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Abstract—We consider transmit antenna selection with receive
generalized selection combining (TAS/GSC) for cognitive decode-
and-forward (DF) relaying in Nakagami-m fading channels. In
an effort to assess the performance, the probability density
function and the cumulative distribution function of the end-
to-end SNR are derived using the moment generating function,
from which new exact closed-form expressions for the outage
probability and the symbol error rate are derived. We then
derive a new closed-form expression for the ergodic capacity.
More importantly, by deriving the asymptotic expressions for
the outage probability and the symbol error rate, as well
as the high SNR approximations of the ergodic capacity, we
establish new design insights under the two distinct constraint
scenarios: 1) proportional interference power constraint, and 2)
fixed interference power constraint. Several pivotal conclusions
are reached. For the first scenario, the full diversity order of the
outage probability and the symbol error rate is achieved, and
the high SNR slope of the ergodic capacity is 1/2. For the second
scenario, the diversity order of the outage probability and the
symbol error rate is zero with error floors, and the high SNR
slope of the ergodic capacity is zero with capacity ceiling.

Index Terms—Cognitive relay network, generalized selection
combining, Nakagami-m fading.

I. INTRODUCTION

The conflict between the stringent demand for high data
rate and data service on the one hand, and the unbalanced
spectrum occupation in time and geographic domains on the
other hand, has become a challenge for future wireless systems
[1]. To cope with this, cognitive radio, first coined by Mitola,
has rekindled increasing interest in the efficient use of radio
spectrum. In the underlay paradigm, the secondary users (SUs)
are allowed to access the spectrum allocated to primary users
(PUs) as long as the interference generated by the secondary
transmission is restricted below a certain threshold, namely,
interference temperature [2]. The constrained transmit power

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
Manuscript received Jan.31, 2014; revised Sep. 22, 2014; accepted Jan. 26,
2015. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Zhengdao Wang. This work of Y. Deng
was supported by China Scholarship Council. This paper has been presented
in part at IEEE International Conference on Communications (ICC), Sydney,
2014.

Y. Deng, L. Wang, and M. Elkashlan are with Queen Mary Uni-
versity of London, London E1 4NS, UK (email: {y.deng, lifeng.wang,
maged.elkashlan}@qmul.ac.uk).

K. J. Kim is with Mitsubishi Electric Research Laboratories (MERL), 201
Broadway, Cambridge, MA, USA (email: kkim@merl.com).

T. Q. Duong is with Queen’s University Belfast, Belfast BT7 1NN, UK
(email: trung.q.duong@qub.ac.uk).

at SU typically results in unstable transmission and restricted
coverage, which drives the demand for robust transmission
techniques suited for networks that are subject to power and
interference constraints [3]. Relaying is regarded as a cost-
effective approach for supporting high speed and long distance
networks [4, 5].

The majority of the studies on cognitive relay networks
have focused on single antenna protocols [6–8]. Multiple-
input multiple-output (MIMO) techniques, well-known for
their many benefits including enhanced reliability [9], spectral
efficiency [10], and co-channel interference suppression [11],
open up new dimensions for cognitive radio. For example, as
shown in [12], multi-antennas are utilized at SU to achieve
spatial multiplexing. In [13], the novel distributed antenna
selection is proposed in relaying system. In [14], the effect
of transmit antenna selection with receive maximal ratio com-
bining (TAS/MRC) on the the ergodic capacity was analyzed.
In [15], the outage performance of TAS/MRC and TAS/SC
are examined over Nakagami-m fading channel. It is shown
in [16] that the diversity order is independent of the number
of PUs and the selected number of receive antennas at SU.

Different from the aforementioned works, in this paper,
we consider cognitive relay networks from the viewpoint of
TAS/GSC as an effective design to enhance the reliability
of the secondary network and to mitigate interference to the
primary network. From a power perspective, cognitive spec-
trum sharing with network cooperation addresses fundamental
constraints on the transmit power at the SUs, while keeping
the interference temperature at the PUs to a minimum [17].
On the one hand, TAS is acknowledged as a core component
for uplink 4G long term evolution (LTE) and LTE Advanced
systems because of its low feedback requirement compared
with closed-loop transmit diversity [18]. On the other hand,
with the merits of low power demand and RF cost, GSC
offers a performance/implementation tradeoff between MRC
and selection combining (SC) for the secondary network
[19, 20]1. Additionally, by excluding the antenna chains with
weak channel powers, GSC can be more robust to channel
estimation errors than MRC [21]. In [22], it is shown that
GSC outperforms MRC in a non-identically distributed noise
scenario.

The objective of this paper is to examine the impact
of TAS/GSC in underlay cognitive relay networks over

1GSC is well applied to commercial wireless networks where the receiver
is subject to resource constraints, such as limited RF chains due to size and
complexity limitations [26].



Nakagami-m fading. The Nakagami-m fading environment is
considered due to its versatility in providing a good match
to various empirically obtained measurement data [23]. In
the secondary network, a single antenna which maximizes
the signal-to-noise ratio (SNR) is selected at the secondary
transmitter, while a subset of receive antennas with highest
SNRs are combined at the secondary receiver. For coverage
and reliability enhancement, a decode-and-forward (DF) relay
is used in the secondary network to assist the secondary
transmission. Note that the transmit powers at the secondary
source (S) and the secondary relay (R) are limited by two
constraints: 1) the peak interference constraint at the primary
receiver, and 2) the peak transmit power constraint at S and R.
It is also important to note that the performance of underlay
spectrum sharing is typically restricted due to these two strict
power constraints. With the help of TAS/GSC relaying, less
transmit power is required at S and R, which in turn reduces
the interference at the PU, allowing for high speed data
services over wide area coverage. The main contributions of
this paper are summarized as follows.
• We derive new exact closed-form expressions for the

cumulative distribution function (CDF) of the SNR with
TAS/GSC. Although the CDF expressions were presented
in [19, 24] with the aid of the trapezoidal rule, they are
not in closed-form and cannot be used to derive the CDF
of the SNR with TAS/GSC.

• We derive new exact closed-form expressions for the
outage probability and the symbol error rate (SER) to
accurately assess the joint impact of antenna configura-
tion and channel fading. We further derive the asymptotic
expressions for the outage probability and the SER under
the two cases: 1) proportional interference power con-
straint, and 2) fixed interference power constraint. We
confirm that the full diversity order is achieved for the
proportional interference power constraint. For the fixed
interference power constraint, the diversity order is zero
with error floors in the high SNR regime.

• We derive an exact closed-form expression for the ergodic
capacity. Notably, this is the first closed-form expression
for cognitive relay networks with TAS/GSC in Nakagami-
m fading channels. More importantly, we obtain a tight
high SNR approximation of the ergodic capacity for the
two cases: 1) proportional interference power constraint,
and 2) fixed interference power constraint. Interesting
conclusions are reached. On the one hand, the high
SNR slope is independent of the antenna configuration
and the fading parameters, but on the other hand, the
high SNR power offset is fully described by the antenna
configuration and the fading parameters in the primary
and secondary networks. The high SNR slope is 1/2
for the proportional interference power constraint, and is
equal to zero for the fixed interference power constraint.

II. SYSTEM AND CHANNEL DESCRIPTION

We consider a dual-hop cognitive DF relay network con-
sisting of S with NS antennas, R with NR antennas, D with

ND antennas, and PU with a single antenna. We assume that
the PU transmitter is located far away from the secondary
network. This assumption is typical in large scale networks
where the interference from the PU transmitter is negligible [6,
25, 26]. We also assume there is no direct link between S and
D due to long distance and deep fades [27]. Both the primary
channel and the secondary channel are assumed to undergo
quasi-static fading with independent and identically distributed
(i.i.d.) Nakagami-m distribution. We assume perfect channel
state information (CSI) between the secondary transmitter and
the PU can be obtained through direct feedback from the PU
[28], indirect feedback from a third party, and periodic sensing
of pilot signal from the PU [29]. In the secondary network, a
single transmit antenna among NS antennas which maximizes
the GSC output SNR at R is selected at S, while the LR
(1 ≤ LR ≤ NR) strongest receive antennas are combined at R.
The signal transmitted by R is decoded and forwarded using a
single transmit antenna among NR antennas which maximizes
the GSC output SNR at D, and then combined at D with the
LD (1 ≤ LD ≤ ND) strongest receive antennas. Let {g1ij}
denote the channel coefficients of the NS×NR channels from
S to R with i ∈ {1, . . . , NS}, j ∈ {1, . . . , NR}, and {g2jk}
denote the channel coefficients of the NR×ND channels from
R to D with k ∈ {1, . . . , ND}. Also, {h1i} denote the channel
coefficients of the NS × 1 channels from S to PU, and {h2j}
denote the channel coefficients of the NR × 1 channels from
R to PU. The channel coefficients follow the Nakagami-m
distribution with fading parameters mg1, mg2, mh1, and mh2,
and average channel power gains Ωg1, Ωg2, Ωh1, and Ωh2. In
the following, ‖ · ‖ is the Euclidean norm, | · | is the absolute
value, and E[·] is the expectation.

The pilot symbol block Pi, (1 ≤ i ≤ NS), are transmitted
from each transmit antenna at different time slots. Based on
these pilot symbols, R perfectly estimates CSI, then arranges{∣∣g1ij

∣∣2}NR
j=1

in descending order as
∣∣g1i(1)

∣∣2 ≥ ∣∣g1i(2)

∣∣2 ≥
· · · ≥

∣∣g1i(NR)

∣∣2 ≥ 0 for the each transmit antenna i at S.
Note that before the transmission process, the selected number
of antenna chains LR and LD at the receivers are determined
by the limited number of radio frequency (RF) chains due
to size and complexity limitations. According to the rule of
GSC, the first LR (1 ≤ LR ≤ NR) received signal power(s)

are comibined at R to obtain θi =
LR∑
j=1

∣∣g1i(j)

∣∣2. The selected

transmit antenna i∗ is determined at R by

i∗ = arg max
1≤i≤NS

θi =

LR∑
j=1

|g1i(j)|2
 , (1)

which maximizes the total received signal power. To this end,
the index of the selected transmit antenna is sent back to S
through the feedback channel, so that only dlog2 (NS)e bits
needs to be sent to S. As such, the selected channel vector is
denoted as g1i∗θi∗ =

[
g1i∗(1), · · · , g1i∗(LR)

]
. Similarly, in the

second hop, the index of the selected transmit antenna at R is



determined by

j∗ = arg max
1≤j≤NR

{
θj =

LD∑
k=1

∣∣g2j(k)

∣∣2} . (2)

As such, we denote the selected channel vector as g2j∗θj∗ =[
g2j∗(1), · · · , g2j∗(LD)

]
.

According to underlay cognitive relay networks, the transmit
powers at S and R are constrained as

PS = min
(
P,

Q

|h1i∗ |2
)

and PR = min
(
P,

Q

|h2j∗ |2
)
,

(3)

respectively, where P is the maximum transmit power con-
straint at S and R, and Q is the peak interference power
constraint at PU.

The instantaneous end-to-end SNR of the spectrum sharing
network with TAS/GSC and DF relaying is defined as γ =
min {γ1, γ2}, where the instantaneous SNR of S → R link is

γ1 = min
(
‖g1i∗θi∗‖

2
γ̄P ,
‖g1i∗θi∗‖

2
γ̄Q

|h1i∗ |2
)

(4)

and the instantaneous SNR of R → D link is

γ2 = min
(∥∥g2j∗θj∗

∥∥2
γ̄P ,

∥∥g2j∗θj∗

∥∥2
γ̄Q

|h2j∗ |2
)
. (5)

In (4) and (5), we define γP = P
N0

and γQ = Q
N0

, where
N0 is the noise power of an additive white Gaussian noise
(AWGN).

III. NEW STATISTICAL PROPERTIES

In this section, we derive new statistical properties of the
end-to-end SNR, which is a challenging problem due to the
complex nature of TAS/GSC in Nakagami-m fading. Based
on these statistical characteristics, we present the exact and
asymptotic outage probability, SER, and ergodic capacity.
Without loss of generality, these new statistics can be easily
applied to other wireless networks with TAS/GSC.

Based on the expressions of γ1 and γ2 in (4) and (5),
respectively, we first derive the CDF of ‖g1i∗θi∗ ‖

2 in the
following lemmas.

A. Expressions for CDF of ‖g1i∗θi∗‖
2 in the Secondary Chan-

nel

Lemma 1. The expressions for the CDF of ‖g1i∗θi∗‖
2 are

derived as

F‖g1i∗θi∗‖
2 (x) =

( LR(
mg1 − 1

)
!

(
NR
LR

))NS
NS !∑̃

S|SK |R

~kxθke−ηkx, (6)

where
∑̃
S|SK |R

,
∑
SR

∑
S1
R

· · ·
∑
SkR

· · ·
∑
S|SK |R

, SR =

{(
nτ,1, . . . , nτ,|SK |

)∣∣ |SK |∑
k=1

nτ,k = NS
}

with {nτ,k} ∈ Z+,

|SK | is the cardinality of the set SK , and SK denotes a set
of (2mg1 + 1)-tuples satisfying the following condition

SK =
{(
nΦ
k,0, . . . , n

Φ
k,mg1−1, n

F
k,0, . . . , n

F
k,mg1

)∣∣
mg1−1∑
i=0

nΦ
k,i = LR − 1;

mg1∑
j=0

nFk,j = NR − LR
}
,

thereby |SK | =
(
mg1+LR−2

mg1−1

)(
mg1+NR−LR

mg1

)
, and SkR ={(

nρk,0, . . . , nρk,mg1LR+bFk

)∣∣∣mg1LR+bFk∑
n=0

nρk,n = nτ,k
}

, k =

1, · · · , |SK |, with
{
nΦ
k,i

}
,
{
nΦ
k,i

}
,
{
nFk,j

}
, and

{
nρk,n

}
∈

Z+. In (6), ~k, θk, and ηk are respectively given by

~k =

|SK |∏
k=1

(
aΦ
k a

F
k

(
n2 − 1

)
!

LR
n2

)nτ,k(mg1LR+bFk∏
n=0

`k(n)
nρk,n

mg1LR+bFk∏
n=0

nρk,n!

)
,

(7)

θk =

|SK |∑
k=1

mg1LR+bFk∑
n=0

µk(n)nρk,n, (8)

and

ηk =

|SK |∑
k=1

mg1LR+bFk∑
n=0

νk(n)nρk,n, (9)

where n2, µk(n), νk(n), `k(n) aΦ
k , aFk , bΦk , bFk , Υk1, Υk2,

Υk3, and Υk4 are defined in Appendix A.

Proof. See Appendix A.

B. Expressions for the CDF of
∥∥g2j∗θj∗

∥∥2
in the Secondary

Channel

The CDF of
∥∥g2j∗θj∗

∥∥2
follow from (6) by interchang-

ing the parameters mg1 → mg2, mh1 → mh2, LR →
LD, NR → ND, NS → NR, SR → SD, |SK | →
|ST |, S |

SK |
R → S |ST |D , ~k → ~t, θk → θt, and

ηk → ηt, where
∑̃
S|ST |D

,
∑
SD

∑
S1
D

· · ·
∑
StD

· · ·
∑
S|ST |D

, SD =

{(
nτ,1, . . . , nτ,|ST |

)∣∣ |ST |∑
t=1

nτ,t = NR
}

with {nτ,t} ∈ Z+, |ST |
is the cardinality of the set ST , and ST denotes a set of
(2mg2 + 1)-tuples satisfying the following condition

ST =
{(
nΦ
t,0, . . . , n

Φ
t,mg2−1, n

F
t,0, . . . , n

F
t,mg2

)∣∣
mg2−1∑
i=0

nΦ
t,i = LD − 1;

mg2∑
j=0

nFt,j = ND − LD
}
,

thereby |ST | =
(
mg2+LD−2

mg2−1

)(
mg2+ND−LD

mg2

)
, and

StD =
{(
nρt,0, . . . , nρt,mg2LD+bFt

)∣∣∣mg2LD+bFt∑
n=0

nρt,n = nτ,t
}

,

t = 1, · · · , |ST |, with
{
nΦ
t,i

}
,
{
nΦ
t,i

}
,
{
nFt,j
}

, and
{
nρt,n

}
∈

Z+. Note that ~t, θt, ηt follow from (7), (8), (9) by inter-
changing the parameters µk(n) → µt(n), νk(n) → νt(n),
`k(n) → `t(n) aΦ

k → aΦ
t , bΦk → bΦt , cΦk → cΦt , aFk → aFt ,



bFk → bFt , cFk → cFt , Υk1 → Υt1, Υk2 → Υt2, Υk3 → Υt3,
and Υk4 → Υt4. Here, µt(n), νt(n), `t(n) aΦ

t , bΦt , cΦt , aFt , bFt ,
cFt , Υt1, Υt2, Υt3, and Υt4 follow from (A.15), (A.16), (A.14),
(A.6), (A.7), (A.9), (A.10), (A.17), (A.18), (A.19), and (A.20)
by interchanging the parameters mg1 → mg2, mh1 → mh2,
Ωh1 → Ωh2, LR → LD, NR → ND, NS → NR, SR → SD,
|SK | → |ST |, S |

SK |
R → S |ST |D , nτ,k → nτ,t, nΦ

k,i → nΦ
t,i,

nΦ
k,i → nΦ

t,i, n
F
k,j → nFt,j , and nρk,n → nρt,n.

C. Expressions for the CDF of γ1

With the help of the CDF of ‖g1i∗θi∗‖
2 and |h1i∗ |2, the

closed-form CDF of γ1 is evaluated in the following lemma.

Lemma 2. The expression for the CDF of γ1 is represented
as

Fγ1 (x) =
( LR(
mg1 − 1

)
!

(
NR
LR

))NS
NS !

∑̃
S|SK |R

~kΞk (x), (10)

where

Ξk (x) =
(
1−

Γ
(
mh1,

mh1Q
Ωh1P

)
Γ
(
mh1

) )( x
γ̄P

)θke−ηk x
γ̄P +

(mh1

Ωh1

)mh1
( x
γ̄Q

)θk Γ
(
θk +mh1,

(
mh1

Ωh1
+ ηkx

γ̄Q

)
Q
P

)
(
mh1 − 1

)
!
(
mh1

Ωh1
+ ηkx

γ̄Q

)θk+mh1
. (11)

Proof. See Appendix B.

D. Expressions for the CDF of γ2

Similarly, the CDF of γ2 follows from (10) and (11) by
interchanging the parameters mg1 → mg2, mh1 → mh2,
Ωh1 → Ωh2, ηk → ηt, and θk → θt. Note that our expressions
are valid for arbitrary fading severity parameters in all the
links.

IV. OUTAGE PROBABILITY

In this section, we concentrate on the outage probability.
We derive a new closed-form expresssion for the exact outage
probability. In order to assess the performance at high SNRs,
we derive the asymptotic outage probabilities with the propor-
tional interference power constraint and the fixed interference
power constraint.

A. Exact Analysis

In DF relaying, the end-to-end outage probability is deter-
mined by the worst link between S → R and R → D links,
which is given by [30]

Pout (γth) = Pr (min(γ1, γ2) ≤ γth)

= Fγ1
(γth) + Fγ2

(γth)− Fγ1
(γth)Fγ2

(γth) . (12)

By substituting (10) and the CDF of γ2 into (12), the outage
probability is finally derived in the following theorem.

Theorem 1. The closed-form expression for the outage prob-
ability of spectrum sharing networks with TAS/GSC and DF

relaying in Nakagami-m fading is derived as

Pout (γth) =

1−
(

1−
( LR(
mg1 − 1

)
!

(
NR
LR

))NS
NS !

∑̃
S|SK |R

~kΞk (γth)
)

(
1−

( LD(
mg2 − 1

)
!

(
ND
LD

))NR
NR!

∑̃
S|ST |D

~tΞt (γth)
)
. (13)

Our new closed-form expression for the outage probability
is valid for an arbitrary number of antennas of the secondary
network and arbitrary fading severity parameters in all the
links.

B. Asymptotic Analysis

1) Proportional Interference Power Constraint:
We first examine the asymptotic behavior with the propor-

tional interference power constraint. As such, we assume that
both P and Q grow large in the high SNR regime. This applies
to the scenario where the PU is able to tolerate a high amount
of interference from S and R. With this in mind, we take into
account and study the effect of the so-called power scaling on
the outage probability. Similar to [7, 25], we consider Q = µP ,
where µ is the power scaling factor and is a positive constant.

Theorem 2. When Q scales with P , the asymptotic outage
probability of cognitive spectrum sharing with TAS/GSC and
DF relaying in Nakagami-m fading at high SNRs is derived
as

P∞out (γth) = (GcγP )
−Gd + o

(
γP
−Gd

)
, (14)

where the diversity order is

Gd = NR ×min {mg1NS ,mg2ND} (15)

and the SNR gain is

Gc =


∆1(LR)
γth

mg1NS < mg2ND
∆2(LR)
γth

mg1NS > mg2ND
∆1(LR)
γth

+ ∆2(LR)
γth

mg1NS = mg2ND ,

(16)

with

∆1 (LR) =
Ωg1
mg1

[K(SΦ
K , NR, LR,mg1, a

Φ
k , b

Φ
k

)
(mg1NR)!

]− 1
mg1NR

[
Φ
(
mh1,Ωh1

)
+

Ξ
(
mg1,mh1,Ωh1, NS

)
µmg1NRNS

]− 1
mg1NRNS , (17)

and

∆2 (LR) =
Ωg2
mg2

[K(SΦ
T , ND, LD,mg2, a

Φ
t , b

Φ
t

)
(mg2ND)!

]− 1
mg2ND

[
Φ
(
mh2,Ωh2

)
+

Ξ
(
mg2,mh2,Ωh2, ND

)
µmg2NRND

]− 1
mg2NRND . (18)



In (17) and (18), we have

K
(
SΦ, N, L,mg, a

Φ, bΦ
)

=
L
(
N
L

)
(mg − 1)!(mg!)

N−L∑
SΦ

aΦ (bΦ +mg(N − L+ 1)− 1)!

(L)
bΦ+mg(N−L+1)

, (19)

Φ
(
mh,Ωh

)
= 1− e−µ

mh
Ωh

mh−1∑
j=0

(
µmhΩh

)j
j!

, (20)

Ξ
(
mg,mh,Ωh, N

)
=

Γ(mgNRN +mh, µ
mh
Ωh

)

(mh − 1)!(mhΩh
)
mgNRN

. (21)

Proof. See Appendix C.

Based on (15), we see that the diversity order is dominated
by the fading severity parameter of the two hops and the total
number of antennas at S, R, and D. Interestingly, it is inde-
pendent of the fading severity parameters of the interference
channel, and the selected number of antennas at R and D. The
negative impact of the peak interference power constraint is
reflected in the SNR gain.

Corollary 1. The SNR gap between GSC and SC is derived
as

Gc =


− 10
mg1NR

log (T1) mg1NS < mg2ND

− 10
mg2ND

log (T2) mg1NS > mg2ND

10 log
(

∆1(LR)+∆2(LR)
∆1(1)+∆2(1)

)
mg1NS = mg2ND ,

(22)
where

T1 =
(mg1!)

NR−1
(mg1 − 1)!

NR (mg1NR − 1)!
K(SΦ

K , NR, LR,mg1, a
Φ
k , b

Φ
k ) (23)

and

T2 =
(mg2!)

ND−1
(mg2 − 1)!

ND (mg2ND − 1)!
K(SΦ

T , ND, LD,mg2, a
Φ
t , b

Φ
t ).

(24)

2) Fixed Interference Power Constraint:
Different from the proportional interference power con-

straint which can tolerate an extremely high peak interference
power constraint and may potentially violate and harm the
PU transmission [6], in this subsection, we focus on a stricter
constraint where the peak interference power constraint is fixed
[31]. We present the asymptotic outage probability with the
fixed interference power constraint in the following theorem.

Theorem 3. Under the fixed interference power constraint, the
asymptotic outage probability of cognitive spectrum sharing
with TAS/GSC and DF relaying in Nakagami-m fading at high
SNRs is derived as

P∞out (γth)

=



H1

(
Φ1

(
γth
γ̄P

)mg1NRNS
+ Ξ1

(
γth
γ̄Q

)mg1NRNS)
mg1NS < mg2ND

H2

(
Φ2

(
γth
γ̄P

)mg2NRND
+ Ξ2

(
γth
γ̄Q

)mg2NRND)
mg1NS > mg2ND(

H1Φ1 + H2Φ2

)(
γth
γ̄P

)mg1NRNS

+
(
H1Ξ1 + H2Ξ2

)(
γth
γ̄Q

)mg1NRNS

mg1NS = mg2ND ,
(25)

where

H1 =
[(mg1

Ωg1

)mg1NR
K
(
SΦ
K , NR, LR,mg1, a

Φ
k , b

Φ
k

)
(mg1NR)!

]NS
,(26)

H2 =
[ (mg2

Ωg2
)
mg2NDK

(
SΦ
T , ND, LD,mg2, a

Φ
t , b

Φ
t

)
(mg2ND)!

]NR(27)

Φ1 = Φ (mh1,Ωh1), Φ2 = Φ (mh2,Ωh2), (28)
Ξ1 = Ξ (mg1,mh1,Ωh1, NS), (29)

and

Ξ2 = Ξ (mg2,mh2,Ωh2, ND). (30)

Proof. The proof can be done in the same way as the proof
of Theorem 2.

From (25), we see that the diversity order of the outage
probability tends to zero under the fixed interference power
constraint.

V. SYMBOL ERROR RATE

In this section, we focus on the SER as another important
performance evaluation metric. For most modulation schemes,
the SER of a conventional wireless communication system can
be expressed as [32]

Pe =
a

2

√
b

π

∞∫
0

e−bγ
√
γ
Fγ(γ)dγ, (31)

where a and b are modulation specific constants. For example,
a = 1, b = 1 for BPSK (binary phase shift keying), a =
2(M − 1)/M , b = 3/(M2 − 1) for M-PAM (M-ary pulse
amplitude modulation), and a = 2, b = sin2 (π/M) for M-
PSK (M-ary phase shift keying).

A. Exact Analysis

Substituting (10) into (31), the SER of S → R link can
be derived by utilizing [33, eq.8.310.1], [33, eq.8.352.2], [33,
eq.9.211.4.8] and the polynomial expansion. Using the same
method, Pe2, which is the SER of R → D link can be easily
computed. Substituting the derived expressions of Pe1 and Pe2
into

Pe = 1−
(
1− Pe1

)
×
(
1− Pe2

)
, (32)



yields the SER of cognitive relay networks with TAS/GSC and
DF relaying in the following theorem.

Theorem 4. The closed-form expression for the SER of
cognitive spectrum sharing with TAS/GSC and DF relaying
in Nakagami-m fading is derived as

Pe = 1−
(
1− a

2

√
b

π

( LR(
mg1 − 1

)
!

(
NR
LR

))NS
NS !∑̃

S|SK |R

~kΠ (mh1,Ωh1, θk, ηk)
)

(
1− a

2

√
b

π

( LD(
mg2 − 1

)
!

(
ND
LD

))NR
NR!

∑̃
S|ST |D

~tΠ (mh2,Ωh2, θt, ηt)
)
, (33)

where

Π (mh,Ωh, θ, η) =
[(

1−
Γ
(
mh,

mhQ
ΩhP

)
Γ
(
mh

) ) Γ
(
θ + 1

2

)(
b+ η

γ̄P

)θ+ 1
2

( 1

γ̄P

)θ
+

1(
mh − 1

)
!

(
θ +mh − 1

)
!e
−mhQΩhP

(1

η

)θ+ 1
2

Γ
(
θ +

1

2

) θ+mh−1∑
m=0

1

m!

(Q
P

)m(mh

Ωh

)m+ 1
2 γ̄

1
2

Q

Ψ
(
θ +

1

2
,m−mh +

3

2
;
(
b+

ηQ

γ̄QP

) γ̄Qmh

ηΩh

)]
. (34)

B. Asymptotic Analysis

1) Proportional Interference Power Constraint:
Substituting (14) into (31), together with the help of [33, eq.

(3.310)], we derive the asymptotic SER under the proportional
interference power constraint in the following theorem.

Theorem 5. When Q is proportional to P , the asymptotic SER
of cognitive spectrum sharing with TAS/GSC and DF relaying
in Nakagami-m fading at high SNRs is derived as

P∞e = (GcγP )
−Gd + o

(
γP
−Gd

)
, (35)

where the diversity order is

Gd = NR ×min {mg1NS ,mg2ND} (36)

and the SNR gain is

Gc =

 Λ1∆1 mg1NS < mg2ND

Λ2∆2 mg1NS > mg2ND

Λ1∆1 + Λ2∆2 mg1NS = mg2ND ,
(37)

where

Λ1 =
[a

2

√
1

π
Γ
(
mg1NRNS +

1

2

)]− 1
mg1NRNS b, (38)

Λ2 =
[a

2

√
1

π
Γ
(
mg2NRND +

1

2

)]− 1
mg2NRND b, (39)

and ∆1 and ∆2 are given in (17) and (18), respectively.

Based on (35), we find that the diversity order is inde-
pendent of the modulation scheme and the peak interference
power constraint Q. The fading severity parameters of each
hop and the antenna configuration have a direct impact on the
diversity order while the interference power constraint at PU
has a direct impact on the SNR gain.

2) Fixed Interference Power Constraint:
Substituting (25) into (31), we derive the asymptotic SER

under the fixed interference power constraint in the following
theorem.

Theorem 6. Under the fixed interference power constraint, the
asymptotic SER of cognitive spectrum sharing with TAS/GSC
and DF relaying in Nakagami-m fading at high SNRs is
derived as

P∞e

=



Θ1

(
Φ1

(
1
γ̄P

)mgNRNS
+ Ξ1

(
1
γ̄Q

)mgNRNS)
mg1NS < mg2ND,

Θ2

(
Φ2

(
1
γ̄P

)mg1NRND
+ Ξ2

(
1
γ̄Q

)mg2NRND)
mg1NS > mg2ND,(

Θ1Φ1 + Θ2Φ2

)(
1
γ̄P

)mgNRNS
+
(
Θ1Ξ1 + Θ2Ξ2

)(
1
γ̄Q

)mgNRNS
mg1NS = mg2ND ,

(40)

where

Θ1 =
aΓ(mg1NRNS + 1

2 )

2
√
πbmg1NRNS

H1, (41)

Θ2 =
aΓ(mg2NRND + 1

2 )

2
√
πbmg2NRND

H2, (42)

and H1, H2, Φ1, Φ2, Ξ1, and Ξ2 are given by (26), (27), (28),
(28), (29), (30), respectively.

From (40), we find that the diversity order of the SER goes
to zero under the fixed interference power constraint.

VI. ERGODIC CAPACITY

The ergodic capacity is an important performance indicator
for cognitive underlay spectrum sharing. It is defined as the
maximum achievable long-term rate, where no delay limit
is taken into account. Under these assumptions, the ergodic
capacity is expressed as

Cerg =
1

2

∞∫
0

log2 (1 + x) fγ (x)dx =
1

2 ln 2

∞∫
0

1− Fγ (x)

1 + x
dx.

(43)

To simplify (43), we define Fγ1 (x) = 1 + F̃γ1 (x) and
Fγ2

(x) = 1 + F̃γ2
(x), and rewrite (43) as

Cerg =
1

2 ln 2

∞∫
0

F̃γ1 (x) F̃γ2 (x)

1 + x
dx, (44)
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NR = 3, ND = 3, mg1 = 1, mg2 = 2, mh1 = mh2 = 2, and γQ = 2γP .

where

F̃γ1
(x) =

( LR(
mg1 − 1

)
!

(
NR
LR

))NS
NS !

∑̃
S|SK |R

~ksgn (ηk) Ξk (x)

(45)

and

F̃γ2
(x) =

( LD(
mg2 − 1

)
!

(
ND
LD

))NR
NR!

∑̃
S|ST |D

~tsgn (ηt) Ξt (x).

(46)

In the following, we assume mh1 = mh2 = mh and Ωh1 =
Ωh2 = Ωh.

A. Exact Analysis

Substituting (45) and (46) into (44), and with the help of
[33, eq.8.352.2], [33, eq.9.211.4.8], and the partial fraction
expression [33, eq.2.102], we obtain a general closed-form
expression for the ergodic capacity in the following theorem.

Theorem 7. Our new closed-form expression for the ergodic
capacity of cognitive TAS/GSC relaying in Nakagami-m fading
is given in (47) at the top of the next page. In (47), we have
defined the following terms

∇ (θ)
4
=
(

1− Γ
(
mh,

Q

P

mh

Ωh

)/
Γ (mh)

)( 1

γ̄P

)θ
, (48)

∆ (θ, η, j, k)
4
=

(
θ +mh − 1

)
!(

mh − 1
)
!

( 1

γ̄Q

)θ
e
−mhQΩhP

θ+mh−1∑
j=0

1

j!

(Q
P

)j j∑
k=0

(
j

k

)(mh

Ωh

)mh+j−k( η
γ̄Q

)k
, (49)

(50)
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Fig. 2. Cognitive spectrum sharing with TAS/GSC and DF relaying: NS = 2,
NR = 3, ND = 3, mg1 = 1, mg2 = 2, mh1 = mh2 = 2, and γQ =
20 dB.

ν (η, l, k1, k2)
4
= Γ (τ) (γ̄Qmh/ηΩh)

τ−l
Ψ (τ , τ + 1− l;

(ηt + ηk) γ̄Qmh/γ̄pηΩh) , (51)

∂ (η, l)
4
=

(γ̄Qmh/ηΩh − 1)
l−1

(γ̄Qmh/ηtΩh − 1)
θt+mh(γ̄Qmh/ηkΩh − 1)

θk+mh
,

κ (θ, η, l, j)
4
=

(−1)
θ+mh−l+1(j+θ+mh−l−1

j−1

)
(γ̄Qmh/Ωh)

j+θ+mh−l(1/ηt − 1/ηk)
j+θ+mh−l

,

(52)

with τ = θk + k1 + θt + k2 + 1.

Our result can be applied and simplified to the special cases
of TAS/MRC and TAS/SC in Nakagami-m fading channel, as
well as TAS/GSC in Rayleigh fading channels.

B. High SNR Capacity analysis

To examine the capacity performance in the high SNR
regime with γP →∞, we derive the high SNR approximation
o the ergodic capacity in closed-form. With the aid of the
Jensen’s inequality, a tight upper bound on the ergodic capacity
is given by [34]

Cerg =
1

2
E [log2 (1 + γ)] ≤ 1

2
log2E (1 + γ) . (53)

Thus, the tight high SNR approximation of the ergodic capac-
ity is presented as [34, 35]

C∞erg ≈
1

2
log2E (1 + γ) ≈ 1

2
log2E (γ) . (54)



Cerg =
1

2 ln 2

( LR(
mg1 − 1

)
!

(
NR
LR

))NS
NS !

∑̃
S|SK |R

~ksgn (ηk)
( LD(
mg2 − 1

)
!

(
ND
LD

))NR
NR!

∑̃
S|ST |D

~tsgn (ηt)

[
∇ (θk)

∇ (θt) ν (γ̄Qmh/Ωh, 1, 0, 0) + ∆ (θt, ηt, j2, k2)∇ (θk)

(
ν (γ̄Qmh/Ωh, 1, 0, k2)−

θt+mh∑
l2=1

ν(ηt,l2,0,k2)

(γ̄Qmh/ηtΩh−1)1−l2

)
(mh/Ωh − ηt/γ̄Q)

θt+mh

+

(
ν (γ̄Qmh/Ωh, 1, k1, 0)−

θk+mh∑
l1=1

ν(ηk,l1,k1,0)

(γ̄Qmh/ηkΩh−1)1−l1

)
(mh/Ωh − ηk/γ̄Q)

θk+mh
∇ (θt) ∆ (θk, ηk, j1, k1) + ∆ (θk, ηk, j1, k1)

∆ (θt, ηt, j2, k2)
( γ̄Q
ηk

)θk+mh( γ̄Q
ηt

)θt+mh[∂ (η, 1) ν (γ̄Qmh/Ωh, 1, k1, k2) +

θk+mh∑
l1=1

(
−∂ (ηk, l1)+

θt+mh∑
j=1

κ
(
θk, ηk, l1, j

)(
γ̄Qmh

/
ηtΩh − 1

)θt+mh−j+1

)
ν (ηk, l1, k1, k2) + sgn (|ηk − ηt|) ν (ηt, l2, k1, k2)

θt+mh∑
l2=1

(
−∂ (ηt, l2)

+

θk+mh∑
i=1

(−1)
i+θt+mh−l2

(γ̄Qmh/ηkΩh − 1)
θk+mh−i+1

κ (θt, ηt, l2, i)
)
−

θk+θt+2mh∑
l3=θk+mh+1

(1− sgn (|ηk − ηt|)) ν (ηk, l3, k1, k2)

(γ̄Qmh/ηkΩh − 1)
θk+θt+2mh−m+1

]]
. (47)

Therefore, we can rewrite (54) as

C∞erg ≈
1

2
log2

( ∞∫
0

xfγ (x) dx
)

=
1

2
log2

( ∞∫
0

(1− Fγ (x)) dx
)

=
1

2
log2

∞∫
0

F̃γ1
(x) F̃γ2

(x) dx. (55)

1) Proportional Interference Power Constraint:

Based on (55), the high SNR approximation for the ergodic
capacity with the proportional interference power constraint is
written as

C∞erg =
1

2

[
log2

(
γ̄P
)

+ log2

( ∞∫
0

F̃γ1

(
x
)
F̃γ2

(
x
)
d
( x
γ̄P

))]
.

(56)

Substituting (45) and (46) into (56), and with the help of [33,
eq.8.352.2], [33, eq.9.211.4.8] and the binomial expansion,
the high SNR approximation for ergodic capacity with the
proportional interference power constraint is derived in the
following theorem.

Theorem 8. When Q is proportional to P , the high SNR
approximation of the ergodic capacity is derived as

C∞erg ≈
1

2
log2 (γP ) +

1

2
log2 (Υ) , (57)

where

Υ =
( LR(
mg1 − 1

)
!

(
NR
LR

))NS
NS !

∑̃
S|SK |R

~ksgn (ηk)

( LD(
mg2 − 1

)
!

(
ND
LD

))NR
NR!

∑̃
S|ST |D

~tsgn (ηt)

[
λ2 Γ (θk + θt + 1)

(ηk + ηt)
θk+θt+1

+ λ

θt+mh−1∑
j2=0

j2∑
k2=0

∆s (θt, j2, k2)

νs (ηt, θt, 0, k2)

(1/µ)
θk+j2+1

+ λ

θk+mh−1∑
j1=0

j1∑
k1=0

∆s (θk, j1, k1)

(1/µ)
θt+j1+1

(58)

νs (ηk, θk, k1, 0) +

θk+mh−1∑
j1=0

j1∑
k1=0

θt+mh−1∑
j2=0

j2∑
k2=0

Ω

∆s (θk, j1, k1) ∆s (θt, j2, k2)

(mh/Ωh)
θk+θt+1

(1/µ)
j1+j2+1

]
. (59)

In (58), we have defined

∆s (θ, j, k)
4
=

(θ +mh − 1)!

(mh − 1)!j!
e
−µmhΩh

(
j

k

)(
mh

Ωh

)θk+θt+j+1−θ

,

(60)

κs (θ, η, l)
4
=

(−1)
(θ+mh−l)(θk+θt+2mh−l−1

θ+mh−l
)

(1/ηt − 1/ηk)
θk+θt+2mh−lηk1+k2−l

, (61)

νs (η, ε, k1, k2)
4
= Γ (θk + k1 + θt + k2 + 1) (1/η)

θk+θt+1

Ψ
(
θk + k1 + θt + k2 + 1, θk + k1 + θt+k2 + 2−mh − ε;

(ηt + ηk)mhµ

Ωhη

)
, (62)

and
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Ω
4
= (1− sgn (|ηk − ηt|)) νs (ηk, θk + θt +mh, k1, k2) ,

+
sgn (|ηk − ηt|)

ηkθk+mh−k1ηtθt+mh−k2

[θk+mh∑
l1=1

κs (θk, ηk, l1)

νs (ηk, l1 −mh, k1, k2) +

θt+mh∑
l2=1

(−1)
θk+θt+2mh−l2

κs (θt, ηt, l2) νs (ηt, l2 −mh, k1, k2)

]
. (63)

Note that similar as the asymptotic ergodic capacity, the
tight high SNR approximations can well predict the perfor-
mance behaviours in the high SNR regime. Thus, we deduce
the high SNR scaling law from the high SNR approximations
similar to the approach in [36] and [37]. Based on (57),
we characterize two key parameters determining the affine
approximation of the ergodic capacity in the high SNR regime,
namely the high SNR slope and the high SNR power offset
[38]. The high SNR slope is also known as the degrees
of freedom or the multiplexing gain [39]. The high SNR
power offset captures the joint effects of the fading model,
the number of antennas at each terminal, and the interference
power constraint. We represent the high SNR approximation
of the ergodic capacity as [38]

C∞erg ≈ S∞ (log2 (γP )− L∞) , (64)

where S∞ is the high SNR slope in bits/s/Hz/(3 dB)

S∞ = lim
γP→∞

C∞erg
log2 (γP )

=
1

2
(65)

and L∞ is the high SNR power offset in 3 dB units

L∞ = lim
γP→∞

(
log2 (γP )−

C∞erg
S∞

)
= −log2 (Υ) . (66)
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From (65), we see that the high SNR slope S∞ is indepen-
dent of the interference power constraint, the selected number
of antennas at the receiver, and the primary network. We also
see that the high SNR power offset L∞ is independent of γP
from (66).

2) Fixed Interference Power Constraint:
Substituting (45) and (46) into (55), we obtain the high

SNR approximation of the ergodic capacity under the fixed
interference power constraint.

Theorem 9. When Q is fixed, the high SNR approximation
of the ergodic capacity is given in (67) at the top of the next
page.

From (67), we find that for the fixed interference power
constraint, the high SNR slope collapses to zero.

VII. NUMERICAL RESULTS

In this section, we present numerical results to verify our
new analytical derivations for cognitive TAS/GSC relaying in
Nakagami-m fading channels. We set the threshold SNR as
γth = 5 dB. All the figures clearly show that the exact curves
are in precise agreement with the Monte Carlo simulations.
Importantly, the asymptotic lines accurately predict the exact
behaviour in the high SNR regime.

Fig. 1 plots the outage probability with the proportional
interference constraint as we vary µ, LR and LD. The exact
and asymptotic curves are plotted by using (13) and (14),
respectively. For the same µ, we observe that the outage
probability decreases with increasing LR and LD, due to
an increase in the SNR gain (16). We also confirm that the
diversity order is independent of LR and LD as reflected
by the parallel slope. Another observation is that the outage
probability decreases with increasing µ, which is due to the
relaxed interference power constraint at the PU receiver.



C∞erg =
1

2
log2

[( LR
(mg1 − 1)!

(
NR
LR

))NS
NS !

∑̃
S|SK |R

~ksgn (ηk)
( LD

(mg2 − 1)!

(
ND
LD

))NR
NR!

∑̃
S|ST |D

~tsgn (ηt)

[
λ2γ̄P

Γ (θk + θt + 1)

(ηk + ηt)
θk+θt+1

+ γ̄Q

[
λ

θt+mh−1∑
j2=0

j2∑
k2=0

∆s (θt, j2, k2)νs (ηt, θt, 0, k2)
( γ̄Q
γ̄P

)θk+j2
+ λ

θk+mh−1∑
j1=0

j1∑
k1=0

( γ̄Q
γ̄P

)θt+j1
∆s (θk, j1, k1) νs (ηk, θk, k1, 0) +

θk+mh−1∑
j1=0

j1∑
k1=0

θt+mh−1∑
j2=0

j2∑
k2=0

∆s (θk, j1, k1) ∆s (θt, j2, k2)

(mh/Ωh)
θk+θt+1

(P/Q)
j1+j2

Ω

]]]
. (67)
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Fig. 5. Cognitive spectrum sharing with TAS/GSC and DF relaying: NS = 2,
NR = 3, ND = 3, mg1 = 1, mg2 = 2, mh1 = mh2 = 2, and γQ = 2γP .

Fig. 2 examines the impact of the fixed interference pow-
er constraint on the outage probability as varying LR and
LD. The exact and asymptotic curves are plotted using (13)
and (25), respectively. Interestingly, the outage probability
becomes saturated for γP > 18 dB. This is due to the fact
that when γP →∞, min

(
P,Q

/
|h1i∗ |2

)
≈
(
Q
/
|h1i∗ |2

)
and

min
(
P,Q

/
|h2j∗ |2

)
≈
(
Q
/
|h2j∗ |2

)
, as such the fixed peak

interference power constraint becomes the dominant factor. By
setting LR = LD = 1 and LR = LD = 3, we also see that
TAS/MRC outperforms TAS/GSC, and TAS/GSC outperforms
TAS/SC.

Fig. 3 plots the exact and asymptotic SER with the pro-
portional interference power constraint from (33) and (35),
respectively. The plot confirms that the diversity order is
independent of the modulation scheme, LR, and LD. We see
that the SER decreases as LR and LD increase. We also see
that BPSK outperforms QPSK, which is predicted from the
SNR gain (16).

Fig. 4 plots the exact and asymptotic SER with the fixed
interference power constraint from (33) and (40), respectively.
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Fig. 6. Cognitive spectrum sharing with TAS/GSC and DF relaying: NS = 2,
NR = 3, ND = 3, mg1 = 1, mg2 = 2, mh1 = mh2 = 2, and γQ =
25 dB.

We see that the SER decreases as LR and LD increase, and
BPSK outperforms QPSK. Similar to Fig. 2, the SER becomes
saturated for γP > 22 dB, which confirms that the diversity
order goes to zero.

Fig. 5 plots the exact ergodic capacity and its high SNR
approximation with the proportional interference power con-
straint from (47) and (57), respectively. We see that the high
SNR approximations of the ergodic capacity are tight and well
predict the behavior of the ergodic capacity at high SNRs.
It is obvious that the ergodic capacity can be improved by
increasing LR and LD. The parallel curves confirm that the
high SNR slope is independent of LR and LD.

Fig. 6 examines the impact of the fixed interference power
constraint on the ergodic capacity. The exact ergodic ca-
pacity and its high SNR approximation are from (47) and
(67), respectively. Interestingly, we find that the capacity
ceiling occurs for γP > 30 dB. This is due to the fact
that when γP → ∞, min

(
P,Q

/∣∣h1i∗
∣∣2) ≈ (Q/∣∣h1i∗

∣∣2) and

min
(
P,Q

/∣∣h2j∗
∣∣2) ≈ (Q/|h2j∗ |2

)
. Once again, the fixed

interference power constraint becomes the dominant factor.



By setting LR = LD = 1 and LR = LD = 3, we see that
TAS/MRC outperforms TAS/GSC and TAS/GSC outperforms
TAS/SC.

VIII. CONCLUSIONS

We have taken into account the cognitive DF relay network
with TAS/GSC over Nakagami-m fading. This framework is
well suited for the reliability enhancement of the secondary
network and interference alleviation of the primary network.
We derived new statistical properties of the end-to-end SNR.
Based on these, we have derived closed-form expressions for
the exact and asymptotic outage probability, symbol error rate,
and ergodic capacity with the proportional and the fixed inter-
ference power constraints. Our results are valid for Nakagami-
m fading and arbitrary number of antennas in the secondary
network. Based on the relationship of the maximum transmit
power constraint and peak interference power constraint, we
conclude that: 1) under the proportional interference power
constraint, the diversity order is determined by the fading
parameter and the antenna configuration of the secondary
network, and the high SNR slope is 1/2; and 2) under the
fixed interference power constraint, the diversity order is zero
with error floor, and the high SNR slope is zero with capacity
ceiling.

APPENDIX A
A PROOF OF LEMMA 1

We first present the probability density function (PDF)
and CDF for the channel power gain of a single branch of
the secondary network channel with the Nakagami-m fading
as [40]

f (x) =
xmg1−1(
mg1 − 1

)
!

(mg1

Ωg1

)mg1
e
−mg1

Ωg1
x (A.1)

and

F (x) = 1−
Γ
(
mg1, x

mg1

Ωg1

)
Γ
(
mg1

) , (A.2)

respectively. The marginal moment generating function (MGF)
of (A.1) is given by [19]

Φ (s, x) =
(mg1

Ωg1

)mg1

mg1−1∑
i=0

xie
−
(
s+

mg1
Ωg1

)
x

i!
(
s+

mg1

Ωg1

)mg1−i . (A.3)

As shown in [19, 24], the MGF expression for the channel
power gain with GSC is expressed as

ΦGSC (s) =

LR

(
NR
LR

) ∞∫
0

e−sxf (x) (Φ (s, x))
LR−1

(F (x))
NR−LRdx.

(A.4)

Here the MGF is defined as Φγ (s) = E [e−γs].

Based on (A.3), and using the multinomial theorem [41],
we rewrite (Φ (s, x))

LR−1 as

(Φ (s, x))
LR−1

=
(mg

Ωg

)mg(LR−1
)∑
SΦ
K

aΦ
k x

bΦk e−c
Φ
k x

(
s+

mg1

Ωg1

)bΦk−mg1

(
LR−1

)
, (A.5)

where SΦ
K =

{(
nΦ
k,0, . . . , n

Φ
k,mg1−1

)∣∣∣mg1−1∑
i=0

nΦ
k,i = LR − 1

}
with

{
nΦ
k,i

}
∈ Z+, aΦ

k , bΦk , and cΦk are, respectively, given by

aΦ
k =

(
LR − 1

)
!

mg1−1∏
i=0

nΦ
k,i!

mg1−1∏
i=0

( 1

i!

)nΦ
k,i

, bΦk =

mg1−1∑
i=0

nΦ
k,ii, (A.6)

and cΦk = (LR − 1)

(
s+

mg1

Ωg1

)
. (A.7)

Based on (A.2), we proceed to employ the multinomial
theorem to express (F (x))

NR−LR as

(F (x))
NR−LR =

∑
SFK

aFk x
bFk e−c

F
k x, (A.8)

where SFK =

{(
nFk,0, . . . , n

F
k,mg1

)∣∣∣ mg∑
j=0

nFk,j = NR − LR

}
with

{
nFk,j

}
∈ Z+, aFk , bFk , and cFk are, respectively, given by

aFk =

(
NR − LR

)
!

mg1∏
j=0

nFk,j !

mg1−1∏
j=0

(−1

j!

)nFk,j+1(mg1
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)bFk , (A.9)

bFk =

mg1−1∑
j=0

jnFk,j+1, and cFk =
mg1

Ωg1

mg1∑
j=1

nFk,j . (A.10)

Substituting (A.1), (A.5) and (A.8) into (A.4), and apply-
ing [33, eq. (3.351.3)], ΦGSC (s) is derived as

ΦGSC (s) =

LR(
mg1 − 1

)
!

(
NR
LR

)(mg1

Ωg1

)mg1LR
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k a
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)bΦk+bFk +mg1
. (A.11)

Let FGSC (x) denote the CDF of the channel power gain
of the secondary network with GSC. The Laplace transform
of FGSC (x) is given by L [FGSC (x)] = ΦGSC (s) /s [20].



Therefore, the Laplace transform for FGSC (x) is

L [FGSC (x)] =
LR

(mg1 − 1)!

(
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LR
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. (A.12)

Using the partial fraction expansion [33, eq. (2.102)], we
can rewrite (A.12) in an equivalent form. Then, taking the
inverse Laplace transform of L [FGSC (x)], we obtain

FGSC (x) =
LR(

mg1 − 1
)
!
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NR
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(A.13)

where the set SK has been defined in Lemma 1, `k(n), µk(n)
and νk(n) are, respectively, given by
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=
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and
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with n2 = bΦk +bFk +mg1. In (A.14), Υk1, Υk2, Υk3, and Υk4

are given by
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and
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where n1 = n−mg1 (LR − 1) + bΦk .
The CDF of ‖g1i∗θi∗‖

2 is given by F‖g1i∗θi∗ ‖
2 (x) =

(FGSC (x))
NS . Based on (A.13), and employing the multi-

nomial theorem, we can derive the CDF of ‖g1i∗θi∗‖
2 as (6).

APPENDIX B
A PROOF OF LEMMA 2

According to (4), the CDF of γ1 can be written as

Fγ1
(x) =Pr
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The CDF of
∣∣h

1i∗

∣∣2 is expressed as

F∣∣h1i∗
∣∣(x) = 1−

Γ
(
mh1, x

mh1

Ωh1

)
Γ
(
mh1

) (B.2)

By substituting (B.2) and (6) into (B.1), we derive the
closed-form expression of Fγ1(x) as (10).

APPENDIX C
A PROOF OF THEOREM 2

Based on (A.8), we consider transmission in the high SNR
regime with γ̄P → ∞. Applying the Taylor series expansion

truncated to the kth order given by ex =
k∑
j=0

xj

j! + o
(
xk
)

in

(A.8), the asymptotic expression for (A.8) is written as
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Substituting (A.1), (A.5) and (C.1) into (A.4) yields
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Note that L [FGSC (x)] = ΦGSC (s) /s [20], we derive
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Taking the inverse Laplace transform of (C.3), we obtain
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Again, employing the Taylor series expansion truncated to the

kth order given by ex =
k∑
j=0

xj

j! + o
(
xk
)

in (C.4), (C.4) can

be rewritten as

FGSC
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=
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(C.5)

Based on (C.5), the asymptotic expression for the CDF of∥∥g1i∗θi∗

∥∥2
is given by

F∥∥g1i∗θi∗

∥∥2

(
x
)

=[(mg1x

Ωg1

)mg1NR
K
(
SΦ
K , NR, LR,mg1, a

Φ
k , b

Φ
k

) ]NS
. (C.6)

By substituting (C.6) into (B.1), the first non-zero order
expansion of the CDF of γ1 is attained and yields the asymp-
totic outage probability of cognitive relay network with the
proportional interference power constraint as (14).
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