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Joint Optimisation of Real-time Deployment and
Resource Allocation for UAV-Aided Disaster

Emergency Communications
Tan Do-Duy, Long D. Nguyen, Trung Q. Duong?, Saeed Khosravirad, and Holger Claussen

Abstract—In this work, we consider a joint optimisation of
real-time deployment and resource allocation scheme for UAV-
aided relay systems in emergency scenarios such as disaster
relief and public safety missions. In particular, to recover the
network within a disaster area, we propose a fast K-means-
based user clustering model and jointly optimal power and time
transferring allocation which can be applied in the real system
by using UAVs as flying base stations for real-time recovering
and maintaining network connectivity during and after disasters.
Under the stringent QoS constraints, we then provide centralised
and distributed models to maximise the energy efficiency of the
considered network. Numerical results are provided to illustrate
the effectiveness of the proposed computational approaches in
terms of network energy efficiency and execution time for
solving the resource allocation problem in real-time scenarios.
We demonstrate that our proposed algorithm outperforms other
benchmark schemes.

Index Terms—UAV cellular communication, K-means clus-
tering, convex optimisation, embedded programming, disaster
communication.

I. INTRODUCTION

In a disaster recovery and relief scenario, such as aftermath
of flooding, hurricanes and earthquakes, traditional terrestrial
cellular networks are likely to be disrupted due to failure of
part of the base station (BS) infrastructure [2]–[4]. Therefore,
there is a demand for the persistent and reliable communi-
cation networks that supports data transmission in disaster
regions. Several technical solutions have been proposed as
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potential candidates for solving the problem. For example,
device-to-device (D2D) networks can be used to transmit
packets between nodes in proximity without traversing the
BSs or core network [5]. However, it is very challenging to
optimize the routes between distributed nodes in disaster areas
due to adverse wireless channels. In another attempt, satellite
communications might be a potential technology in emergency
communications as it can be used in disaster areas where the
terrestrial networks are not available [6], yet limited and costly
resources (low data rates and high end-to-end latency) and
limited equipment available to most public users are main
obstacles to the wide deployment of satellites. By providing
deployment flexibility and mobility with adaptive altitude,
unmanned aerial vehicle (UAV) based cellular network has
been recently considered as a key solution to support reliable
communication services to ground users (UEs) at a particular
location in the disaster area [7]–[9]. As compared to the
conventional technologies, the main advantage of using UAVs
as flying and altitude-adjustable relay nodes is to exploit the
line-of-sight (LoS) communication links to multiple UEs [10],
[11].

The efficient UAV deployment problem in wireless networks
has been extensively studied to improve network performance.
For instance, in [12], the authors investigated the efficient
solutions for synchronization and data management in a UAV-
assisted emergency Wi-Fi network over the disaster area. The
work in [13] focused on the optimal altitude and location of
multiple UAVs working as flying BSs to maximize the cover-
age. Most recently, considering UAV-aided communications,
the work [14] investigated a joint UAV-user association and
UAV deployment location optimization problem, yet the main
objective in [14] is to maximize users’ total achievable rates. In
other works [15], [16], an end-to-end throughput maximization
problem was proposed to optimize UAV-based relay trajectory
and power allocation. In addition, the authors in [17] studied
energy-efficient UAV trajectory path planning for a UAV-based
relay network to serve ground nodes. However, the paper [14]–
[17] only considered a simple network including a source node
and a single UAV-assisted relay node. Furthermore, in [18], the
trajectory design problem was investigated for a UAV-enabled
multicasting system considering UAV mission completion time
to ensure some required successful packet recovery probability
at the ground nodes. Nevertheless, in general, there is a
lack of practical solutions for joint optimal UAV deployment
and resource allocation considering the real-time emergency
scenarios in UAV-enabled cellular networks. Very recently, the



2

joint optimisation for UAV’s clustering selection and resource
allocation has been considered in [1]. In particular, the target
of the work in [1] is to maximise the network throughput via
UAVs clustering selection and power allocation, i.e., optimal
max-min end-to-end (E2E) rate of each user. However, such
joint optimisation in maximising the throughput exploits the
full power allocation, which neglects the energy efficiency
(EE) of the whole networks and therefore, is inapplicable to
disaster emergency communications.

Moreover, the conventional K-means algorithm proposed in
[19], a method for clustering approach, may not be suitable
for UAVs with the stringent QoS requirements. Due to the
dynamic nature of UAV communications with complex proce-
dures, the current version of K-means method may not be suit-
able for UAV with many constraints, which cannot be directly
applied to our work. Therefore, in this paper, we propose a new
K-means clustering model with sophisticated QoS constraints
for solving the UAV deployment. Thus, different from the
aforementioned works, in this paper, we propose a real-time
optimisation framework for the practical and simultaneous
deployment of multiple UAVs in disaster relief networks under
stringent quality-of-services (QoS) requirement and energy
constraints. In particular, the main contributions of this paper
can be summarized as follows:

• We propose a fast and efficient user clustering model
with QoS constraints based on a popular user clustering
method, called K-means clustering [19], to form multiple
clusters of distributed UEs within the disaster area who
cannot be directly served by the still operating cellular
BSs due to poor wireless channel conditions. Then, a
central station deploys a number of UAVs as flying relay
nodes at the centroid of clusters to support communica-
tion services to the set of UEs in each cluster.

• Under the stringent QoS requirements of disaster emer-
gency communications and energy-efficiency constraints
of UAV-aided relay systems, we develop and solve
a distributed real-time resource allocation problem for
maximising EE in terms of the ratio between overall
transmitted data to all users in the disaster area and total
energy consumption via joint UAVs trajectory planning,
power and time allocation.

• By means of numerical results and implementation in em-
bedded systems using Python programming, we demon-
strate the effectiveness of the proposed approach for
solving the practical resource allocation of the UAV-aided
communication systems.

The paper is organized as follows. After the Introduction,
the system model is presented in Section II which is used
throughout this paper and the main optimization problems to
be solved in the remaining sections. The UAV deployment by
optimal UAV-UE clustering model corresponding to the QoS
constraints is investigated in Section III. The UAV-enabled
disaster emergency communications via central resource al-
location including maximising network EE performance with
EE objective and enhancing network EE performance with
fairness services is presented in Section IV. On the other
hand, the distributed resource allocation model for UAV-

enabled disaster emergency communications is discussed in
Section V. Extensive numerical results and implementation
in embedded systems using Python programming to indicate
the performance of the proposed approaches are conducted in
Section VI. Finally, the main contributions and conclusions of
the paper are provided in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model
We consider the downlink transmission where a massive

MIMO BS is equipped with a large L-antenna array to serve
some low-mobility UEs in a safety area. Meanwhile, K
UEs, whose locations are randomly distributed in the disaster
area, are grouped into M clusters. To support M clusters
of UEs which are isolated in the disaster region, M UAVs,
M = {1, ...,M}, are deployed to connect the UEs with
the BS. The UAVs and UEs are equipped with a single
antenna. The cluster m can serve a finite number of UEs,
Km = {1, ...,Km} for m ∈ M. The (m, k)th UE denotes
the kth user in the mth cluster. A typical model of cellular-
connected UAV communication in disaster relief is illustrated
in Fig. 1. Here, UAVs play the vital role of flying relay stations
(RSs) to provide reliable communication between a BS and a
large number of distributed users in a disaster region. In such
a scenario, the UAV deployment is a key design consideration
due to its stringent energy and placement constraints. In ad-
dition, the flying UAV-based RSs need to reorganize and self-
deploy to cope with the dynamically changing environment in
disaster areas. Hence, decision-making for self-organization
and resource allocation should be realized in real time [4],
[8], [9] i.e., in the time scales of milliseconds [20].

B. Channel model
We consider that all the UAVs operate over a time duration

T > 0 (in seconds). The time-varying 3D locations of the BS,
the mth UAV and the kth user (m = 1, ..,M and k = 1, ...,K)
are denoted by (x0, y0, H0) and (xU,m(t), yU,m(t), HU,m(t)),
and (xk, yk, 0), respectively. Here, H0 and HU,m(t) denote
the antenna heights of the BS and the UAV, respectively. We
assume that the antenna altitude of the UAV is also the altitude
of the UAV.

Without loss of generality, the time duration T is divided
into N equal time-slots. Hence, the length of each time-slot
is given as γ = T

N , which is assumed to be sufficiently small
such that the location of the UAV is stable within a time-slot
[18]. Therefore, the trajectory of the mth UAV with respect
to the nth time-slot (n = 1, ..., N) can be approximated as
qm[n] = (xU,m[n], yU,m[n], HU,m[n]).

The trajectory of the UAV is assumed to be contained within
the considered area. To start the mission, the UAVs fly from
their parking dock at the location qG,m = [xG,m, yG,m, hG,m],
i.e., qm[1] = qG,m, to the disaster area and relay the
information data from the BS to the allocated UEs, and finish
their trajectories at their parking dock, i.e., qm[N ] = qG,m.

At the nth time-slot, the distance between the BS and the
mth UAV is written as

R0,m[n] =
√
d2

0,m[n] + (HU,m[n]−H0)2, (1)
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Fig. 1: A typical model of cellular-connected UAV communi-
cation in disaster relief [1].

where d0,m[n] =
√

(xU,m[n]− x0)2 + (yU,m[n]− y0)2.
Similarly, the distance between the mth UAV and the kth

user in the mth cluster is given by

Rm,k[n] =
√
d2
m,k[n] +H2

U,m[n], k ∈ Km, (2)

where dm,k[n] =
√

(xU,m[n]− xk)2 + (yU,m[n]− yk)2 is the
Euclidean distance between the mth UAV and the kth user.

Due to the high altitude of the UAV, we assume that the air-
to-air (ATA) channel between the BS and the UAVs is LoS.
Hence, the path loss (in dB) between the BS and the mth UAV
is only dependent on free-space path loss and is modeled as

β0,m[n] = 10 log
(
β0R

−2
0,m[n]

)
= 10 log

(
β0

d2
0,m[n] + (HU,m[n]−H0)2

)
, (3)

where β0 is the channel power gain at reference distance d0.
In contrast, the air-to-ground (ATG) channel between the

UAVs and the users has a more complex form, due to the
impacts of the environment, including shadowing from the
propagation blockages, which can result in a NLoS channel.
The path loss (in dB) between the mth UAV and the kth user
is calculated as [13]

βm,k[n] = PLm,k[n] + ηLoSPLoSm,k [n] + ηNLoSPNLoSm,k [n]

= 10α log

(√
d2
m,k[n] +H2

U,m[n]

)
+APLoSm,k [n] +B,

(4)

where ηLoS and ηNLoS are the average additional losses for
LoS and NLoS, respectively. In addition, we have

A = ηLoS − ηNLoS , B = 10α log

(
4πfcRm,k[n]

c

)
+ ηNLoS .

(5)

Therein, the distance path loss is given by

PLm,k[n] = 10 log

(
4πfcRm,k[n]

c

)α
, (6)

where fc is carrier frequency (Hz), c is the speed of light (m/s),
α ≥ 2 is the path loss exponent. The probability of LoS and
NLoS is given by [21]

PLoSm,k [n] =
1

1 + a exp

[
−b
(

arctan
(
HU,m[n]
dm,k[n]

)
− a
)] ,

PNLoSm,k [n] = 1− PLoSm,k [n], (7)

where the constants a and b depend on environment. On the
other hand, the small-scale fading of all channels (h0,m[n] ∈
C, hm,k[n] ∈ C) is assumed as an independent and identically
distributed (i.i.d.) random variable with zero mean and unit
variance. For ease of readability, in the next sections, we
will omit the discrete time-domain ([n]) from mathematical
notations and expressions.

C. Transmission model

We consider the two-phase communication of downlink
transmission. In the first phase, the BS transmits the signal
to the UAVs. The signal received at the mth UAV is given by

y0,m = gH0,m
√
P0f0,mx0,m︸ ︷︷ ︸

desired signal

+
∑

m′∈M\{m}

gH0,m′
√
P0f0,m′x0,m′︸ ︷︷ ︸

co-tier interference

+nm, (8)

where g0,m ∈ CL is the channel coefficient between the BS
and mth UAV. Here, we utilize the structure of the ATA by
including both large-scale and small-scale fading effects as
g0,m =

√
β0,mh0,m, where h0,m is the small-scale fading

coefficient for channel from BS to mth UAV. In addition, f0,m

is the vector beamforming and x0,m ∈ C is the information
received at the mth UAV with ||x0,m||2 ≤ 1; P0 is the transmit
power at the BS; nm ∼ CN (0, σ2

m) is the additive white
Gaussian noise (AWGN) at the mth UAV.

We assume that the BS uses a channel estimation process to
estimate the effective channels to design the precoding matrix.
In this paper, we employ the maximal ratio transmission
(MRT), which is a simple and nearly optimal precoding
design in massive MIMO networks [22]. The MRT downlink
precoders at the BS and the UAV are given by

f0,m =
√
p0,m

g∗0,m
‖g0,m‖

, (9)

where p0,m is power control coefficient. In the second phase,
the UAVs forward signals to the users in their cluster. The
signal received by the UE k in cluster m is written as

ym,k = gm,k
√
Pm
√
pm,kxm,k︸ ︷︷ ︸

desired signal

+
∑

l∈M\{m}

∑
j∈Kl

gl,km
√
Pl
√
pl,jxl,j︸ ︷︷ ︸

inter-cluster interference

+nm,k, (10)

where gm,k ∈ C is the channel between the mth UAV and
the kth UE. Similarly as in ATA interface, for ATG channel,
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we also have gm,k =
√
βm,khm,k, where hm,k is the small-

scale fading coefficient for the channel from mth UAV to kth
user. Moreover, Pm is the transmit power at the mth UAV 1,
pm,k and xm,k are the power control coefficient and received
information signal at the kth UE in the mth cluster with
||xm,k||2 ≤ 1, and nm,k ∼ CN (0, σ2

m,k) is AWGN at the
kth UE.

Given the power control coefficients p0 = [p0,m]Mm=1, pm =
[pm,k]Kmk=1, the network interference is characterized by the co-
tier interference power in the first phase as

Icotier
m (p0) =

∑
m′∈M\{m}

P0p0,m′γ0,m,m′ ,m ∈M, (11)

where γ0,m,m′ =

∣∣∣∣∣
〈
g0,m′ ,

g∗
0,m′

‖g0,m′‖

〉∣∣∣∣∣
2

, 〈.〉 is the Hermitian

inner product, and the inter-cluster interference functions2 in
the second phase, written as

I inter
m,k (pM ) =

∑
l∈Nm

∑
j∈Kl

βl,kPlpl,j , k ∈ Km;m ∈M, (12)

where pM = [pm]Mm=1 and Nm ⊂M\ {m}.
The information throughput in the first phase at the mth

UAV (in nats) is shown as

R0,m(p0) =
1

2
B ln

(
1 +

P0p0,mγ0,m,m

Icotier
m (p0) + σ2

m

)
, (13)

where B is the bandwidth of the system, γ0,m,m =∣∣∣∣〈g0,m,
g∗0,m
‖g0,m‖

〉∣∣∣∣2.

The information throughput in the second phase at the
(m, k)th UE (in nats) is written as

Rm,k(pM ) =
1

2
B ln

(
1 +

Pmpm,k|gm,k|2

I inter
m,k (pM ) + σ2

m,k

)
. (14)

Then, E2E information throughput at the (m, k)th UE is given
by

RE2E
m,k (p0,pM ) = min{R0,m(p0), Rm,k(pM )}. (15)

Hence, the transmission data (in bits) received by the UE
(m, k) is given by

DE2E
m,k (p0,pM , t

dat
m,k) = RE2E

m,k (p0,pM )tdatm,k

= min{R0,m(p0)tdatm,k, Rm,k(pM )tdatm,k},
(16)

where tdatm,k is the data transferring time for the mth UAV and
(m, k)th UE exchange duration. In this work, we use the time
division access scheme, so the intra-cluster interference can
be fully suppressed.

1We assume that the transmit power Pm is from an energy source that
is separate from the UAV’s internal battery and is used to power the UAV
operation. We further assume that this energy source is much larger than the
UAV’s internal battery.

2The inter-cell channel hl,k is difficult to estimate, and thus, it must be
defined as in (12).

Then, the total transmission data received by all the UEs in
the deployment area can be expressed as

DE2E
tot (p0,pM , τ

dat
M ) =

∑
m∈M

∑
k∈Km

DE2E
m,k (p0,pM , t

dat
m,k),

(17)

where tdatm = [tdatm,k]Kmk=1 and τdatM = [tdatm ]Mm=1.
Unlike [1] where the main goal is to maximise the minimum

throughput of all clusters, i.e., maxmin E2E rate problem, in
this paper, we take a step further to tackle the network energy
efficiency (EE) which is more relevant to the perspective of
UAV communications. As such, we will detail the time and
energy models with respect to the context of UAV communi-
cations in the next sub-sections.

D. Energy modeling with time framework

The total operating time of the mth UAV is estimated by

topem (qm, t
dat
m ) =

∑
k∈Km

tconm,k +
∑
k∈Km

tdatm,k + tflyG,m + tflym,G,

(18)

where
∑
k∈Km t

con
m,k and

∑
k∈Km t

dat
m,k are the connecting time

and the data transferring time for each exchange duration of
the mth cluster, respectively. Here, tflyG,m and tflym,G denote the
flying duration of the m UAV from the parking dock to the
centroid of the mth cluster and vice versa.

We introduce operating time limitation of the UAVs

topem ≤ Tmaxm , m ∈M, (19)

where Tmaxm is the maximum operating time of the mth UAV.
The total energy (in Joules) consumed by the BS and all

UAVs is defined by

ϑtot(p0,pM ,M, qM , τ
dat
M ) = η0P0

∑
m∈M

p0,m

∑
k∈Km

tdatm,k

+
∑
m∈M

(
topem (qm, t

dat
m )P flym + ηmPm

∑
k∈Km

pm,kt
dat
m,k

)
,

(20)

where η0, ηm > 0 are the reciprocal drain efficiency of the
power amplifier at the BS and UAVs; P flym is the power
consumption of the mth UAV for flying duration.

E. Problem formulation

In this paper, we aim at maximising the network EE, which
is described as the ratio between overall transmitted data to
all UEs in the disaster area and total energy consumption
via UAV’s trajectory planning and clustering selection model
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and power allocation. To this end, the explicit EE problem is
formulated as

max
p0,pM ,M,qM ,τ

dat
M

DE2E
tot (p0,pM , τ

dat
M )

ϑtot(p0,pM ,M, qM , τ
dat
M )

(21a)

subject to (19), (21b)∑
m∈M

p0,m ≤ 1,
∑
k∈Km

pm,k ≤ 1, m ∈M,

(21c)
R0,m(p0) ≥ r̄0,m, m ∈M, (21d)
qmin ≤ qm ≤ qmax,
qM = [qm]m=M

m=1 , m ∈M, (21e)
(m, k) ∈ Km, m ∈M, (21f)

where (21b) represents the operating time constraint of the
UAVs, (21c) represents the power constraints at the BS and
the UAVs, (21d) sets the QoS requirement in BS-UAV links
at the first phase, (21e) stands for the trajectory constraints
of the UAVs, and (21f) is the cluster selection model. As can
be seen from (21), the optimisation problem is a non-convex
problem with the non-convex functions of (21a), (21d) and
(21f). Moreover, for large-scale scenarios, the problem (21)
becomes very complex due to the large number of timeslots
(N), and large number of UAVs (M) and UEs (K) deployed
in the area.

To efficiently solve the above non-convex problem in real-
time scenarios, we separate problem (21) into two subprob-
lems. Firstly, the UAV-UE clustering method with QoS con-
straints and UAVs trajectory planning will be proposed for the
constraints (21e)-(21f) by the constrained K-means clustering
procedure to minimize the number of UAVs. This will be
discussed in detail in Section III. After the completion of the
UAVs’ deployment, a resource allocation algorithm is imple-
mented to maximise the EE with the operating time constraint
(21b) and the constrained power budget (21c). In this paper,
we propose two distinct optimal resource allocation algorithms
in a centralised and distributed fashion in Section IV and
Section V, respectively. For each centralised and distributed
resource allocation algorithm, we propose two cases: 1)
maximising the total network EE in Subsections IV-A, V-A
and 2) maximising the network EE with fairness QoS in
Subsections IV-B, V-B.

Fig. 2: Block processing operations for the proposed system
model.

III. UAV DEPLOYMENT BY OPTIMAL UAV-UE
CLUSTERING MODEL

In this section, the clustering algorithm for UAVs de-
ployment is first implemented for supporting as many users
as possible by proposing an efficient constrained K-mean
clustering algorithm. Then, based on the results of the clus-
tering algorithm, the optimal power allocation approaches in
centralised and distributed manners will be discussed in the
next sections.

In this paper, the requirements of a K-means clustering are
based on large-scale path loss via UEs’ location data from
Global Positioning System (GPS) such as the input UE’s
location qk = (xk, yk) (k = 1, ...,K) and UAV’s location
qm = (xU,m, yU,m, HU,m) (m = 1, ...,M). Then, based on
the clustering selection, the 3D locations of the UAVs will be
chosen by the centroid θm = (xm, ym, zm),m = 1, ...,M .
However, the conventional K-means clustering approach [19]
may not be suitable for UAVs with the stringent QoS require-
ments, e.g, constraint (21d). In this section, we propose a
constrained K-means clustering model for UAV deployment
corresponding to the QoS constraints. In addition, we take
into account the fact that the selected number of UAVs to
form the clusters should be as small as possible due to the
minimal network EE requirement. This is clearly a novel point
of our clustering model compared with the previous work [1].
Specifically, in [1], the number of UAVs deployed to recover
network connectivity of disaster areas was fixed because we
were interested in maximising the maxmin throughput opti-
misation problem. In contrast, since the K-means algorithm
is an unsupervised clustering, finding the optimal number of
clusters (UAVs) is vitally important to network EE, which is
our target in this paper.

Constrained K-means clustering is a useful way to express
a priori knowledge which instances should or should not be
grouped together. Thus, we provide two types of pairwise
constraints as

• Must-link constraints (m, k) ∈ Cmust indicate that the kth
UE has to be located in the cluster m with satisfied QoS
constraints.

• Cannot-link constraints (m, k′) ∈ Cnot imply that the kth
UE should not be placed in the cluster m.

Let γQoS be the path loss threshold corresponding to the
QoS requirement (21d) [23]. Then, a set of must-link pairs
represents the satisfied QoS constraints such that the kth UE
is served by the mth UAV and βm,k ≤ γQoS , i.e.,

d2
m,k +H2

U,m ≤ 10
γQoS−(APLoSm,k +B)

10α . (22)

In contrast, a set of cannot-link pairs represents the violation
of QoS constraints. Hence, optimal UAVs deployment with
respect to the minimum number of UAVs and minimum
operating time, can expressed through the subproblem I as
follows:

Subproblem I : min
qM

M

subject to (21e), (21f), (22). (23)
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The subproblem I is then solved by Algorithm 1 where we
propose a constrained K-means clustering algorithm to identify
the optimal number of clusters i.e., the minimum number of
UAVs (M∗), and the corresponding cluster members.

Furthermore, we also identify the 3D location of the UAVs
as they are deployed at the centroid location of each cluster.
Hence, in order to minimize the operating time, each UAV
should fly in a straight line from their parking dock to the
centroid location of its serving cluster and vice versa.

Algorithm 1 Constrained K-means clustering algorithm

1: Input: The UEs’ location (qk). The maximum number
of UAVs available to be deployed is Mmax. The alti-
tude of the UAVs is limited as in (HU,min, HU,max).
The maximum number of iterations is set to Nmax. Set
Jclus = Mmax, Km = �.

2: Repeat
3: Repeat
4: The UAVs’ locations (qm) are randomly initialized

as the centroid {θ(0)
m },m = 1, ..., Jclus.

5: Update index set of users:
6: for k = 1 to K
7: Compute the distance dist(qk,θm), m =

1, .., Jclus.
8: end for
9: Assign appropriate UEs into the cluster with the

smallest distance.
10: Update UAV’s altitude:
11: for m = 1 to Jclus
12: Compute path loss between the mth UAV and

their UEs using Equation (4).
13: If QoS constraints (22) are not violated.
14: Go to step (18).
15: Else Adjust the altitude of the UAV to satisfy

constraints (22) for the worst UE.
16: end for
17: Update centroids:
18: Update the centroid location for each cluster as
19: θm = 1

Km

∑
k∈Km qk, m = 1, .., Jclus.

20: Until The cluster members do not change or the pro-
cedure reaches to Nmax.

21: Set M∗ = Jclus. Set Jclus = Jclus − 1.
22: Until There is no feasible solution with regard to the

assigned value Jclus or Jclus = 0.
23: Output: M∗, M∗ = {1, ...,M∗}, Km = {1, ...,Km},

and qm (m = 1, ..,M∗).

IV. UAV-ENABLED DISASTER EMERGENCY
COMMUNICATIONS VIA CENTRAL RESOURCE ALLOCATION

After solving the UAV deployment problem, in this section,
we present an efficient resource allocation scheme for improv-
ing network EE performance under disaster emergency com-
munications. In this section, we consider a central computing
platform for problem solving.

A. A central model for maximising network EE performance
with EE objective (CEE-EE)

In this subsection, we are interested in a central model
for maximising network EE performance with EE objective
(CEE-EE). Here, we modify the original problem (21) by
investigating EE maximization problem as

Subproblem II− A : max
p0,pM ,τ

dat
M

DE2E
tot (p0,pM , τ

dat
M )

ϑtot(p0,pM ,M, qM , τ
dat
M )

(24)
subject to (19), (21c), (21d).

To solve the problem (24), we first change the variables as

θm,k =
1

tdatm,k

, ϕ0,m =
1

p0,m
, and

ϕm,k =
1

pm,k
, m ∈M∗, k ∈ Km. (25)

For θM = {θm,k}, ϕ0 = {ϕ0,m}, ϕM = {ϕm,k}, ∀m ∈
M∗, k ∈ Km, the problem (24) is equivalent to

max
ϕ0,ϕM ,θM

DE2E
tot (ϕ0,ϕM ,θM )

ϑtot(ϕ0,ϕM ,θM )
(26a)

subject to
∑
k∈Km

1

θm,k
≤ Tmaxm −

 ∑
k∈Km

tconm,k + tflyG,m + tflym,G

 ,

m ∈M∗, (26b)∑
m∈M

1

ϕ0,m
≤ 1,

∑
k∈Km

1

ϕm,k
≤ 1, m ∈M∗,

(26c)
R0,m(ϕ0) ≥ r̄0,m, m ∈M∗, (26d)

where (26b) corresponds to the operating time constraint of the
UAVs after changing the variables, (26c) and (26d) represent
the power constraints at the terminals, i.e., BS and the UAVs,
and the constraint of QoS requirement in BS-UAV links at the
first phase after the change of variables, respectively. Then,
the EE objective function (26a) can be expressed as

DE2E
tot (ϕ0,ϕM ,θM ) =

∑
m∈M∗

∑
k∈Km

RE2E
m,k (ϕ0,ϕM )

1

θm,k
,

(27)

ϑtot(ϕ0,ϕM ,θM ) =η0P0

∑
m∈M∗

∑
k∈Km

1

ϕ0,m

1

θm,k

+
∑

m∈M∗

(
topem (qm,θM )P flym + ηmPm

∑
k∈Km

1

ϕm,k

1

θm,k

)
.

(28)

Note that tconm,k, tflyG,m and tflym,G can be estimated when the
clustering algorithm is implemented in the UAV deployment
phase. Hence, for time allocation of UAV communications, we
only focus on the data transferring time tdatm,k or θm,k. However,
the problem (26) is still a non-convex problem with the non-
convexity functions of (26a) and (26d). To solve problem
(26), we use some efficient approximation approaches and
logarithmic inequalities as in [24], [25] (see Appendix A).
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Firstly, we take

x1 =
ϕ0,m

P0γ0,m,m
, y1 =

∑
m′∈M∗\{m}

P0γ0,m,m′

ϕ0,m′
+ σ2

m,

x̄1 = x
(i)
1 =

ϕ
(i)
0,m

P0γ0,m,m

ȳ1 = y
(i)
1 =

∑
m′∈M∗\{m}

P0γ0,m,m′

ϕ
(i)
0,m′

+ σ2
m,

x2 =
ϕm,k

Pm|gm,k|2
, y2 =

∑
l∈Nm

∑
j∈Kl

βl,kPl
ϕl,j

+ σ2
m,k,

x̄2 = x
(i)
2 =

ϕ
(i)
m,k

Pm|gm,k|2
,

ȳ2 = y
(i)
2 =

∑
l∈Nm

∑
j∈Kl

βl,kPl

ϕ
(i)
l,j

+ σ2
m,k,

t = θm,k, t̄ = t(i) = θ
(i)
m,k.

By applying inequality (47) in the Appendix A, the mth
UAV’s throughput and UE (m, k)’s throughput can be approx-
imated as

R0,m(ϕ0)
1

θm,k
≥ D̂(i)

0,m(ϕ0,θM ),∀m ∈M∗,

where

D̂
(i)
0,m(ϕ0,θM ) =

B

2

[ 2

t(i)
ln
(

1 +
1

x
(i)
1 y

(i)
1

)
+

2

t(i)(x
(i)
1 y

(i)
1 + 1)

− 1

t(i)x
(i)
1 (x

(i)
1 y

(i)
1 + 1)

x1

− 1

t(i)y
(i)
1 (x

(i)
1 y

(i)
1 + 1)

y1 −
ln(1 + 1/x

(i)
1 y

(i)
1 )

(t(i))2
t
]
,

and

Rm,k(ϕM )
1

θm,k
≥ D̂(i)

m,k(ϕM ,θM ),∀m ∈M∗,

where

D̂
(i)
m,k(ϕM ,θM ) =

B

2

[ 2

t(i)
ln
(

1 +
1

x
(i)
2 y

(i)
2

)
+

2

t(i)(x
(i)
2 y

(i)
2 + 1)

− 1

t(i)x
(i)
2 (x

(i)
2 y

(i)
2 + 1)

x2

− 1

t(i)y
(i)
2 (x

(i)
2 y

(i)
2 + 1)

y2 −
ln(1 + 1/x

(i)
2 y

(i)
2 )

(t(i))2
t
]
.

Then,

DE2E
m,k (ϕ0,ϕM ,θM ) ≥ (DE2E

m,k )(i)(ϕ0,ϕM ,θM ),∀m ∈M∗,

where

(DE2E
m,k )(i)(ϕ0,ϕM ,θM )

= min
(
D̂

(i)
0,m(ϕ0,θM ), D̂

(i)
m,k(ϕM ,θM )

)
.

Finally, the total transmission data can be approximated as

DE2E
tot (ϕ0,ϕM ,θM ) ≥

∑
m∈M∗

∑
k∈Km

(DE2E
m,k )(i)(ϕ0,ϕM ,θM ).

By changing the variable as (25), ϑtot(ϕ0,ϕM ,θM ) in (27)
is a convex function. Hence, given feasible points (ϕ(i)

0 , ϕ(i)
M ,

θ
(i)
M ), we can achieve

η(i) =
∑

m∈M∗

∑
k∈Km

(DE2E
m,k )(i)(ϕ

(i)
0 ,ϕ

(i)
M ,θ

(i)
M )

ϑtot(ϕ
(i)
0 ,ϕ

(i)
M ,θ

(i)
M )

. (29)

At the ith iteration, the following convex program is solved
to generate the next feasible point as follows:

max
ϕ0,ϕM ,θM

∑
m∈M∗

∑
k∈Km

(
(DE2E

m,k )(i)(ϕ0,ϕM ,θM )

− η(i)ϑtot(ϕ0,ϕM ,θM )
)

(30a)

subject to (26b), (26c), (30b)

P0γ0,m,m

( 2

ϕ
(i)
0,m

− ϕ0,m

(ϕ
(i)
0,m)2

)
≥

(e2r̄0,m/B − 1)

 ∑
m′∈M∗\{m}

P0γ0,m,m′

ϕ0,m′
+ σ2

m

 ,

m ∈M∗, (30c)

where the constraint (30c) is rewritten from the convex form
of the constraint (26d).

The explicit formulation of (26d) can be represented as

1

2
B ln

(
1 +

P0γ0,m,m/ϕ0,m∑
m′∈M∗\{m} P0γ0,m,m′/ϕ0,m′ + σ2

m

)
≥ r̄0,m,

m ∈M∗, (31)

then

P0γ0,m,m

ϕ0,m
≥ (e2r̄0,m/B − 1)

 ∑
m′∈M∗\{m}

P0γ0,m,m′

ϕ0,m′
+ σ2

m

 ,

m ∈M∗. (32)

Then, we apply (45) in the Appendix A for the term of 1
ϕ0,m

in (32). Let us denote (i) as the ith iteration, the constraint
(26d) can be rewritten as a convexity form as (30c).

Based on [26], the computational complexity of (30) is

O(n̄2m̄2.5 + m̄2.5) (33)

with n̄ = M(2K + 1), which is the number of the decision
variables, and m̄ = 3M + 1, which is the number of
constraints.

We now proceed by proposing an algorithm to solve the EE
maximisation problem (30).
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Algorithm 2 : Joint power and time transferring allocation
procedure for solving problem (24)

Input: Set i = 0 and a feasible point (ϕ(0)
0 , ϕ(0)

M , θ(0)
M ).

Set the tolerance ε = 10−3 and the maximum number of
iterations Imax = 20.
Calculate η(0) =

∑
m∈M∗

∑
k∈Km

(DE2E
m,k )(i)(ϕ

(0)
0 ,ϕ

(0)
M ,θ

(0)
M )/

ϑtot(ϕ
(0)
0 ,ϕ

(0)
M ,θ

(0)
M ).

Repeat
Solve problem (30) for the next optimal solution (ϕ(i+1)

0 ,
ϕ

(i+1)
M , θ(i+1)

M ).
Set η(i+1) =

∑
m∈M∗

∑
k∈Km

(DE2E
m,k )(i+1)(ϕ

(i+1)
0 ,ϕ

(i+1)
M ,

θ
(i+1)
M )/ϑtot(ϕ

(i+1)
0 ,ϕ

(i+1)
M ,θ

(i+1)
M ).

Set i := i+ 1
Until Convergence of the objective function in (30) or i >
Imax.
Output: {ϕ∗0,ϕ∗M ,θ

∗
M} and {η∗}.

Note that the optimal solution of {η∗} in (29) will be a
suboptimal choice to maximise the EE formulated in (24) for
the network.

The initial point (p(0)
0 , p(0)

M , (τdatM )(0)) or (ϕ(0)
0 , ϕ(0)

M , θ(0)
M )

for (30) will be set up for satisfying constraints in the problem
(26). The setting up initial point is by following a few rules
as below.
• p

(0)
0 can be found by solving the convex optimization

problem as

max
p0>0

∑
m∈M∗

p0,m (34a)

subject to
∑

m∈M∗
p0,m ≤ 1, (34b)

R0,m(p0) ≥ r̄0,m, ∀m ∈M∗. (34c)

• p
(0)
M can be found by applying equal power allocation

scheme as

pm,k =
1

Km
, Km 6= 0, ∀m ∈M∗.

• (τdatM )(0) can be found by applying equal time allocation
scheme as

tdatm,k =
T̂maxm

Km
, Km 6= 0, ∀m ∈M∗.

where T̂maxm = Tmaxm −
(∑

k∈Km t
con
m,k + tflyG,m + tflym,G

)
.

B. A central model for enhancing network EE performance
with fairness services (CEE-QoS)

In this sub-section, we are interested in a central model
for enhancing network EE performance with fairness services
(CEE-QoS). Here, we investigate the best-effort service for
disaster emergency communications by applying UAV tech-
nology. For the QoS fairness, the main target is to maximise
the minimum throughput in each cluster (max-min problem)
by joint time-power allocation. This scheme can guarantee the

QoS for UEs located in the disaster areas. In addition, for the
sake of comparison, we will plot the CEE-QoS performance
with respect to the EE in Section 6 of simulation results.
To this end, we develop a new Subproblem III from the
Subproblem II as follows:

Subproblem III− A :

max
ϕ0,ϕM ,θM

min
∀m∈M∗,∀k∈Km

DE2E
m,k (ϕ0,ϕM ,θM ) (35)

subject to (26b), (26c), (26d),

where the objective function is expressed as

DE2E
m,k (ϕ0,ϕM ,θM ) =

RE2E
m,k (ϕ0,ϕM )

θm,k

= min

{
R0,m(ϕ0)

θm,k
,
Rm,k(ϕM )

θm,k

}
,∀m, k. (36)

By applying optimisation techniques and Algorithm 2 in Sec-
tion IV-A, the following max-min convex program is generated
at the ith iteration:

max
ϕ0,ϕM ,θM

min
∀m∈M∗,∀k∈Km

(DE2E
m,k )(i)(ϕ0,ϕM ,θM ) (37)

subject to (26b), (26c), (30c).

We assume that {ϕ∗0, ϕ∗M , θ∗M} is the solution of the problem
(37). Thus, the EE performance can be calculated by using
(26a).

The computational complexity of (37) is based on (33) with
n̄ = M(2K + 1) and m̄ = 3M + 1.

V. UAV-ENABLED DISASTER EMERGENCY
COMMUNICATIONS VIA DISTRIBUTED RESOURCE

ALLOCATION

The centralised resource allocation approaches proposed in
the previous section require a full coordination and cooperation
between BS and all UAVs. Then, optimisation problem can
be executed at Cloud Radio Access Network (CRAN). With
this centralised strategy, when the network topology becomes
very large, e.g., large number of users, the traffic load for
data exchange at the BS and UAVs and the execution time
for solving the optimisation problems at CRAN significantly
increase. In a dynamically changing environment, e.g., UAV
communications, it is unrealistic to endure such a high traffic
load and long delay. To alleviate this shortcoming we are
interested in solving the optimisation problems using a de-
centralised approach. To be more specific, the computational
burden for solving the optimisation of resource allocation now
lies at the clusters where each UAV has a capability to optimise
its cluster performance.

In this section, we investigate efficient distributed schemes
for the resource allocation, which are expected to significantly
reduce the execution time of optimisation problems compared
to the centralised approach.

A. A distributed model for maximising network EE with EE
objective (DEE-EE)

In this sub-section, we are interested in a distributed model
for maximising network EE with EE objective (DEE-EE).
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Here, a distributed model for solving EE optimisation problem
(26) is shown as

Subproblem II− B :

max
ϕm,θm

DE2E
tot,m(ϕfixed

0 ,ϕm,θm)

ϑtot,m(ϕfixed
0 ,ϕm,θm)

, ∀m ∈M∗

(38)
subject to (26b), (26c), (26d)∗.

Remark 1: For handling the constraint (26d) in distributed
scheme, we investigate (26d)∗ with the BS power control by
exploiting a solution of (34).
Here, it is to verify that R0,m(ϕfixed

0 ) = r̄0,m, m ∈M∗, where
ϕfixed

0 = ϕ
(0)
0 = [1/p

(0)
0,m]m∈M∗ is the solution of problem

(34).
Remark 2: To apply the distributed resource allocation, we

study the information throughput at the (m, k)th UE of the
mth cluster in (40) independently with other clusters by using
equal power control in the second phase. Specifically, for
ϕm = Km

Pm
, ∀m ∈M∗, we have

ϕfixed
M = [ϕm]m∈M∗ , Rm,k(ϕm)

=
1

2
B ln

(
1 +

Pm|gm,k|21/ϕm,k
I inter
m,k (ϕfixed

M ) + σ2
m,k

)
, ∀k ∈ Km. (39)

This means that the inter-cluster interference functions in
Rm,k(ϕm) is considered as a constant value, i.e.,

I inter
m,k (ϕfixed

M ) =
∑
l∈Nm

∑
j∈Kl

βl,k
Kl

Pl
, k ∈ Km,m ∈M∗.

Then, we have

DE2E
tot,m(ϕfixed

0 ,ϕm,θm) =
∑
k∈Km

RE2E
m,k (ϕfixed

0 ,ϕm)
1

θm,k

=
∑
k∈Km

min{r̄0,m, Rm,k(ϕm)} 1

θm,k
, (40)

ϑtot,m(ϕfixed
0 ,ϕm,θm) = η0P0

∑
k∈Km

1

ϕfixed
0,m

1

θm,k

+ topem (qm,θm)P flym + ηmPm
∑
k∈Km

1

ϕm,k

1

θm,k
. (41)

As a result, the total network EE performance by using
distributed resource allocation can be calculated as

EE =
∑

m∈M∗
V ∗1,m, (42)

where V ∗1,m is a local solution of problem (38) for the mth
cluster. Note that V ∗1,m can be found by applying Algorithm
2 for (ϕfixed

0 ,ϕm,θm).
Therefore, the computational complexity of (38) using the

distributed scheme is based on (33) with n̄ = 2K and m̄ = 3.

B. A distributed model for enhancing network EE with fair-
ness services (DEE-QoS)

In this sub-section, we are interested in a distributed model
for enhancing network EE with fairness services (DEE-QoS).

Here, a distributed model for solving max-min program (35)
is expressed as

Subproblem III− A :

max
ϕm,θm

min
k∈Km

DE2E
m,k (ϕfixed

0 ,ϕm,θm), ∀m ∈M∗

(43)
subject to (26b), (26c), (26d)∗ for only m.

Similarly to IV-B, at the ith iteration, the following max-min
convex program under the distributed scheme is equivalent to

max
ϕm,θm

min
k∈Km

(DE2E
m,k )(i)(ϕfixed

0 ,ϕm,θm), ∀m ∈M∗

(44)
subject to (26b), (26c), (26d)∗, for only m.

We assume that {ϕfixed
0 , ϕ∗m, θ∗m} is the solution of the

problem (44) for cluster m. Thus, the EE performance can
be calculated by using (26a).

Similarly, the computational complexity of (44) using the
distributed scheme is based on (33) with n̄ = 2K and m̄ = 3.

VI. SIMULATION RESULTS

In this section, the performance of the considered network is
evaluated by the embedded optimisation packages in program-
ming languages, i.e., the CVXPY package in Python [27]. The
computational platform is used for performing simulation is a
PC with CPU @3.7GHz and 32GB memory. For simulation
setting, we set the system parameters as: The safety area is
a circle coverage with a radius of 500m. The disaster area
is an extended circle coverage from the safety area with a
radius up to 2000m. The location of the BS is (0, 0, 30)
while the locations of UEs are randomly distributed in disaster
area. The limited altitude of the UAVs (HU,min, HU,max) is
(20, 300)m. The connecting time between a UAV and a UE is
set to 2 seconds. The speed of the UAVs is assumed constant
at 10 m/s. The maximum operating time of the UAV is 20
minutes. The path loss threshold is set to γQoS = 110 dB. The
tolerance and maximum number of iterations for convergence
of algorithms are ε = 10−2 and Nmax = 20. The bandwidth
and carrier frequency are B = 10 MHz and fc = 2 GHz.
The BS transmit power for communication is set as 40W.
The number of BS antennas is 128. Other channel parameters
are set as in [23], [24]. Note that although we consider the
max-min throughput in the optimisation problems of CEE-QoS
and DEE-QOS, the simulation results for these two cases are
plotted in EE performance. To highlight the advantage of our
proposed methods, we compares our approaches, i.e., CEE-EE,
CEE-QOS, DEE-EE, and DEE-QOS, with some conventional
methods described as follows:
• CEPTA: Combining equal power and equal time trans-

ferring allocation under central computing scheme.
• CEPOTA: Combining equal power allocation and opti-

mal time transferring allocation under central computing
scheme. CEPOTA-EE and CEPOTA-QoS are corre-
sponding to EE and max-min data packet optimisation
problems.
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• COPETA: Combining optimal power allocation and
equal time transferring allocation under central comput-
ing scheme. COPETA-EE and COPETA-QoS are cor-
responding to EE and max-min data packet optimisation
problems.

In this section, as illustrative cases, we set the number of
UEs in critical area at K = 30 and K = 60 UEs while the
number of UAVs is maximum at Mmax = 10 and Mmax = 20,
respectively. Practical examples of these scenarios are shown
as Fig. 3 and Fig. 4. Specifically, Fig. 3a provides a scenario
with random locations of K = 30 UEs and Fig. 3b shows the
clustering results by deploying UAVs for the scenarios.
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(a) Before clustering.
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(b) After clustering. The number of UAVs used is 8.

Fig. 3: A system model with K = 30 UEs and γQoS = 110 dB
before and after the implementation of clustering algorithm.
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Fig. 4: A system model with K = 60 UEs and γQoS = 110
dB for the implementation of clustering algorithm. After
clustering, the number of UAVs used is 17.

A. Performance analysis of CEE-EE, CEE-QoS and CEPTA,
CEPOTA, COPETA
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Fig. 5: The convergence of Algorithm 2 for solving the
considered models: CEE-EE, CEPOTA-EE, COPETA-EE at
M = 10, K = 30, and Pm = 1W .

In Fig. 5, we illustrate the convergence of Algorithm 2 for
solving the CEE-EE, CEPOTA-EE, COPETA-EE models at
M = 10, K = 30, and Pm = 1W . It is observed that after
a few iterations, the objective function according to the three
models converge to its maximum value. In particular, the CEE-
EE model requires significantly more iterations to converge
when compared to the others due to the higher number of
optimisation variables. The detailed analysis of the execution
time for solving the considered problems is shown later in
Section VI-B.

For EE performance of centralised approach, Fig. 6 plots
the network EE performance for the proposed CEE-EE and
CEE-QoS methods, the partial resource allocation methods
(CEPOTA, COPETA) and the conventional method (CEPTA).
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As expected, CEE-EE provides a superior EE performance
demonstrating the efficiency of joint power and time transfer-
ring allocation with EE objective function as shown in Fig. 6.
Moreover, the EE performance of methods for optimising EE
objective (CEPOTA-EE, COPETA-EE) obviously outperforms
the other schemes (CEPTA, CEPOTA-QoS, COPETA-QoS).
Considering network services under data packet achievement,
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Fig. 6: Network EE performance for all the proposed methods
under transmitted power at the UAV and the scenario of K =
30 UEs.

we investigate the total network data and the worst UE data
as below.

• The total network data is defined as the total received data
(in bits) of K UEs from the M∗ UAVs (M∗ clusters) of
the system.

• The worst UE data is defined as the total received data (in
bits) of the UE among K UEs with the lowest network
service in the whole system.

As expected, a fairness of network service is guaranteed by
applying optimal resource allocation under max-min optimisa-
tion (CEE-QoS, CEPOTA-QoS, COPETA-QoS). As shown in
Fig. 8, CEE-QoS provides a superior network service for the
UE with the lowest service compared to other scheme without
optimal max-min throughput objective. In contrast, the total
network data is highest in CEE-EE as shown in Fig. 7 since
the transmitted packet is thoroughly enhanced in the CEE-EE
approach. Consequently, the CEE-EE is not a good method
for guaranteeing fairness service for all UEs as demonstrated
in Fig. 8.

We also discuss the network service of weakest UE under
max-min throughput approaches such as CEE-QoS, CEPOTA-
QoS,COPETA-QoS and the conventional method (CEPTA).
The worst UE data gradually increases in the following order:
CEPTA, CEPOTA-QoS, COPETA-QoS, CEE-QoS. Interest-
ingly, the power control (COPETA-QoS) offers a better service
than the time transferring control as shown in Fig. 10.
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Fig. 7: Total network data for CEE-EE, CEE-QoS and CEPTA.
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Fig. 8: Worst UE data for CEE-EE, CEE-QoS and CEPTA.

B. Performance analysis of centralised and distributed re-
source allocation

For distributed scheme, we evaluate the total network data
and the worst UE data as below.
• The total network data is defined as the total optimal data

in every M∗ clusters.
• The worst UE data is defined as the total data of the UE

with the lowest network service in the cluster providing
the lowest service.

In Table I, we provide the average execution time for solving
the problem (24), (35), (38) and (43) via all the proposed
methods.

There is a tradeoff between the network performance and
the execution time in centralised and distributed schemes
for solving optimisation problems of resource allocation. As
shown in Fig. 11 and Fig. 12, the network EE performance is
significantly degraded in the centralised scheme (CEE-EE) and
distributed scheme (DEE-EE). In contrast, we reduce a lot of
time processing for solving resource allocation problems when
DEE-EE method is implemented as analysed in Table I.
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TABLE I: Average execution time for solving optimisation problems via proposed method.

Method CEPTA CEE-EE DEE-EE CEPOTA-
EE

COPETA-
EE

CEE-QoS DEE-QoS CEPOTA-
QoS

COPETA-
QoS

Execution
time

34ms 25s 480ms 7s 11s 17s 280ms 4s 13s
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Fig. 9: Total network data for CEE-QoS and CEPTA,
CEPOTA-QoS, COPETA-QoS.
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Fig. 10: Worst UE data for CEE-QoS and CEPTA, CEPOTA-
QoS, COPETA-QoS.

C. Summary of results

From all numerical results in this section, we can summary
the method efficiency under system performance in terms of
”Real-time”, ”Energy-Efficient”, ”QoS”, ”Low Energy” and
”High Energy”. where “Realtime”: very small execution time,
“Energy-Efficient”: high EE performance, “QoS”: fairness
services for UEs, “Low Energy”: low transmit power at UAV,
“High Energy”: high transmit power at UAV, and ? : low
priority, ?? : high priority.

VII. CONCLUSIONS

We have investigated a downlink transmission of a massive
MIMO BS and UAV-cellular relaying networks to meet the
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Fig. 11: Network EE performance between the centralised and
distributed schemes under transmitted power at the UAV (Pm)
and K = 30 UEs.
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Fig. 12: Network EE performance between the centralised and
distributed schemes under transmitted power at the UAV (Pm)
and K = 60 UEs.

real-time service and stringent QoS constraints. We have
proposed the joint optimisation framework for UAV clustering
selection and resource allocation to maximise the network
EE. We first considered the real-time UAVs deployment by
proposing the K-means clustering algorithm. Then, the op-
timal resource allocation algorithms of low computational
complexity with fast convergence were proposed in centralised
and distributed manners. Numerical results were provided to
demonstrate the advantage of the proposed approaches over
the conventional schemes.
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TABLE II: Analysis of method efficiency.

Method Real-time Energy-Efficient QoS Low Energy High Energy
CEPTA ??
CEE-EE ?? ?? ??
DEE-EE ?? ? ??
CEPOTA-EE ? ?
COPETA-EE ??
CEE-QoS ?? ? ??
DEE-QoS ?? ? ?
CEPOTA-QoS ? ?
COPETA-QoS ?

APPENDIX A
APPROXIMATION APPROACHES AND INEQUALITIES USED

TO SOLVE PROBLEM (26)

Firstly, we exploit an approximation technique for handling
the nonconvexity of constraint (26d)

1

u
≥ 2

ū
− u

ū2
,∀u > 0, ū > 0, (45)

where ū > 0 is a given point. The constraint (26d) can be
rewritten as a convexity form as shown in (30c)

P0γ0,m,m

( 2

ϕ
(i)
0,m

− ϕ0,m

(ϕ
(i)
0,m)2

)
≥

(e2r̄0,m/B − 1)

 ∑
m′∈M∗\{m}

P0γ0,m,m′

ϕ0,m′
+ σ2

m

 , m ∈M∗.

(46)

Secondly, following the convexity of function 1
t ln

(
1 +

1/xy
)

, we exploit a logarithmic inequality for handling the
objective function (26a) as below

1

t
ln(1 +

1

xy
) ≥ a− bx− cy − dt, (47)

where

a =
2

t̄
ln
(

1 +
1

x̄ȳ

)
+

2

t̄(x̄ȳ + 1)
, b =

1

t̄x̄(x̄ȳ + 1)
,

c =
1

t̄ȳ(x̄ȳ + 1)
, d =

ln(1 + 1/x̄ȳ)

t̄2
,

∀t > 0, t̄ > 0, x > 0, x̄ > 0, y > 0, ȳ > 0.

Thus, the following nonconvex objective function (26a) is
approximated into a convexity form as shown in (30a)∑

m∈M∗

∑
k∈Km

(
(DE2E

m,k )(i)(ϕ0,ϕM ,θM )

−η(i)ϑtot(ϕ0,ϕM ,θM )
)
. (48)
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