
Automated Instantiation of Side-Channel Attacks
Countermeasures for Software Cipher Implementations

Position Paper

Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi
Dipartimento di Elettronica, Informazione e Bioingegneria – DEIB, Politecnico di Milano

Piazza Leonardo da Vinci, 32 – 20133 Milano, Italy
name.surname@polimi.it

ABSTRACT
Side Channel Attacks (SCA) have proven to be a practical threat
to the security of embedded systems, exploiting the information
leakage coming from unintended channels concerning an imple-
mentation of a cryptographic primitive. Given the large variety of
embedded platforms, and the ubiquity of the need for secure cryp-
tographic implementations, a systematic and automated approach
to deploy SCA countermeasures at design time is strongly needed.
In this paper, we provide an overview of recent compiler-based
techniques to protect software implementations against SCA, mak-
ing them amenable to automated application in the development of
secure-by-design systems.
Keywords – Design for security, Side channel attacks, compiler
technology

1. INTRODUCTION
The widespread use of ultra-low power pervasive computing de-

vices, both as means to drive cyber-physical systems and to pro-
vide environmental and health sensing, has lead to a signif cant
increase in the amount of sensitive and security-critical data man-
aged by them. Practical examples of application domains include,
f nancial transactions via smart-cards, vehicle-to-vehicle communi-
cations, industrial sensor networks and process control, and smart
medical devices. Cryptographic primitives are the foundational
building-blocks to provide security and privacy assurances in com-
plex computational and communication systems. Indeed, a signif -
cant amount of commercially available embedded devices is either
endowed with a hardware cryptographic primitive accelerator, or an
optimized software library to provide data and communication se-
curity and privacy. However, in such a scenario, an additional threat
model with respect to the usual ones, opens up. An attacker may
gain physical access to the target device and can effectively exploit
such access as a further advantage. Preventing the adverse effects
of such a threat model mandates a combined engineering effort in
choosing cryptographic primitives which are sound from a theoret-
ical standpoint and carefully implemented so that the large class of
the so-called implementation attacks are warded off. The choice of
sound primitives can be effectively performed picking them among

CF’16, May 16-19, 2016, Como, Italy

DOI: http://dx.doi.org/10.1145/2903150.2911707

the well scrutinized ones, which have been recognized as standards
by international and national entities such as the ISO/IEC com-
mittee or the US National Institute of Standards and Technology
(NIST), and choosing appropriate key lengths. By contrast, ward-
ing off implementation attacks is still a challenging issue, and thus
have been a stimulating research topic. The largest class of imple-
mentation attacks is represented by the so-called side-channel at-
tacks (SCAs), where the attacker exploits the information leakage
happening on an unintended channel, typically an environmental
parameter of the computation which is dependent on the computed
data. Instances of such side-channels include energy consumption,
execution timing or electro-magnetic (EM) emanations: all these
environmental parameters provide enough information to infer the
value of secret data intended to be stored within the device in an
otherwise un-accessible way. In this work, the focus is on en-
ergy consumption based SCAs against block cipher implementa-
tions, since open literature reports results of the successful breach
of many systems employing them which range from electronic tick-
ets [18], intellectual property protection schemes on large scale
reconf gurable devices [22] to software implementations running
on high end System on Chips (SoCs) endowed with a full f edged
operating system [12]. Designing eff cient and effective counter-
measures against side-channel attacks is a topic which has received
warm attention by the research community. Typically, countermea-
sures against the aforementioned threats involve modifying the ci-
pher at either the algorithmic or the implementation level [4–6, 8],
or changing the underlying hardware architecture so to suppress
the side-channel leakage. In particular, while several works tackled
the problem of providing security oriented solutions for hardware
designs [19,26], it is worth noting that a signif cant number of em-
bedded systems are built on top of general purpose platforms, and
thus rely on software-based encryption primitives. Software solu-
tions provide a greater design f exibility, a feature which has been
acknowledged by the standardized cryptographic protocols allow-
ing a choice in the algorithms to be employed. Software-based
security layers are also employed as a fall-back solution in case the
hardware based ones are compromised, an increasing trend given
the technological progress of integrated circuits debugging and test-
ing tools [14]. A signif cant number of countermeasure strategies
for software implementations of cryptographic primitives were pro-
posed as tailored modif cations to a given cryptographic primitive
so that its computation would not directly depend on the input data
and the secret parameters only. An alternate approach involves
raising the technical diff culty of gathering proper measurements
of the side-channel, effectively hiding the information sought by
the attacker either inserting random delays in the computation, or
performing useless operations with the sole purpose of providing a
smokescreen for the useful ones [23]. The aforementioned strate-
gies, albeit effective in foiling the efforts of the attacker, were typ-



ically implemented tailoring them for a specif c hardware-software
stack, with a signif cant number of them being encoded in assembly
language. As a consequence, tackling the challenge of providing
side-channel security to the wide variety of devices and architec-
tures of modern embedded systems was particularly time consum-
ing in terms of re-engineering effort. This represented a signif cant
hindrance to the prompt adoption of such securization techniques
on novel systems, due to the signif cant development time require-
ments. In order to overcome the said hindrance, a need for the au-
tomated design time detection of side-channel vulnerabilities, and
similarly the automated application of countermeasures had risen.
The f rst works aimed at highlighting the extent of the information
leakage on the energy consumption side-channel either employing
direct measurements on the target platform [13], or performing a
static analysis of the code at translation time [5]. Static analysis
techniques have also proven successful in detecting faulty counter-
measures for which C implementations are provided. In particular,
in [17] the authors describe a Satisf ability Modulo Theorem solver
to either state the correctness of a C implementation, or provide a
counterexample in the form of a viable side-channel attack strategy.

Complementing the aforementioned solutions, which aim at dis-
covering automatically the extent of the side-channel vulnerabil-
ity, another line of research explored the automatic application of
countermeasures to vulnerable portions of existing implementa-
tions. In [2,5] the automatic application of countermeasures adding
random values to the vulnerable portion of the computation of a
software implemented block ciphers was realized as a set of passes
in the LLVM compiler toolchain. Similarly, in [9] the automated
application of hiding countermeasures to software implementations
was investigated. In particular, such a study examines the possi-
ble schedules of block cipher instructions (at the level of LLVM
intermediate representation), to execute the cipher instructions in
a different (legitimate) sequence at each run of the primitive and
minimize the computational overhead involved.

In addition to the automated application of existing countermea-
sures, in [4, 6] the authors proposed a substantially different, and
automatically applicable, approach which changes dynamically the
way a computation is performed, thus hindering the attempts at
building a model of how the sensitive information is leaked on the
side-channel altogether. Finally, in [7], the authors propose to au-
tomatically insert plausible computations with fake keys to act as
a bait for an attacker exploiting information leakage on the side-
channel. Such an approach results in the attacker retrieving both
the correct key and the fake ones with the same conf dence, thus
forcing him to attempt to breach the system with a possibly invalid
key. Such an action can be detected, providing a way to spot an
SCA attempt and actively react to it, e.g., by deleting the secret key
from the device or rendering it inoperable.

The rest of the paper brief y introduces the framework of an en-
ergy based SCA, and describes the countermeasure strategies pro-
posed. A review of the aforementioned recent approaches to auto-
mated countermeasure application at design time is then provided,
highlighting their advantages and disadvantages.

2. SCAS AND COUNTERMEASURES
The typical workf ow of an energy consumption based SCA re-

covers the value of the secret parameter of a cipher (i.e., the secret
key) one portion at a time. This is possible since, during a cryp-
tographic computation, the algorithm combines the secret key bits
with other input/intermediate values involving a limited quantity of
the former at a time. The f rst step of the attack consists in measur-
ing the energy consumption of the target device, while computing
the cryptographic primitive on a large set of different (known) input
messages. The measurements are performed either through insert-

ing a shunt resistor on the supply line of the device or measuring
the EM emissions radiated by it. Subsequently, an intermediate
operation employing a small portion of the secret key is selected,
and hypotheses on its results are made for each of the inputs fed
to the circuit, and for each value the small key portion involved
may take. Such hypotheses on the results are used to derive a se-
quence of predictions of the energy consumption for each possible
value taken by the key portion. Finally, the predicted values are
compared with the actual measured ones through the use of statis-
tical means (e.g., linear correlation index or difference-of-means
test) to f nd out which prediction f ts best, thus inferring the correct
value of the key portion involved. Countermeasures aimed at pro-
tecting cipher implementations are traditionally split in two large
categories hiding and masking [23].

Hiding.
For software implementations, these strategies hinder the match-

ing between the actual power measurements and the hypothesized
consumption for each key-portion guess through rescheduling some
instructions, permuting the sequence of accesses to lookup tables,
or inserting random delays built out of dummy operations [16, 23,
25]. The effectiveness of the hiding countermeasures relies on
the fact that the statistical test employed to determine the correct
key guess is computed considering the side-channel measurements
timewise. As a consequence, randomizing the point in time where a
given instruction is computed causes samples from the side-channel
measurement of an operation different from the targeted one to be
misinterpreted as useful ones, effectively adding noise to the accu-
racy of the statistical test employed. The security margin provided
by hiding countermeasures is typically quantif ed in terms of the in-
crease in the amount of side-channel measurements caused by the
added noise: such an increase is shown to be scaling as the square
root of the number of unrelated operations performed in the same
time instant as the one under attack.

Masking.
This countermeasure invalidates the correlation between the val-

ues employed to predict the power consumption and the actual val-
ues processed by the device [20,23]. The principle is to add one or
more random values (a.k.a., masks) to every sensitive intermediate
variable occurring during the computation. Sensitive variables are
the ones storing a value inf uenced by a portion of the cipher key
(directly or indirectly). In a masked implementation, each sensi-
tive intermediate value is represented as split in a number of shares
(containing both the randomized sensitive value and the masks em-
ployed), which are then separately processed. For example, the
original sensitive value is xor-ed with s−1 random numbers. In
this way the original value is put into a one-to-one correspondence
with the set of s values (i.e., shares) needed to reconstruct it. The
target algorithm is modif ed to perform the entire computation on
the set of share-split values recombining them only at the end of the
computation, as depicted in Figure 1a. This technique effectively
hinders the attacker from formulating a correct power consumption
model. Indeed, the instantaneous power consumption is indepen-
dent from the original (non-masked) value, as unpredictable ran-
dom values are newly generated at each execution of the algorithm.
Typically, masking techniques are categorized by the number of
masks, d, employed for each sensitive value, which is known as
the order of the masking. A d-th-order masking can always be
theoretically broken by a (d+1)-th-order attack. Such an attack
exploits the combination of d+1 measurements of the computa-
tions of different shares during the same cipher execution, to build
a mask-independent power consumption model [23]. This in turn
provides a tight upper bound to the capabilities of an attacker able



Share-split
block cipher
computation

Share 
Recombination

Share splitting

Plaintext

Ciphertext

Key

Share splitting

(a) Masking countermeasure

Modified Control
Flow Binary

Equivalent
Code 

Fragments

Non Sensitive 
Instructions

Non Sensitive 
Instructions

Plaintext

Ciphertext

Key

(b) Morphing countermeasure

Cipher
computation

Ciphertext

KeyCipher
computation

Plaintext

Fake Key

(c) Chaff countermeasure

Figure 1: High level overview of the functioning of the three side-channel attack countermeasure strategies.

to breach any d-th order masking scheme. In principle, the lower
bound on the number of measurements needed to breach a generic
masking scheme amounts to a single measurement, depending on
the specif c operation to be protected and the specif c structure of
protection scheme. Besides the theoretical upper limit imposed by
the number of shares (i.e., d+1), open literature also provides in-
stances of masking schemes where a lower bound tighter than 1on
the number of measurements is proven formally.

Provably Secure Countermeasures.
The f rst masking scheme providing a formally proven lower

bound on the attacker effort was described by Ishai et al. [20], and
is commonly referred to as ISW masking from the initials of the
authors. A d-th order SCA resistant algorithm employing the ISW
masking scheme provably requires the attacker to be able to per-
form a d+1 measurements in order to breach the protection. At the
beginning of the sensitive computation, the ISW masking scheme
performs the splitting of the input values into s shares each. In par-
ticular, each input value is added, via xor, to s−1 random values
to obtain the f rst share, while the random values themselves are
considered as the remaining ones. To recombine all the shares of
the result at the end of the computation, the ISW masking scheme
simply adds all s of them together via xor. In order to perform
the computation over share-split inputs the ISW masking provides
a constructive method to transform the unprotected algorithm into
a protected version, modeling it as a Boolean circuit. The method
provides a strategy to rewrite every single bit Boolean and and
not operations so that they are able to compute a result split in s
shares starting from similarly s shared inputs. Although having a
method for obtaining protected and and not operations is already
suff cient in itself to implement any Boolean circuit (and thus ob-
tain a protected form of any algorithm), it is possible to implement
the protected xor operation in the ISW masking framework in a
more eff cient way than its simple Boolean expansion in a combi-
nation of ands and nots, exploiting the fact that the share-splitting
is indeed performed via exclusive-or addition of random values.
The ISW masking scheme provides security up to a d-th order at-
tack, employing s=2d+1 shares in its f rst formulation presented
in [20], although the authors note that it is possible to reduce the
number of shares down to s=d+1, while maintaining the same de-
gree of protection. The threat model assumes an adversary able to
acquire at most dsimultaneous bit-level values during per clock cy-

cle of the computation [20]. The scheme is proven to provide the
indistinguishability of the d values obtained by the attacker from
d randomly extracted values, thus providing perfect security of the
computation against probing. Despite the possibility of rewriting
any algorithm as a sequence of Boolean operations on its inputs, it
is commonplace, for performance reasons, to implement computa-
tionally intensive functions as a lookup table where the inputs are
employed to index the entry containing the result of the evaluation
of the function on them. The only provably secure scheme provid-
ing a constructive framework to perform secure table lookups on
share split values for any number of shares s is described in [15].
Such a scheme relies on share-splitting the entire tables computing
s of them before each load operation is performed, adding fresh
randomness to their encoding. As a consequence, the cost of the
protection scheme is quite signif cant, as reported in Table ??. In
particular, the author of [15] highlights that such an approach is
prof table only in the case where the computation of the tabulated
function requires a high number of nonlinear Boolean operations
(i.e., ands and ors).

3. AUTOMATED APPROACHES
This section discusses two recent approaches to automated coun-

termeasure application at design time, as well as a technique to as-
sess the vulnerability of a software implementation to SCAs, high-
lighting their advantages and disadvantages. All these techniques
are implemented by means of specialized compiler passes and can
be automatically deployed with minimal intervention of the soft-
ware developer, who does not need any security background. Thus,
the possibility of combining them is worth investigating.

3.1 Automated Vulnerability Analysis
The goal of a SCA vulnerability assessment is to determine the

computational diff culty of inferring the secret value employed as
the direct or indirect input of a computation from the observation
of a physical quantity associated with the intermediate value gen-
erated by that computation. The security of a cipher implementa-
tion is only as strong as that of the most vulnerable intermediate
value computed by any of its instructions. Following the approach
described in [5], an instruction is deemed to be vulnerable if it is
computationally feasible to compute a model of the physical char-
acteristic of its behavior (e.g., power consumption or EM-emission)
for each possible value of the key bits, that concur to the compu-



tation of the output value of the instruction. Computing the afore-
mentioned model is the ground on which energy based SCAs are
built, as its predictions are matched against the measured behavior
of the considered device.

As discussed in Section 2, this computational diff culty depends
directly on the number of secret key bits involved in the operation
that produced the intermediate value targeted by the attack. Thus,
a value computed using only a single bit of the secret key is easiest
to attack, whereas the maximum degree of security is achieved by
using all bits of the secret key to compute a value. It is worth noting
that values that are not computed using any bit of the secret key
are irrelevant from the point of view of SCAs, since they carry no
useful information.

In [3], a security-oriented data f ow analysis (SDFA) is intro-
duced, allowing a precise assessment of the vulnerability of each
instruction, carried out on the intermediate language of the LLVM
compiler [21]. The SDFA, in essence, performs an analysis of the
propagation of the key material through the sequence of instruc-
tions of the cipher implementation, computing for each bit of an
intermediate value the set of cipher key bits from which its compu-
tation depends. It is straightforward to understand that, in the f rst
operations of a cipher, only a few bits of the key are combined to
generate the intermediate values, but the diffusion properties of the
algorithm (usually deemed desirable in a cipher design) guarantee
that after a few rounds, all the key bits will be used to compute
each bit of any intermediate value. Thus, an attacker can only ex-
ploit the f rst few rounds of the cipher as the target of an SCA, and
the SDFA can precisely identify how many rounds can be practi-
cally attacked, as well as the computational effort needed to carry
out the attack. Since SCAs can also be carried out considering the
ciphertext and targeting the instructions in the last rounds of the
cipher, a backward version of the SDFA is also introduced to com-
plete the security assessment of the examined implementation. The
overall vulnerability of each instruction of the cipher is, once more,
the minimum of those reported by the two analyses.

The proposed technique is particularly attractive because it is in-
dependent of the source language used to implement the cipher,
and is statically computed, without the need to actually run the ci-
pher. In [2], the SDFA has been applied to a wide range of standard
block cipher implementations, including the Advanced Encryption
Standard (AES), Camellia [11], Triple DES and DES-X, and Ser-
pent [10]. It is worth noting that the SDFA allows to minimize
the set of instructions that must be protected, given a desired level
of protection. In [2], a masking countermeasure is applied selec-
tively only to the instructions with a vulnerability greater than the
desired level of protection, showing that ciphers that are known to
be slower in unprotected implementations can actually outperform
faster ciphers when countermeasures are applied, thanks to their
stronger security guarantees, which reduce the performance over-
head of the countermeasure application.

3.2 Code Morphing Countermeasures
The Code Morphing [4] approach aims at altering the side chan-

nel prof le of the application code, both in terms of power con-
sumption and radiated electromagnetic emissions, thus making the
construction of a model of the side channel impossible. Without
such a model, the attacker cannot successfully extract the secret
information from the side channel.

A modif ed compiler based on the LLVM framework [21] pro-
vides the means to automatically install the necessary countermea-
sures against passive SCAs. The compiler front-end recognizes
custom attributes [4] or additional language keywords [1, 6], used
to mark code blocks that need to be protected and arrays of con-
stants accessed through key-dependent values. These markers are

propagated through the compiler front-end, and preserved by the
compiler optimization passes, so that the protected code regions are
never violated (e.g., by compiler optimizations that reorder code).

After code optimization, the compiler pass identif es the sensi-
tive instructions in the protected regions, and replaces each of them
with a set of semantically equivalent alternatives. Two methodolo-
gies are available to achieve this goal. The f rst employs a poly-
morphic engine embedded in the application code by the compiler.
The polymorphic engine replaces at runtime the sensitive instruc-
tion with a randomly selected semantically equivalent alternative.
The second, on the other end, employs the MEET pass, where the
sensitive instruction is removed from the code, and replaced with
a selection construct, driven by a value randomly generated at run-
time, which selects one of the set of equivalent alternatives to the
original instruction.

To produce these semantically equivalent alternatives, the MEET
pass (or the polymorphic engine) reads a conf guration f le that
stores, for each sensitive instruction, a list of equivalent code frag-
ments, called a code tile [4]. In this conf guration f le, each sensi-
tive instruction is represented in a normalized format that abstracts
from the actual registers and constant operands. Access to lookup
tables need separate protection, since equivalent code tiles cannot
prevent side channel leakage from the memory bus. The polymor-
phic engine protects lookup table accesses through the application
of a random permutation to the allocated array indexes, hiding the
access patterns to the substitution table of a symmetric cipher. This
access pattern hiding technique has been proposed and detailed
in [24, 25]. The MEET pass also protects lookup table accesses
through a share splitting [23] technique. The share splitting tech-
nique splits each value to be stored in memory in multiple shares,
which are all random numbers except one, which is the bitwise ex-
clusive or of the original value and all other shares. The shares
are combined in the CPU registers, so that the secret value never
appears in its unprotected form on the memory bus. Special care
must be taken to periodically change the random values used to pro-
tect the original one, without leaking information during the refresh
operation [6].

3.3 Chaff Countermeasures
The chaff countermeasure is a defense strategy against a side-

channel attacker who has complete knowledge of the details of a
software implementation of a block cipher primitive, and is trying
to exf ltrate the secret key through exploiting the information leak-
age during the decryption of a ciphertext. The attacker is assumed
to have no means to access the output of the decryption but can
only observe the actions performed by the attacked security sys-
tem. Practical application scenarios include Intellectual Property
(IP) protection for post-deployment f rmware updates and keyless
entry systems. This countermeasure swarms the attacker with fake-
but-plausible side-channel leakages among which the real one is
blended. This enables the system designer to detect the attacks as
soon as a wrong key is employed to forge system inputs, provided
that the number of plausible alternative values for the secret key is
high enough to have an undetected use of a wrong key with negligi-
ble probability. This in turn enables a prompt response to a breach
attempt before the attack succeeds, a key feature in domains such
as automotive, sensor networks and industrial control. Since the
fake leakage is not distinguishable from the real one, the security
of the proposed defense strategy is not altered even in case more
technically challenging attacks, such as High-Order (HO) analyses
or template analyses, are employed to attempt a breach. This is in
contrast with typical leakage suppression techniques (e.g., masking
and hiding), where the defender attempts to hinder the exploitation
of the leaked information raising the required technical effort to



Start

Need a
reactive
counter-
measure?

Platform has
writable code
segment?

Chaff Keys

MEET

Polymorphic
Engine

End

No

Yes

No

Yes

Figure 2: Decision tree for selecting the appropriate countermea-
sure strategy

lead the attack. To achieve the chaff property, the device behav-
ior should both report more than one key-dependent behavior as
correctly f tting, and make such f tness happen in the same time in-
stants. To achieve this, an execution trace randomization technique
similar to Code Morphing is employed so that either the instruction
computing the real cipher result, or one of its chaff is executed ran-
domly at each cipher run. Such a randomized scheduling causes
the f tness for multiple keys to peak apparently simultaneously,
since the side-channel analysis combines a statistically signif cant
amount of measurements from different runs together to compute
the f tness of the hypotheses timewise. The execution trace random-
ization will thus select, through a random-number-generator-driven
(RNG-driven) switch-case like construct, one out of many alter-
nate code fragments, each one of which should contain both the
real instruction and the corresponding chaff ones. Particular care
should be taken in the scheduling of the instructions of each alter-
nate branch of the switch-case construct. Their schedules should be
chosen in such a fashion that each instruction is executed an equal
amount of times over the same clock cycle, across different runs.
A straightforward approach to building these schedules is to emit
(#chaf + 1)! alternate code fragments, each of which is made
of a permutation of the aforementioned instructions. However, the
overhead introduced by such an approach grows very quickly in
the number of chaff keys. A viable eff cient alternative is to build
#chaf + 1 alternate code fragments obtaining each one of them
as a sequence of 1 instruction rotations, starting from an arbitrary
schedule. The resulting code fragments set f ts the chaff property
requirements, while retaining an overhead which grows only lin-
early with the number of chaff keys.

3.4 Comparative analysis
It is now worth considering the applicability of the three types of

countermeasures described above (morphing with the polymorphic
engine, morphing with the MEET pass, and chaff) in different use
case scenarios, comparing them with a standard masking. First,
let us consider the computational overhead imposed by the three
countermeasures. All the approaches have been applied to AES128
with tabulated S-boxes. The relative overheads (slowdown) are
compared, since different boards (albeit all featuring ARM-based
embedded processors) have been used to obtain the experimental
results.

A typical f rst-order masking, applied to the entire cipher, im-
poses a major penalty, in the range of 100× [3]. Employing the
SDFA to pinpoint the vulnerable instructions and protecting only
those reduces the overhead to 42× [3].

Code morphing with the polymorphic engine is ineff cient if the
code is morphed at every call of the protected primitive – the over-
head reported in [4] is 392×, greater than most masking approaches.
The overhead could be reduced employing the SDFA, but it would
still be in the range of 156×. However, it is possible to trade off
some security for performance by performing the morphing action
only once every n calls, where n can be chosen based on the im-
pact on the overlap of the conf dence intervals with which the true
and the best false guess are estimated. In [4], it is shown that the
value of n can range between 100 and 3000 without signif cantly af-
fecting the security (the conf dence intervals overlap by more than
79%, and the best false key is always identif ed with a better con-
f dence than the true key), with an overhead reduced to 4× and
0.2× respectively, even without applying the SDFA. The MEET
pass, on the other hand, imposes an overhead of 4.82× to 4.33×,
depending on the specif c architecture, which can be lowered to
2.14×-2.42×, by employing the SDFA to identify the vulnerable
instructions and applying the MEET pass only to the AES rounds
that include them. The overhead of the chaff countermeasure de-
pends on the number of fake keys desired, which in turn impact
the probability the attacker has of guessing the correct key. A sin-
gle chaff imposes an overhead of 1.37×, whereas with three chaffs
the overhead increases to 2.28×. Comparing the above results, the
polymorphic engine still provides the fastest countermeasure by
one order of magnitude. However, it does have some limitations in
its applicability, due to the fact that the polymorphic engine needs
the ability to write portions of memory that are labeled as contain-
ing executable code. This is not feasible in many microcontrollers.
In those cases, the MEET approach provides a suitable alternative.
The chaff countermeasure, on the other hand, covers a different use
case scenario, where reactive countermeasures are needed in or-
der to detect the attack and raising an alarm (or performing other
response actions, including activating self-destruction procedures).
The chaff countermeasure is not suitable for scenarios where there
is no reaction expected to an attack, because the attacker would
then be able to brute force the correct key by trying and verifying
all the possible combinations of the false and true key bytes identi-
f ed through the attack. Finally, the chaff countermeasure cannot be
usefully combined with either code morphing approach, but could
be combined with standard masking, although the performance im-
pact (in the range of 200×) would make it acceptable only in slow-
response systems. Figure 2 summarizes in a f owchart how a sys-
tem designer would select the appropriate tool for applying SCA
countermeasures to a cipher implementation.

4. CONCLUDING REMARKS
This paper provided an overview of techniques for protecting

software implementations against SCA that can be applied through
the use of a specialized compiler, thus making them amenable to
automated application in toolchains for the development of secure-
by-design systems. These techniques provide protection to the tar-
get implementation from different angles, suitable for application
in different use case scenarios.
Acknowledgements. This work has been funded by the Euro-
pean Community H2020 project Modular Microserver Data Centre
(M2DC), Contract (GA) number 688201.

5. REFERENCES
[1] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale. The

MEET Approach: Securing Cryptographic Embedded
Software Against Side Channel Attacks. Computer-Aided
Design of Integrated Circuits and Systems, IEEE
Transactions on, 34(8):1320–1333, Aug 2015.



[2] Giovanni Agosta, Alessandro Barenghi, M. Maggi, and
Gerardo Pelosi. Design Space Extension for Secure
Implementation of Block Ciphers. IET Computers & Digital
Techniques, 8(6):256–263, 2014.

[3] Giovanni Agosta, Alessandro Barenghi, Massimo Maggi,
and Gerardo Pelosi. Compiler-based side channel
vulnerability analysis and optimized countermeasures
application. In The 50th Annual Design Automation
Conference 2013, DAC ’13, Austin, TX, USA, May 29 - June
07, 2013, pages 81:1–81:6. ACM, 2013.

[4] Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi.
A code morphing methodology to automate power analysis
countermeasures. In Patrick Groeneveld, Donatella Sciuto,
and Soha Hassoun, editors, The 49th Annual Design
Automation Conference 2012, DAC ’12, San Francisco, CA,
USA, June 3-7, 2012, pages 77–82. ACM, 2012.

[5] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and
Michele Scandale. Enhancing Passive Side-Channel Attack
Resilience through Schedulability Analysis of
Data-Dependency Graphs. In Network and System Security -
7th International Conference, NSS 2013, Madrid, Spain,
June 3-4, 2013. Proceedings, pages 692–698. 2013.

[6] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and
Michele Scandale. A multiple equivalent execution trace
approach to secure cryptographic embedded software. In The
51st Annual Design Automation Conference 2014, DAC ’14,
San Francisco, CA, USA, June 1-5, 2014, pages
210:1–210:6. ACM, 2014.

[7] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and
Michele Scandale. Information Leakage chaff: Feeding Red
Herrings to Side Channel Attackers. In Proceedings of the
52nd Annual Design Automation Conference, San Francisco,
CA, USA, June 7-11, 2015, pages 33:1–33:6. ACM, 2015.

[8] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and
Michele Scandale. The MEET approach: Securing
cryptographic embedded software against side channel
attacks. IEEE Trans. on CAD of Integrated Circuits and
Systems, 34(8):1320–1333, 2015.

[9] Giovanni Agosta, Alessandro Barenghi, Gerardo Pelosi, and
Michele Scandale. Trace-based schedulability analysis to
enhance passive side-channel attack resilience of embedded
software. Information Processing Letters, 115(2):292–297,
2015.

[10] Ross J. Anderson, Eli Biham, and Lars R. Knudsen. The
Case for Serpent. In AES Candidate Conference, pages
349–354, 2000.

[11] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda,
Mitsuru Matsui, Shiho Moriai, Junko Nakajima, and Toshio
Tokita. Specif cation of Camellia-A 128-Bit Block Cipher,
September 2001.

[12] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and
Ingrid Verbauwhede. DPA, Bitslicing and Masking at 1 GHz.
In Cryptographic Hardware and Embedded Systems - CHES
2015 - 17th Int.’l Workshop, Saint-Malo, France, September
13-16, 2015, Proceedings, pages 599–619, 2015.

[13] Alessandro Barenghi, Gerardo Pelosi, and Yannick Teglia.
Information Leakage Discovery Techniques to Enhance
Secure Chip Design. In Claudio Agostino Ardagna and
Jianying Zhou, editors, Information Security Theory and
Practice. Security and Privacy of Mobile Devices in Wireless
Communication - 5th IFIP WG 11.2 Int.’l Workshop, WISTP
2011, Heraklion, Crete, Greece, June 1-3, 2011.
Proceedings, volume 6633 of LNCS, pages 128–143.

Springer, 2011.
[14] Christian Boit, Clemens Helfmeier, and Uwe Kerst. Security

Risks Posed by Modern IC Debug & Diagnosis Tools. In
2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography, Los Alamitos, CA, USA, August 20, 2013,
pages 3–11, 2013.

[15] Jean-Sébastien Coron. Higher Order Masking of Look-Up
Tables. In EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May
11-15, 2014. Proceedings, pages 441–458, 2014.

[16] Jean-Sébastien Coron and Ilya Kizhvatov. Analysis and
Improvement of the Random Delay Countermeasure of
CHES 2009. In Cryptographic Hardware and Embedded
Systems, pages 95–109, 2010.

[17] Hassan Eldib, Chao Wang, and Patrick Schaumont. Formal
Verif cation of Software Countermeasures against
Side-Channel Attacks. ACMTrans. Softw. Eng. Methodol.,
24(2):11:1–11:24, 2014.

[18] Flavio D. Garcia, Peter van Rossum, Roel Verdult, and
Ronny Wichers Schreur. Wirelessly Pickpocketing a Mifare
Classic Card. In 30th IEEE Symposium on Security and
Privacy (S&P 2009), 17-20 May 2009, Oakland, California,
USA, pages 3–15, 2009.

[19] Xu Guo, Junfeng Fan, Patrick Schaumont, and Ingrid
Verbauwhede. Programmable and Parallel ECC Coprocessor
Architecture: Tradeoffs between Area, Speed and Security.
In Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, pages 289–303, 2009.

[20] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits:
Securing Hardware against Probing Attacks. In Advances in
Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003, Proceedings, pages 463–481, 2003.

[21] Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proc. of the Int’l Symposium on Code
generation and optimization, CGO ’04, pages 75–,
Washington, DC, USA, 2004. IEEE Computer Society.

[22] Amir Moradi, Alessandro Barenghi, Timo Kasper, and
Christof Paar. On the Vulnerability of FPGA Bitstream
Encryption against Power Analysis Attacks: Extracting Keys
from Xilinx Virtex-II FPGAs. In ACMConf. on Computer
and Communications Security, pages 111–124, 2011.

[23] Eric Peeters. Advanced DPATheory and Practice - Towards
the Security Limits of Secure Embedded Circuits. Springer
New York, 2013.

[24] Matthieu Rivain, Emmanuel Prouff, and Julien Doget.
Higher-Order Masking and Shuff ing for Software
Implementations of Block Ciphers. In Cryptographic
Hardware and Embedded Systems - CHES 2009, 11th
International Workshop, Lausanne, Switzerland, September
6-9, 2009, Proceedings, pages 171–188, 2009.

[25] Stefan Tillich and Christoph Herbst. Attacking
State-of-the-Art Software Countermeasures-A Case Study
for AES. In CHES 2008, 10th Int.l Workshop, Washington,
D.C., USA, 2008. Proceedings, pages 228–243, 2008.

[26] Kris Tiri and Ingrid Verbauwhede. A VLSI Design Flow for
Secure Side-Channel Attack Resistant ICs. In Design,
Automation and Test in Europe Conference and Exposition
(DATE 2005), 7-11 March 2005, Munich, Germany, pages
58–63, 2005.


