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ABSTRACT
The challenge of deriving insights from the Internet of Things
(IoT) has been recognized as one of the most exciting and
key opportunities for both academia and industry. Ad-
vanced analysis of big data streams from sensors and de-
vices is bound to become a key area of data mining research
as the number of applications requiring such processing in-
creases. Dealing with the evolution over time of such data
streams, i.e., with concepts that drift or change completely,
is one of the core issues in IoT stream mining. This tuto-
rial is a gentle introduction to mining IoT big data streams.
The first part introduces data stream learners for classifi-
cation, regression, clustering, and frequent pattern mining.
The second part deals with scalability issues inherent in IoT
applications, and discusses how to mine data streams on dis-
tributed engines such as Spark, Flink, Storm, and Samza.

CCS Concepts
•Information systems → Data stream mining;

Keywords
IoT, Big Data, Data Streams, Data Science

1. INTRODUCTION
The Internet of Things (IoT), the large network of physical

devices that extends beyond the typical computer networks,
will be creating a huge quantity of Big Data streams in real
time in the next future. The realization of IoT depends on
being able to gain the insights hidden in the vast and growing
seas of data available. Since current approaches don’t scale
to Internet of Things (IoT) volumes, new systems with novel
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mining techniques are necessary due to the velocity, but also
variety, and variability, of such data.

This IoT setting is challenging, and needs algorithms that
use an extremely small amount (iota) of time and memory
resources, and that are able to adapt to changes and not
to stop learning. These algorithms should be distributed
and run on top of Big Data infrastructures. How to do this
accurately in real time is the main challenge for IoT analytics
systems in the near future.

In the IoT data stream model, data arrives at high speed,
and algorithms that process it must do so under very strict
constraints of space and time. Consequently, data streams
pose several challenges for data mining algorithm design.
First, algorithms must work within limited resources (time
and memory). Second, they must deal with data whose na-
ture or distribution changes over time. We need to deal with
resources in an efficient and low-cost way. In data stream
mining, we are interested in three main dimensions:

• accuracy

• amount of space (computer memory) necessary

• time required to learn from training examples and to
predict

These dimensions are typically interdependent: adjusting
the time and space used by an algorithm can influence its
accuracy. By storing more pre-computed information, such
as look up tables, an algorithm can run faster at the expense
of space. An algorithm can also run faster by processing less
information, either by stopping early or storing less, thus
having less data to process. The more time an algorithm
has, the more likely it is that accuracy can be increased.

The outline of the tutorial is the following:

• IoT Fundamentals and IoT Stream Mining Algorithms

– Stream mining setting

– Concept drift

– Classification and Regression

– Clustering

– Frequent Pattern mining



• Distributed Big Data Stream Mining

– Distributed Stream Processing Engines

– Classification

– Regression

1.1 IoT Fundamentals and IoT Stream Min-
ing Algorithms

In this part we present some basic concepts of IoT data
stream mining and classification, regression, clustering and
frequent pattern mining for IoT data streams. We will in-
troduce some strategies to deal with concept drift, when it is
present, and we will demonstrate basic algorithmic concepts
about streams.

1.1.1 IoT Stream mining setting
We start giving some motivation and examples of IoT mas-

sive data streams that are continuously being generated. We
show examples of how traditional mining methods can not
deal with large amounts of data, to motivate the need for
specific streaming methods. We give some notion of stream
algorithmic complexity, and we show briefly some of the
most frequently used approximation techniques in stream
mining methods.

1.1.2 Concept drift
We discuss the problem of evolving data over time We

discuss the problem of evolving data over time and define
concept drift and emerging novel class (concept evolution).
We discuss why and when concept drift happens. We out-
line the most representative approaches to handle concept
drift, concept evolution and, in detail, some change detection
methods. We also discuss evaluation challenges of adaptive
learning methods, and the most common evaluation method-
ologies.

1.1.3 Classification and Regression
We start by presenting classification algorithms. We show

the basic ones, such as the majority class, Naive Bayes, per-
ceptron, and then we motivate the use of more advanced
ones, such as decision trees and stochastic gradient descent
learners. We give some insights on ensemble methods, as
they have several advantages over single classifier methods:
they are easy to scale and parallelize, they can adapt to
change quickly by pruning under-performing parts of the
ensemble, and they therefore usually also generate more ac-
curate concept descriptions.

1.1.4 Clustering
We present recent methods on stream clustering as Stream-

KM++, CluStream, ClusTree, or Den-Stream.. We discuss
cluster evaluation measures. A common classification of
these measures is the separation into so called internal mea-
sures and external measures. Internal measures only con-
sider the cluster properties, e.g. distances between points
within one cluster or between two different clusters. Ex-
ternal evaluation measures compare a given clusterings to
separately given ground truth.

1.1.5 Frequent Pattern mining
We present recent methods to deal with structured data

as itemsets, sequences, trees and graphs.

1.2 IoT Distributed Big Data Stream Mining
In this part we focus on open source software tools for dis-

tributed processing used nowadays as Spark, Flink, Storm,
Samza, and how to do data stream mining with them.
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