(2k>, 0<k<M,are

Ay =M =My,
(k) X k)
Al =TH+A},
AP = (M = k)n + kp)Iy 1,
A(zk) = kpuilnya,
where Iyt isan (N + 1) x (N + 1) identity matrix and

—Nu2 Nuo

T= kxy ¥ (N —=ku» ,

Ny —NA>
where ¥ = —kXy — (N — k)uy. For this quasi-birth-death
(QBD) process, at steady-state I1Q = 0, where

M=[my m mm],

wi = [mio i1 - min], 0 < i < M, is the steady-state
probability vector (i.e. 7r;; is the probability that in steady-
state the Markov chain is in state m(oco) = i and n(co) = j).
Therefore, it follows that

M N
ZZN,‘J =1.

i=0 j=0

The equation IIQ = 0 signifies that at steady-state the net
flow rate into any given Markov state is equal to the outflow
rate from that same state. By solving for TIQ = 0 and
M Zj'v:o mij = 1, it is possible to obtain the steady-state
probability vector II.

The next example includes a two-dimensional discrete-
time Markov chain (DTMC) in the context of the proposed
a-retry policy [46]. This policy states that when a SU is inter-
rupted during transmission by an arriving PU, the SU rejoins
the SU queue with probability « for later retrial or leaves
the system with probability @ £ 1 — « (see [46, Fig. 1]).
A time-slotted CRN is assumed and the slot boundaries are
indicated by u = 1, 2, .... The arrival of packets can occur
only in the interval (u, u™), while the departure of packets can
only occur in the interval (u~, u). The arrival and transmission
intervals of PUs follow a geometric distribution with arrival
rate A; (0 < A; < 1, A1 £ 1 — X;) and transmission rate
n1 0 < pr < 1, iy £ 1 - Wu1), respectively (i.e. the
probability of a packet arriving in any time-slot is A and
the probability of a transmission completion in any time-slot
is p1). Similarly, for SUs, the corresponding arrival rate is
A (0 < A < 1, %2 £ 1 — 1) and transmission rate 1
O<pr<l,i2®1—p).

Assuming a finite SU queue buffer size K, let L, = i
(i = 0,1,...,K + 1) denote the number of SU and PU
packets in the system at # = u™ and let R, = j (j = 0, 1)
denote whether the spectrum is occupied by a PU at t = u™
(G = 1) or otherwise (j = 0). Using (L, R,,) as a state, a two-
dimensional discrete-time Markov chain with a state space
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©0,0U{G,)):1 <i<K++1,j=0,1}is obtained. The
state transition probability matrix for this DTMC is

Cy By Ao
D G B, A
D, C, B> Ar

P= . . . .
Drk-1 Ck-1 Bk-1 Ax—_i
Dg Ck Ex
Dg+1 Fgi |

It is easily verified that the sub-matrices are Cp =
[MA2], Bo = [MA2 Mih2], Ao = [0 MAz], Dy =

[idana Jadam]”,

o ):»1/:\2112 0
" Mropr 0
l<i<K+1,
C— Mo +rap2)  MGap + rala@)
' AlA2 4] A2(A1pr + 1)
1<i<K,
B, — Mizily  Ar(Azjioa + Ao + A2jio@)
' 0 Ao(hipr + 1) ’
1<i<K-1,
[0 MAziioo
A= [O 2],
1<i<K-1,
Er — My AM(A2 + Aoflar)
0 Aoy + i) |
and
Froi = M(apa + i2) A
* Aidop A+ ]
If I = [mo0 1,0 11 -+ Tk+1,0 TK+1,1] is the

steady-state probability vector where
mij = lim P{L, = i, Ry = j},
u— 00

then the steady-state (equilibrium) equations are IIP = II
subject to the normalization condition II1 = 1, where 1 is a
column vector consisting of 2K + 3 1s.

Another continuous-time example is the performance eval-
uation of an underlay CRN using an M /G/1/K queueing
model with finite queueing buffer size [40]. The model con-
siders a single SU transmitter/receiver pair and a PU receiver,
where the underlay model imposes a power constraint on
the received power at the PU receiver due to the SU trans-
mitter. The general service time of a packet is based on the
instantaneous Shannon channel capacity (which is assumed
to be constant during a transmission interval, but varies inde-
pendently between intervals). Incorporating packet timeout,
the PDF f7, (¢) (Tp is arandom variable representing the trans-
mission time with timeout) of the transmission time is derived
[40, eq. (11)]. Assuming a Poisson arrival process with arrival
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rate A, if a(k) denotes the probability of k packets arriving
during a service interval Ty, then

o0 k ,—At
a(k) 2/ Mf,ro(t)dt'
0 k!

Consider an embedded Markov chain whose states denote the
number of packets in the system immediately after service
completion (see [40, Fig. 1]). If p; denotes the transition
probability from state j to state k of the Markov chain, then

{am, 0<k<K-2,
Dok = 00 . o
E k1 a(i), k=K -1,

and
{a(k—j—f-l), j—1<k<K-=2,
pj,k: o0 . _ _
Zi:K_ja(l), k=K —1,

where | < j < K —1.Ifpe, &k = 0,1,...,K — 1,
denotes the steady-state probability that there are k packets
in the system immediately after service completion, then it
follows that py = >~ pjpjs. k = 0,1,....K — 1, and
Zsz_ol pr = 1. Combining the above equations leads to the
following K equations:

[2(0) — 1]po + a(O)p1 =0

fork =0,
k—1

a(po + Y etk —j+)pj + [a(1) = 1pk + ¢O)pis1 =0
j=1

fork=1,2,...,K —2,and

po+pi+...+pk_1 =1
These K equations can be represented in matrix form as
Ap = b, where p = [po Pl "'PKfl]T isa K x 1 steady-

state probability vector, b = [O -0 I]T isa K x 1 vector
and

a0)—1 a0 0 e 0
a)  a()—1  «(0) e 0
A=| : Lo :
a(K-2) a(K-2) (D=1 a(0)
1 1 1 1

is a K x K matrix. The steady-state probability vector is
obtained as p = A~'b. Due to the PASTA (Poisson arrivals
see time averages) property of Poisson processes [25],
the steady-state probability that there are k packets in the
system at an arbitrary time is

_ | px/(po + ATo). 0<k<K-—1,
PE= V1= 1o + AT0). k=K.

where T is the average transmission time.

In all these examples, once the steady-state (equilibrium)
probability vector is determined, various performance metrics
of interest can be derived.

50806

A few words are in order regarding the organization of this
section. From the perspective of queueing theory, we have
selected the primary classification as continuous-time versus
discrete-time, given that both categories are well represented
in the relevant literature. Within each category, literature is
organized based on the following topics? in the given order:

1) Queueing model,

2) Resource allocation,

3) Medium access control,

4) Multi-class SUs,

5) Spectrum sensing,

6) Spectrum handoff,

7) Underlay/overlay paradigm,
8) Energy harvesting,

9) Game theory,

10) Cooperation/relaying schemes,
11) Other.

A. CONTINUOUS-TIME MODELS
A representative example of a continuous-time queueing
model and its analysis is given at the beginning of Section IV.

1) QUEUEING MODEL
Chang and Jang [47] quantify the spectrum occupancy, delay
and throughput for a two queue CRN (preemptive priority
PU M /M /1 queue and a retrial SU M /M /1 queue), both
being served by the same server (when a PU/SU is serviced,
the entire radio spectrum is allocated to them). Arriving SUs’
packets which find the spectrum occupied leave the serving
facility (going to the “orbit’’), whence it rearrives at the SU
queue with a particular retrial rate. The steady-state proba-
bilities and the average number of packets in the system and
average delay are obtained based on results from [28].
Dudin er al. [48] propose and analyze a priority retrial
queue model for CRN. Different types of PUs are assumed
having different service time distributions (all types have
same priority of access). There is only one type of SU and
a SU can be serviced by a sub-channel/sub-server (chan-
nel/server is divided into identical sub-channels/sub-servers).
PU, of any type, requires the entire channel/server. Arrivals
of both PUs and SUs is modeled using a marked Marko-
vian arrival process (MMAP). Service time distributions of
PUs are modeled by phase-type distributions, while SU ser-
vice times are exponentially distributed. PUs which find no
server available are lost (PUs have preemptive priority over
SUs), while SUs which find no available sub-channels/sub-
servers move into the “orbit”, from which they randomly
attempt to access the system (with exponential distribution
of inter-attempt times), or permanently leave the orbit due to
impatience (with exponentially distributed leave time). SUs
interrupted by arriving PUs also go to the orbit. Modeled as a
continuous-time Markov chain, whose states include: 1) num-
ber of SUs in orbit; 2) number of PU customers in service;

21t is assumed that this represents the primary topic of a publication. Any
given publication may subsume more than one of these topics.
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3) number of SU customers in service; 4) state of underlying
MMAP; 5) number of servers at a particular phase for PU cus-
tomers. The generator matrix for the Markov chain is derived
and it is shown that it belongs to class of continuous-time
asymptotically quasi-Toeplitz Markov chains, which allows
use of known results to derive the stationary probability
vectors.

Heo et al. [49] analyze the performance of SU traffic in
a priority preemption network. They consider the SU arrival
time, the PU activity and preemption probability to mathe-
matically model the waiting time of SU in the network. The
network is set-up with a number of servers (channels) that
are allocated to the SUs via a distributor. The authors also
determine the blocking and forced termination probabilities
of the SUs.

Liu et al. [50] discuss a spectrum trading model whereby
PUs lease their idle spectrum to SUs. Each PU server has
different service characteristics such as service state, time,
content, area and price (STACP). Queues are classified based
on STACP qualifiers and the SUs decide which queue to join
depending on their service demands. The main performance
objective of the SUs is the sojourn time.

Wang et al. [36] analyze the delay performance of an
interweave, time-slotted CRN where the SUs employ a ran-
dom access scheme.? For the scenarios of single and mul-
tiple PU channels, the queueing model is analyzed using
a continuous-time fluid flow approximation based on Pois-
son driven stochastic differential equations. The derivation
of moments for SU queue lengths assume a light traf-
fic regime. Based on the queue analysis, the contention
probability which minimizes queueing delay is determined.
Furthermore, two packet generation control mechanisms
(randomized and queue-length based) are proposed which
can be adapted based on delay constraints.

Liu et al. [51] analyze a CRN while considering the traf-
fic pattern of the PU. The motivation is that the generally
assumed ON-OFF behavior is inadequate. Fading is assumed
and a general Gaussian distribution for the channel capacity is
imposed. The authors consider self-similar traffic and inves-
tigate network performance subject to fractional Brownian
motion processes. Service decomposition is employed for the
queueing analysis with priorities assigned to the users in the
network. The PU network is given the highest priority while
the SU network is the low priority network. The system is
modeled using a simple single-server single-queue model.

Suliman and Lehtomiki [52] analyze the waiting time
distribution of SUs in an interweave CRN. At the beginning
of each time slot, SUs perform spectrum sensing of all chan-
nels to determine their occupancy/availability. The system
is modeled as an M /D/1 queue with the service rate equal
to the time slot length. The Pollaczek-Khintchine formula
is exploited in the theoretical analysis which leads to the
derivation of the waiting time for both the PU and SU queues.

35Us randomly select a channel based on a uniform distribution and
contend for the channel with a given probability.
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Monte Carlo simulations are performed to verify the results
for the scenarios of perfect and imperfect sensing.

Usman et al. [53] focus on a detailed derivation and anal-
ysis of extended delivery time (EDT) for secondary packet
transmissions. The major novel contributions are:

1) Detailed EDT formulation and analysis with consid-
eration of periodic sensing. Considers scenario that
secondary packet’s transmission time is constant or ran-
dom (depending on fading channel conditions) and
spans over multiple secondary transmission slots under
the work-preserving strategy (transmission resumes
from point of interruption).

2) Complete and exact statistics of EDT for secondary
packet transmission for both continuous and periodic
sensing. The exact distribution function of EDT is
derived (in distinction to previous literature which car-
ried out the delay analysis based on moments of the
delivery time).

3) Accurate queueing analysis of secondary packet trans-
mission considering two different service time charac-
teristics for arriving packets depending on buffer status
(i.e. queue size).

The detailed EDT analysis is extended to analyze the service
time of SU packets assuming a M /G/1 queue, where only a
single channel is considered. The service times of two types
of packets are analyzed: Type 1 — packet arrives while the
queue is not empty, and so when the packet reaches trans-
mission, PU is idle; Type 2 — packet arrives when the queue
is empty, PU may be on or off. Closed-form expressions are
derived for both types leveraging the PDF relating to EDT.

Bassoo and Khedun [54] evaluate the preemptive and non-
preemptive priority queue waiting times for PUs and SUs
where a PU delay is modeled (arriving PU packets wait a
finite delay before attempting to access the channel). The
motivation for such a delay is to prevent SU starvation due
to PU activity. In non-preemptive case, a PU which finds the
channel occupied by a SU cannot preempt it after its delay,
whereas in the preemptive case, it can. Modeled asan M /D/ 1
queue for both PUs and SUs, being served by a single server.

Raspopovic et al. [55] determine the blocking probabilities
of wideband (WB) and narrowband (NB) systems competing
for the same spectrum. The WB users are defined as the pri-
mary users (type A) who occupy more than one NB channel
when operating. NB users are defined as the secondary users
(type B) and occupy only one NB channel when operating.
It was found that the model closely follows a M /M /K system
for both user types since there is no priority assigned to any
of the user types. The goal is to ensure, at least, that the
blocking probability of type A users is less than that for type
B users. Type A blocking probability was lower bounded
by type B blocking probability and the authors found that
by increasing the number of NB channels dedicated to type
B users, the blocking probability for both types decreased.
Another improvement is observed from limiting type A user
population which reduces type A blocking probability rela-
tive to type B blocking probability.

50807



IEEE Access

F. Paluncic et al.: Queueing Models for CRNs

Zhang et al. [56] determine the performance of a CRN net-
work with a two-level queue for SUs. The aim is to improve
performance by discarding SU packets that will stay in the
network for too long without transmission. The CRN is in
interweave mode with priority preemption resume capability.
There are two parts to the queue, a delay part and a discard
part. When no channel is available, SUs will join the delay
part of the queue on FCFS basis. A threshold determines how
many SUs are allowed in the delay queue, the rest will join
the discard part. SUs will generate packets while in the queue.
Packets generated by SUs in the delay queue will be saved in
a buffer at the SU. When a channel becomes free, the SUs
will be reconnected on a FCFS basis. Those in the discard
queue will not be saved and will be lost. The authors then the-
oretically determine the ratio of packets generated to packets
lost of an SU by utilizing a two-dimensional continuous-time
Markov chain (CTMC). Performance is determined using sta-
tistical analysis and evaluated by varying the queue threshold
and the idle times of the PUs and SUs in the network.

Oklander and Sidi [57] aim to model system dynamics in
an interweave CRN. Matrix geometric analysis is used to
determine the stationary probabilities of a CTMC. Matrix
geometric analysis methods provide a fast solution to cal-
culate the stationary probabilities from a transition matrix.
Channel state estimation is also incorporated in the decision-
making component. State estimation is achieved through
sensing.

Jang and Chang [58] model an M /M /1 queue based on
varying transmission rates. The channel is a Nakagami-m
fading channel with Doppler shifts. The transmission rate is
derived analytically using average fade duration and incor-
porating the Doppler shift. This transmission rate is then
mapped to the exponential service rate. The general delay
and throughput equations for an M /M /1 priority queue are
derived.

Azarfar et al. [59] study the effect of server interruptions
in single and multiple channel CRNs. The system is modeled
using an M /G/1 queue. After a transmission interruption,
the scenarios of partial transmission (resume transmission)
and re-transmission are considered. Analytical probability
is used to study the queue behavior and to derive queue
performance parameters. In another paper, Azarfar et al. [60]
study the effects of different queue priority disciplines on
performance.

Further examples of publications focusing on continuous-
time queueing models and their analysis include [61]-[78].

2) RESOURCE ALLOCATION

Doost-Mohammady et al. [33] consider the problem of chan-
nel allocation (with the aim of maximizing spectrum utiliza-
tion) with QoS provisioning with heterogeneous PU activity
and SU demands under streaming and non-streaming scenar-
ios. Each SU that wishes to transmit sends a QoS vector to
the SU-BS — QoS vector consists of SU packet arrival rate
(assumed Poisson), required rate, packet delay constraint and
packet length (which is assumed constant). BS groups SUs
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based on identical QoS vectors. For the streaming case, each
SU (of the M SU streaming nodes) is assigned a channel for
which it doesn’t have to contend with other SUs. However,
it can be preempted by a PU, so there are N backup channels
per group to allow for continuous channel use. When any
of the M streaming nodes is interrupted by a PU on its
default channel, it will switch to a backup channel, if avail-
able. If none is available, it will queue to gain access to the
spectrum (either its default/assigned channel or one of the
backup channels). Hence, streaming nodes arrive randomly
at the queue, which is served by N servers (corresponding
to the backup channels). This scenario is modeled as a two-
dimensional continuous-time Markov process, whose joint-
state elements are the number of streaming nodes which
are removed from their default channel by PU activity and
the number of backup channels not occupied by PUs. The
queueing is modeled by a quasi-birth-death (QBD) process
based on PU and SU arrival and service rates, for which
steady-state equations can be derived. The average queue
length follows directly from the steady-state probabilities.
The aim is to identify the lowest N for which the average
delay is below or equal to the delay constraint.

Awoyemi et al. [79] consider the optimization of resource
allocation with heterogeneous SUs having different time
delay and QoS requirements. The secondary network is
divided into concentric rings around the SU base station (BS),
with rings closer to the BS providing higher data rates (based
on adaptive modulation and coding). SUs are divided into DS
(Delay-Sensitive) and DT (Delay-Tolerant) users. The model
allows for a certain fraction 6 of DT SUs’ packets to change
queues, i.e. from a lower-rate to a higher-rate queue. The
parameter 0 is selected so as to optimize the overall system
throughput. The arrival rate is Poisson and the service rate is
exponential at each queue. There are N sub-channels, thus
each queue is M /M /N. Continuous-time Markov chain is
used to model the queue dynamics. Based on the transition
flow diagram, the balance equations are derived, whereby
the steady-state probability vector is obtained using the state
reduction of GTH (Grassmann, Taksar and Heyman) algo-
rithm. Optimal value of 6 is obtained using Newton’s method.
Blocking probability and throughput are derived from the
steady-state probabilities.

Canberk et al. [80] develop a novel framework for QoS
in an interweave heterogeneous CRN. The aim is to improve
throughput and fairness among the SUs. The network is
divided into different modules with the PU activity module
defining the opportunity index. The SU-BS will then allocate
spectrum bands to the appropriate SUs. Four different types
of users are defined which are modeled by different queue
types. Type 1 are E1/T1 users which are given the highest
priority as their requirement is a constant bit rate. The queue
is modeled as D/G/1. Type 2 are video conference users
with second highest priority and are modeled by a G/G/1
queue. Type 3 are Voice-over-IP (VoIP) users modeled using
a two state Markov modulated Poisson process MMPP/G/1
queue. Type 4 are best effort users which have the lowest
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priority and are modeled as an M /G/1 queue. Spectrum
decisions are further categorized into perfect, aggressive and
smooth decisions. A new metric, the request index, is defined
to aid with admission control. Pseudo-code algorithms for the
admission control, spectrum decision and spectrum mobility
are given.

Shiang and van der Schaar [30] propose a virtual priori-
tized M /G/1 queue for heterogeneous delay-sensitive SUs
and devise a dynamic strategy learning algorithm for chan-
nel selection which aims to optimize SU utility functions
(end-to-end delay or throughput). PUs are top priority users
by default, while the SUs are assigned to different priority
classes based on the SU’s delay-sensitivity and multimedia
application. In the queueing model, the servers are the fre-
quency channels and each channel has a virtual prioritized
queue for PUs and SUs. These queues are virtual because
they correspond to channels, whereas each SU possesses its
own physical queues as destined for each channel. Therefore,
this virtualization requires information exchange (via control
channel) between decentralized SUs. The PU traffic* is mod-
eled as M /G/1, as are the multiple virtual prioritized queues.
The delay derivation is based on results from [21].

Jashni et al. [81] propose a distributed resource allocation
algorithm that dynamically selects the proper channels for
delay-sensitive applications in a multi-hop CRN. The key
contribution of the paper is the consideration of the queueing
delay in addition to the transmission delay as the routing
criterion. The SUs are classified and assigned priorities. SUs
of the same priority are served FCFS. The algorithm selects
the path with minimum delay.

Zhao et al. [82] analyze the queueing delay in CRN with
heterogeneous services and channels. The main criteria for
heterogeneity is the delay requirement, whereby SU packets
are differentiated based on their delay sensitivity. “Transmis-
sion window”” scheme is proposed to prevent the starvation of
SU delay-insensitive packets. The delay of PUs is analyzed
using an M /D/1 queue.

AlQahtani [83] considers resource allocation where M2M
(Machine-2-Machine) and H2H (Human-2-Human) devices
co-existin a single LTE cell with multiple resources (resource
blocks). H2H devices assume the role of primary users and
thus can preempt M2M communications. M2M is divided
into two categories: 1) RT (Real-Time) which have a higher
priority; 2) NRT (Non-Real-Time) which have lower priority.
Poisson arrivals and exponential service times are assumed
for all users (H2H, M2M-RT and M2M-NRT). Queueing
analysis consists of continuous-time Markov chain, whose
states include number of H2H, M2M-RT and M2M-NRT
currently being served and size of M2M-RT and M2M-NRT
queues. Balance equations are obtained based on the flow rate
between MC states, from which the steady-state probability
vector is obtained.

Wu et al. [84] consider sensing errors present in a multi-
user multi-channel CRN. The impact of false and missed

4The PUs at each channel are aggregated into a single virtual PU.
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detection on the mean delay of the system is investigated.
A vacation queueing system is employed to model the system.
Upon a missed detection, both the SU and PU vacate the
channel, the extra delay for PU re-transmission must be added
to the total delay for the SUs. Matrix geometric solutions
are used to determine the stationary probabilities and hence
the expected queue delay. Given that there are many SUs,
the problem of finding the optimal number of channels to
allocate to SUs is transformed into a bipartite graph match-
ing problem. The problem is then solved using the Kuhn-
Munkres (KM) algorithm.

Do et al. [85] study the average waiting time of a multi-
channel CRN in a M /G/1 preemptive priority scheme. The
general distribution for the service time is derived through
mathematical analysis. Convex optimization is employed to
find the optimal method for the SU to distribute the packets
over all the channels.

Resource allocation based on queueing analysis also
appears in [86]-[91].

3) MEDIUM ACCESS CONTROL

Zhang et al. [92] analyze the optimal spectrum access strat-
egy of SUs assuming multiple physical considerations, such
as path loss, Nakagami-m fading and imperfect spectrum
sensing. The CRN employs multiple channels and ARQ is
implemented in the link layer. A M /M /1/K queue model is
employed. An optimal probability access vector is derived to
minimize the average total packet delay.

Ni et al. [93] propose a time-slotted call admission scheme
whereby SUs are only admitted at the beginning of a time slot.
SUs that arrive after the beginning of the time slot have to join
a waiting queue and may be admitted during the next slot.
The system is modeled using an M /M /K queue model and
matrix-geometric methods are used to analyze the system and
derive performance measures such as blocking probability
and queueing delay.

Chouhan and Trivedi present a multi-channel priority
based CRN architecture for MAC with three different pri-
orities: preemptive, non-preemptive resume and pooling pri-
ority. Analytical probability is used to analyze the queue
performance. For the single channel case, an M /M /1 queue
model is utilized.

Su and Zhang [34] derive aggregate SU throughput (data
rate) and transmission delay for two sensing policies by mod-
eling the processing of SUs as a bulk-serving M /GY /1 queue
for the non-saturated network case. The sensing policies are:
random sensing policy —each SU randomly chooses a channel
to sense; negotiation-based sensing policy — by overhearing
control packets, SUs attempt to sense distinct channels. Dur-
ing each time slot, the SU who reserves channel use transmits
over all the unused channels. The same M /GY /1 queue is
also used by Zhang and Su [35] to evaluate their proposed
MAC protocol, which considers channel contention, channel
negotiation and sensing errors.

Feizi-Khankandi et al. [95] consider a SU contention-
based MAC scheme model using a closed BCMP queueing
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network. The contention mechanism consists of a random
wait time before transmission is attempted. The scheme is
time-slot based, whereby during each time-slot, SUs rescan
the channels to determine their status. The queueing network
consists of two nodes, an active node and an idle node. The
active node includes all SUs that are under service. Since,
the number of channels is fixed, N, the queueing model for
the active node is M /D/N /N . The idle node queueing model
is M /G(ny)/oo, where the general service time corresponds
to random wait time and incorporates the probability of col-
lision between two or more SUs (n; is the number of SUs
in the idle node). The service time distribution is derived
by considering the available channels and the activity factor.
The probability that an SU will succeed in accessing a free
channel is determined and the spectrum utilization computed.

Jiang et al. [96] propose a MAC protocol scheme that
makes use of cloud services to determine the behavior of the
PUs. The SUs cooperate and report channel measurements
to access points which then send the information to cloud
servers. SUs are mobile and use GPS to report their positions.
The information is stored in a periodically updated channel
preference matrix. An analytical queueing model is used to
derive the successful transmission probability, sensing time
and transmission quota for each data channel.

Shankar [97] determines the capacity of static and dynamic
cognitive radio networks. The paper primarily focuses on the
MAC layer with the PHY layer providing information on
primary user activity. Shannon capacity is exploited to deter-
mine the transmission times of the networks. Based on this
and the ON-OFF behavior of the primary user, the channel
utilization is determined. Comparison of spectrum utilization
between static and dynamic CRNs is performed. Further-
more, the multiplexing gains and delays of the CRNs are
derived. The queue is modeled as an M /G/1 system with
preemptive priority. The paper concludes that dynamic CRNs
have higher multiplexing gain and lower delay than static
CRNs.

Zhu et al. [98] present a three-dimensional CTMC of
carrier sense multiple access scheme in an unslotted multi-
channel CRN under non-saturation condition. The SU gener-
ates transmission files with geometrically distributed number
of packets after an exponentially distributed amount of time
has passed. Matrix-analytic methods are employed to solve
the modeled system which is a QBD process and thereby
obtain performance measures such as throughput and loss
probability.

Medium access control incorporating queueing is also
investigated in [99]-[102].

4) MULTI-CLASS SUs
Queueing model for multi-class SUs is investigated in [103].

5) SPECTRUM SENSING

Hoang et al. [37] aim to minimize the packet loss rate,
where a packet loss occurs if the packet deadline delay is not
met, when spectrum sensing can be dynamically scheduled
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within a fixed time frame period. The motivation is that CRN
throughput can be maximized when sensing is performed dur-
ing periods of bad channel conditions. The queueing model is
considered in the case where data packets arrive according to
a stochastic model (Poisson distribution). A parallel queueing
model is adopted where the sensing periods are modeled as
virtual sensing nodes (with virtual packets) for each channel,
whose delay deadline is equal to the frame period. No queue-
theoretic analysis is performed, rather known scheduling
schemes for heavy traffic queues are adapted.

Queueing analysis in context of spectrum sensing is also
considered in [104].

6) SPECTRUM HANDOFF

Wang et al. [32] use a preemptive resume priority (PRP)
M /G/1 queue per channel with high-priority (PUs) and low-
priority (SUs) queues in order to optimize the overall system
time of two spectrum decision schemes (probability- and
sensing-based). The model permits multiple PU interruptions
of SUs, incorporates sensing errors and heterogeneous chan-
nel capacities. Once a SU selects a channel, its connection
request is queued in the low-priority queue of that channel and
it cannot change queues thereafter. The waiting time of both
spectrum decision schemes is obtained by leveraging existing
results on the PRP M /G/1 queue. The same queue model
is used in [39] for the evaluation of channel utilization and
extended delay time of reactive spectrum handoff incorporat-
ing heterogeneous arrival rates of PUs, various arrival rates
of SUs and handoff processing time. However, the resulting
queueing model is a queue network> because interrupted SUs,
who perform wideband sensing on demand, can join a low-
priority queue of another channel (spectrum hopping).

Wu et al. [105] propose a QoE (Quality-of-Experience)
driven spectrum handoff scheme which maximizes the quality
for prioritized multimedia users. A hybrid spectrum handoff
scheme is considered — selection of target channel candidate
set is performed proactively and the spectrum handoff action
is performed reactively. A mixed PRP (preemptive resume
priority)/NPRP (non-preemptive resume priority) M /G/1
queueing model is presumed, where PRP applies to PUs,
while NPRP to SUs. PUs can preempt SUs, while SUs (which
have different priorities) cannot preempt other SUs in service,
irrespective of priority. This is to overcome the problem
of overly frequent spectrum handoffs for SUs. A reinforce-
ment learning-based QoE-driven spectrum handoff scheme
is proposed which learns from previous spectrum handoffs
and past channel conditions in order to maximize/optimize
long term rewards rather than greedily choosing the spectrum
with the maximum immediate rewards. In [106], a hybrid
PRP/NPRP model is considered — based on a decision rule,
a higher priority SU can preempt a lower priority SU if its
service time is not less than a fixed value from completion,
otherwise it cannot preempt. The residence time, completion

SSuch a queue network model was originally proposed by
Wang et al. [38].
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time, expected handoff delay and expected delivery time
are derived based on the Laplace transform. Multi-teacher
apprentice learning is proposed where a new SU learns from
neighboring experienced SUs regarding the CRN environ-
ment.

Koushik et al. [107] propose a ‘“‘channel+beam” handoff
scheme in CRN with multi-beam smart antennas based on
a mixed preemptive/non-preemptive M /G/1 queue model.
Packets in interrupted beams can be detoured through neigh-
boring beams. A discretion rule based on the remaining
service time of active SU determines whether preemp-
tion or non-preemption applies. The service times for each
node are determined by deriving the SINR at each node
(PU, high priority SU and low priority SU). Performance
measures are determined analytically.

Zhang et al. [108] consider the delay analysis for proactive
spectrum handoff schemes in multi-channel CRN, where the
SUs are classified into two priority classes. Each channel
is modeled as a PRP M /G/1 queue where PUs can inter-
rupt SUs, while a higher-priority SU can interrupt a lower-
priority SU if it has experienced at least one interruption.
Each channel has three virtual queues: PU, higher- and lower-
priority SU queues. For purposes of cumulative handoff delay
for both SU classes, two handoff schemes are considered:
1) SU always stays on the same channel; 2) SU always
switches channel. With simulations, it is shown that the two
handoff strategies perform better under different PU traffic
conditions: ‘“always-stay”’ atlow PU utilization and “‘always-
change” at higher PU utilization.

Tayel et al. [109] consider the optimization of proac-
tive spectrum handoff (both fixed and probabilistic sequenc-
ing) based on extended data delivery time (modeled using
PRP M /M /1 queue) for the case of non-identical channels.
Depending on the number of times spectrum handoff occurs,
the average extended data delivery time for both fixed and
probabilistic sequence approaches is derived. The optimiza-
tion problem is to find the fixed and probabilistic sequence
transition matrices which achieve the minimum extended data
delivery time. The first uses a genetic algorithm for integer-
valued optimization, while the second uses particle swarm for
real-valued optimization.

Talat et al. [110] analyze a preemptive resume priority
M /G/1 queueing network for channel hopping in CRN.
A channel selection probability matrix based on channel
parameters and PU behavior is derived and analytic methods
are employed to determine the system time. An optimization
problem that minimizes overall system time is formulated to
determine the optimal channel selection probabilities.

Spectrum handoff schemes based on queueing models can
also be found in [111]-[115].

7) UNDERLAY/OVERLAY PARADIGM

Sibomana et al. [116] qualify the SU packet queue wait
time and total system time for underlay CRN in a point-to-
multipoint configuration (single SU-Tx, same configuration
for PU network) with varying transmission rates and various
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priority classes for SUs, with non-preemptive priority. Analy-
sis incorporates packet timeout period, interference constraint
to PU-Rxs and target BER. Two scheduling schemes are
considered: 1) OS (Opportunistic Scheduling) — select user
with best channel conditions; 2) MS (Multicast Scheduling)
— group-oriented transmission based on least SINR of users.
High priority classes use OS, while low priority classes use
MS. A GI/G/1 queueing model is adopted at the SU-Tx.

Agrawal et al. [117] provide a queueing analysis of an
underlay CR with a single SU and multiple PUs, where the
SU BS, using multiple antennas with zero-forcing beam-
forming, results in zero (or near zero) interference at PU
receivers. Closed-form expressions for the PDF of the packet
transmission times assuming a quasi-static block Rayleigh
fading channel are derived. The waiting time derivation is
based on the Pollaczek-Khinchine formula for M /G/1 queue
which uses the obtained first and second moments of the
transmission time.

Farraj et al. [118] investigate queue performance measures
in an underlay CRN consisting of a single PU and a single SU.
The main criterion for network access is that the SU must sat-
isfy the outage probability requirement of the PU. An M /G/1
queue model is found to be appropriate for the cognitive user.
Shannon’s theorem is used to determine the channel capacity
of the SU. The mean waiting times and server utilization are
analyzed using statistical methods and the effect of various
outage probability requirements investigated.

Tsimba et al. [119] propose an increased spectrum uti-
lization approach by enabling SUs to share capacity in an
underlay CRN. Two or more SUs are allowed to simulta-
neously transmit with the PU present in the system. The
control criteria is the interference temperature limit which
is shared between the SUs. An M /M /1 queue with head of
line processor sharing capabilities is implemented. Packets
belonging to a particular SU will join that particular queue
and wait for service. Two disciplines are proposed to manage
the queues: 1) a preemptive discipline that will immediately
adjust the transmission power to accommodate an arriving
packet from another SU; 2) a non-preemptive discipline that
will hold off servicing of an arriving packet until the packet
being served has left the system and will only thereafter adjust
the service rates. Furthermore, the SUs are weighted, with
the higher weighted SUs enjoying higher transmit powers and
hence better service rates.

Chu et al. [40] investigate an understudied topic: queue-
ing performance for underlay CRN. They consider the sce-
nario where communication takes place between node pairs
over Nakagami-m fading channels. The queueing model is
M /G/1/K andis analyzed using an embedded Markov chain,
where the states are the number of packets in the system
at the end of a service time. The service time of a packet
is derived based on Shannon’s capacity of a channel and
also considers packet timeout. The transition probabilities
of the embedded Markov chain are combined with steady-
state balance equations to determine the equilibrium proba-
bilities for the number of packets in the system. The result is
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continuous-time due to the PASTA (Poisson arrivals see time
averages) property.

Continuous-time queue performance measures for the
underlay CRN paradigm are derived in [120].

8) GAME THEORY

Do et al. [42] use queueing in their game-theoretic formula-
tion where non-cooperative SUs individually maximize their
own benefit based on a probability of joining the queue at
the CR base station (BS) assuming that a single PU band is
available. The benefit is defined as the difference between a
fixed reward and a cost proportional to the SU system sojourn
time. The sojourn time, which is a function of the SUs arrival
rate, is derived for a M /M /1 queue with service breakdowns.
The equilibrium state is obtained using transition-rate dia-
gram, from which steady-state equations are obtained and
corresponding probability generating function (PGF) derived.
By incorporating an admission fee at CR-BS, SUs can be
forced to adopt socially optimal arrival rates. These ideas
are further extended in [44] (cf. also [43]), where pricing
for spectrum access control for competitive and cooperative
operator duopolies are considered. Two DSA models are con-
sidered: Opportunistic-DSA (O-DSA) — SUs access a single
PU channel when there is no PU activity; Dedicated-DSA
(D-DSA) — spectrum is dedicated to SUs and there is no PU
traffic on these bands. The O-DSA scenario is modeled using
a M /G/1 queue with server breakdown. The average waiting
time in the queue is derived using the Pollaczek-Khinchin
formula.

Chang et al. [121] consider a non-cooperative game to
determine the optimal pricing policy at BS and derive indi-
vidual and social equilibrium strategies based on whether
the SU decides to join or not to join the SU queue at the
BS. A single BS serves both PUs and SUs, and the BS
empties the SU queue whenever a PU appears and occupies
the spectrum. A partially observable queue is assumed: all
system and profit model parameters are known to the SU
considering joining the system, except the queue length, and
the SU can observe whether the BS is serving a PU or SU
at the moment of arrival. Data arrival rates of PUs and SUs
follow a Poisson process, and both PUs and SUs have service
times with exponential distributions. The queue model states
consist of two elements: 1) number of SUs in the queue;
2) whether the BS is serving a PU or SU. Based on transition
rate flow between states, balance equations are obtained, from
which steady-state probabilities are derived using the theory
of homogeneous linear difference equations.

Guijarro et al. [122] develop a game theoretic approach to
a priority queueing model in a CRN consisting of a primary
and a secondary operator. Using an M /M /1 queue and FCFS
discipline, the cost of transmitted packets is used as the main
criteria for QoS. Both the monopoly and duopoly cases are
evaluated and compared. Queueing theory is used to provide
values and parameters for the determination of the game
model equilibrium.
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Wang et al. [123] analyze the equilibrium threshold strat-
egy for CRN with SU balking and server interruptions.
An observable queueing system is assumed; a tagged SU
decides to join or balk depending on the number of SUs
waiting in the queue. Individual and social welfare scenarios
are considered. Matrix-geometric methods are employed
to determine performance measures such as waiting
time.

Similar to [42], Tran et al. [43] use game-theoretic formu-
lations to determine revenue and social maximization pric-
ing mechanisms for shared-use and exclusive-use dynamic
spectrum access (DSA) for monopoly and duopoly opera-
tor scenarios. Operators lease spectrum (opportunities) from
spectrum owners. Here, cost depends not only on delay, but
also on the delay-sensitivity of the SU (hence SU hetero-
geneity). Shared-use — multiple SUs contend for a single PU
channel and can be interrupted by PUs; modeled as M /G/1
queue with server breakdown; waiting time in system derived
using Pollaczek-Khinchin formula; the first and second order
moments of extended service time (including multiple SU
handoffs due to PU activity) are derived using renewal theory.
Exclusive-use — each SU is assigned a separate PU chan-
nel/band, and for the duration of leasing, there is no PU
activity; modeled as M /G/oo queue.

Wang et al. [124] apply a retrial queueing model for CRN
with a single PU and corresponding band which multiple
SUs attempt to access, and determine the Nash equilibrium
for the cases of non-cooperative SU medium access control
which aims to maximize individual benefit and cooperative
SU medium access control which aims to maximize social
welfare. With regard to system observability, two scenarios
are considered: 1) unobservable case — SU has no information
on the system state, joins the system with probability g,
otherwise balks; 2) partially observable case — SU knows
whether the channel is idle or occupied; if idle, it joins
with probability 1, if busy, joins with probability g. Retrial
queueing model assumes that joining SUs which find the
channel occupied enter the orbit, from where the SU retries
to enter the system with exponentially distributed inter-retrial
times. The PU and SUs arrive according to a Poisson process
and the transmission times of both have general distributions.
The retrial queue is modeled by a continuous-time multi-
dimensional Markov process. Based on the transition rate
diagram, balance equations for the system are derived which
are solved using generating functions.

Safwat [125] studies the decision-making process of SUs
regarding joining or balking in the presence of PUs and higher
priority SUs. Perfect sensing is assumed and the lower prior-
ity SU can only transmit in the absence of both the PU and the
higher priority SU. The higher priority SU is delay sensitive
and will balk if the PU is present. The lower priority SU will
first consider the delay of the queue through knowledge of the
PU and the higher priority SU behavior and the length of its
own queue before deciding whether to balk or join the queue.
The base model is an M /M /1 queue. Analytical methods are
used to determine the number of packets in the queues and to
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estimate the expected delay. Nash equilibrium methods are
employed to determine the equilibrium decision process.

Nissel and Rupp [126] calculate the throughput in various
CRN models with different priority groups. The base queue-
ing model is an M /M /1 model. The analysis is extended to
the case of joint spectrum sharing where an SU’s packets can
use another SU’s spectrum provided that the second SU is
idle.

Other examples of the application of game theory in the
context of queueing for CRN include [127]-[134].

9) COOPERATION (RELAYING) SCHEMES

Zhang et al. [135] propose a cooperative-based network with
preemptive resume priority. Many SUs compete for a sin-
gle PU channel on a time share basis. Initially, the authors
determine the performance of a CRN network where the SU
does not relay PU’s transmissions. An M /G/1 queue model
is deployed with the outage probability of the SUs being
incorporated in the service time distribution. The throughput
is analytically determined. Then, relaying of the primary
transmission via a SU through amplify-and-forward proto-
col is considered. The M /G/1 model is adapted to fit this
scenario and the corresponding throughput is determined.
Cooperative diversity is also analyzed and it is concluded that
the secondary user improves throughput in a poor PU channel
and the highest throughput gain for the SU occurs when the
PU is at medium load.

Chang et al. [136] propose the use of redundant trans-
mission through relay links. A SU’s transmission may flow
into several opportunistic paths simultaneously. Some trans-
missions will be duplicated. Using a time-slotted system,
the authors statistically derive performance measures such as
delay. Initially, the system is modeled using an M /D/1 queue,
then it is developed into an M /Geo/1 system in order to
incorporate the availability of a relay link. Delay is the chosen
QoS requirement. Optimization is performed to maximize the
number of opportunistic paths. The optimization problem is
shown to be mathematically equivalent to the bin covering
problem with NP-hard complexity.

Shahrasbi and Rahnavard [137] aim to maximize through-
put by using rateless coding error schemes (RLC) [138]. The
work assumes a Rayleigh fading model for all wireless links
and a queueing model that incorporates the cooperative nature
of the network. A cooperative framework where the RLC is
implemented at packet level is assumed. A message is made
up of a certain number of packets and the PU will generate and
send those packets until it receives an ACK message from the
primary receiver. The secondary user is assumed to be able
to receive and decode the PU transmission. The PU receiver
will then use the combination of packets received from the
primary transmitter and those from the secondary transmitter
to decode the originally transmitted message from the PU.
Queueing theory is used to determine the mean number of
packets required to be transmitted by the PU before the SU
can aid in decoding the message.
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A cooperative scheme with a buffered relay is also investi-
gated in [139].

10) OTHER

Balieiro er al. [140] investigate the collision probability of
PUs with SUs in a wireless virtualization scenario, where
multiple PVNs (Primary Virtual Networks) coexist with mul-
tiple SVNs (Secondary Virtual Networks) using the same
set of channels. Assuming Poisson arrivals and exponential
service times for both PUs and SUs, the collision probability
is derived based on the steady-state probabilities of a two-
dimensional Markov chain.

Da Silva and Brito [141] determine optimum switch-
ing points for an adaptive modulation scheme assuming
Nakagami-m fading. A priority M /G/1 queue model is
adopted and both unlimited and limited retransmission sce-
narios are analyzed.

B. DISCRETE-TIME MODELS
A representative example of a discrete-time queueing model
and its analysis is given at the beginning of Section IV.

1) QUEUEING MODEL

Rashid et al. [31] derive various performance measures of a
queueing model for a centralized interweave time-slotted net-
work. The channel gains vary with time and the opportunistic
spectrum scheduling scheme assigns an idle channel to a
SU with the highest transmission rate for that channel. The
bursty nature of packet arrivals at SUs is modeled as a batch
Bernoulli arrival process and the SUs have finite buffer sizes.
The queueing model is a quasi-birth-death (QBD) process
based on finite state Markov chain consisting of joint states of
queue length and throughput at a given time slot. The steady-
state probability vector for the QBD process is obtained using
the matrix-analytic method [27].

Wang et al. [45] consider queueing analytics for
multi-SU and multichannel time-slotted interweave CRN
incorporating:  sensing errors; contention-based and
contention-free MAC; link adaptation techniques — AMC
(Adaptive Modulation and Coding) and ARQ; finite buffer
size. The channel condition changes each time slot and is
modeled by a Markov chain whose states correspond to
different modulation and coding schemes (MCS) based on
the required average packet error rate at a given SNR. The
queue model is G/G/1/K which is modeled as finite state
Markov chain (FSMC) consisting of joint states combining
sensing results, medium access results, capacity (transmis-
sion rate) based on MCS selection for each PU channel and
the SU queue length. Based on the steady-state probabilities,
the average queue length, packet-drop and packet-collision
rates are derived.

Adem and Hamdaoui [142] provide closed-form expres-
sions for the SU waiting delay and service delay where
the availability of PU channels is modeled by a two state
Markov chain. The waiting delay is derived using the residual
time concept. Based on a Geo/G/1 queue model, statistical
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methods are used to derive desired performance measures.
Using probability generating functions, Zaman et al. [143]
derive closed-form expressions for various performance
parameters, including residual service.

Jin et al. [144] consider a CRN spectrum access mecha-
nism taking into account SU impatience and imperfect sens-
ing. A partially observable priority queue model is assumed.
SUs operate under an admission threshold; when reached SUs
will be blocked from entering the network. Matrix-geometric
methods are employed to derive the stationary distribution.

Jeon et al. [145] consider the stability region of a sin-
gle primary and secondary source-destination pair assuming
the capture effect, whereby a SU may transmit concurrently
with a PU and successful decoding can be performed if the
received SINR is sufficiently high. If the PU is sensed to
be idle, SU transmits with probability 1 if its queue is non-
empty, otherwise, if the PU is active, the SU transmits with
probability p. Under imperfect sensing by SU, the aim is to
determine the optimum access probability by the SU when
the PU is active to maximize its own stable throughput but
which ensures PU stability at a given input rate demand. The
stability is defined as the queueing stability, which ensures
that a steady state is reached and the queue doesn’t grow
indefinitely. Formally, queueing stability is defined so that the
probability that the queue size is less than some value at some
time has a proper limiting cumulative probability distribution
as time tends to infinity. Infinite queue size is assumed. The
arrivals and services are modeled as stochastic processes
which are sequences of binary random variables (the arrival
process is modeled as a Bernoulli process). The service rates
of the PU and SU depend on the queue size of the other,
hence the queues are interacting, which makes their analysis
challenging. To decouple this interaction, stochastic domi-
nance technique is employed, where the SU/PU is considered
to send dummy packets when its queue is empty. Loynes’
theorem is applied for queueing stability, which states that
a queue is stable if its arrival rate is less than or equal to
its service rate. In the case where the SU transmits dummy
packets, the service rate of PU is not dependent on the SU
queue size, and assuming a discrete-time Geo/Geo/1 queue
model at the PU, gives the probability that the PU queue is
empty, from which the SU service rate can be obtained.

Zhao et al. [46] propose a spectrum access strategy based
on the so-called a-Retry Policy. This model is proposed as
a compromise between two extremes: 1) whenever a SU is
interrupted by a PU packet, the interrupted SU packet returns
to SU queue with probability 1, which causes greater delay
for SU packets; 2) all interrupted SU packets leave the system
permanently when there are no idle channels available, which
causes the packet drop rate to increase. With the «-Retry Pol-
icy, an interrupted SU packet returns to the queue with retrial
probability « and leaves the system with probability 1 — «.
Assuming a finite buffer size and a geometric distribution
for PU and SU arrivals, the queue is modeled using a two-
dimensional discrete-time Markov Chain (DTMC), whose
states consist of: 1) total number of packets, including PUs
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and SUs, in the system; 2) whether the spectrum is occupied
by PU packet. The transition probability matrix using a block-
structure is derived, which is used for equilibrium equations.
The steady-state probability vector is obtained using Gaus-
sian elimination. The retrial probability is maximized. This
is possible because an increase in retrial probability results in
higher throughput, but also in longer delays. Optimization is
based on a cost function which incorporates both throughput
and delay.

Luis et al. [146] derive the characteristic function (Fourier
transform of probability distribution function) of SU service
time under general conditions for a single PU and single SU,
where the SU service time is variable and may be interrupted
by the PU multiple times. It encompasses both SU saturation
and non-saturation cases. Thereafter, based on simulations,
it is discovered that the probability mass function is closest
to a generalized Pareto distribution. The derived character-
istic function is then used to parameterize the generalized
Pareto distribution, thereby obtaining an approximation of
the probability mass function of the SU service time. The
derivation of the characteristic function of the SU service time
depends on the probability of the SU’s queue being empty.
The derived characteristic function is applied to an M /G/1
queueing model, where known results are used in conjunction
with the expected service time derived using the characteristic
function to setup a set of non-linear equations, from which
the probability of SU’s queue being empty and the expected
service time can be obtained. The approach represents a novel
way of obtaining important statistical information in a general
setting.

Further examples of publications whose primary focus
is on queueing models for CRN and their analysis
are [147]-[151].

2) RESOURCE ALLOCATION

A distributed algorithm for scheduling and resource alloca-
tion in decentralized, time-slotted cognitive wireless mesh
networks (allowing for multiple intermediary nodes between
source and destination) with the objective of maximizing the
network’s throughput under delay constraint is presented by
El-Sherif and Mohamed [152]. Multiple data streams (source-
destination routes) may exist. Packet arrivals at the source
node of a data stream is modeled as a Bernoulli process. The
probability that a packet from a stream enters the queue of
some node in the stream is based on:

1) That a resource element (at time ¢, channel c¢) is allo-
cated to one of the node’s incoming edges;

2) The primary node owning channel c is either idle or the
cognitive node is outside the primary node’s interfer-
ence range;

3) The preceding cognitive node in the route has at least
one packet in its queue to transmit.

As a simplification, the average arrival and service rate at a
node is calculated as the time average over a time frame. Each
node’s queue, based on the average arrival and service rates,
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is modeled as a discrete-time Geo/Geo/1 queue. In essence,
the overall model is a queueing network, however the queue-
ing analysis is performed on a per node basis. The resource
allocation aims to maximize the sum of utility functions,
which are a function of the minimum service rate along the
data stream, for all data streams. The problem is formulated
as an integer programming optimization problem, where the
decision variables are relaxed to allow real values and an
algorithm is developed for resource allocation based on the
real-valued solution. Optimization is based on dual decom-
position and Lagrangian multipliers. However, to perform the
optimization, specific information exchange between nodes
in range needs to occur.

For single/multiple SU(s) and multiple PU channels,
Cao et al. [153] consider the problem of optimal channel
selection policy (in the sense of minimizing the average queue
delay) for dynamic load-balancing given that SU(s) have two
service classes: 1) DS — delay sensitive packets, which have
priority over 2) BE — best effort packets. A time-slotted CRN
is assumed with heterogeneous channel characteristics (block
fading) across time slots. The queue dynamics are modeled
using discrete-time Markov chains (DTMC). Three DTMCs
are developed: 1) primary user activity with single compo-
nent state (PU queue length); 2) SU DS service with two
component states (DS queue length and occupancy state of
each channel); 3) SU BE service with three component states
(BE and DS queue lengths and occupancy state of each chan-
nel). The steady-state probability vector is obtained using
the matrix-analytic approach. Based on DTMC modeling of
the queueing process, a Markov Decision Process (MDP) is
formulated to obtain the optimal selection policy. For the
case where traffic and channel state information is unknown,
reinforcement learning is proposed to find the optimal policy.

Further examples of resource allocation which take
discrete-time queueing into account include [154]-[156].

3) MEDIUM ACCESS CONTROL

Azarfar et al. [157] provide a detailed delay analysis of
homogeneous multi-user multi-channel ad hoc CRNs for two
baseline MAC protocols: 1) buffering policy — SU stays on
the same channel; 2) switching policy — SU switches to a
new channel upon PU appearance. These two policies form
the extreme boundaries, with other possible protocols being
some form of mixture of the two. The SUs compete for
channel access by transmitting a reservation request over the
control channel with some probability. A geometric arrival
process is assumed for both PUs and SUs, the service times
also assume a geometric distribution. For both buffering
and switching MAC protocols, two composite-state Markov
chains are constructed for occupancy (state consisting of
number of packets in system for each node and whether a
channel is reserved or not by the nodes) and busy/idle status
(state consisting of number of busy nodes and number of idle
nodes with non-empty queue). The transition probabilities for
MCs and delay time (consisting of channel reservation and
transmission time) are derived.
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Medium access based on queueing analysis is also the topic
of [158].

4) SPECTRUM SENSING
Spectrum sensing with queueing analysis is the primary topic
in [159].

5) SPECTRUM HANDOFF
Lee et al. [160] investigate optimal channel-hopping
sequence (OCS) which maximizes the aggregate through-
put of SUs while maintaining PU QoS requirement using
dynamic programming. Imperfect sensing and synchroniza-
tion is assumed. In a multi-channel CRN, each channel is
modeled as a Geo/G/1 queue. An analysis on the probability
of channel availability and frame delay for PU is conducted.
Spectrum handoff incorporating discrete-time queueing
analysis also appears in [161].

6) UNDERLAY/OVERLAY PARADIGM
Cooperation in an underlay CRN is investigated in [162].

7) ENERGY HARVESTING

Zhang et al. [163] consider the problem of aggregate network
utility optimization for energy harvesting CR sensor net-
works. Sensor network consists of multiple energy harvesting
sensors which use multiple licensed channels opportunisti-
cally to send sensed data to a single sink. Three queues are
considered: 1) sensor data queue; 2) energy harvested queue;
3) a virtual collision queue — counts number of collisions
that occur due to imperfect spectrum sensing; the queue is
included to analyze acceptable interference to PUs due to
collisions. Lyapunov optimization is employed to decompose
the optimization problem into three sub-problems: 1) battery
management; 2) sampling rate control; 3) channel and data
rate allocation.

Amer et al. [164] propose an energy harvesting model
for both PUs and SUs in a cluster based topology. Multiple
SUs are grouped in a cluster, which are managed by a single
cluster supervision block controller. The cluster controller
manages both the packet and harvested energy queues. The
stability of the throughput region is determined through two
dominant systems: 1) SU cluster transmits dummy packets
when any queue is empty; 2) SU transmits dummy packets
whenever the relay queue is empty. The performance for
both cooperative and non-cooperative systems is studied.
Abd-Elmagid ef al. [165] also study the stability region of
a CRN with energy harvesting capabilities. The problem is
relaxed by focusing on two cases: 1) finite battery queue with
infinite relay queue; 2) finite relay queue with infinite battery
queue. The optimization problem seeking to maximize the SU
service rate, which is non-convex, is linearized and solved
using standard linear programming techniques.

El Shafie and Sultan [41] consider the scenario of a single
energy harvesting SU using random access over a single PU
channel. Both the PU and the SU have data queues,® where
the arrivals of data packets are modeled using Bernoulli

6The SU also has an energy queue.
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random variables. The primary receiver sends an ACK/NACK
using a feedback channel and the possibility of multiple-
packet reception is assumed whereby concurrently transmit-
ted packets can be decoded if the SINR exceeds a threshold.
For the primary feedback-based access scheme, the PU’s
queue is analyzed using a Markov chain whose states rep-
resent the number of packets in the system depending on
whether it’s a first transmission or a retransmission. The
solution of the state balance equations gives the steady-state
probabilities of Markov chain states. In order to decouple
interactions between queues, it is assumed that the SU sends
dummy packets when its queue is empty. Given a constraint
on the PU mean queue delay, the optimal value of the
random-access probability that maximizes SU service rate is
determined.

Lu et al. [166] investigate random access in a CRN network
where SUs harvest energy from PU RF radiation. The focus is
on SU throughput analysis with queueing theory employed to
analyze the SU delay. Furthermore, an optimization problem
is formulated to maximize SU throughput under the con-
straint of PU queue stability. Statistical analysis is employed
to derive performance measures. Niyato et al. [167] study
a similar RF energy harvesting problem, but use matrix-
geometric methods to analyze the queue performance.

Nobar et al. [168] consider energy harvesting cognitive
radio sensor networks, which contain a dedicated power
beacon (PB) which harvests ambient energy (solar, wind,
RF, etc.) and wirelessly transmits this energy to cognitive
sensor nodes (CSN) which contain an RF energy harvest-
ing unit. Energy harvesting at PB is modeled by an energy
queue — energy is harvested into a battery when energy is not
being transmitted to CSN. Energy harvesting in a time slot
is exponentially distributed, one energy packet is harvested if
the energy is greater than the PB transmit power. The number
of energy packets in PB’s battery is modeled by a Markov
chain. Similarly, CSNs contain an energy queue, modeled as
a Geo/Geo/1 queue. Optimization problem is to maximize
CSN service rate, which is a function of the probability that
the PB chooses energy transmission mode and the probability
that the CSN chooses transmission mode, whilst maintaining
the PU’s QoS.

Energy harvesting in CRN with discrete-time queueing
analysis is also considered in [169].

8) GAME THEORY

An energy-saving strategy for centralized CRN with
LTE-Advanced structure is considered by Jin ef al. [170].
Energy-saving is implemented through the introduction of
sleeping and listening modes which the base station (BS)
enters when PUs and SUs have no data packets to transmit.
The BS exits the sleep mode if a PU packet arrives or the
sleep timer expires, while the BS exits the listening mode
(which follows the sleep mode under certain conditions) if
a SU data packet arrives. The listening mode is intermediate
between sleep and transmission modes in terms of energy
consumption. Queueing is modeled using a two-dimensional
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DTMC (Discrete-Time Markov Chain) whose composite
states consists of: 1) number of SU data packets in the system;
2) BS mode - sleep mode, PU transmit, SU transmit or listen-
ing mode. Geometric distribution is assumed for both arrival
and service rates of PUs and SUs. Steady-state probabilities
are obtained using a matrix geometric solution. Based on a
utility function consisting of a reward and cost (based on SU
waiting time), the Nash equilibrium is investigated, which
leads to a pricing policy for spectrum access of SUs which
encourages SUs to adopt a socially optimal arrival rate.

Other examples of publications based on game theory
include [171], [172].

9) COOPERATION (RELAYING) SCHEMES

Homayounzadeh and Mahdavi [173] propose an efficient
cooperative transmission strategy for SUs where the qual-
ity of the channels is considered in the channel allocation
and relay selection strategies. Primary channel occupancy is
modeled by an ON-OFF process, while SU aggregate traffic
is modeled by a discrete-time batch Markovian arrival pro-
cess. The work also takes into account sensing errors. The
probability that packets will be transmitted over a particular
channel during a particular time slot is determined. Matrix-
geometric methods are employed to find the performance
measures.

Feng et al. [174] consider a cooperative spectrum leasing
system whereby PUs lease their licensed spectrum to SUs
who act as relay nodes for that PU in order to minimize its
transmit power and improve its transmit rate. SUs provide
cooperative assistance in order to gain access to the licensed
spectrum. SU aims to minimize its own transmit power during
cooperation. A Distributed Win-Win Reciprocal-Selection-
based Medium Access Scheme (DWWRS-MAS) is devel-
oped to distributively select the best cooperative pairs for the
leasing system. Matching theory is used to analyze the algo-
rithmic stability of DWWRS-MAS, while queueing theory is
used to analyze the queueing stability (Loynes’ theorem).

El Shafie et al. [175] consider the queueing performance of
using N relays in a single PU and single SU communication
pair network. Based on the PU/SU ARQ feedback messages,
the relay nodes can determine if they should attempt to decode
received PU/SU packets and, if successfully decoded, they
accept the packet for retransmission with some probability.
There are three relay decoding strategies:

1) Ordered acceptance strategy: The N relay nodes are
ranked and they attempt decoding of a packet with a
NACK in sequential order based on their rank.

2) Random assignment decoding strategy: Only a single
relay node during a time slot attempts to decode a
received packet — the relay node is selected based on
a random distribution.

3) Round robin decoding strategy: Again, only a single
relay node attempts decoding — relay nodes are selected
on a round robin basis.

The PU and SU source nodes have Geo/Geo/1 queues. Based
on the decoding strategies, the service rates at the PU and
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SU source node queues are derived using probabilistic argu-
ments. It is proven that ordered decoding is guaranteed to
have greater service rates than the other two strategies.

Elmahdy et al. [176] perform optimization for SU
(throughput and average delay) under PU QoS constraints
for cooperative CRN with relaying. Model assumes a sin-
gle PU (with a single queue) and a single SU (with two
queues — SU packets and successfully decoded PU packets)
communicating to a common destination. PU packets which
are not acknowledged by the destination, are admitted to the
PU queue at SU with some probability if the SU successfully
decoded the packet. Based on a probability value, the SU
transmits from its own queue or the PU queue. Therefore,
the incentive for the SU to act as a relay is greater access
to the licensed spectrum. The queue at the PU is described
as an Geo/Geo/1 queue. The service rates of PU and SU
packets are derived using a probabilistic analysis based on
the described relaying scheme.

Kiwan et al. [177] characterize the stability region of a
dedicated relay system under two different MAC schemes:
perfect sensing and random access. Queues are implemented
at the PU, SU and relay node. A collision channel model is
adopted which assumes that if two packets arrive at a receiver
at the same time, then both are lost. A flat block fading
channel is also assumed. The service times for the PU and
SU for both schemes as well as the service times for the relay
queue are derived.

Cooperative schemes based on queueing theory are also
investigated in [178]-[186].

10) OTHER

Jang and Chang [187] consider the cross-layer design of
CRN that combines MIMO AMC (Adaptive Modulation and
Coding) and adaptive link layer over Nakagami-m fading
channels with finite queues at the primary and cognitive
transmitters. A single PU channel, occupied by a single PU,
is contested by multiple SUs. The channel experiences flat
fading with Nakagami-m that varies from frame to frame.
The AMC mode can only change by a single step from frame
to frame. A two-class priority queue is modeled where the
PU has higher priority. Poisson arrivals are assumed for both
PU and SUs. The number of packets transmitted per frame
time is dependent on transmission mode (AMC). Queueing
dynamics are modeled using FSMC (Finite State Markov
Chain) with composite states consisting of the queue size and
channel conditions at discrete times. The transition proba-
bilities are derived, and based on the stationary distribution
(steady-state), various performance measures are obtained:
spectral occupancy rate, the average packet drop rate and
average spectral efficiency.

Rahimzadeh and Ashtiani [188] consider the use of sec-
ondary WLAN with a primary OFDMA based network in
TDD mode. Empty RBs (Resource Blocks — consisting of
a number of sub-carriers [frequency] and OFDMA symbols
[time]) are used opportunistically by SUs. OFDMA frames
consist of downlink (DL) and uplink (UL) sub-frames, both
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of which are utilized by SUs when idle. For the primary
network, DL and UL sub-frame occupations are modeled
separately using Markov chains (state — number of packets
in DL/UL queue). Transition probability matrix for MCs are
derived. The two MCs for DL and UL are combined into
a single two-dimensional MC which models the occupancy
of RBs by PUs. The analytical approach for the secondary
network is to use two queueing networks (QN). The first
QN represents the packet transmission process based on the
IEEE 802.11 MAC protocol, with each node representing
RTS/CTS/TR/ACK stages. Embedded within the TR node is
another QN which encompasses the transmission time based
on the two-dimensional MC for the primary network.

V. OPEN PROBLEMS AND FUTURE DIRECTIONS RELATED
TO QUEUEING MODELS IN CRN

In this section, we highlight some of the open problems and
possible future directions for research with regard to queueing
models for CRN. It is not a comprehensive list, it includes
those topics we deem most worthy of further investigation.

Despite the sheer volume of literature dedicated to queue-
ing models for CRN, it is still possible to identify numerous
open problems and future directions related to this topic.
Realistic cognitive radio network models are complex due
to multifarious factors, often interacting and interdependent.
Individually, these factors can lead to complicated queueing
models which are difficult to analyze. By considering many
of these factors concurrently, the problems can be extremely
complex and even intractable. Therefore, it is understandable
that many works adopt simplifying assumptions in order to
render the resulting problem manageable and/or tractable. All
the literature cited in this survey made simplifying assump-
tions of one sort or another, to a greater or lesser extent.
It is fair to state that the works with the greatest contribution
are those with the most general models and assumptions.
This is because such models approach real-world scenarios
to a greater degree and their applicability covers a greater
range. The extensions of models in terms of their scope and
generality, and the corresponding application of queueing
models, still provide ample scope for research.

As already indicated, PU channel occupancy is almost
universally modeled by the ON-OFF process, where the ON
(busy) and OFF (idle) times are uncorrelated. As indicated
in [189], citing works based on empirical evidence, more
realistic models of PU activity require correlation between
consecutive ON (busy) periods and/or correlation between
ON (busy) and OFF (idle) periods. Investigation of the effects
of such alternative PU activity models on queueing models
for CRN is a desideratum.

Although the overlay and underlay paradigms for CRN
introduce their own set of challenges, they provide greater
capacity for the secondary network as compared to the
interweave paradigm [190, Ch. 2]. Yet, the application of
queueing models for the overlay/underlay scenario is under-
represented in the literature, with the vast majority focusing
on the interweave paradigm. This is undoubtedly due to the
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greater complexity of the queue modeling and analysis for the
overlay/underlay case. Nevertheless, the capacity gain of the
overlay/underlay paradigms warrant further investigation of
queueing models for these particular types of CRN.

Queueing networks have been sparsely considered for
cognitive radio networks, primarily in the context of spec-
trum handoff schemes. This is because the majority of the
relevant literature assume direct communication links, such
as between cognitive nodes and the secondary base sta-
tion or between a pair of cognitive nodes, and therefore a
single queue (with possibly multiple servers corresponding
to multiple channels) suffices. However, queueing networks,
which are more complex to analyze, are a more appropriate
model when the communication links consist of multiple
intermediary nodes between the source and destination, each
having its own queue. This topic has been ignored in the
literature, but may be particularly appropriate for ad hoc
CRN .

VI. CONCLUSION

In this paper, we have surveyed the literature on queueing
models for cognitive radio networks. Queueing theory and
models assume a fundamental role in the performance eval-
uation of CRNs. Queueing models are necessary due to the
nature of CRNGs: service interruptions of secondary users (as
in the interweave paradigm) or varying service rates (as in
the case of the overlay/underlay paradigm). Key performance
indicators such as throughput, average customer waiting time,
system utilization, etc. are derived using queueing-theoretic
techniques applied to the selected queueing model.

Priority based queueing models are the most frequently
adopted models for CRNs as they can capture the different
priority requirements of the PUs versus the SUs. Furthermore,
such models have also been applied to scenarios where the
SUs are differentiated into separate classes, such as SUs
which have stringent delay constraints (real-time) versus SUs
with higher delay constraints (non-real-time). Retrial queues
have also been considered for CRNS. In this case, customers
in the orbit attempt to access/re-access the system in a random
order, rather than, for example, the order in which they arrived
at the queue. The selection of the queueing model needs to be
aligned with the CRN scenario under consideration. Queue-
ing models can be broadly classified into continuous-time
and discrete-time models. Various techniques and methods
are utilized to derive the steady-state probability vector, from
which numerous performance measures of interest can be
obtained.

Queueing models for CRNs have been applied in the
context of numerous topics, including resource allocation,
MAC protocols, admission control, spectrum handoff, energy
harvesting, wireless sensor networks, ad hoc networks, etc.
In many cases, optimization problems are formulated which
utilize parameters which are obtained from the queueing
model analysis. Hence, queueing model analysis plays a
crucial role in various optimizations occurring in diverse
scenarios.
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As already highlighted, although a voluminous literature
on queueing models for CRNs exists, numerous open prob-
lems and future research directions can be identified. This
includes, but is not limited to, more realistic modeling of PU
activity, more general modeling of CRN with fewer simpli-
fying assumptions, further analysis of queueing models for
CRN underlay/overlay paradigms, extension of queueing sta-
bility region analysis, networking queues for CRNs, network
capacity combining information theory and queueing theory,
simulator development for various scenarios as a real-time
test-bed for different circumstances and traffic types, etc. The
last decade has seen an exponential increase in the number
of publications on queueing models for CRNs. The crucial
role that queueing models play in the performance evaluation
of CRNs, combined with the existence of a multitude of
open problems and research directions relating to this topic,
permits us to predict that this trend in the publication rate
on queueing models for CRNs is going to continue for the
foreseeable future.
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