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Tensor-Based Algebraic Channel Estimation for
Hybrid IRS-Assisted MIMO-OFDM

Yuxing Lin, Student Member, IEEE, Shi Jin, Senior Member, IEEE, Michail Matthaiou, Senior Member, IEEE,
and Xiaohu You, Fellow, IEEE

Abstract—We consider the channel estimation problem in
multiple-input multiple-output orthogonal frequency division
multiplexing (MIMO-OFDM) systems assisted by intelligent re-
configurable surfaces (IRSs). To avoid the inherent estimation
ambiguities of the two-hop channels from mobile stations (MS)
to the base station (BS), we adopt a hybrid IRS architecture
composed of passive reflectors and active sensors, and establish
two independent subproblems of estimating the MS-to-IRS and
BS-to-IRS channels. By leveraging the sparse characteristics of
high-frequency propagation, we model the training signals as
multi-dimensional canonical polyadic decomposition (CPD) ten-
sors with missing fibers or slices. We develop algebraic algorithms
to solve the tensor completion problems and recover channel
multipath parameters, i.e., angles of arrival, time delays and path
gains. Our methods require neither random initialization nor iter-
ative operations, and for these reasons they can perform robustly
with a low computational complexity. Moreover, we investigate
the uniqueness condition of CPD tensor completion, which can
be utilized to inform both the physical design of hybrid IRSs
and the time-frequency resource allocation of training strategies.
Simulation results indicate that the proposed schemes outperform
the traditional counterparts in terms of accuracy, robustness and
complexity, especially for the case of low-complexity IRSs with
limited number of active sensing elements.

Index Terms—Channel estimation, CPD tensor completion,
intelligent reconfigurable surfaces, MIMO-OFDM.

I. INTRODUCTION

In the upcoming phases of the fifth generation (5G) wireless
communications, millimeter wave (mmWave) (30–300 GHz)
transmission technologies have been widely identified as a
promising solution against the increasing data traffic and
frequency spectrum shortage [1]. Moreover, extending the
spectrum to higher frequency bands, i.e., terahertz (0.1–10
THz), appears to be a significant evolution direction of the
future beyond-5G (B5G) and sixth generation (6G) devel-
opment [2]. High-frequency radio systems avail of strong
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beam directivity, high spatial resolution and robust anti-
interference characteristics, while their small wavelength en-
ables the miniaturized implementation of massive multiple-
input multiple-output (MIMO) antenna arrays to compensate
for the exacerbated free-space losses [3]. However, the quasi-
optical mmWave and terahertz waves inherently suffer from
limited coverage caused by the higher probability of line-
of-sight (LoS) propagation obstruction. In order to maintain
the communication link and broaden the signal coverage area,
wireless systems need to exploit the sparse scattering non-
LOS (NLoS) paths of high-frequency channels. One feasible
choice is to integrate the massive MIMO transceiver within
an intelligent reconfigurable surface (IRS), which can help
establish controllable supplementary links [4].

An IRS has been considered as a revolutionizing technology
for assisting the implementation of broadband connectivity
in future 6G wireless systems [5]. It can be utilized to
improve the propagation conditions by introducing additional
scattering with controllable characteristics to achieve desirable
beamforming gains and suppress co-channel interference [6].
Ideally, an IRS can pave the way to realizing a smart and
reconfigurable wireless propagation environment, which brings
extra degrees of freedom to the transceiver design, as well as,
the network optimization [7]. Typically, an IRS is made of
a programmable metasurface, which comprises of a massive
number of unit cells that can independently interact with the
incident signals [8]. The reflection amplitudes or phase shifts
of the IRS elements can be predefined or adjusted by a smart
digital controller to realize real-time manipulation on the elec-
tromagnetic responses of the reflected waves [9]. Based on the
considerable capability of optimizing the transmission links,
the IRS technology can be integrated into numerous wireless
applications, e.g., physical layer security, simultaneous wire-
less information and power transfer, cognitive radio and non-
orthogonal multiple access [10]–[13]. Nevertheless, in order to
fully reap the potential of IRS in communication services, it
is necessary for the IRS controller to obtain accurate channel
state information (CSI) of the channel matrices or multipath
parameters. This critical exercise relies on feasible channel
estimation strategies.

There have been numerous works researching the channel
estimation problem of IRS-assisted systems. A binary reflec-
tion controlled least squares scheme was proposed in [14],
enabling the IRS switch function to element-wisely estimate
the cascaded channel. A joint bilinear factorization and matrix
completion scheme was proposed in [15], combining the ap-
proximate message passing technology and Riemannian gradi-
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ent algorithm. A two-stage sounding method with atomic norm
minimization optimization was designed in [16] to recover
the cascaded channel parameters. Compressed sensing (CS)
tools were adopted by [17] to exploit the row-column-block
sparsity of the cascaded multipath channel. Hierarchical beam-
forming codebook as well as cooperative search strategies
were proposed in [18]. A deep learning framework containing
a twin convolutional neural network was applied in [19] to
jointly estimate the direct and cascaded channels. Tensor signal
processing methods were also leveraged in [20], [21] to solve
the bilinear channel recovery problem. An anchor-assisted
method was proposed in [22] to efficiently reduce the channel
training overhead with one-antenna anchors. Most works aims
to directly estimate the cascaded two-hop channel, which
inherently causes scaling ambiguities between the MS-to-IRS
and IRS-to-BS channels. Moreover, they commonly consider
flat-fading channel models, which, unfortunately, cannot be
directly applied to the dynamic time-varying channel links.

In this paper, we precisely address the channel estimation
problem of an IRS-assisted MIMO orthogonal frequency di-
vision multiplexing (OFDM) system operating at mmWave
frequencies. We propose a hybrid IRS structure composed of
passive reflectors and active sensors, which can simultaneously
reflect the signal waves and sense the channels [23], [24].
This architecture can be equivalently regarded as a hybrid
layout consisting of one or multiple IRS planes and antenna
anchors/arrays connected to radio frequency chains (RFC),
where the reflecting/sensing modules jointly formulate a reg-
ular planar topology. The main contributions of this paper are
summarized as follows:

• For the hybrid IRS structure, we factorize the cascad-
ed channel estimation problem into two subproblems
of recovering the MS-to-IRS and BS-to-IRS channels.
The downlink/uplink training can be simultaneously per-
formed through non-overlapping frequency bands.

• For the narrowband channel estimation with single train-
ing subcarrier, we leverage the sparsity of high-frequency
propagation to formulate the received signals as a third-
order canonical polyadic decomposition (CPD) tensor
[25]–[27]. We transform the channel estimation task to
complete a partially-observed tensor [28]–[30], and devel-
op an algebraic algorithm to jointly recover the channel
matrix and multipath parameters.1

• For the wideband channel estimation with multiple train-
ing subcarriers, we formulate the received signals as a
fourth-order incomplete CPD tensor. By leveraging the
structural information of training signal in the frequency
domain, we propose two different algorithms to solve the
tensor completion problem.

• We analyze the uniqueness conditions of the third/fourth-
order CPD tensor completions, and propose practical
suggestions on the hybrid IRS configuration and channel
training design.

1The algebraic tensor method does not restrict the IRS array structure
and the pilot symbol arrangement, requiring neither statistical derivation nor
optimization procedure. Also, most involved operations are supported by
ready-made toolboxes/libraries.

Simulation results indicate that the proposed schemes out-
perform the traditional methods (e.g., those proposed in [23],
[28]–[30]) in terms of accuracy, robustness and complexity,
especially for the case where the number of active IRS
elements are extremely limited.

The rest of the paper is organized as follows. Section II
presents the IRS-assisted MIMO-OFDM system model and
the high-frequency channel model. Section III develops the
narrowband channel estimation algorithm with single training
subcarrier. Section IV proposes the wideband channel estima-
tion algorithms with multiple training subcarriers. Section V
presents the numerical results of the estimation algorithms.
Section VI draws the most important conclusions.

Notations: a, A and A denote a vector, a matrix and
a tensor, respectively; AT , A∗, AH , and A† denote the
transpose, conjugate, Hermitian transpose and pseudo-inverse
of A, respectively; [a]m:n, [A]m:n,: denote the subvector of
a from the mth to the nth entries and the submatrix of A
from the mth to the nth rows, respectively; Diag(a) denotes
the diagonal matrix formed by a; ∥a∥0, ∥a∥2 and ∥A∥F
denote the 0-norm, 2-norm of a and Frobenius norm of A,
respectively; ⊗, ⊙, ∗ and ◦ denote the Kronecker, Khatri-Rao,
Hadamard and outer products, respectively; I(m) denotes the
set {1, 2, . . . ,m}; 0m×n, Im and e

(m)
n denote the m×n zero

matrix, the mth-order identity matrix, and the nth column of
Im respectively; range(A), ker(A) and dim(A) denote the
range, kernel subspaces and dimensionality of A, respectively;
vec(·) denotes the vectorization operation; C2

n , n(n− 1)/2,
and C2(A) ∈ CC2

m×C2
n denotes the 2nd compound matrix

containing determinants of all 2×2 submatrices of A ∈ Cm×n.
In addition, all the relevant tensor definitions and lemmas in
the text are presented in Appendix A.

II. SYSTEM MODEL

We consider an IRS-assisted MIMO-OFDM system as illus-
trated in Fig. 1(a), where one base station (BS) equipped with
NB antennas and MB RFCs communicates with U single-
antenna mobile stations (MS). The IRS is a programmable
metasurface composed of NI regularly arranged unit cells,
forming a two-dimensional artificial structure [6]–[8]. The
OFDM scheme occupies Ks subcarriers, where the carrier fre-
quency and bandwidth are denoted by fc and fs, respectively.

We suppose that one transmission frame contains Q time
slots, where the channel remains constant within each frame
but varies across different frames. By assuming that the
channel reciprocity holds, the uplink/downlink transmission
within the qth time slot of the pth frame at the kth subcarrier
can be respectively expressed as

yul
p,q,k = WT

p,q,kH
BI
p,kΨp,q,kH

IM
p,ks

ul
p,q,k + nul

p,q,k, (1a)

ydl
p,q,k = (HIM

p,k)
TΨp,q,k(H

BI
p,k)

TFp,q,ks
dl
p,q,k + ndl

p,q,k, (1b)

where yul
p,q,k(n

ul
p,q,k) ∈ CMB ,ydl

p,q,k(n
dl
p,q,k) ∈ CU denote the

uplink and donwlink received signals (noise), respectively;
sulp,q,k ∈ CU , sdlp,q,k ∈ CMB denote the transmitted symbol-
s. Also, Fp,q,k,Wp,q,k ∈ CNB×MB denote the precoding
and combining beamformer, respectively, whilst Ψp,q,k ,
Diag(ψp,q,k) ∈ CNI×NI denotes the IRS coefficients, where
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(a) Uplink MS-to-IRS-to-BS transmission.
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(c) Equivalent reflecting/sensing layout.

Fig. 1. An IRS-assisted mmWave MIMO-OFDM system. (a) The U MSs transmit signals through the MS-to-IRS channels {hIM
p,k}

U
u=1 to the IRS, which

are reflected to the BS through the IRS-to-BS channel HBI
p,k with controlled phase shifts Ψp,q,k . (b) The passive reflectors reflect signal waves with phase

shifts designed by the IRS controller; the active sensors transfer training signals to baseband units. (c) The equivalent reflecting/sensing layout of the hybrid
IRS architecture is formulated by reflector and antenna modules with virtual entries occupying the module spacing and irregular areas.

[ψp,q,k]n = ηn,p,q,ke
jψn,p,q,k with ηn,p,q,k ∈ [0, 1] and

ψn,p,q,k ∈ [0, 2π] [31], [32]; HBI
p,k ∈ CNB×NI and HIM

p,k =[
hIM
1,p,k, . . . ,h

IM
U,p,k

]
∈ CNI×U denote the IRS-to-BS and MS-

to-IRS channels, respectively.
Many existing works, e.g., [14]–[21], seek to estimate

the cascaded BS-IRS-MS channel from (1). This approach,
however, experiences the following problems: (i) The training
signal suffers from exacerbated propagation loss along the
two-hop cascaded channel at higher frequencies; (ii) The
required training time of cascaded channel estimation is pro-
portional to the number of IRS units, such that large-scale
IRSs with massive passive elements will result in extremely
heavy training overhead; (iii) The most serious problem is
that there inherently exist unavoidable ambiguities in the
cascaded channel estimates, i.e., for any nonsingular diagonal
Υ ∈ CNI×NI , the scaled channels HBI

p,kΥ, Υ−1HIM
p,k do not

affect the received signal ydl(ul)
p,k . In multiuser communications,

training ambiguities from multiple users lead to inaccurate
estimates of the BS-IRS channel. Moreover, these estimation
uncertainties will undermine the integration of IRS in many
wireless services. For example, the IRS-based modulation of
[33] can only broadcast properly modulated symbols to the re-
ceivers after equalizing the distortion effects of the transmitter-
IRS channel; the environment mapping of [34] manages to
determine the object surfaces and scatter points based on exact
measurements of the received signal strength (RSS), time of
arrival (ToA) and angle of arrival/departure (AoA/AoD); the
user localization and the mobility tracking of [35], [36] also
require precise estimation of the propagation distance and
azimuth/elevation angles from the MSs. Unfortunately, without
any a priori information, the one-hop channels, as well as,
the path parameters cannot be properly recovered from the
cascaded channel estimation.

In order to overcome these shortcomings, we develop a
hybrid IRS architecture composed of NP passive reflectors
and NA active sensors to simultaneously reflect the signal
waves and sense the one-hop channels, as illustrated in Fig.
1(b). The IRS-assisted system is able to directly sense the
one-hop channels by observing the training signal at the IRS
end. This design can also be equivalently viewed as a hybrid
layout consisting of one or multiple IRS planes and a few

B B B B B B B B B

1 2 3 4 1 2 3 4 1 2 3 4

P
th

 frame 2
nd

  frame 1
st
  frame 

Q  time slots 

UL

DL

QB QM =1

Fig. 2. Diagram of the training pilot allocation during P frames. Each MS
sends pilots in QM = 1 time slot of each frame; the BS sends pilots in
QB ≥ 2 time slots of each frame. Pilots at different subcarriers can be
arranged in identical time slots.

antenna nodes/arrays, which are located closely (relative to
the signal wavelength) to formulate a regular Nx ×Ny-planar
topology as illustrated in Fig. 1(c). For far-field propagation,
the active/passive modules can be assumed to share wireless
channels with identical multiple parameters.2 Since the passive
entries do not contribute to the training signals received by
the sensors, the number of reflectors supported by a given
amount of active sensors can be theoretically extended without
limitations, and virtual unit cells with no circuit can be
employed to fill the module spacing and occupy the irregular
areas of the layout topology.3 The proposed design can support
hundreds or even thousands of IRS elements with NA RFCs,
achieving superior spectral and energy efficiency than an NA-
antenna relay [6], [37], [38]. We note that [22] also deploys up
to two single-antenna anchors, such as controllers or idle users,
near the IRS to assist the cascaded channel estimation. These
anchors can help separate and recover the constant channels up
to element-wise ± sign uncertainty via multiple training steps
with a total training overhead proportional to the size of IRS
and the number of users. By deploying more sensing antennas
around the IRS, our method is able to precisely recover the
dynamic channels, as well as, the multipath parameters with
less training overhead independent of NI, NB or U .

As illustrated in Fig. 2, the uplink/downlink training occu-

2If the antenna arrays are placed further away from the IRS, the multipath
parameters of channels experienced by the passive/active blocks may be
different. Then, the sensor modules become anchors near the IRS as in [22].

3The proposed scheme offers considerable design freedom of the hybrid IRS
structure or the equivalent layout. The reflectors and antennas can be arranged
on identical or different substrate boards and individually implemented by
existing printed circuit board techniques. They are only required to jointly
formulate a regular planar topology along with virtual entries.
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pies P frames, where the uth MS sends xu,p,k in QM = 1
time slot of the pth frame; the BS periodically sends precoded
pilots {Fq,kxq,k}QB

q=1 in QB ≥ 2 time slots of each frame. The
training signals partially observed at the IRS are expressed as

zulu,p,k = w ∗ yul
u,p,k = w ∗

(
hIM
u,p,kxu,p,k

)
+w ∗ nul

u,p,k,
(2a)

zdlp,q,k = w ∗ ydl
p,q,k = w ∗

(
(HBI

p,k)
TFq,kxq,k

)
+w ∗ ndl

p,q,k,
(2b)

where yul
u,p,k,y

dl
p,q,k ∈ CNI denote the arrived pilot signals;

zulu,p,k, z
dl
p,q,k ∈ CNI denote the observed incomplete data;

nul
u,p,k,n

dl
p,q,k ∈ CNI are the noise vectors. Also, w ∈ {0, 1}NI

is a binary indicator, where “0/1” indicates the passive/active
entry state. The Hadamard products represent the “filtering”
process of effective signals by the hybrid layout.

We consider IRS-assisted systems working at the mmWave
frequencies. By leveraging the sparse scattering feature of
high-frequency waves, HBI

p,k and {hIM
u,p,k}Uu=1 can be charac-

terized by the Saleh-Valenzuela model with L0 and {Lu}Uu=1

signal propagation paths respectively as4

HBI
p,k =

L0∑
ℓ=1

αℓ,pe
−j2π

(k−1)fsτ0,ℓ
Ks︸ ︷︷ ︸

αℓ,p,k

aB(ϕB,ℓ, θB,ℓ)a
T
I (ϕI,ℓ, θI,ℓ),

(3a)

hIM
u,p,k =

Lu∑
ℓ=1

βu,ℓ,pe
−j2π

(k−1)fsτu,ℓ
Ks︸ ︷︷ ︸

βu,ℓ,p,k

aI(ϕu,ℓ, θu,ℓ), u ∈ I(U),

(3b)

where αℓ,p, βu,ℓ,p denote the complex path gains in the
pth frame; τ0,ℓ, τu,ℓ denote the propagation time delays;
ϕB,ℓ(θB,ℓ), ϕI,ℓ(θI,ℓ) denote the azimuth (elevation) AoA and
AoD of the IRS-to-BS paths, respectively; ϕu,ℓ(θu,ℓ) denotes
the azimuth (elevation) AoA at the IRS from the uth MS.
The array response vectors of the BS and IRS are denoted by
aB(ϕ, θ) ∈ CNB and aI(ϕ, θ) ∈ CNI , respectively. The IRS
elements are assumed to form an uniform planar array (UPA),
while the BS can employ either a UPA or a uniform linear
array (ULA) of antennas. We represent the response vector as
aI(ϕ, θ) , ax(ϕ, θ)⊗ ay(ϕ, θ), where

ax(ϕ, θ) =
[
1, ej2π

d
λc

sinϕ cos θ, . . . , ej2π
d
λc

(Nx−1) sinϕ cos θ
]T
,

(4a)

ay(ϕ, θ) =
[
1, ej2π

d
λc

sinϕ sin θ, . . . , ej2π
d
λc

(Ny−1) sinϕ sin θ
]T
,

(4b)

denote the azimuth and elevation array response vectors,
respectively, whilst d and λc denote the adjacent spacing and
wavelength, respectively.5 Based on (3), (4), the cascaded
channel in (1) can be equivalently viewed as a channel with

4We assume that the path angles and delays remain constant, while the path
gains vary across different frames [39], [40].

5The steering vectors only determine the operation of angle parameter
recovery. The proposed tensor completion scheme can apply to arbitrary 2D
layout with array responses aI(·) = ax(·)⊗ ay(·).

L0Lu scattering paths. One can verify that the traditional
cascaded channel estimation methods cannot recover precise
path parameters but only L0Lu sets of equivalent parameters,
i.e., sinϕI,ℓ0 cos θI,ℓ0 + sinϕu,ℓu cos θu,ℓu , sinϕI,ℓ0 sin θI,ℓ0 +
sinϕu,ℓu sin θu,ℓu , τ0,ℓ0 + τu,ℓu and αℓ0,pβu,ℓu,p, ∀ℓ0 ∈
I(L0), ℓu ∈ I(Lu) [16], [36].

Combining (2)–(4), we can rewrite the partially observed
training signals as

zulu,p,k =w ∗

(
Lu∑
ℓ=1

βu,ℓ,p,kaI(ϕu,ℓ, θu,ℓ)xu,p,k

)
+w ∗ nul

u,p,k

=w ∗
(
Aul

x,u ⊙Aul
y,u

)
gul
u,p,k +w ∗ nul

u,p,k, (5a)

zdlp,q,k =w ∗

(
L0∑
ℓ=1

αℓ,p,kaI(ϕI,ℓ, θI,ℓ)a
T
B(ϕB,ℓ, θB,ℓ)Fq,kxq,k

)
+w ∗ ndl

p,q,k

=w ∗
(
Adl

x ⊙Adl
y

)
gdl
p,q,k +w ∗ ndl

p,q,k, (5b)

where Aul
x(y),u ∈ CNx(y)×Lu collects the steering vectors

{ax(y)(ϕu,ℓ, θu,ℓ)}; gul
u,p,k ∈ CLu contains the equivalent gains

{βu,ℓ,p,kxu,p,k}. Also, Adl
x(y) ∈ CNx(y)×L0 and gul

p,q,k ∈ CL0

are similarly defined. In the following sections, we will
leverage the concept of tensor completion to address the
fundamental channel estimation problem by recovering (5).

III. TENSOR COMPLETION-BASED NARROWBAND
CHANNEL ESTIMATION

We first consider a particular training mode such that
the pilot symbols are arranged on a single subcarrier, i.e.,
k = 1. This mode is compatible with narrowband systems,
which can be extended to the wideband OFDM systems. By
concatenating P and QBP training time slots of (5a), (5b)
respectively, we can derive6

Zul = Wul ∗Yul = Wul ∗
(
(Aul

x ⊙Aul
y )GT

β +Nul
)
, (6a)

Zdl = Wdl ∗Ydl = Wdl ∗
(
(Adl

x ⊙Adl
y )GT

α +Ndl
)
, (6b)

where Wul , w ⊗ 11×P ,W
dl , w ⊗ 11×QBP denote

the indicators; Gβ ∈ CP×L,Gα ∈ CQBP×L0 denote the
equivalent gains, where [Gβ ]p,ℓ = xpβℓ,p, [Gα](q−1)P+p,ℓ =
xTq F

T
q aB(ϕB,ℓ, θB,ℓ)αℓ,p. Since (6a), (6b) are in similar forms,

we mainly focus on the uplink channel estimation, whose
solution similarly applies to the downlink case.7

A. Space-Time Signal Tensor

According to (41), Y(Z) in (6a) can be regarded as a tensor
matricization, i.e., Matr(Y(Z); [2, 1], 3), where

Y =
L∑
ℓ=1

ax,ℓ ◦ ay,ℓ ◦ gβ,ℓ +N = [[Ax,Ay,Gβ ]] +N ,

(7a)

Z = W ∗Y = W ∗
L∑
ℓ=1

ax,ℓ ◦ ay,ℓ ◦ gβ,ℓ +W ∗N , (7b)

6The subscripts “u”, “k” are temporally omitted for notational simplicity.
7The superscript “ul” is omitted hereinafter. All the following variables

correspond to the uplink case unless otherwise stated.
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with ax,ℓ , ax(ϕℓ, θℓ), ay,ℓ , ay(ϕℓ, θℓ), gβ,ℓ , [Gβ ]:,ℓ;
W ∈ {0, 1}Nx×Ny×P and N ∈ {0, 1}Nx×Ny×P are the
tensorial forms of W , w ⊗ 11×P and N, respectively.
Recovering the signal tensor Y , or equivalently its CPD factors
{ax,ℓ,ay,ℓ,gβ,ℓ}Lℓ=1, from the observation Z is referred to
as a tensor completion problem [28]–[30]. These existing
methods, however, resort to iterative operations with empir-
ical termination threshold, yielding unpredictable overhead
and complexity. They were designed to deal with discretely
sampled tensors, and cannot efficiently handle data with a few
regularly sampled entries. Moreover, they are not supported by
theoretical uniqueness analysis, and they are not guaranteed
to return the exact solutions. In order to obtain a straight-
forward solver as well as an intuitive guidance of hybrid
reflecting/sensing design and training resource allocation, we
need to fully exploit the distribution pattern and structural
information of the training data.

We note that the (i, j)th passive entry leads to an all-zero
frontal (mode-3) fiber wi,j,: = 0P×1, which filters out the
corresponding signal yi,j,: ∈ CP of Y . Therefore, solving (7)
is referred to as a fiber sampling tensor completion problem
[41], [42]. It can be verified that the (i, j)th all-zero fiber of
W corresponds to the ((i− 1)Ny + j)th all-zero row of W.
Then, one can obtain an effective observed signal submatrix
Zsub ∈ CNA×P as

Zsub = SWY = Ξ(Ax,Ay)G
T
β + SWN, (8)

where SW ∈ {0, 1}NA×NI is a row-selection matrix that
selects the NA rows of Y that have not been zeroed by W;
Ξ(Ax,Ay) , SW(Ax ⊙Ay) ∈ CNA×L.

B. Uniqueness Condition of Tensor Completion
In order to accurately recover the signal tensor, as well

as, the channel parameters, it is necessary to explore the
uniqueness condition of CPD tensor completion with fiber
sampling.8

We define a binary diagonal matrix Dsel = Diag(dsel) ∈
{0, 1}C

2
Nx
C2

Ny
×C2

Nx
C2

Ny with dsel ∈ {0, 1}C
2
Nx
C2

Ny lexico-
graphically defined as

dsel =
[
d(1,2),(1,2), d(1,2),(1,3),

. . . , d(Nx−1,Nx),(Ny−1,Ny)

]T
,

d(i1,i2),(j1,j2) =


1, if yi1,j1,:,yi1,j2,:,yi2,j1,:,yi2,j2,:

are observable fibers,
0, otherwise,

(9)

where 1 ≤ i1 < i2 ≤ Nx, 1 ≤ j1 < j2 ≤ Ny. Physically,
d(i1,i2),(j1,j2) indicates whether the corresponding 2 × 2 ele-
ment submatrix of the hybrid layout can observe the complete
effective signals. We define a matrix P(ℓ) ∈ CNx×Ny with
indeterminate entries as

p
(ℓ)
ij =

{
[ax,ℓ ⊗ ay,ℓ](i−1)Ny+j

, if wi,j,: = 1P×1,

indeterminate, if wi,j,: = 0P×1.
(10)

8All the theoretical analysis presented in the following content applies to
noiseless signals. That is, for the sake of clarify, the noise terms in the received
signals are temporarily omitted unless otherwise specified.

(a) Suboptimal configuration (b) Worst configuration

Fig. 3. Diagram of specific hybrid IRS designs. The gray squares denote
the passive entries; the red squares denote the basic active sensors ensuring
the graph connectivity; the green squares denote the extra active sensors
contributing to ∥dsel∥0; the blue wireframes mark the effective 2 × 2-
submatrices. (a) Suboptimal distribution, where N extra active entries yield
∥dsel∥0 = C2

N+1. (b) Worst distribution, where N extra active sensors yield
∥dsel∥0 = N .

By leveraging the graph theory, this incomplete matrix P(ℓ)

can be related to a bipartite graph denoted by P(ℓ), whose two
groups of vertices are I(Nx) and I(Ny). Now, P(ℓ) denotes
the edge set, or supports, associated with P(ℓ), where the edge
weight of (i, j) ∈ P(ℓ) is p(ℓ)ij . We derive a restricted bipartite
graph P̃(ℓ) with an edge set P̃(ℓ) =

{
(i, j) ∈ P(ℓ)

∣∣p(ℓ)ij ̸= 0
}

.
Now, a uniqueness condition of fiber sampling CPD-tensor
completion is presented as follows:
Theorem 1 [41]. Consider a tensor Y ∈ CNx×Ny×P with
factor matrices {Ax,Ay,Gβ}, partially observed by Z in (7).
Let Dsel = Diag(dsel) as defined in (9), and let P̃(ℓ) be the
restricted bipartite graph of P(ℓ) as defined in (10). If

rank(Gβ) = L,

rank (Dsel (C2(Ax)⊙C2(Ay))) = C2
L,

P̃(ℓ) is a connected graph,∀ℓ ∈ I(L),
(11)

then the rank of Y equals L, and its CPD is unique up to
scaling and permutation ambiguity.

In the generic case, the first two conditions in (11) become
P ≥ L and ∥dsel∥0 ≥ C2

L, respectively. A necessary condition
to ensure the graph connectivity of P̃(ℓ) is that every row
and column of P(ℓ) get sampled at least once with nonzero
values. Physically, this condition indicates that the active
sensing network, i.e., W:,:,p, cannot partition the received
signal ax,ℓaTy,ℓ into “disconnected” submatrices. In our system,
the graphs {P̃(ℓ)}Lℓ=1 share the identical topology. Compared
with the anchor-based method [22] with a training overhead
of 2NI +U +max

(
U,
⌈
UNI

NB

⌉)
, the proposed method reduces

the overhead to the order of L.
Remark. According to the uniqueness analysis, one can ar-
range the active IRS entries to obtain as many effective 2×2-
submatrices as possible, provided the graph connectivity is
satisfied. As illustrated in Fig. 3, the basic configuration is to
completely sample one row and one column of the IRS with
(Nx+Ny−1) active sensors. Fig. 3(a), (b) show a suboptimal
and the worst sampling distribution cases of totally (N+Nx+
Ny−1) active elements, which respectively provide C2

N+1 and
N effective 2×2-submatrices. Therefore, the minimal number
of active sensors that ensures the uniqueness condition is (a)
NA ≥ Nx +Ny + L; (b) NA ≥ Nx +Ny + C2

L − 1.
We present in Table I the statistical mean of ∥dsel∥0

versus the number of randomly distributed extra sensors, i.e.,
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NA − (Nx + Ny − 1). The table indicates that to estimate a
sparse channel with 3–5 scattering paths, i.e., C2

L+1 ≤ 15,
NA ≥ Nx +Ny + 7 can statistically guarantee the feasibility
of estimation; NA ≥ Nx + Ny + 14 can strictly ensure the
validity of each training trial.

C. Proposed Algorithm

We need a preliminary step to determine the tensor rank
if it is unknown. Given the effective signal Zsub with i.i.d.
Gaussian noise SWN in (8), we adopt a minimum description
length (MDL) method to estimate the number of signal path
components L [43]. We compute the eigenvalue decomposition
of the approximated covariance matrix of Zsub as

ΣZsub
=

1

NA
ZHsubZsub = VΛVH , (12)

where Λ , Diag([λ1, . . . , λP ]
T ) contains the eigenvalues

in descending order; V ∈ CP×P denotes the corresponding
eigenvectors. The rank of Zsub is estimated by the MDL
criterion as

L = argmin
ℓ

ℓ

2
(2P − ℓ) log(NA)

−NA(P − ℓ) log

 ∏P
p=ℓ+1 λ

1
P−ℓ
p

1
P−ℓ

∑P
p=ℓ+1 λp

 . (13)

According to [41], [44], we develop an algebraic approach
to solve the problem (7). By capitalizing on the low-rank
feature of Z, we compress its effective part, i.e., Zsub in (8),
by the singular value decomposition (SVD) as

Zsub = UsubΣsubV
H
sub, Z , STWUsubΣsub,

Z = Tens(Z; [Nx, Ny, L], [2, 1], 3) (14)

where Usub ∈ CNA×L, Σsub ∈ CL×L and Vsub ∈ CP×L;
Z ∈ CNI×L and Z ∈ CNx×Ny×L denote the compressed
signal matrix and tensor, respectively. When min(NA, P ) ≥ L
holds, range(Zsub) = range(UsubΣsub), and there exists a
nonsingular matrix F ∈ CL×L such that

UsubΣsubF
−T = Ξ(Ax,Ay), V∗

subF = Gβ . (15)

We define Q2(Z) ∈ CC
2
Nx
C2

Ny
×C2

L+1 as a tensor-to-matrix
transform, whose ℓth column is given as

vec(CT
2 (Z:,:,ℓ1 + Z:,:,ℓ2)−CT

2 (Z:,:,ℓ1)−CT
2 (Z:,:,ℓ2)), (16)

where ℓ , 1
2 (ℓ1 − 1)(2L − ℓ1) + ℓ2, 1 ≤ ℓ1 ≤ ℓ2 ≤ L.

Let Ssel ∈ {0, 1}∥dsel∥0×C2
Nx
C2

Ny denote the row-selection
matrix that selects the effective parts of Q2(Z) indicated by
dsel. Then, the effective rows SselQ2(Z) can be equivalently
rewritten by invoking [44, Lemma 2.17, 3.11] as

SselQ2(Z) = Ssel (C2(Ax)⊙C2(Ay))Ω
T
2 (F)TS , (17)

with Ω2(F) ∈ CL2×C2
L , TS ∈ CL

2×C2
L+1 being defined as

Ω2(F) = 2
[
πS(f1, f2), πS(f1, f3), . . . , πS(fL−1, fL)

]
, (18a)

TS =
[
πS(e

(L)
1 , e

(L)
1 ), πS(e

(L)
1 , e

(L)
2 ),

. . . , πS(e
(L)
L , e

(L)
L )

]
, (18b)

where πS(x,y) , 1
2 (x⊗ y + y ⊗ x) is the symmetrization

mapping of vec(yxT ); TS denotes an orthogonal basis set
of range(πS) with {e(L)ℓ1

⊗e
(L)
ℓ2

}1≤ℓ1≤ℓ2≤L being a canonical
basis of CL2

. By combining (17), (18), we derive the following
subspace relationship [44, Proposition 2.13]:

TSker
(
SselQ2(Z)

)
= ker

(
ΩT

2 (F)
)
∩ range(πS)

= range
(
F−T ⊙ F−T ) . (19)

We denote the basis of the L-dimensional subspace (19) by
M = [m1, . . . ,mL] ∈ CL2×L. If Ssel (C2(Ax)⊙C2(Ay))
in (17) has full rank, there exists a nonsingular B ∈ CL×L
such that

M = (F−T ⊙ F−T )BT , (20a)

M = Tens(M; [L,L, L], [2, 1], 3) = [[F−T ,F−T ,B]]. (20b)

One can solve the CPD M ∈ CL×L×L in (20) by the
generalized eigenvalue decomposition (GEVD) method [44],
i.e., M:,:,ℓ1FDiag([B]Tℓ2,:) = M:,:,ℓ2FDiag([B]Tℓ1,:), 1 ≤ ℓ1 ̸=
ℓ2 ≤ L. Once the nonsingular F has been derived, one can
directly compute Ξ(Ax,Ay) and Gβ by (15).

Now, the remaining problem is to determine Ax, Ay given
a partial observation Ξ(Ax,Ay). Recall that P(ℓ) in (10) can
be obtained by reshape

(
STW [Ξ(Ax,Ay)]:,ℓ ; [Ny, Nx]

)T
. We

suppose that the jth column of P(ℓ), i.e., p(ℓ)
j ∈ CNx , contains

N c
j,ℓ < Nx indeterminate entries, indexed by {u1, . . . , uNc

j,ℓ
}.

Let p̄(ℓ)
j ∈ CNx denote the column vector with indeterminate

entries of p(ℓ)
j being replaced by zeros. Then, the columns of

P
(ℓ)
j =

[
p̄
(ℓ)
j /∥p̄(ℓ)

j ∥, e(Nx)
u1

, . . . , e(Nx)
uNc

j,ℓ

]
∈ CNx×(1+Nc

j,ℓ),

(21)
constitute a basis of range(P

(ℓ)
j ). By denoting the basis

of ker
(
P

(ℓ)H
j

)
by Q

(ℓ)
j ∈ CNx×(Nx−1−Nc

j,ℓ), the following
relationship holds [41]

ax,ℓ ∈
∩

j∈I(Ny)

range
(
P

(ℓ)
j

)
⇔ Q

(ℓ)H
j ax,ℓ = 0(Nx−1−Nc

j,ℓ)×1, ∀j ∈ I(Ny). (22)

Hence, Ax can be column-wisely derived as

a⋆x,ℓ = arg min
∥ax,ℓ∥2

2=Nx

∥∥∥aHx,ℓ [Q(ℓ)
1 , . . . ,Q

(ℓ)
Ny

]∥∥∥2
2
, ∀ℓ ∈ I(L).

(23)
Since dim

(
ker
([

Q
(ℓ)
1 , . . . ,Q

(ℓ)
Ny

]H))
= 1, one can uniquely

recover ax,ℓ by solving (23). Now, we suppose that the
Nj,ℓ , Nx − N c

j,ℓ determinate entries of p
(ℓ)
j are indexed

by {v1, . . . , vNj,ℓ
} = I(Nx) \ {u1, . . . , uNc

j,ℓ
}. Define āx,ℓ ,

[ax,ℓ]{v1,...,vNj,ℓ
} ∈ CNj,ℓ and p̄

(ℓ)
j ,

[
p
(ℓ)
j

]
{v1,...,vNj,ℓ

} ∈

CNj,ℓ as the observed parts of ax,ℓ and p
(ℓ)
j respectively. Then,

the nonzero entries of ay,ℓ can be computed as

[ay,ℓ]j = ā†x,ℓp̄
(ℓ)
j =

āHx,ℓp̄
(ℓ)
j

∥āx,ℓ∥22
, ∀j ∈ I(Ny). (24)

After obtaining the estimation of the CPD factor matrices
Âx, Ây, Ĝβ , the complete signal Y, or equivalently the MS-
to-IRS narrowband channel [h1, . . . ,hP ], can be estimated as
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TABLE I
STATISTICAL MEAN OF ∥dsel∥0 VS. NUMBER OF ACTIVE SENSORS

E [∥dsel∥0]
NA − (Nx +Ny − 1)

2 4 6 8 10 12 14 16 18 20

Nx, Ny

16 3.4 7.9 13.5 20.3 28.2 37.5 47.9 59.6 72.7 87.3
24 3.2 7.3 12.0 17.5 23.8 30.8 38.6 47.3 56.6 66.7
32 3.2 6.9 11.3 16.1 21.6 27.6 34.2 41.3 49.0 57.5

(
Âx⊙Ây

)
ĜT
β . Furthermore, the multipath AoAs {ϕℓ, θℓ}Lℓ=1

can be estimated by leveraging the rotational-invariance fea-
ture of Âx, Ây as

ω̂x,ℓ , sin ϕ̂ℓ cos θ̂ℓ =
λ

2πd
]([âx,ℓ]†1:Nx−1[âx,ℓ]2:Nx

),

ω̂y,ℓ , sin ϕ̂ℓ sin θ̂ℓ =
λ

2πd
]([ây,ℓ]†1:Ny−1[ây,ℓ]2:Ny),

θ̂ℓ = tan−1 ω̂y,ℓ

ω̂x,ℓ
, ϕ̂ℓ = sin−1 ω̂x,ℓ

cos θ̂ℓ
= sin−1 ω̂y,ℓ

sin θ̂ℓ
, (25)

where ](·) denotes the phase angle extraction operator. Final-
ly, one can determine the scaling ambiguity of factor matrices
and estimate the complex gains β̂ℓ , [β̂ℓ,1, . . . , β̂ℓ,P ]

T as9

β̂ℓ = Diag(x)−1ĝβ,ℓ

(
a†x(ϕ̂ℓ, θ̂ℓ)âx,ℓ

)(
a†y(ϕ̂ℓ, θ̂ℓ)ây,ℓ

)
= Diag(x)−1ĝβ,ℓ[Λx]ℓ,ℓ[Λy]ℓ,ℓ, ∀ℓ ∈ I(L), (26)

where x , [x1, . . . , xP ]
T concatenates the pilot symbols;

{Λx,Λy} ∈ CL×L are the diagonal scaling ambiguities.
Note that for the downlink case, we particularly design a
set of precoded pilots as

{
Fqxq , Q

− 1
2

B e
(NB)
q

}QB

q=1
with at

least MB ≥ QB + 1 RFCs [45]. Then, the ℓth column of
Ĝα ∈ CQBP×L0 equals gα,ℓ = [aB(ϕB,ℓ, θB,ℓ)]1:QB

⊗αℓ with
αℓ , [αℓ,1, . . . , αℓ,P ]

T . One can jointly estimate the entries
of aB(ϕ̂B,ℓ, θ̂B,ℓ) and the complex gains α̂ℓ as

[aB(ϕ̂B,ℓ, θ̂B,ℓ)]q+1 = [ĝα,ℓ]
†
(q−1)P+1:qP [ĝα,ℓ]qP+1:(q+1)P ,

α̂ℓ = [ĝα,ℓ]1:P ,∀q ∈ I(QB − 1), ℓ ∈ I(L0),
(27)

where {ϕ̂B,ℓ, θ̂B,ℓ}L0

ℓ=1 can be recovered according to the
specific structure of BS antenna array.

We summarize the Fiber Sampling Tensor Completion-
based channel estimation scheme as Algorithm 1, abbreviated
as FS-TC. The algorithm only harnesses standard linear al-
gebra and avoids iterative runs and random initialization, and
equally importantly, it guarantees to return the exact solution
in the noiseless case.

Remark. In practice, the calculations of kernel subspaces
included in (19), (23) will suffer from the environment noise
N in (7). Hence, in Step 4, we alternatively take the sin-
gular vectors corresponding to the smallest singular values
of SselQ2(Z) ∈ C∥dsel∥0×C2

L+1 as its kernel subspace basis.
Similarly, in Step 7, we take the left singular vector corre-
sponding to the dominant singular value of

[
P

(ℓ)
1 , . . . ,P

(ℓ)
Ny

]
∈

CNx×(Ny+NP) as the estimation of ax,ℓ. Note that SselQ2(Z)

9In this procedure, the factors {ax,ℓ,ay,ℓ,gβ,ℓ}Lℓ=1 are automatically
paired with each other. One can ignore the column permutation ambiguity
since it is identical for all the factor matrices.

Algorithm 1 FS-TC Algorithm (Uplink)
Require: observation signal Z ∈ CNx×Ny×P , indicator W ∈

{0, 1}Nx×Ny×P , rank L.
1: Determine the binary indicator dsel as well as the selection

matrix Ssel by (9).
2: Perform SVD of Zsub = UsubΣsubV

H
sub, and derive the

compressed tensor Z by (14).
3: Compute the transform Q2(Z) by (16). Perform SVD of

SselQ2(Z) = UQΣQVH
Q .

4: Derive the basis TS of πS by (18). Compute the basis
M = TS [VQ]:,C2

L+1:C2
L+1

by (19).
5: Derive the tensor M by (20). Solve this CPD as a simul-

taneous diagonalization problem by the GEVD method
[44] or the extended QZ method [46], obtaining F.

6: Derive Ξ(Ax,Ay) = UsubΣsubF
−T , Gβ = V∗

subF by
(15).

7: Derive P(ℓ) = reshape
(
STW[Ξ(Ax,Ay)]:,ℓ; [Ny, Nx]

)T .
Derive Ax, Ay by (21)–(24).

8: Estimate the AoAs {ϕℓ, θℓ} by (25). Estimate the complex
path gains β̂ℓ by (26).

9: return channel matrix
(
Âx ⊙ Ây

)
ĜT
β , channel path

parameters {ϕ̂ℓ, θ̂ℓ, β̂ℓ}.

has a rank of C2
L, while the SVD algorithm returns up to

min
(
∥dsel∥0, C2

L+1

)
singular values and the corresponding

singular vectors. In order to approximate the L-dimensional
kernel subspace by [VQ]:,C2

L+1:C2
L+1

in step 4, the condition
∥dsel∥0 ≥ C2

L+1 requires to be satisfied, which is stricter than
the uniqueness condition ∥dsel∥0 ≥ C2

L in (11). Considering
the worst configuration as illustrated in Fig. 3(b), we suggest
to activate NA ≥ Nx +Ny + C2

L+1 − 1 sensors for practical
training to guarantee the validness of algorithms.

IV. TENSOR COMPLETION-BASED WIDEBAND CHANNEL
ESTIMATION

In this section, we generalize the narrowband channel
estimation approach to solve the wideband OFDM channel
estimation problem, in which we can leverage the structural
information of training signals in the frequency domain to
relax the uniqueness conditions of tensor completion and
develop the corresponding algorithms.

A. Space-Time-Frequency Signal Tensor

We represent the concatenated received incomplete uplink
signal in (5) across K subcarriers in P time slots Z =
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[z1,1, . . . , zP,1, z1,2, . . . , zP,K ] ∈ CNI×KP as10

Z = W ∗Y = W ∗
(
(Ax ⊙Ay) (Pτ ⊙Gβ)

T
)
+W ∗N,

(28)
where Y(N) ∈ CNI×KP , W ∈ {0, 1}NI×KP denote the
training signal (noise) and indicator, respectively; Pτ =
[pτ,1, . . . ,pτ,L] ∈ CK×L and Gβ = [gβ,1, . . . ,gβ,L] ∈
CP×L with pτ,ℓ ,

[
1, . . . , e−j2π

(K−1)fsτℓ
Ks

]T
and gβ,ℓ ,

[βℓ,1, . . . , βℓ,P ]
T . According to (41), Y(Z) can be regarded as

a tensor matricization, i.e., Matr (Y(Z); [2, 1], [4, 3]), where

Y =

L∑
ℓ=1

ax,ℓ ◦ ay,ℓ ◦ pτ,ℓ ◦ gβ,ℓ +N

= [[Ax,Ay,Pτ ,Gβ ]] +N , (29a)
Z = W ∗Y

= W ∗
( L∑
ℓ=1

ax,ℓ ◦ ay,ℓ ◦ pτ,ℓ ◦ gβ,ℓ
)
+W ∗N , (29b)

with W ∈ {0, 1}Nx×Ny×K×P and N ∈ {0, 1}Nx×Ny×K×P

being the tensorial forms of W and N, respectively. By
applying the row-selection matrix SW ∈ {0, 1}NA×NI in (8),
the effective observed signal submatrix Zsub ∈ CNA×KP can
be similarly obtained as

Zsub = SWY = Ξ (Ax ⊙Ay) (Pτ ⊙Gβ)
T
+ SWN. (30)

One can verify that the (i, j)th passive unit cell corresponds
to an all-zero mode-(3, 4) slice Wi,j,:,: as well as an all-zero
row [W](i−1)Ny+j,:. Solving (29) can be referred to as a slice
sampling CPD tensor completion problem.

B. Uniqueness Condition of Tensor Completion

We define the incomplete matrix P(ℓ) following (10). Then,
by leveraging the structural characteristic of Pτ in (28), we
develop the following uniqueness condition of the fourth-order
CPD tensor completion in (29).
Theorem 2. Consider a tensor Y ∈ CNx×Ny×K×P with factor
matrices {Ax,Ay,Pτ ,Gβ}, partially observed by Z in (29).
Let P̃(ℓ) be the restricted bipartite graph of P(ℓ) as defined in
(10). If

rank (Ξ (Ax,Ay)) = rank
(
P(K−1)
τ ⊙Gβ

)
= L,

τℓ1 ̸= τℓ2 , ∀ℓ1 ̸= ℓ2 ∈ I(L),
P̃(ℓ) is a connected graph, ∀ℓ ∈ I(L),

(31)

where P
(K−1)
τ , [Pτ ]1:K−1,:, then the rank of Y equals L,

and its CPD is unique up to scaling and permutation ambiguity.
Proof: See Appendix B.

In different cellular communication scenarios, some signal
propagation paths with different AoAs coincidentally expe-
rience identical time delay. In this case, Theorem 2 is no

10One default configuration is to insert identical pilots, e.g, xp,k = 1,
into consecutive subcarriers. Actually, all the common comb-type pilot
arrangements are permitted, which only cause a minor variation of the
algorithm. Moreover, one may use rotational-invariant pilots, e.g., {xp,k ,
e(k−1)δ}Kk=1, to better control the peak-to-average power ratio.

longer applicable. Fortunately, we can leverage the concept of
virtual space-frequency array to develop another uniqueness
condition. Define

Ãx , P(Kx)
τ ⊙Ax, ãx,ℓ = p

(Kx)
τ,ℓ ⊗ ax,ℓ, (32a)

Ãy , P(Ky)
τ ⊙Ay, ãy,ℓ = p

(Ky)
τ,ℓ ⊗ ay,ℓ, (32b)

where Kx + Ky = K + 1, p
(Kx)
τ,ℓ =

[
P

(Kx)
τ

]
:,ℓ

, p
(Ky)
τ,ℓ =[

P
(Ky)
τ

]
:,ℓ

. Then, we determine the binary indicator d̃sel ∈
{0, 1}C

2
KxNx

C2
KyNy as

d̃sel =
[
d̃(1,2),(1,2), d̃(1,2),(1,3), . . . ,

d̃(KxNx−1,KxNx),(KyNy−1,KyNy)

]T
,

d̃(i1,i2),(j1,j2) =


1, if ỹi1,j1,:, ỹi1,j2,:, ỹi2,j1,:, ỹi2,j2,:

are observable fibers,
0, otherwise,

(33)

where the fibers {ỹi,j,:} ∈ CP are from Ỹ , [[Ãx, Ãy,Gβ ]] ∈
CKxNx×KyNy×P . Now, another new uniqueness condition of
CPD tensor completion is presented as follows:
Theorem 3. Consider a tensor Y ∈ CNx×Ny×K×P with factor
matrices {Ax,Ay,Pτ ,Gβ}, partially observed by Z in (29).
Let D̃sel = Diag(d̃sel) as defined in (33), and let P̃(ℓ) be the
restricted bipartite graph of P(ℓ) as defined in (10). If

rank(Gβ) = L,

rank
(
Dsel

(
C2(Ãx)⊙C2(Ãy)

))
= C2

L,

P̃(ℓ) is a connected graph, ∀ℓ ∈ I(L),
(34)

with Ãx, Ãy defined as in (32), then the rank of Y equals
L, and its CPD is unique up to scaling and permutation
ambiguities.

Proof: See Appendix C.
Remark. In the generic case, the first condition of (31)
becomes min(NA, (K − 1)P ) ≥ L. On the other hand, as
illustrated in Fig. 4, each of the NA determinate entries of
P(ℓ) in (10) corresponds to a Kx × Ky effective submatrix
in the virtual array planes ãx,ℓã

T
y,ℓ, which significantly in-

creases ∥d̃sel∥0 in (33). Therefore, Theorem 2 and 3 indicate
that introducing structural information of training signals in
the frequency domain, i.e., Pτ , helps relax the uniqueness
condition of CPD tensor completion.

C. Proposed Algorithms
The Slice Sampling Tensor Completion-based wideband

channel estimation scheme is summarized as Algorithm 2,
abbreviated as SS-TC. This approach contains two schemes
respectively derived from Theorem 2 and 3.
Remark. If Kx ≈ Ky, one can define Km , min(Kx,Ky)
and compute

Ãxy ,
[
[Ãx]

T
1:Nx,:, [Ãy]

T
1:Ny,:, . . . ,

[Ãx]
T
(Km−1)Nx+1:KmNx,:

, [Ãy]
T
(Km−1)Ny+1:KmNy,:

]T
= P(Km)

τ ⊙
[
AT

x AT
y

]T
, (35)
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(a) Virtual array–type I (b) Virtual array–type II

Fig. 4. Diagram of a virtual space-frequency array plane of hybrid IRS
with Kx = Ky = 2. The gray/red/green squares denote the passive/basic
active/extra active entries; the solid/dotted boxes denote the physical/virtual
IRS elements. (a)

{
p
(Kx)
τ,ℓ ⊗ ax,ℓ

}
×

{
p
(Ky)

τ,ℓ ⊗ ay,ℓ

}
-plane. (b) Equivalent{

ax,ℓ ⊗ p
(Kx)
τ,ℓ

}
×

{
ay,ℓ ⊗ p

(Ky)

τ,ℓ

}
-plane.

Algorithm 2 SS-TC Algorithm (Uplink)
Require: observation signal Z ∈ CNx×Ny×K×P , indicator

W ∈ {0, 1}Nx×Ny×K×P , rank L.
Scheme 1 following Theorem 2:

1: Derive the generators {ω̂τ,ℓ} of Pτ by (42)–(44). Derive
Gβ by (45).

2: Compute Ξ(Ax,Ay) by (42). Derive Ax, Ay by (21)–
(24).

3: Estimate the AoAs {ϕ̂ℓ, θ̂ℓ} by (25).
4: Determine the scaling ambiguities {Λx,Λy,Λτ} ∈ CL×L

to derive β̂ℓ.
Scheme 2 following Theorem 3:

1: Choose (Kx,Ky) with Kx+Ky = K+1. Compute Z̃ss ∈
CKxNx×KyNy×P by (46)–(49).

2: Solve the CPD tensor completion of Z̃ by (14)–(24).
3: Estimate the AoAs {ϕ̂ℓ, θ̂ℓ} and time delays {τ̂ℓ} by (50).
4: Determine the scaling ambiguities {Λx,Λy,Λτ} ∈ CL×L

to derive β̂ℓ.
return channel matrix

(
Âx ⊙ Ây

)(
P̂τ ⊙ Ĝβ

)T , channel
path parameters {ϕ̂ℓ, θ̂ℓ, τ̂ℓ, β̂ℓ}.

to estimate {ωτ,ℓ}Lℓ=1 by leveraging the rotational-invariance
property of (35).

Moreover, if the system adopts a common comb-type pilot
arrangement that does not satisfy the rotational-invariance
property, neither Theorem 2 nor 3 applies. In this case, we
can directly solve the third-order CPD [[Ax,Ay,Pτ ⊙ Gβ ]]
of (29) according to Theorem 1, and solve a set of L rank-1
factorization subproblems as

{p⋆τ,ℓ,g⋆β,ℓ} = arg max
∥pτ,ℓ∥2

2=K,gβ,ℓ

∥∥Ω(ℓ) − pτ,ℓg
T
β,ℓ

∥∥2
F
, (36)

where Ω(ℓ) = reshape([Pτ ⊙Gβ ]:,ℓ ; [P,K])T ∈ CK×P .
One can take the dominant left/right singular vectors of Ω(ℓ)

as the solution of (36).

V. NUMERICAL RESULTS

A. Computational Complexity

In Algorithm 1, the complexity is dominated by the con-
struction of SselQ2(Z) and the computation of the CPD
M, which are of the order O(∥dsel∥0C2

L+1) and O(L3)
respectively. In Algorithm 2, the complexity of Solution 1

is dominated by the derivation of Pτ , Gβ , which is of the
order O(KPL2); the complexity of Solution 2 is dominated
by the computation of the CPD Z̃ , which is of the order
O(∥d̃sel∥0C2

L+1+L
3). As a comparison, the CS method [23]

has a complexity of the order O(NxNyP (Nx + Ny)); the
Alternating Least Squares (ALS) [28] has a complexity of the
order O(3L2NA+L3(Nx+Ny+P )) per iteration; the Tensor
completion by parallel Matrix fACtorization (TMac) [29] has
a complexity of the order O(LNxNyP+L2(Nx+Ny+P )) per
iteration; the optimization-based nonlinear least squares (NLS)
[30] has a complexity of the order O(L2NA+L3NxNyP ) per
iteration.

B. Simulation Results

All the typical simulation parameters are listed here: Nx =
Ny = 16 or 32; NB = 32 (ULA), MB = 3; QM = 1,
QB = 2; Ks = 128, fc = 28GHz, L0 = L = 4, U = 1;
the AoD/AoAs {ϕB(I,u),ℓ, θB(I,u),ℓ} follow the uniform distri-
bution U(−π

2 ,
π
2 ); the complex gains {αℓ,p, βu,ℓ,p} follow the

normal distribution CN (0, 1); the time delays {τ0(u),ℓ} follow
the uniform distribution U(0, 102ns). The proposed FS-TC and
SS-TC schemes are compared with the CS [23], ALS [28],
TMac [29] and NLS [30].11

1) Uplink Narrowband Training: Table II tabulates the
algorithm computational complexity quantified by the single
running time (milliseconds) as well as the effective channel
estimation performance evaluated by the normalized mean
square error (NMSE).12 It shows that the proposed FS-TC
can achieve enhanced performance with the lowest complexity,
and the running time is inversely proportional to the number
of missing signal fibers, or equivalently the missing ratio
(MR) NP/NI. The performance and complexity of the iterative
counterparts suffer from either the MR/noise level or the
IRS scale, respectively. On the contrary, the FS-TC performs
robustly against those hardware and system factors.

Fig. 5 plots the NMSE curves of channel matrices versus
the received SNR, i.e., ∥Y − N ∥2F /∥N ∥2F . It indicates that
the FS-TC outperforms the ALS/TMac and CS when the SNR
increases to 15 dB and 22.5 dB, respectively, while it can also
achieve performance close to that of the NLS in the high-SNR
region with much faster speed. Moreover, the performance
of FS-TC is exponentially improved against the increasing
SNR, while the CS and ALS cannot benefit much from the
SNR. It can also be observed that even with a higher MR, the
performance of the second configuration is better than that of
the first one. This indicates that the number of effective signal
measurements is more significant than the sampling ratio for
the recovery of partially observed signal tensors.

11To better evaluate the estimation performance of channel parameters, the
tensor rank L0, L is assumed to be known or perfectly estimated a priori for
all the approaches. The angle resolution of CS method is 2π

8Nx
× 2π

8Ny
.

12The NMSE metrics for narrowband and wideband uplink training are
defined as ∥(Ax ⊙Ay)GT

β − (Âx ⊙ Ây)ĜT
β ∥2F /∥(Ax ⊙Ay)GT

β ∥2F and
∥(Ax⊙Ay)(Pτ⊙Gβ)

T −(Âx⊙Ây)(P̂τ⊙Ĝβ)
T ∥2F /∥(Ax⊙Ay)(Pτ⊙

Gβ)
T ∥2F , respectively. The NMSE of downlink training is similarly defined.

The simulation laptop configuration is Intel(R) Core(TM) i7-8750H CPU
2.20GHz, 8.00 GB RAM; the notation “—” means that the algorithm cannot
return effective estimates with NMSE < 1.0.



10

TABLE II
PERFORMANCE COMPARISONS OF TENSOR COMPLETION APPROACHES

Approaches CS [23] ALS [28] TMac [29] NLS [30] FS-TC
MR
(%)

SNR
(dB) err time err time err time err time err time

[[Nx, Ny, P ]]L = [[16, 16, 6]]4

75 25 1.1e-2 3.0e+1 4.6e-1 4.2e+1 1.3e-2 2.3e+2 4.8e-3 4.0e+3 5.4e-3 3.3e+1
40 1.0e-2 3.0e+1 3.7e-1 4.2e+1 2.2e-3 2.2e+2 1.4e-4 3.9e+3 1.6e-4 3.2e+1

80 25 1.2e-2 2.8e+1 — 3.9e+1 3.0e-1 2.3e+2 6.4e-2 4.7e+3 8.9e-3 2.6e+1
40 1.1e-2 2.7e+1 — 3.8e+1 2.8e-1 2.4e+2 2.7e-3 4.5e+3 2.5e-4 2.5e+1

[[Nx, Ny, P ]]L = [[32, 32, 6]]4

85 25 8.5e-3 4.6e+2 3.3e-1 2.9e+2 6.5e-3 5.3e+2 3.1e-3 4.1e+3 3.8e-3 1.1e+2
40 8.2e-3 4.4e+2 2.4e-1 3.0e+2 1.1e-3 5.2e+2 1.2e-4 4.1e+3 1.3e-4 1.2e+2

90 25 9.3e-3 3.4e+2 — 2.3e+2 5.4e-1 5.0e+2 — 5.5e+3 7.6e-3 8.6e+1
40 9.2e-3 3.2e+2 — 2.3e+2 4.6e-1 5.1e+2 9.2e-1 5.4e+3 1.7e-4 8.7e+1
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0

N
M

S
E

CS [23]

ALS [28]

TMac [29]

NLS [30]

FS-TC

Fig. 5. Channel NMSE performance vs. SNR, P = 6.

Fig. 6 plots the NMSE curves versus the MR of hybrid
IRS. It illustrates that the performance of all the approaches,
especially that of the ALS, TMac and NLS, deteriorates
against the increasing MR. For the case where the number of
effective signal samples is extremely limited, the FS-TC shows
its superior performance. Concretely, when the MR exceeds
75% for the 16× 16-layout and 85% for the 32× 32-layout,
the FS-TC evidently outperforms most of the counterparts.
The robustness and short running time make FS-TC perfectly
suitable for low-complexity IRSs with limited number of
active elements, which can efficiently reduce the hardware
complexity and power consumption.

Fig. 7 plots the NMSE curves versus the number of training
frames. It shows that except the CS method, all the other
methods can achieve enhanced estimation accuracy against
the increasing P . This is due to the fact that more training
time slots extend the depth of observation signal fibers to
improve the performance of tensor completion approaches,
which corroborates the analysis of uniqueness condition, while
the performance of CS mainly depends on the resolution of
sensing codebook. Furthermore, it can be observed that as
P increases, the rate of performance enhancement gradually
decreases.

Fig. 8 plots the number of training frames versus the

67.5 72.5 77.5 82.5 87.5 92.5

MR (%)
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M

S
E
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TMac [29]

NLS [30]

FS-TC

Fig. 6. Channel NMSE performance vs. MR, P = 6, SNR = 30 dB.
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Training Frames (P)
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10
-1

10
0

N
M

S
E

CS [23]

ALS [28]

TMac [29]

NLS [30]

FS-TC

Fig. 7. Channel NMSE performance vs. training frames, SNR = 30 dB.

received SNR, given a target NMSE. It shows that the as the
SNR gradually increases, the minimal number of measure-
ments P required to achieve desired performance decreases
exponentially by orders of magnitude. Concretely, given an
objective NMSE, the maximal SNR gap that can be compen-
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Fig. 8. Training frames vs. SNR given a target NMSE.

sated by adjusting the quantity of measurements is 10 dB, 15
dB and 20 dB for ALS, TMac and NLS/FS-TC respectively,
whilst this considerable gap narrows down as the number of
effective samples NA reduces.

2) Downlink Wideband Training: Fig. 9 plots the NMSE
curves of downlink wideband training versus the SNR.13 It
demonstrates that the SS-TC schemes achieve exponential-
ly improved performance against the increasing SNR, and
systematically outperform the other counterparts at the high-
SNR region. Moreover, as the bandwidth increases, the SS-
TC-1 returns significantly enhanced results, while the SS-
TC-2 is relatively insensitive to fs. This can be explained
as follows: an increasing fs (or decreasing Ks) enlarges the
subcarrier interval, as well as, the statistical phase distances of
{e−j2πfsτ0,ℓ/Ks} to improve the resolution of {τ0,ℓ, αℓ,p} in
the SS-TC-1, which directly determines the recovery accuracy
of Ax(y). In the SS-TC-2 method, the information of time
delays has been integrated into the virtual space-frequency
arrays and gets recovered after the AoAs, which contributes
much less to channel matrix estimation.

Fig. 10 plots the rooted mean square error (RMSE) curves
of multipath parameters, i.e., {ϕI,ℓ, θI,ℓ, ϕB,ℓ, τ0,ℓ} versus the
SNR.14 One can observe that the recovery accuracy achieved
by the SS-TC methods exponentially improves against the
increasing SNR. It also shows that the increasing bandwidth
improves the RMSEs of all the parameters, especially the time
delays, in the SS-TC-1, whilst those of AoA/AoDs in the
SS-TC-2 remain relatively stable. This phenomenon conforms
with the previous frequency analysis of Fig. 9. Combining with
the complexity analysis, we can infer that the SS-TC-1 is suit-
able for large bandwidths with numerous training subcarriers,
while the SS-TC-2 is oppositely suitable for the case with
small values of K and fs. By contrast, the CS method returns

13The scheme 1 and 2 in Algorithm 2 are denoted by SS-TC-1 and SS-TC-
2, respectively. The ALS method does not effectively work, and therefore, its
performance curve is omitted.

14The RMSE of parameter xℓ is defined as
√

1
L0

∑L0
ℓ=1(xℓ − x̂ℓ)2. The

CS method cannot factorize the frequency and time parameters, and the TMac
method computes the whole tensor signal but cannot derive the factor matrices.
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Fig. 9. Channel NMSE performance vs. SNR, Nx = Ny = 16, MR =
82.5%, P = 6,K = 3.
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Fig. 10. Parameter RMSE performance vs. SNR, Nx = Ny = 16, MR
= 82.5%, P = 6,K = 3.

constant RMSE of AoA due to the fixed resolution of angle
codebooks; the NLS method yields considerable parameter
accuracy but worse channel NMSE, which indicates that it
lacks sufficient stability to simultaneously obtain accurate
estimation along the space/time/frequency domains.

Fig. 11 plots the NMSE curves versus the quantity of
training subcarriers. It shows that as K increases, the SS-
TC and NLS achieve evidently enhanced performance, while
the CS and TMac improve only marginally. Moreover, one
can observe that as the performance of SS-TC-1 continues
to improve, the result of SS-TC-2 gradually converges to a
threshold of 4× 10−4. This observation is consistent with the
earlier frequency analysis of Fig. 9, 10, which suggests that
there is no need to further increase the number of training
subcarriers when the structural frequency information has been
fully exploited. Furthermore, compared with Fig. 7, Fig. 11
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Fig. 11. Channel NMSE performance vs. training subcarriers, Nx = Ny =
16, MR = 82.5%, P = 6, SNR = 30 dB.

shows that the training subcarriers do not contribute as much
as the training frames to the tensor signal completion, which
can be explained that as K, P increase to large values, the
“regularly”-sampled Pτ does not provide as much effective
information as the randomly-sampled Gα.

Fig. 12 plots the ergodic spectral efficiency curves of the
IRS-aided system versus the MR, which is defined as [6]

1

PK
E

∑
p,k

log2

(
1 +

Pp,k
σ2
n

∥∥∥HBI
p,kDiag(hIM

p,k)ψ̂p,k

∥∥∥2)
 ,

(37)
where Pp,k, σ2

n denote the transmit power and noise variance,
respectively; the IRS coefficients ψ̂p,k are generated by search-

ing a codebook Dx ⊗Dy with [Dx(y)]m,n = e
−j(m−1) 2π

Nx(y)
n

based on the estimated ĤBM
p,k , ĤBI

p,kDiag(ĥIM
p,k) as in [23].15

The figure illustrates that when the MR is less than 85.0%,
the SS-TC methods, especially the SS-TC-2 version, can
achieve robust spectral efficiency close to that with perfect
CSI. Moreover, the CS method yields considerable spectral
efficiency thanks to its robust channel NMSE performance
shown in Fig. 5, 6. As the MR gradually increases, the spectral
efficiency performance of TMac and NLS dramatically dete-
riorates because the former cannot acquire effective channel
estimates, and the latter suffers from estimation instability with
a limited number of samples NA.

VI. CONCLUSIONS

We considered the channel estimation of an IRS-assisted
mmWave MIMO-OFDM system. We divided the cascaded
channel estimation problem to the MS-to-IRS and BS-to-
IRS subproblems to avoid the inherent estimation ambiguities.
We developed a hybrid IRS design composed of passive
and active modules, balancing the requirements of effective

15In the simulation, the transmitted SNR Pt,k/σ
2
n is approximated by the

quotient of the received SNR ρ and the maximal channel gain given the true
codeword ψ⋆

p,k as ρ/∥HBM
p,k ψ

⋆
p,k∥

2.
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Fig. 12. Ergodic spectral efficiency performance vs. MR, Nx = Ny = 16,
P = 6,K = 3, SNR = 30 dB.

signal processing and hardware complexity. We modeled
the narrowband training signal as an incomplete third-order
CPD tensor and derived a fiber sampling-tensor completion
problem. We developed an algebraic solution that applies to
arbitrary valid design of hybrid layout. Then, we turned to the
wideband OFDM training case, and established a fourth-order
CPD tensor completion model. By leveraging the structural
characteristic of training signals in the space and frequency
domain, we proposed two different channel estimation and
parameter recovery solutions. The uniqueness conditions of
CPD tensor completion were also analyzed, which can inform
the hybrid IRS design and training configuration. Numerical
results showed that the proposed strategy outperforms the
traditional schemes in terms of accuracy and complexity. In
our future work, we are going to improve the algorithm
performance against regular sampling designs.

APPENDIX A
PRELIMINARIES OF TENSOR THEORY

We present here some basic concepts of tensor alge-
bra. Tensors are multi-dimensional data arrays. Vectors and
matrices are one-dimensional and two-dimensional tensors,
respectively.
Definition 1. X , [xi1,...,iN ] ∈ CI1×···×IN denotes a N th-
order tensor. The vector xi1,...,in−1,:,in+1,...,iN ∈ CIn with all
indices along the nth dimension is called a mode-n fiber. The
matrix Xi1,...,in1−1,:,in1+1,...,in2−1,:,in2+1,...,iN ∈ CIn1×In2

with all indices along the n1, n2th dimensions is called a
mode-(n1, n2) slice.
Definition 2 [25]–[27]. A Canonical Polyadic Decomposition
(CPD) is a factorization of X into a sum of rank-1 terms:

X =

R∑
r=1

a(1)r ◦ a(2)r ◦ · · · ◦ a(N)
r

= [[A(1),A(2), . . . ,A(N)]], (38)

where R is the rank of X , i.e., the minimal number of rank-
1 tensors that yield X in a linear combination. The matrices
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A(n) =
[
a
(n)
1 , . . . ,a

(n)
R

]
∈ CIn×R, ∀n are referred to as the

factor matrices of CPD in (38).
Definition 3 [47]. The matricization operation denoted by
Matr(X ; [k1, . . . , kP ], [kP+1, . . . , kN ]) unfolds X into a ma-
trix X ∈ C

∏P
p=1 Ikp×

∏N
q=P+1 Ikq as:

X̃ = permute (X ; [k1, . . . , kN ]) ,

X = reshape
(
X̃ ;
[∏P

p=1 Ikp ,
∏N
q=P+1 Ikq

])
, (39)

where X̃ ∈ CIk1
×···×IkN ; permute(X ; tTord) rearranges the

dimensions of tensor X in the order specified by tord;
reshape(X ; tTsize) reconstructs X into an array X with sizes
specified by tsize.

As an inverse transform, the tensorization operation de-
noted by Tens(X; [I1, . . . , IN ], [k1, . . . , kP ], [kP+1, . . . , kN ])
tensorizes X to a tensor X as:

X̃ = reshape(X; [Ik1 , . . . , IkN ]),

X = permute(X̃ ; tTreord), (40)

where [treord]kn = n, ∀n specifies the reordering indices.
The above functions share the identical definitions of their
counterparts in MATLAB.16

Lemma 1 [44]. Consider a CPD tensor X ∈ CI1×···×IN with
factor matrices A(n) ∈ CIn×R, ∀n ∈ I(N). One can verify
the relationship between the matricization result of CPD model
and its factor matrices as

X = Matr(X ; [k1, . . . , kP ], [kP+1, . . . , kN ])

=
(
A(kP ) ⊙ · · · ⊙A(k1)

)(
A(kN ) ⊙ · · · ⊙A(kP+1)

)T
.

(41)

APPENDIX B
PROOF OF THEOREM 2

We perform the SVD of (29) as Zsub = UsubΣsubV
H
sub,

where Usub ∈ CNA×L, Σsub ∈ CL×L and Vsub ∈ CKP×L.
If Ξ(Ax,Ay) and P

(K−1)
τ ⊙Gβ have full column rank, there

exists a nonsingular matrix F ∈ CL×L such that

UsubΣsubF
−T = Ξ(Ax,Ay),V

∗
subF = Pτ ⊙Gβ . (42)

By leveraging the rotational-invariance characteristic of Pτ ,
we have

V∗
sub,1F = P(K−1)

τ ⊙Gβ , (43a)

V∗
sub,2F =

(
P(K−1)
τ ⊙Gβ

)
∆τ , (43b)

where Vsub,1 , [Vsub]1:(K−1)P,:, Vsub,2 , [Vsub]P+1:KP,:;
∆τ , Diag

(
[ejωτ,1 , . . . , ejωτ,L ]T

)
with ωτ,ℓ , −2πfsτℓ/Ks.

∆τ and F can be derived by the GEVD method as

F∆τF
−1 =

(
V∗

sub,1

)†
V∗

sub,2. (44)

If ∆τ contains distinct diagonal entries, Gβ can be column-
wisely computed as [48]

gβ,ℓ =

(
pHτ,ℓ

∥pτ,ℓ∥22
⊗ IP

)
V∗

subfℓ. (45)

16http://www.mathworks.com/help/matlab/ref/reshape(permute).html.

One can compute Ξ(Ax,Ay) by (42), and recover {ax,ℓ,ay,ℓ}
following (21)–(24).

APPENDIX C
PROOF OF THEOREM 3

We perform a matricization of Z in (29) as

Z̃ , Matr(W ; [1, 3], [4, 2]) ∗Matr(Y ; [1, 3], [4, 2])

= W̃ ∗
(
(Pτ ⊙Ax)(Ay ⊙Gβ)

T
)
, (46)

where W̃ ∈ {0, 1}KNx×PNy is the matricization result of W .
Then, we perform a spatial smoothing transformation of (46)
with Kx +Ky = K + 1 as

Z̃ss ,
[
J1Z̃ J2Z̃ · · · JKy Z̃

]
,

Jky ,
[
0Kx×(ky−1) IKx 0Kx×(Ky−ky)

]
⊗ INx . (47)

By leveraging the rotational-invariance feature of Pτ , we have
[45], [49]

Z̃ss = W̃ss ∗
((

P(Kx)
τ ⊙Ax

)(
P(Ky)
τ ⊙Ay ⊙Gβ

)T)
= W̃ss ∗

(
Ãx

(
Ãy ⊙Gβ

)T)
, (48)

where W̃ss ∈ {0, 1}KxNx×KyNyP is the spatial smoothing
result of W̃. The equivalent incomplete signal tensor Z̃ss ∈
CKxNx×KyNy×P can be derived from (48) as

Z̃ss , Tens(Z̃ss; [KxNx,KyNy, P ], 1, [3, 2])

= W̃ss ∗ [[Ãx, Ãy,Gβ ]], (49)

where W̃ss ∈ {0, 1}KxNx×KyNy×P is the tensorization result
of W̃ss. This CPD tensor completion problem can be solved up
to scaling and permutation ambiguities via (14)–(24). One can
separate {Ax,Ay,Pτ} from {Ãx, Ãy} by leveraging their
rotational-invariance feature as

ejωx,ℓ = [Πxãx,ℓ]
†
1:(Nx−1)Kx

[Πxãx,ℓ]Kx+1:NxKx , (50a)

ejωy,ℓ = [Πyãy,ℓ]
†
1:(Ny−1)Ky

[Πyãy,ℓ]Ky+1:NyKy , (50b)

ejωτ,ℓ = [ãx,ℓ]
†
1:(Kx−1)Nx

[ãx,ℓ]Nx+1:KxNx

= [ãy,ℓ]
†
1:(Ky−1)Ny

[ãy,ℓ]Ny+1:KyNy , (50c)

where the phases ωx,ℓ , sinϕℓ cos θℓ, ωy,ℓ , sinϕℓ sin θℓ
and ωτ,ℓ , −2πfsτℓ/Ks are called the generators of Ax,
Ay and Pτ , respectively. Πx ∈ {0, 1}KxNx×KxNx and
Πy ∈ {0, 1}KyNy×KyNy are permutation matrices such that
ΠxÃx = Ax⊙P

(Kx)
τ and ΠyÃy = Ay⊙P

(Ky)
τ , respectively.
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