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SHORT ABSTRACT

Short Abstract

This thesis deals with nature-inspired evolution processes for the purpose of sig-
nal enhancement and approximation. The focus lies on mathematical models
which originate from the description of swarm behaviour. We extend existing
approaches and show the potential of swarming processes as a modelling tool in
image processing. In our work, we discuss the use cases of grey scale quantisation,
contrast enhancement, line detection, and coherence enhancement. Furthermore,
we propose a new and purely repulsive model of swarming that turns out to de-
scribe a specific type of backward diffusion process. It is remarkable that our
model provides extensive stability guarantees which even support the utilisation
of standard numerics. In experiments, we demonstrate its applicability to global
and local contrast enhancement of digital images. In addition, we study the
problem of one-dimensional signal approximation with limited resources using an
adaptive sampling approach including tonal optimisation. We suggest a direct en-
ergy minimisation strategy and validate its efficacy in experiments. Moreover, we
show that our approximation model can outperform a method recently proposed
by Dar and Bruckstein.
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KURZZUSAMMENFASSUNG

Kurzzusammenfassung

Die vorliegende Arbeit beschäftigt sich mit naturinspirierten Evolutionsprozessen,
die sich zur Verbesserung und Approximation von Signalen eignen. Der Schwer-
punkt liegt dabei auf mathematischen Modellen, die ihren Ursprung in der Be-
schreibung von Schwarmverhalten haben. Wir erweitern vorhandene Methoden
und zeigen das Potenzial von Schwarmprozessen als Modellierungswerkzeug in
der Bildverarbeitung auf. Im Rahmen dieser Arbeit besprechen wir folgende An-
wendungsfälle: Grauwertquantisierung, Kontrastverstärkung, Geradenerkennung
und Kohärenzverstärkung. Des Weiteren stellen wir ein neues und vollständig
abstoßendes Schwarmmodell vor, mit dem es möglich ist, eine besondere Klasse
von Rückwärtsdiffusionsprozessen zu beschreiben. Hervorzuheben sind hierbei
weitreichende Stabilitätsgarantien unseres Modells, die sogar die Verwendung von
Standardverfahren aus der Numerik miteinschließen. In Experimenten zeigen wir
die Anwendbarkeit des Modells zur globalen und lokalen Kontrastverstärkung in
digitalen Bildern. Darüber hinaus untersuchen wir das Problem der eindimen-
sionalen Signalapproximation mit begrenzten Ressourcen unter der Verwendung
eines adaptiven Abtastverfahrens mit tonaler Optimierung. Wir verfolgen eine
direkte Energieminimierungsstrategie, deren Wirksamkeit wir in Experimenten
bestätigen. Weiterhin zeigen wir, dass unser Modell einer kürzlich von Dar und
Bruckstein veröffentliche Methode überlegen ist.
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ABSTRACT

Abstract

This work has set itself the goal to study mathematically well-founded evolution
processes and their application to the world of signal processing. The focus lies
on the description of swarm behaviour and the usage of swarm models in the
context of signal enhancement and signal approximation.
In a first step, we investigate the eligibility of swarm evolutions for the purpose
of modelling image processing tasks and show that they have the potential to be
way more than just optimisation tools as which they are often used. We propose
an extension to attractive-repulsive discrete first-order models of swarming that
complies with the theory of nonsymmetric nonlocal evolutions. Subsequently, we
demonstrate that our generic swarming process suits well as a modelling tool: It
allows us to describe grey scale quantisation, contrast enhancement, line detec-
tion, and coherence enhancement in terms of a swarm evolution.
Our next contribution deals with the ill-posed inverse problem of backward dif-
fusion. Borrowing ideas from a purely repulsive swarm model, we come up with
a smart model to describe a one-dimensional backward diffusion process. We
achieve stability from reflecting boundary conditions in the diffusion co-domain,
a concept which is new in the context of backward diffusion. Due to the fact that
our model describes a gradient descent process on a convex energy, it provides
excellent convergence guarantees and allows the application of simple numerics.
This is in contrast to existing models which either require crude stabilisation
terms or sophisticated numerics. In experiments, we show that our backward dif-
fusion model allows to enhance the global and local contrast of digital greyscale
and colour images.
Finally, we study the `2-optimal approximation of arbitrary one-dimensional sig-
nals with piecewise-defined functions under the constraint of limited resources.
This can also be interpreted in terms of adaptive sampling with tonal optimisa-
tion. We suggest an energy-based approach with minimal requirements that aims
at minimising the mean squared error. Furthermore, we provide an alternative
derivation of the recent Dar–Bruckstein model and disprove the optimality of er-
ror balancing for piecewise constant output functions. Due to the nonconvexity
of the energy, we employ a particle swarm optimisation strategy. Additionally,
we discuss the applicability of numerical first-order optimisation schemes. In
our experiments, we estimate piecewise constant and piecewise linear approxima-
tion functions. We achieve high quality results and can beat the Dar–Bruckstein
model in terms of the `2-approximation error.
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ZUSAMMENFASSUNG

Zusammenfassung

Diese Arbeit hat es sich zum Ziel gesetzt, mathematisch fundierte Evolutions-
prozesse, sowie deren Anwendung im Bereich der Signalverarbeitung, zu unter-
suchen. Der Schwerpunkt liegt dabei auf der Beschreibung von Schwarmverhal-
ten und der Verwendung von Schwarmmodellen im Zusammenhang mit Signal-
verbesserung und Signalapproximation.
In einem ersten Schritt prüfen wir die Eignung von Schwarmprozessen zur Model-
lierung von Bildverarbeitungsaufgaben und zeigen, dass diese das Potential dazu
haben, mehr als nur Optimierungswerkzeuge zu sein, als die sie oft verwendet
werden. Wir schlagen eine Erweiterung für diskrete Anziehungs-Abstoßungs-
Schwarmmodelle erster Ordnung vor, die mit der Theorie von nichtsymmetrischen
nichtlokalen Evolutionsprozessen vereinbar ist. Anschließend zeigen wir, dass sich
der von uns allgemein formulierte Schwarmprozess gut als Modellierungswerkzeug
eignet: Er erlaubt es uns Grauwertquantisierung, Kontrastverstärkung, Geraden-
erkennung und Kohärenzverstärkung im Sinne einer Schwarmevolution zu bes-
chreiben.
Unser nächster Beitrag beschäftigt sich mit dem schlecht gestellten inversen Prob-
lem der Rückwärtsdiffusion. Basierend auf Ideen eines vollständig abstoßenden
Schwarmmodells, entwickeln wir ein elegantes Modell zur Beschreibung eines
eindimensionalen Rückwärtsdiffusionsprozesses. Dabei erreichen wir eine Stabilis-
ierung des Prozesses mit Hilfe von reflektierenden Randbedingungen im Diffusions-
Wertebereich, ein Konzept, das im Zusammenhang mit Rückwärtsdiffusion neu
ist. Aufgrund der Tatsache, dass unser Modell einen Gradientenabstieg auf einer
konvexen Energie beschreibt, bietet es hervorragende Konvergenzgarantien und
erlaubt die Anwendung einfacher numerischer Verfahren. Dies steht im Gegensatz
zu bereits existierenden Modellen, die entweder einen einflussreichen Stabilisie-
rungsterm oder eine aufwändige Numerik voraussetzen. In Experimenten zeigen
wir, dass sich unser Rückwärtsdiffusionsmodell zur globalen und lokalen Kon-
trastverstärkung von digitalen Grauwert- und Farbbildern eignet.
Zuletzt untersuchen wir die `2-optimale Annäherung von beliebigen eindimensio-
nalen Signalen mit Hilfe abschnittsweise definierter Funktionen bei eingeschränk-
ten Ressourcen. Dies kann auch als adaptives Abtastverfahren mit tonaler Op-
timierung verstanden werden. Wir schlagen hierzu einen energiebasierten An-
satz mit minimalen Voraussetzungen vor, der die Minimierung des mittleren
quadratischen Fehlers zum Ziel hat. Darüber hinaus liefern wir eine alterna-
tive Herleitung des kürzlich vorgestellten Dar–Bruckstein Modells und widerlegen
die Optimalität der Fehlerbalancierung im Falle von abschnittsweise konstanten
Ausgabefunktionen. Aufgrund der Nichtkonvexität der Energie, verwenden wir
eine Partikel-Schwarm-Optimierungsstrategie. Weiterhin diskutieren wir die An-
wendbarkeit von numerischen Optimierungsverfahren erster Ordnung. In unseren
Experimenten bestimmen wir abschnittsweise konstante, sowie abschnittsweise li-
neare Annäherungsfunktionen. Wir erzielen qualitativ hochwertige Resultate und
können zudem die Ergebnisse des Modells von Dar und Bruckstein hinsichtlich
des `2-Approximationsfehlers unterbieten.
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Chapter 1

Introduction

“I can’t understand why people are frightened of new ideas. I’m
frightened of the old ones.”

John Cage, Conversing with Cage

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope and Contributions . . . . . . . . . . . . . . . . . 5

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation

Questioning things is an inherent part of human history. Essentially, it’s our
curiosity which motivates us to explore the unknown and helps to understand and
explain supposedly unexplainable phenomena. It turns out that, in particular, our
most important teacher, the nature, follows fascinating and surprisingly simple
rules which can assist us in solving complex problems.
One example out of many represents the Giant’s Causeway in Northern Ireland
(see Figure 1.1). According to the Gaelic mythology it represents a remainder of
a causeway connecting Northern Ireland and Scotland which was built and des-
troyed by a giant [Jon06]. In fact, it consists of 40000 basalt columns which
emerged from the cooling process of lava around 50 to 60 million years ago
[UNE20]. The Giant’s Causeway does – however – not only serve as a good basis
for legends, or as tourist attraction. Taking a closer look at the structure and
the ordering of the basalt columns one can identify a so-called centroidal Voronoi
tessellation [DFG99]: nature presents us an optimal solution for a partitioning
problem! This concept has been successfully transferred and exploited within the
context of vector quantisation or clustering. There, it is common practice to use
algorithms like Lloyd’s algorithm [Llo82] or the k-means algorithm [Mac67] to
obtain a centroidal Voronoi tessellation.
The answers – as we can see perfectly in this particular case – lie straight ahead

1



CHAPTER 1. INTRODUCTION

Figure 1.1: The Giant’s Causeway near Bushmills, Northern Ire-
land. Sources: https://pixabay.com/images/id-539859/ (left picture),
https://pixabay.com/images/id-3801174/ (right picture).

Figure 1.2: Left: Swarm of starlings looking for a roost
near Silkeborg, Denmark. Right: 60 stacked satellites of the
Starlink mission right after being launched in May 2019. Sources:
https://en.wikipedia.org/wiki/File:Sort_sol_ved_Ørnsø_2007.jpg (left image),
https://flickr.com/photos/130608600@N05/47926144123 (right image).

and it is up to us to discover and ask the right questions in order of being able to
learn from them. Already the sheer scale of the (known and partially explored)
universe allows the conclusion that numerous alternative examples exist of which
we might not be even aware of yet. In other cases, we have probably not been
able to realise their whole extent so far. Anyhow, we should understand nature
as a mentor which provides us with inspiration and guidance. Just consider our
everyday lives. We navigate through the latter right in the middle of an envir-
onment which is equipped with many things we take for granted. However, for a
lot of them we are far away from being able to completely understand or explain
them. The movement of bird flocks (see Figure 1.2) – as well as the organisa-
tion therein – serves as a good example and is dealt with in the research areas
of collective or swarm behaviour. Some important questions which arise cover
very elementary concepts: How do single birds align? How do swarm members
influence each other? How do they avoid collisions? All these questions have in
common that we don’t know a final answer yet. Nonetheless, their investigation
is highly relevant for multiple applications which are in the focus of our society

2



1.1. MOTIVATION

Figure 1.3: Left: Diffusion of ink in water. Centre: Picture of a cow taken by
the author. Right: Blurred cow image resulting from homogeneous diffusion.
Sources: https://pixabay.com/images/id-2427263/ (left picture).

today. We live in a world in which companies have planned and recently star-
ted to shoot 42000 additional satellites into the earth’s atmosphere which will
increase the number of human made spacecraft by a factor of five [Hen19] (see
also Figure 1.2). Not only it is important for satellites to avoid collisions with
space junk or asteroids. The higher the number of satellites will get the more im-
portant also becomes an autonomous strategy for swerving: a task which would
definitely benefit from – and which should be based on – reliable mathematical
models. Of course, concepts for future autonomous vehicles like cars, trains, or
drones require the same in order of being able to improve public transport and
to reach a maximum possible amount of reliability and safety.
A mathematical model which is capable of describing interactions amongst a large
number of entities exists e.g. for diffusion processes (see Figure 1.3) where one is
interested in distribution changes of some quantity (e.g. heat) over time. Weick-
ert demonstrates in [Wei98] how this model can be applied as a denoising filter
to digital greyscale and colour images, too. It turns out that the diffusion models
used in image processing provide a lot of features which would also be desirable
for (predictable) swarm behaviour. This becomes clear if one interprets the pixels
of a digital image as members of an artificial swarm (the swarm represents the
image as a whole). Furthermore, the individual position within the swarm cor-
responds to a pixel’s grey or colour value and is subject to change over time.
Analogously to the previously mentioned case of autonomous vehicles, it is de-
sirable that the positions lie within a pre-defined domain which they never leave.
The behaviour of all swarm members should be predictable and controllable while
changing some properties of the swarm. Apart from that, it is of fundamental im-
portance that the most important characteristics of the swarm remain unaffected.
Speaking in terms of digital images again, removing noise should – of course –
not change the meaning of the perceived content itself. Diffusion models allow
to describe direction-dependent and attractive-repulsive swarming processes. A
very interesting but challenging – and only partially solved – problem remains
the description of pure backward diffusion. The latter is e.g. useful in the context
of inverse heat propagation or a swarm which consists of repelling members only.
Such complex dynamical systems are omnipresent in the world we live in, al-

3



CHAPTER 1. INTRODUCTION

Figure 1.4: Left: Portrait of Johannes Kepler (1571–
1630). Right: Illustration of Kepler’s laws. Sources:
https://en.wikipedia.org/wiki/File:Johannes_Kepler_1610.jpg (left pic-
ture), https://en.wikipedia.org/wiki/File:Kepler_laws_diagram.svg (right
picture).

though, we often restrict ourselves to simplified or idealistic model variants in
order of being able to cope with their original complexity. Consider e.g. the
heliocentric model of the universe and Kepler’s laws of planetary motion (see Fig-
ure 1.4). In fact, we know that they only represent an approximation to reality
(see e.g. [GPS01]). Nevertheless, they cover the most important characteristics
and provide sufficient accuracy for many applications (like the state estimation
of earth-orbiting objects like satellites). This idea has also been transferred to
the world of signal processing, e.g. for the purpose of signal compression and ap-
proximation. Although, there exist important and frequently used concepts for
exact signal reconstruction, we usually don’t require their precision in many situ-
ations in our everyday lives. Lossy compression techniques for images became
part of our daily routine and allow efficient data storage at acceptable quality
for many purposes as shown in Figure 1.5. Without any doubt, the method of
JPEG compression [PM92] established as a standard format for digital images
shared amongst millions or even billions of people around the globe. One inter-
esting aspect within this context is the fact that lossy compression techniques are
heavily-used those days although often there doesn’t even exist a clear definition
or consistent idea of what optimal signal approximation means. In case of limited
resources – usually this refers to limited storage capacities – it is still unknown
how the optimal approximation of a (non-trivial) piecewise constant signal should
look like (e.g. in terms of a mean squared error).

It becomes clear that there are many (essential and) highly relevant open ques-
tions in the closely connected research areas of swarm behaviour, backward dif-
fusion, and signal approximation. This is the starting point and main motivation
of this dissertation.

4



1.2. SCOPE AND CONTRIBUTIONS

Figure 1.5: Left: Original image (4096 × 3072 px, 2450786 bytes using JPEG
compression) taken by the author near Neustrelitz, Germany. Right: The same
image with reduced JPEG quality obtained using GIMP [Tea20] (quality = 25,
582106 bytes).

Figure 1.6: Example of swarm-based quantisation. Left: Original image from
[Sig15] with 255 greyscales. Centre: Quantised image with 16 greyscales.
Right: Quantised image with 8 greyscales.

1.2 Scope and Contributions

This thesis connects the mathematical modelling of swarm dynamics for the pur-
pose of image processing, with a stable model for pure backward diffusion, and
optimal signal approximation. We provide new insights into related complex pro-
cesses and give answers to fundamental yet unanswered questions arising in all
three domains.

Attractive-Repulsive Swarming Models for Image Processing. Emerged
from simulation applications, swarming models have established as an eligible tool
for optimisation. We follow a different approach describing their potential as a
modelling instrument for image processing tasks. This enables us to use swarm-
ing models for the purpose of grey scale quantisation, contrast enhancement, and
line detection. Exemplary results for grey scale quantisation are illustrated in
Figure 1.6. Additionally, we explain the construction of a coherence enhancing
image filter based on the theory of swarm models (see Figure 1.7).

5



CHAPTER 1. INTRODUCTION

Figure 1.7: Example of swarm-based coherence enhancing image filtering. Left:
Original fingerprint image from [WWS06]. Right: Coherence enhanced image.

Figure 1.8: Example for contrast enhancement using our backward diffusion
model. Left: Original image from [Kod]. Centre: Result with globally en-
hanced contrast. Right: Result with locally enhanced contrast.

Purely Repulsive Models and Backward Diffusion. The backward dif-
fusion – or inverse heat propagation – problem is well-known to be ill-posed
(cf. [Joh55]) and its solution requires extensive stabilisation. The latter can
e.g. be achieved with the help of additional regularisation terms or sophistic-
ated numerics. Inspired by purely repulsive swarm behaviour, we present a novel
and smart model that implements globally negative diffusivities. Its stabilisation
results from reflecting boundary conditions which we impose in the co-domain.
Surprisingly, this simple trick allows us to formulate backward diffusion as a gradi-
ent descent process on a convex energy. The associated well-posedness properties
permit the usage of standard numerics and guarantee a stable evolution. In ex-
periments, we demonstrate the applicability of our model for global and local
contrast enhancement of grey scale and colour images. Representative results for
colour images are given in Figure 1.8.

Evolutions for One-Dimensional Signal Approximation. Our third con-
tribution deals with piecewise constant and piecewise linear approximations of
arbitrary one-dimensional signals (see Figure 1.9). We consider the yet unsolved
problem of estimating optimal solutions which are based on a limited number of
samples and minimise the mean squared error w.r.t. the original signal. Part of
our work is the analysis of the connected nonconvex energy minimisation problem
in general and for the specific cases of piecewise constant and linear approxima-
tions. This discussion also includes a compact and transparent reformulation of

6



1.3. THESIS OUTLINE
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Figure 1.9: Illustration of piecewise constant signal approximation: The piecewise
constant trui 51 signal – from Chapter 5 – in grey and our best piecewise constant
approximation when using 10 samples in blue.

the Dar–Bruckstein model for adaptive sampling [DB19]. Furthermore, we dis-
prove the suitability of error balancing as a criterion for `2-optimality of piecewise
constant approximations. In order to solve the nonconvex optimisation problem
efficiently, we evaluate the applicability of nature-inspired and numerical first-
order optimisation strategies.

1.3 Thesis Outline
The present work is structured as follows: First, we introduce notational conven-
tions and discuss the mathematical foundations which build the basis of this thesis
in Chapter 2. Subsequently, in Chapter 3, we present attractive-repulsive swarm-
ing models and their application to image processing problems. In Chapter 4,
we introduce our model for purely repulsive swarm behaviour and describe how
it can be used to solve the backward diffusion problem. Chapter 5 explains our
energy-based evolution for one-dimensional signal approximation. Afterwards, we
provide a summary and outlook in Chapter 6. Appendix A contains the biblio-
graphy and a list of our individual publications can be found in Appendix B. For
the glossary and the list of symbols we refer to Appendix C and D accordingly.
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Chapter 2

Foundations

“The aspects of a thing that are most important to us are hidden
to us because of their simplicity and familiarity.”

Ludwig Wittgenstein, Philosophical Investigations

Contents
2.1 Preliminary Concepts and Definitions . . . . . . . . . 10

2.1.1 Basic Notations . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Interpretation of Digital Signals as Functions . . . . . 10

2.1.3 Important Function Classes . . . . . . . . . . . . . . . 11

2.1.4 Mean Squared Error . . . . . . . . . . . . . . . . . . . 12

2.1.5 Eigenvalue Analysis of Matrices . . . . . . . . . . . . . 13

2.1.6 Initial Value Problems . . . . . . . . . . . . . . . . . . 13

2.2 Numerical Optimisation Techniques . . . . . . . . . . 14

2.2.1 Gradient Descent Method . . . . . . . . . . . . . . . . 14

2.2.2 Heavy Ball Method . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Adaptive FSI . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Backtracking Line Search . . . . . . . . . . . . . . . . 17

2.2.5 Particle Swarm Optimisation . . . . . . . . . . . . . . 18

This chapter addresses the basic notation used in this thesis and introduces es-
sential tools such as

• mathematical concepts and definitions, and

• numerical optimisation algorithms,

which are used in the main part afterwards.
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CHAPTER 2. FOUNDATIONS

2.1 Preliminary Concepts and Definitions

2.1.1 Basic Notations

Throughout our work we make use of the subsequent typesetting conventions in
order to accentuate and differentiate between scalars, vectors, matrices, functions,
and sets:

• We use lower-case letters to express scalar values and employ bold lower-
case letters for vectors. For example, f = (f1, . . . , fn)T ∈ Rn represents a
real-valued column vector of length n ∈ N with first scalar element f1 ∈ R.
Apart from that, we employ capital letters to refer to important constants
such as the Lipschitz constant L, or the total number of samples N .

• Matrices use bold upper-case letters, such that A ∈ Rn×m refers to a real-
valued matrix which consists of n rows and m columns. We refer to the
corresponding matrix element in row i and column j by ai,j ∈ R.

• In general, we denote functions by lower-case letters. Only for energy func-
tions, forces, and integrated functions, we use upper-case letters. In contrast
to scalar-valued functions we write the letters of vector-valued functions in
bold face: e.g. we write f : N2 → R, but g : N2 → R3.

• We utilise upper-case letters to represent sets. An example is given by
Q ⊆ Rn.

2.1.2 Interpretation of Digital Signals as Functions

We often find ourselves in the situation where we want to apply a mathematical
model to some given digital input signal. The latter consists of discrete measure-
ments and is typically given either as a real-valued vector or a real-valued matrix.
In order of being able to process this pointwise information we make use of the
following mappings which can – if necessary – also be adapted to vector-valued
data.

One-dimensional Signals. We consider a signal vector f ∈ Rn as a function

f : N→ R (2.1)

which maps a discrete position i ∈ {1, . . . , n} to the corresponding value fi ∈ R.

Two-dimensional Signals. Similarly, we consider a signal matrix A ∈ Rn×m

as a function
f : N× N→ R (2.2)

which maps a discrete grid position (i, j) ∈ {1, . . . , n}×{1, . . . ,m} to the corres-
ponding value ai,j ∈ R.

10
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Figure 2.1: While f1 ∈ C0,0
8 ([0, 4]), f2 is not Lipschitz continuous on R\{0}.

2.1.3 Important Function Classes

Within the next section, we introduce two function classes which are of particular
importance in conjunction with mathematical optimisation problems: Lipschitz
continuous functions and convex functions. Both provide support for reasonable
assumptions on a given task and allow to differentiate between distinct types of
optimisation problems. As a consequence, they are essential in the process of
determining an appropriate optimisation strategy.

Lipschitz Continuity. A function f : Q→ R is said to be Lipschitz continuous
on Q ⊆ Rn if it fulfils the Lipschitz condition

‖f(x)− f(y)‖ ≤ L‖x− y‖, for some L ≥ 0, (2.3)

for all x,y ∈ Q. This work borrows the notation f ∈ Ck,p
L (Q) as used by Nesterov

in [Nes04] in order to express that a function f is k-times differentiable on Q
while its p-th derivative is Lipschitz continuous with constant L. It holds that
0 ≤ p ≤ k. All functions of this class have in common that the variation of the
magnitude of the p-th signal derivative is bounded. If we neglect the Lipschitz
continuity of the p-th derivative and refer to the class of k-times differentiable
functions on Q we simply write f ∈ Ck(Q). The functions

f1(x) :=


8x, for 0 ≤ x < 1

8, for 1 ≤ x < 2

−2x+ 12, for 2 ≤ x < 3

6x− 12, for 3 ≤ x ≤ 4

, f2(x) :=
1

x2
, for x ∈ R\{0}, (2.4)

serve as an example for a Lipschitz continuous and a non-Lipschitz continuous
function (see also Figure 2.1).

Convexity. According to [BV04] a function f : Q→ R is convex on Q ⊆ Rn if
it fulfils Jensen’s inequality

f(γx + (1− γ)y) ≤ γf(x) + (1− γ)f(y), (2.5)

11
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Figure 2.2: Graph of the convex function f(x) = x2 + 2x+ 1.

for 0 ≤ γ ≤ 1, where x,y ∈ Q, and Q is a convex set. As illustrated in Figure 2.2,
this inequality involves that the value of a convex function f between any two
positions x and y never lies above the line segment through f(x) and f(y). Every
function f for which the inequality (2.5) is strict – assuming 0 < γ < 1 and x 6= y
– is said to be strictly convex.

2.1.4 Mean Squared Error

A classical measure to quantify the differences between two discrete signals is the
mean squared error

MSE(F ,G) :=
1

N
‖F −G‖2

F , for F ,G ∈ Rn×m, (2.6)

whereN := n·m denotes the number of samples and ‖·‖F represents the Frobenius
norm (see also [HTF09]). This simple but effective method sums up the squared
differences at each signal position, i.e. the MSE is always greater than or equal
to zero and reflects the average element-wise difference of both signals.
It is well-known that the MSE is not invariant w.r.t. translations or rotations of
signals. However, these scenarios are not relevant within the scope of this thesis.
For this reason, the MSE represents our method of choice when comparing two
signals.

Examples. Two simple examples illustrate the estimation of the MSE for one-
and two-dimensional signals.

f1 := (2, 0, 2, 0)T, g1 := (0, 2, 0, 2)T, MSE(f1, g1) = 4 (2.7)

F2 :=


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 , G2 :=


0 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0

 , MSE(F2,G2) = 2 (2.8)
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2.1.5 Eigenvalue Analysis of Matrices

Spectral Radius. In accordance with [SK04] the spectral radius of some matrix
A ∈ Rn×n is defined as

ρ(A) := max
i
|λi|, for i = 1, 2, . . . , n, (2.9)

where λi denotes the i-th eigenvalue of A.

Gershgorin Circle Theorem. In order of being able to numerically estimate
the solution to large-scale optimisation problems it is often sufficient to find an
approximation to the upper boundary of the spectral radius of a given system
matrix. This can be done in a comfortable way with the help of Gershgorin’s
Circle Theorem [Ger31, SK04]. Let

Ki := {z ∈ C
∣∣ |z − aii| ≤ ri :=

n∑
k=1
k 6=i

|aik|}, for i = 1, . . . , n, (2.10)

then every eigenvalue of A ∈ Rn×n lies within
n⋃
i=1

Ki.

Example. Let’s consider the symmetric real-valued 4× 4 matrix

A1 :=


4 1 0 0
1 5 1 0
0 1 4 2
0 0 2 3

 . (2.11)

As a consequence of its symmetry and the Gershgorin circle theorem all eigenval-

ues of A1 lie within the real-valued subset of
4⋃
i=1

Ki. More precisely, this means

that all eigenvalues fulfil

λi ∈ [1, 7], for i = 1, 2, 3, 4, (2.12)

and ρ(A1) ≤ 7. These findings can e.g. be validated numerically using Maple
[Map18] which returns the eigenvalues

λ1 ≈ 6.3234, λ2 = 5, λ3 ≈ 3.35793, λ4 ≈ 1.31867. (2.13)

2.1.6 Initial Value Problems

The tasks in this work are formulated as time evolutions in a one- or two-
dimensional signal domain. From a theoretical viewpoint this comes down to
solve an initial value problem of type

ẋ(t) = f(x(t)) (2.14)
x(0) = x0 (2.15)
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with t ∈ R+
0 , x0 ∈ Rn, x : R+

0 → Rn, and f : Rn → Rn. The goal is to estimate
the dynamical system x(t) for which the initial state x0 is known and whose
change in time is given by f . Usually, the dynamical system is evaluated for a
certain time t or one is interested in its steady state

x∗ := lim
t→∞

x(t). (2.16)

A good resource for more detailed information about dynamical systems provides
the book by Perko [Per01].

Energy Minimisation Problems. Within the scope of this thesis we restrict
ourselves to initial value problems which can be interpreted as energy minimisa-
tion problems. More detailed, we assume that there exists an energy function
E : Rn → R which is minimised by a time evolution (2.14)

ẋ(t) = −∇x(t)E(x(t)) (2.17)

in terms of a gradient descent.

2.2 Numerical Optimisation Techniques

Often, it is not feasible to derive an analytical solution to a given initial value
problem. In these cases, numerical methods are of essential importance and
allow to estimate an approximative solution (see e.g. [SK04, BV04, Nes04]).
Subsequently, we introduce different numerical optimisation techniques which are
used in the context of this thesis.

2.2.1 Gradient Descent Method

An elementary method for unconstrained minimisation of functions f ∈ C1,1
L (Rn)

which are bounded from below represents the gradient descent method. Other fre-
quently used names are gradient algorithm or gradient method (see e.g. [Nes04,
BV04, Pol87]). The gradient descent method belongs to the class of first-order
optimisation techniques due to the fact that it makes use of the first-order deriv-
ative of f . Its basic idea is described in Algorithm 1. Therein the positive scalar
α denotes the step size and xk refers to a position after k iterations.

Algorithm 1 Gradient Descent Method
(based on [Nes04, (1.2.9),(1.2.16)] and [BV04, Algorithm 9.3])

x0 ∈ Rn, k := 0
while stopping criterion is not met do
xk+1 ← xk − α∇f(xk)
k ← k + 1

end while

14
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Convergence and Optimal Time Step Size. The gradient descent method
converges to a local minimum of f for every step size α which satisfies

0 < α <
2

L
. (2.18)

A proof for this statement can e.g. be found in [Nes04]. Furthermore, there exists
an optimal step size

α∗ :=
1

L
(2.19)

which leads to most rapid descent of the objective function f . Based on [Nes04,
(1.2.12)], one can verify that for α = α∗ the decrease of the value of f follows at
least

f(xk+1) ≤ f(xk)− ‖∇f(xk)‖2
2

2L
. (2.20)

Stopping Criterion. Usually, the stopping criterion is given by ‖∇f(xk)‖2 ≤
ε, where ε is a small and positive constant [BV04]. Unless stated otherwise we
make use of

ε :=
‖∇f(x0)‖2

106
, (2.21)

where we assume that ‖∇f(x0)‖2 > 0.

Subspaces of Rn. As long as one can ensure that xk ∈ Q for all k ≥ 0 the
gradient descent method can be applied without modifications to functions f ∈
C1,1
L (Q), where Q ⊆ Rn.

2.2.2 Heavy Ball Method

Another first-order minimisation method – called the heavy ball method – was pro-
posed by Polyak [Pol64]. It belongs to the class of so-called multi-step methods
since – in every iteration – it makes use of information from multiple preceding
steps. The scheme of the heavy ball method is given in Algorithm 2. The para-

Algorithm 2 Heavy Ball Method
(based on [Pol87, 3.2.1])

x0 ∈ Rn,x−1 := x0, k := 0
while stopping criterion is not met do
xk+1 ← xk − α∇f(xk) + β(xk − xk−1)
k ← k + 1

end while

meter β steers the inertia of the method while α, again, denotes the step size. If
the parameter values are chosen such that

β ∈ [0, 1), and α ∈
(

0,
2(1 + β)

L

)
, (2.22)
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then the heavy ball method converges to a local minimum of the objective function
f [Pol87, 3.2.1, Theorem 1]. For β = 0, the algorithm simplifies to the gradient
descent method discussed in Section 2.2.1. Within this thesis we set

β = 0.75 (2.23)

and use the same stopping criterion as for the gradient descent method.
As illustrated in Figure 2.3, the introduction of the inertia term β(xk − xk−1)
may increase the convergence of the algorithm: While in the particular example
the gradient descent method tends to zigzag motion, the heavy ball method has
a much smoother trajectory.

Figure 2.3: Trajectories of the heavy ball method (a) and the gradient descent
method (b) from an initial point x0 towards the minimum x∗ (image taken from
[Pol87]).

2.2.3 Adaptive FSI

Recently, Tómasson et al. [TOW19] came up with Adaptive FSI (AFSI) schemes.
Also their algorithm represents a first-order multi-step method and can be inter-
preted as a cyclic variant of the heavy ball method. It is illustrated in Algorithm 3.
Therein, a new cycle is initiated every time when the reset condition

∇f(xk)T(xk − xk−1) > 0 (2.24)

is satisfied and the index k is set to zero again. By doing so, AFSI implements an
adaptive restart of a cycle which means that the length of a cycle is determined
automatically by the algorithm. Within each cycle the index k increases sequen-
tially and the extrapolation parameter αk is updated accordingly. In case the
step size parameter ω satisfies

ω ∈
(

0,
2

L

)
, (2.25)

convergence of the method to a local minimum is guaranteed using the same
reasoning as for the heavy ball method: One can show that – for every k – the
conditions in (2.22) are fulfilled, where we assume β = ak − 1 and α = αkω.
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Algorithm 3 AFSI
(based on [TOW19, Algorithm 1])

x0 ∈ Rn,x−1 := x0, k := 0
while stopping criterion is not met do
if ∇f(xk)T(xk − xk−1) > 0 then
x−1,x0 ← xk−1

k ← 0
end if
αk ← 4k+2

2k+3

xk+1 ← xk − αkω∇f(xk) + (αk − 1)(xk − xk−1)
k ← k + 1

end while

In summary, AFSI combines the simplicity of the gradient descent method with
the convergence benefits of a multi-step procedure like the heavy ball method
without the requirement of additional parameters.

2.2.4 Backtracking Line Search

While for AFSI the step size α = αkω depends on the index k and varies over
time, we have – so far – assumed a constant step size α for the gradient descent
and the heavy ball method. In order to adapt both algorithms better to the shape
of the objective function f it is possible to set the step size α via backtracking line
search [NW99, 3.1]. The latter is a simple and efficient strategy for automatic
step size selection and can in practice also be used to handle jumps and kinks of
the objective function. We show the most basic form of backtracking line search
in Algorithm 4. The parameter α > 0 represents the initial step length and is

Algorithm 4 Backtracking Line Search
(based on [NW99, Procedure 3.1])

α← α
while f(xk + αpk) > f(xk) + dα∇f(xk)Tpk do
α← ρα

end while

– according to [NW99] – often set to one. Another option is to set α to the
optimal step size given in (2.19). The variable pk denotes some descent direction
of the objective function f in the current iteration k, i.e. ∇f(xk)Tpk < 0. The
contraction parameter ρ ∈ (0, 1) allows to steer the crudeness of the line search.
Furthermore, the constant d ∈ (0, 1) sets the minimum desired decrease of the
objective function as a fraction of the linear extrapolation of f (cf. [BV04, 9.2]).
If not stated otherwise we set

d = 10−4, (2.26)
ρ = 10−1. (2.27)
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2.2.5 Particle Swarm Optimisation

Based on a simulation of social behaviour, Kennedy and Eberhart [KE95] pro-
posed the iterative Particle Swarm Optimisation (PSO) algorithm for nonlin-
ear function optimisation. In contrast to the numerical minimisation techniques
mentioned before, PSO does not require a differentiable objective function. This
comes at the price of loosing convergence guarantees, however, experimental stud-
ies have proven the usefulness and competitiveness of PSO and its deviates.
In the context of PSO, a “swarm” describes a given number of n virtual particles
which explore the solution space with the help of their memory as well as social
interactions. In iteration k, the velocity vki and position xki of particle i are
updated, where i = 1, 2, . . . , n. It is common to distribute the initial particle
positions x0

i uniformly in the solution space. Each particle position represents a
potential minimiser of the objective function with corresponding value f(xki ).

Original Algorithm. As stated in [BM08, Chapter 3], the original PSO al-
gorithm updates the particle velocities and positions via

vk+1
i = vki + c1 u

k
1 �

(
pki −xki

)
+ c2 u

k
2 �

(
gk−xki

)
, (2.28)

xk+1
i = xki + vk+1

i , (2.29)

where

pki := arg min
j=0,1,...,k

f(xji ) (2.30)

is the preceding position of particle i which induces the lowest objective value.
The best previous position of the whole swarm is given by

gk := arg min
i=1,2,...,n

f(pki ). (2.31)

Consequently, gk represents the best minimiser of the objective function found
up to iteration k. Within (2.28) the symbol � denotes element-wise vector mul-
tiplication, whereas uk1 and uk2 represent independent and uniformly distributed
random vectors with components in [0, 1]. The cognitive and social accelera-
tion coefficients are given by the nonnegative weights c1 and c2. Kennedy and
Eberhart [KE95] set both values to 2.
People have suggested many improvements and variations for the original PSO
algorithm. A recent and comprehensive review is e.g. given in [BM17].

Standard Particle Swarm Optimisation 2011. Within the scope of this
thesis we make use of the Standard Particle Swarm Optimisation 2011 (SPSO-
2011) algorithm which incorporates an adaptive random particle neighbourhood
topology and rotation invariance [ZCR13]. For SPSO-2011 the update rule for
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the particle velocity vki in iteration step k reads

pki = xki + c1 u
k
1 �

(
pki −xki

)
, (2.32)

lki = xki + c2 u
k
2 �

(
l
k

i −xki
)
, (2.33)

gki = 1
3

(
xki + pki + lki

)
, (2.34)

vk+1
i = ω vki + Hi

(
gki , |gki −xki |

)
− xki . (2.35)

Using (2.32) and (2.33), the algorithm estimates the two points pki and lki first.
While pki lies in direction of pki (the previous best position of particle i), the
point lki implements the influence of neighbour knowledge and is located near lki .
The latter denotes the best previous position – concerning the objective value
f – among the nneigh neighbours of particle i. Next, the centre of gravity gki of
xki , pki , and lki is set in (2.34). In (2.35), we update the velocity vk+1

i of particle
i based on its current velocity vki and gki . The nonnegative weight ω allows
to steer the particle inertia. By Hi(g

k
i , |gki − xki |), we refer to a random point

from the hypersphere around gki with radius |gki −xki | (| . | denotes the Euclidean
norm). Equivalent to the original PSO algorithm, we use (2.29) to move xki to its
new position xk+1

i . In case the global optimum does not improve, each particle
randomly selects nneigh new neighbours.
Zambrano-Bigiarini et al. [ZCR13] recommend the parameter values

c1 = 0.5 + ln(2), (2.36)
c2 = 0.5 + ln(2), (2.37)

ω =
1

2 ln(2)
, (2.38)

which we use throughout this thesis. Besides this, we employ a neighbourhood
size of nneigh = 20 and reinitialise the particle neighbourhoods after 15 iterations
without an improvement of the global optimum.

Stopping Criterion. The PSO and SPSO-2011 algorithm stop when a max-
imum number of iterations or a tolerable objective value is reached (see e.g.
[ZCR13]).
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Chapter 3

Attractive-Repulsive Swarming
Models for Image Processing

“It seems safe to look forward to the time when the conception
of attractive and repulsive forces, having served its purpose as a
useful piece of scientific scaffolding, will be replaced by the
deduction of the phenomena known as attraction and repulsion,
from the general laws of motion."

T. H. Huxley, The Advance of Science in the Last Half-Century
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Main parts of this chapter base on our conference publication [BW16] and on joint
work with Marcelo Cárdenas, Kireeti Bodduna, and Joachim Weickert which was
published as part of the PhD thesis of Marcelo Cárdenas [Cár18].

So far most applications of swarm behaviour in image analysis use swarms as
models for optimisation tasks. In this chapter, we follow a different philosophy
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IMAGE PROCESSING

and propose to exploit them as valuable tools formodelling image processing prob-
lems. To this end, we consider models of swarming that are individual-based and
of first order. We show that a suitable adaptation of the potential forces allows
us to model three classical image processing tasks: grey scale quantisation, con-
trast enhancement, and line detection. A more advanced scenario represents the
construction of a coherence enhancing image filter based solely on our swarming
theory. For this purpose, we propose a novel two-step approach which employs
a swarm model in the gradient domain and – on top of that – another one in
the grey value domain. These proof-of-concept applications demonstrate that
modelling image analysis tasks with swarms can be simple, intuitive, and highly
flexible.

3.1 Introduction
The interest of understanding and imitating nature plays an elementary role in
human history. In this context the phenomenon of swarm behaviour recently as
an example which has received increasing attention. The investigation of bird
flocks, fish schools, locust swarms, bat populations, fireflies, ant or termite tribes,
and many others has led to numerous models of swarming in literature. Going
along with this, it is not surprising that research on those models exists in a
huge variety of fields. The latter include biology [CKJ+02], computer science
[Rey87], robotics [RS09], mathematics [CS07], physics [VCBJ+95], and philo-
sophy [Sum05]. However not only its interdisciplinarity stresses the attractivity
of swarm behaviour as a research topic, but also the fact that although it has
been on active research for more than six decades [CE54] many questions still
remain unanswered.
Models of swarming can be split into two general classes:

1. continuum / population-based / Eulerian / macroscopic models,

2. discrete / individual-based / Lagrangian / microscopic models.

Models of first class treat the swarm as a whole and describe the evolution of
the swarm’s population density in space and time. Consequently, they offer the
possibility to get insight into general swarm characteristics, but do not allow to
distinguish between individual swarm members.
Discrete models of swarming – in contrast – allow this differentiation. They de-
pict the change in position, velocity and other properties of each swarm member
individually. For this purpose, a discrete model considers generic rules that de-
scribe either the sociological behaviour of animals or a task that needs to be
fulfilled. Those rules directly affect the attraction, repulsion and orientation
behaviour of the individuals. As popular examples serve the rules of the so-
called Boids model [Rey87] which we illustrate in Figure 3.1. The integration
of such rules in equations of motion allows to describe the temporal evolution
of the individual swarm members. Therefore, the estimation of a swarm’s state
for a specific point in time requires to solve a system of ordinary differential
equations (ODEs). Discrete models of swarming usually describe the velocity
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Figure 3.1: Illustration of the behavioural rules used in the Boids model [Rey87]
(images based on [Rey07]). Left: separation, i.e. repulsion from the neighbours.
Centre: alignment, i.e. orientation towards the average heading of the neigh-
bours. Right: cohesion, i.e. attraction towards the centre of gravity of the
neighbourhood.

or the acceleration of individuals and are classified as first- and second-order
models accordingly. Well-known first-order models of swarming are defined in
[GP03, GP04, CKJ+02, SGBW10, Yan10b]. On the other hand, examples for
second-order models can be found in [Rey87, KE95, VCBJ+95, DCBC06, CS07,
Yan10a, Gaz13, SP15]. For a recent review of discrete models of swarming, we
refer the reader to [VZ12, YBEM10, FS13] and the references therein. Especially
[FS13] provides a compact but comprehensive comparison of existing models.
Nowadays, discrete models are extensively used in the field of optimisation, since
the heuristic character of the models is well-suited to approximate solutions for
difficult optimisation problems. In this case, popular representatives of discrete
models are ant colony optimization (ACO) [CDM91] and particle swarm optim-
ization (PSO) [KE95].
Contrarily, the number of cases in which models of swarming have been used for
the purpose of modelling problems is relatively small. This holds, in particular,
for the domain of image analysis. Existing approaches deal with image halftoning
[SGBW10], colour correction [SAF+14], segmentation [LT99], contour detection
[KHD13], boundary identification and tracking [MB04, TS05], and the detection
of fibre pathways [ARRM14]. Most of these modelling applications are fairly new
and show convincing performance. However, all these approaches have in com-
mon, that they focus on a specific application and do not exploit the genericity
behind the models of swarming.

Contributions of this Chapter. Motivated by these recent encouraging res-
ults, the goal of this chapter is to present novel applications of discrete first-order
models of swarming in image analysis. To this end, we define behavioural rules for
four fairly different image processing problems: grey scale quantisation, contrast
enhancement, line detection with the Hough transform, and coherence enhance-
ment. In all scenarios, we use essentially the same model and modify only some of
its features. This emphasises the versatility and genericity of models of swarming.

Structure of the Chapter. Section 3.2 reviews the modelling of swarm beha-
viour in a discrete setup. We present our different behavioural rules and discuss
related potential energies and forces. Furthermore, we discuss some model char-
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acteristics and a time discretisation. Section 3.3 adapts this modelling framework
to four different applications in image processing and shows experimental results.
Section 3.4 summarises our contributions and gives an outlook to future work.

3.2 Discrete Modelling of Swarm Behaviour

3.2.1 Basic Notations and Definitions

We consider a set
S = {i | i = 1, ..., N} , (3.1)

called swarm, which is composed of N agents. In the following, we use the terms
agent, particle and individual interchangeably. By xi ∈ Rn we denote the position
of an agent, whereas ∂txi ∈ Rn describes its velocity. Both, the particle position
and its velocity are functions over time t ∈ [0,∞):

xi = xi(t), ∂txi = ∂txi(t). (3.2)

Based on this, the position of a swarm x ∈ RN×n and its velocity ∂tx ∈ RN×n

are given by

x = x(t) =


x1

x2
...

xN

 , ∂tx = ∂tx(t) =


∂tx1

∂tx2
...

∂txN

 . (3.3)

If the agents are intended to have a limited field of perception, many discrete
models such as [Rey87] make use of a disk-shaped neighbourhood set of agents
(cf. Figure 3.1). For agent i its neighbourhood set of radius δ > 0 is given by

Ni,δ = Ni,δ(t) = {j ∈ S | j 6= i and |xi − xj| ≤ δ} , (3.4)

where |.| denotes the euclidean norm. If all neighbourhoodsNi,δ contain all swarm
mates j for all times t, a model is said to be global. Otherwise, it is called local.
|Ni,δ| represents the number of neighbours of agent i at a specific point in time.

3.2.2 Potential Energies and Forces

To describe a desired collective behaviour, discrete models of swarming define
update rules for the positions and velocities of the individuals. These rules include
effects based on attractive, repulsive, and orientating behaviour among agents
[CKJ+02, CS07, Rey87, VCBJ+95], as well as on the environment [KE95], or a
combination of both [Gaz13, SGBW10]. In this chapter, we restrict ourselves to
the treatment of attraction and repulsion among the agents.
The influence of a swarm mate on an individual is described by a pairwise function
U : Rn → R that denotes the potential energy. Another common name for U is
potential function. The total potential energy of a particle i ∈ S is given by

Ei(x) =
∑

j∈S\{i}
U(xi − xj). (3.5)
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Obviously, the total potential energy (3.5) only depends on the relative position
of a particle to its fellows. Accordingly, the total potential energy of the swarm
S reads

E(x) =
1

2

∑
i∈S

Ei(x), (3.6)

where the division by two implements the idea of counting each mutual particle
relation only once.
Another important factor is the potential force that acts on an individual i. The
potential force is defined as the negative gradient of U in direction of xi, i.e.
−∇xiU : Rn → Rn.

3.2.3 Discrete First-Order Models of Swarming

Discrete first-order models of swarming apply potential forces to express the evol-
ution of a swarm in time. Assuming that the initial state at time t = 0 is known,
the particle velocities are given by

∂txi(t) = −
∑

j∈S\{i}
∇xiU(xi − xj), for i ∈ S. (3.7)

Such models can be interpreted as a physically simplified adaptation of Newton’s
second law. Gazi and Passino [GP04] state that (3.7) describes a second-order
model with an individual particle mass mi ≈ 0 and a damping term −∂txi.
Furthermore, the model (3.7) implements a gradient descent on the potential
energy of the swarm, i.e. we have

∂txi(t) = −∇xiEi(x) = −∇xiE(x), for i ∈ S. (3.8)

In accordance with the results on nonsymmetric nonlocal evolutions presented by
Cárdenas [Cár18], we extend (3.7) to

∂txi(t) = −
∑

j∈S\{i}
w(xi,xj) ·∇xiU(xi − xj), for i ∈ S. (3.9)

This swarming model introduces support for nonsymmetric, anisotropic evolu-
tions with the help of a non-negative weighting function w : Rn × Rn → R+

0 .
It is common practice to define potential forces in terms of an attraction-repulsion
function

−∇xiU(y) := −
(
ka(|y|)− kr(|y|)

)
· y, where y ∈ Rn. (3.10)

The non-negative kernel functions ka : R+
0 → R+

0 and kr : R+
0 → R+

0 describe
the magnitude of attraction and repulsion amongst two swarm members. In this

25



CHAPTER 3. ATTRACTIVE-REPULSIVE SWARMING MODELS FOR
IMAGE PROCESSING

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

k
1
(x
)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

k
2
(x
)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

k
3
(x
)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

k
4
(x
)

Figure 3.2: Plots of our kernel functions defined in (3.11)-(3.14) for x ∈ [0, 1] and
c = 0.125.

chapter, we employ the kernel functions

k1(x) := 1, (3.11)

k2(x) := exp

(
−x

2

c2

)
, with c ∈ R \ {0}, (3.12)

k3(x) :=


1− 6x2 + 6x3, if 0 ≤ x < 1

2
,

2 · (1− x)3, if 1
2
≤ x < 1,

0, else,
(3.13)

k4(x) := 1− k3(x), (3.14)

with k1, k2, k3, k4 ∈ [0, 1]. While (3.11) and (3.12) represent a constant function
and a Gaussian function, (3.13) denotes a scaled-cubic B-spline which can be
understood as an approximation of a Gaussian in [0, 1] – however – with compact
support. The last function (3.14) is a flipped version of (3.13). We provide plots
of all kernel functions for x ∈ [0, 1] in Figure 3.2.
From (3.7) and (3.9) it becomes clear that discrete first-order models only depend
on potential forces and do not necessarily require an expression for the potential
energy. Actually, there even exist models for which no closed-form expression
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of a potential energy potential energy can be formulated. However, in case it is
possible to find a valid formula for the potential energy, this allows an elegant
interpretation of the underlying dynamical system in terms of (3.8). For this
purpose, let us take a look at two potential forces

−∇xiU(xi − xj) = −k1(|xi − xj|) · (xi − xj), (3.15)

−∇xiU(xi − xj) = k2(|xi − xj|) · (xi − xj), (3.16)

for i ∈ S, which we use in our experiments later on. Combining (3.7) and
(3.10), we observe that (3.15) describes an attractive swarming process, while
(3.16) models repulsive behaviour amongst the swarm members. In case of the
attractive model (3.15), the formula for the potential function reads

U(xi − xj) =
1

2
· |xi − xj|2. (3.17)

Together with (3.5) and (3.6), we see that the potential forces (3.15) induce a
minimisation of the `2-distance between the swarm members. For our repulsive
model (3.16), we end up in the potential energy

U(xi − xj) =
c2

2
· exp

(
−|xi − xj|2

c2

)
, with c ∈ R \ {0}. (3.18)

Consequently, the total potential energy of a particle – and the swarm – is min-
imised when the `2-distance between the swarm members is maximal.

3.2.4 Time Discretisation

Since we cannot expect to find an analytical solution to the dynamical system
(3.9), we have to approximate it numerically on the computer. This requires to
discretise it in time.
Let α > 0 denote some time step size, and let tk := kα. Moreover, we abbreviate
xi(tk) by xki . The simplest time discretisation of Equation 3.9 approximates the
time derivative by its forward difference:

∂txi(t) ≈
xk+1
i − xki
α

. (3.19)

This turns (3.9) into the following explicit update scheme:

xk+1
i = xki − α ·

∑
j∈S\{i}

w(xki ,x
k
j ) ·∇xki

U(xki − xkj ) (k = 0, 1, . . .) (3.20)

with some appropriate initialisation x0
i for all i ∈ S.

If we restrict the interactions of agent i to its δ-neighbourhood N k
i,δ = Ni,δ(tk)

from (3.4), we can replace (3.20) by the local update rule

xk+1
i = xki − α ·

∑
j∈N ki,δ

w(xki ,x
k
j ) ·∇xki

U(xki − xkj ). (3.21)
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It is well-known from the theory of numerical methods for differential equations
that such explicit schemes may require a fairly small time step size α in order to
be stable [LeV07], in particular if the right hand side fluctuates strongly w.r.t.
its argument.1

3.3 Application to Image Processing Problems
Discrete first-order models of swarming allow a new interpretation of image pro-
cessing problems and offer an elegant way to solve them. We demonstrate how to
model grey scale quantisation, contrast enhancement, line detection, and coher-
ence enhancement in terms of the previously discussed model. This includes the
definition of swarming agents and corresponding potential forces for each problem
in an appropriate way.
For our first three settings, we assume the input to be given by a digital grey scale
image f which is discrete in both, its domain and its codomain:

f : {1, . . . , n} × {1, . . . ,m} → {0, . . . , 255}. (3.22)

The domain consists of n equally spaced pixels in x-direction and m pixels in
y-direction. The image f maps each pixel position to an eight bit grey value from
the set {0, . . . , 255}.
For such a two-dimensional image, the histogram h[f ](u) specifies the frequency of
each grey value u ∈ {0, . . . , 255}. Accordingly, h[f ] is a one-dimensional function
from {0, . . . , 255} to N0.
In our last application, coherence enhancement, we assume that f is given by the
one-dimensional function

f : {1, . . . ,mn} → [0, 1], (3.23)

which maps a pixel i to its corresponding grey value f(i). In contrast to (3.22),
the grey values are scaled by a factor of 1/255.

3.3.1 Grey Scale Quantisation

The discretisation of the codomain of an image is called quantisation. Obviously,
the number of different greyscales in an image determines how expensive it is to
store them: While 256 different values require a full byte, 8 values can be encoded
already with 3 bits. Since humans cannot distinguish many greyscales, one can
compress image data without severe visual degradations by reducing the number
of quantisation levels.
To design a model of swarming for obtaining a coarser quantisation of some
digital greyscale image f , we proceed as follows. We consider its histogram h[f ]
and identify some histogram value h[f ](u) = cu with cu agents sharing the same
position xi = u. Thus, we have a one-dimensional model of swarming. Note
that multiple agents that share the same position have to undergo the same joint

1If this becomes too time-consuming, one can also consider more efficient, so-called implicit
schemes [LeV07]. However, they require to solve linear or nonlinear systems of equations.
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Figure 3.3: Swarm-based image quantisation. Top, from left to right: (a)
Original image from [Sig15], 512 × 512 pixels, q = 255 greyscales. (b) Swarm-
based quantisation with δ = 8, yielding q = 16 greyscales. (c) δ = 16, q = 8
greyscales. Bottom, from left to right: (d)–(f) Corresponding histograms.

motion. This reduces the computational complexity in a substantial way: The
computational effort becomes proportional to the number of greyscales instead of
the number of pixels.
In order to cluster multiple quantisation levels into a single level, we use the linear
attraction force from (3.15). As we will see below, it makes sense to localise the
interaction to a δ-neighbourhood, which requires the update scheme (3.21). We
set the weighting function w to a constant value of 1.
In our quantisation experiments we have chosen α = 10−5. This leads to a
stable steady state solution after at most 4 · 104 iterations. For a 512 × 512
image, this can be accomplished in far less than one minute on a single core
of a standard PC. Figure 3.3 illustrates the effect of our model of swarming
for different δ values. We observe that increasing δ reduces the number q of
quantisation levels. Interestingly there seems to be an almost inverse relation,
such that 2δq is roughly equal to the length of the original greyscale interval (255
in our case). This suggests that our model of swarming clusters the grey scales
into q bins of approximately2 the same size 2δ. Note that the interval length 2δ
is the diameter of the neighbourhood Ni,δ. Hence, the model of swarming can be
interpreted and handled in a very intuitive way.

2It is clear from the structure of our approach and the experiments that the quantisation
levels depend on the actual image histogram and are not necessarily equidistant.
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Figure 3.4: Swarm-based contrast enhancement. (a) Top left: Moon surface
image from [Sig15], 256×256 pixels. (b) Top right: Its histogram. (c) Bottom
left: After swarm-based histogram enhancement with c = 1, and 2 ·106 iterations
with step size α = 10−3. (d) Bottom right: Enhanced image using the grey
values from the transformed histogram.

3.3.2 Contrast Enhancement

The contrast of an image is characterised by the modulus of the difference between
the greyvalues of neighbouring pixels. For recognising interesting image struc-
tures, their contrast should be sufficiently high. This may require some prepro-
cessing that enhances the image contrast.
Let us now adapt our model of swarming to this application. To this end, it is
sufficient to find a mapping of the greyvalues that yields a better contrast. As
before, we consider the histogram h[f ] of the image f , and we assign cu agents
to a grey value u if h[f ](u) = cu. However, since we want to increase the global
contrast this time, we use the global explicit scheme (3.20), and we equip it with
the repulsion forces from (3.16). Again, we set the weighting function w to a con-
stant value of 1. Moreover, we employ reflecting boundary conditions to prevent
that agents leave the admissible greyscale range [0, 255]. For t→∞, the swarm
converges to a steady state distribution, where the grade of contrast enhance-
ment grows with the repulsion parameter c. Once the histogram is enhanced, one
simply replaces the grey values of the image by their transformed values.
Figure 3.4 illustrates this procedure, where the evolution reaches a steady state.
We observe a clear visual contrast improvement of the test image. This is also
confirmed quantitatively by its standard deviation, which has increased from
27.74 to 56.86.
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3.3.3 Line Detection

Our third application scenario for models of swarming is concerned with another
important image processing problem, the detection of lines. Our goal is to improve
a classical method which is based on the so-called Hough transform [DH72].
The basic idea behind line detection with the Hough transform is as follows. For
some greyscale image f , one searches for locations that may lie on significant lines
by computing the gradient magnitude |∇f |. For a digital image, this requires
finite difference approximations. A location is significant if its gradient magnitude
exceeds a certain threshold tg. In a next step, the line candidate pixels vote for all
lines that pass through them. All lines through a pixel (x, y) satisfy the normal
representation

ρ = x · cos θ + y · sin θ, (3.24)

where θ denotes the angle between the line normal and the x-axis, and ρ is the
distance to the origin. Thus, a candidate point is mapped to a trigonometric curve
ρ(θ) in the Hough space (θ, ρ). If n candidate points lie on a line with parameters
(θ̃, ρ̃), then their corresponding n trigonometric curves in Hough space intersect
in (θ̃, ρ̃). Therefore, one can find lines in the input image f by searching for
clustering points in its Hough space: One discretises the Hough space (θ, ρ), and
each trigonometric curve votes for all cells that it crosses. The cells with the most
votes characterise the most significant lines in the original image. Typically one
finds these clustering points by applying a threshold ta on the votes in Hough
space.
While this sounds nice in theory, in practice it is not easy to find appropriate
thresholds that avoid false negatives and false positives. Also the bin size of the
discrete Hough space is problematic: If the discretisation is too fine, it is unlikely
that many votes will fall in the same cell. If it is too coarse, the line parameters
are prone to imprecisions.
As a remedy, we propose the following procedure. First, we consider a relatively
fine discretsation in Hough space and threshold the votes. Afterwards we pro-
cess the surviving votes with a swarm-based clustering. To this end, we set up
n agents at every position (ρ, θ) that received n votes. Note that in contrast to
our clustering for quantisation – which took place in the one-dimensional histo-
gram space – this is a two-dimensional clustering. In analogy to the quantisation
setting, we use the linear attraction force (3.15) and w = 1 = const. within the
localised update scheme (3.21), and compute its steady state.
Figure 3.5 shows how this works in a real-world setting. We observe that the
classical Hough transform suffers from the fact that lines in the image cluster
in several adjacent cells in Hough space. As a consequence, we obtain a bundle
of almost parallel lines instead of a single line. Our swarm-based clustering in
Hough space is well-suited to solve this problem, since votes from the neighbours
move towards the local centroids. In this way they sharpen the clusters and avoid
multiple almost parallel lines.
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Figure 3.5: Swarm-based line detection. (a) Left: Test image, 512× 512 pixels.
(b) Middle: 71 lines detected with the Hough transform. (tg = 19, ta = 244).
(c) Right: 13 lines detected with the Hough transform with swarm-based post-
processing (tg = 19, ta = 244, δ = 5, α = 10−4, 300 iterations).

3.3.4 Coherence Enhancement

With our last application, we demonstrate how the theory of swarm models can
be used to construct a coherence enhancing image filter. The aim of the latter is
the filling-in of missing information in a given image while preserving its original
structure (cf. Figure 3.6). Challenging conditions during image acquisition often
lead to noise or gaps in the image structure. In those cases coherence enhancing
filters represent an important and necessary preprocessing step for many com-
puter vision applications. Filters which fulfill the previously mentioned criteria

Figure 3.6: Idea of coherence enhancing image filtering. Left: input image show-
ing an interrupted curve. Right: filtered image with closed gap.

can e.g. be found in [Wei99], [Wei03], and [LPZ12]. All of these approaches have
in common that they employ the structure tensor [FG87] to estimate the so-called
coherence orientation in a first step. Afterwards, this information is used in the
main filtering phase.
We present a novel two-step approach for coherence enhancing image filtering
which is purely based on our theory of swarm models. Therein, we follow the
idea that grey values should propagate orthogonally to the gradient direction
in order to increase coherence. For this purpose, we apply a swarm model and
estimate the coherence orientation in the image first. Secondly, we define a grey
value evolution which makes the grey values move in latter orientation. In both
steps, we employ our localised update scheme (3.21) in combination with a time
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step size α that fulfils

0 ≤ α ≤ 1

max
i

∑
j∈Ni,δ

w(xki ,x
k
j )
. (3.25)

These conditions guarantee stability of our numerical scheme and have been de-
rived in accordance with the theory presented in [Cár18].

Step 1: Coherence Orientation

The first swarm model describes the evolution of the gradient vector field

∇fσ : {1, . . . ,mn} → [−1, 1]2, (3.26)

which maps a pixel i to its corresponding gradient vector ∇fσ,i = ∇fσ(i). We
estimate the initial ∇fσ from a pre-smoothed version of the input image f . For
pre-smoothing f , we use a Gaussian kernel with standard deviation σ.
Based on this, we consider the two-dimensional evolution

∂txi = −
∑
±xj
j∈Ni

w(xi,xj)k3(|xj − xi|)(xi − xj) (3.27)

xi(0) = ∇fσ,i (3.28)

which describes the local alignment of the gradient vector ∇fσ,i in each pixel i,
being described by the corresponding particle position xi. The particle velocity
ẋi depends on all gradient directions xj, as well as their negative counterparts
−xj, of all mates j that lie within a disk-shaped neighbourhood Ni of radius d1

around pixel i in the image plane. The weights

w(xi,xj) =


0, if xTj xi ≤ 0,
|xj |2+ε

ε
· xTj xi, if 0 < xTj xi ≤ ε,

|xj|2 + ε, else,
(3.29)

ensure that xi only aligns with those vectors ±xj, which deviate from its own
orientation by less than π/2. As a consequence, at most one of both vectors xj
and −xj can influence the behaviour of xi at a time. Additionally, the weights
w(xi,xj) approximate the idea that vectors with large magnitude should guide
those with small modulus, but not the other way round. This asymmetry is
implemented by multiplication with the term |xj|2 + ε. By applying (3.13) as
kernel function, small differences |xj −xi| lead to higher kernel weights, whereas
large ones induce small kernel weights (see Figure 3.2).
Using the steady state x∗ of the initial value problem (3.27)-(3.28), we define the
local dominant gradient orientation of pixel i as

∇f̃i := (∇f̃i,1,∇f̃i,2)T =

{
(0, 0)T , if |x∗| = 0,
x∗

|x∗| , else.
(3.30)

Then, the desired coherence orientation is given by the local dominant tangent
orientation

∇⊥f̃i := (−∇f̃i,2,∇f̃i,1)T. (3.31)

33



CHAPTER 3. ATTRACTIVE-REPULSIVE SWARMING MODELS FOR
IMAGE PROCESSING

Step 2: Grey Value Evolution

In the second step, a swarm model is used to let the grey values of the input
image f propagate in direction of ∇⊥f̃ (as given in (3.31)). We define a one-
dimensional evolution in which every particle i is connected to a pixel i in the
image plane and moves in the tonal domain:

∂tui = −
∑
j∈Ni

wi,j · k4

(
a · |ui − uj|

)
· (ui − uj) (3.32)

ui(0) = fi. (3.33)

Accordingly, ui = ui(t) denotes the enhanced grey value of pixel i at time t.
Similar to the first step, the neighbourhood Ni contains all neighbours of particle
i that lie within euclidean distance d2 in the image plane. Within (3.32), we
represent the weighting function w from (3.9) as non-negative constants

wi,j =
∣∣∣∇⊥f̃Ti ni,j

∣∣∣b · ∣∣∣∇⊥f̃Tj nj,i

∣∣∣b , (3.34)

where ni,j denotes the normal vector pointing from pixel i to pixel j in the image
plane. Consequently, the weights implement the idea, that – during grey value
evolution – directions similar to the coherence orientation should be favoured.
The parameter b > 0 offers the possibility to control the allowed directional
offset, which determines the anisotropy of the evolution.
In order to enforce the evolution across edges, the value of the kernel function
k4 (as defined in (3.14)) increases with larger grey value differences |ui − uj|. In
the context of (3.32), the scalar value a ≥ 0 steers the non-linearity of the model
(large values of a approximate a linear model), and by this the influence of local
grey value differences. The steady state u∗ of our grey value evolution denotes
the coherence enhanced image.

Experiments

Subsequently, we demonstrate the efficacy of our coherence enhancing image filter,
and apply the filter to the greyscale fingerprint image in Figure 3.7.

Colour Coding. However, before discussing the results, let us briefly introduce
the colour coding shown in Figure 3.7. In the following, we use it to illustrate the
orientation of vectors, where we assume w.l.o.g. that the latter can be understood
as an angle between 0 and π. This makes sense because we are not interested in
the sign of a vector and thus don’t distinguish between polar angles θ ∈ [0, π)
and θ + n · π (n ∈ Z).

Time Step Size. For all our experiments we choose – in accordance with (3.25)
– constant time step sizes α, namely

α =
1

2 · |Ni| · (1 + ε)
(3.35)
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0, π

π/4

π/2

3π/4

Figure 3.7: Left: Greyscale image of a fingerprint with 300 × 300 pixels (high
resolution version of the image used in [WWS06]). Right: Colour coding as used
for illustrating the local dominant gradient orientation.

during the estimation of the local dominant gradient direction and

α =
1

2 ·max
i

∑
j∈Ni

wi,j
(3.36)

in the second step for grey value evolution. Note, that the weights wi,j are
constants (cf. (3.34)) and the maximum term in (3.36) can be precomputed
easily.

Stopping Criterion. Our stopping criterion for the explicit scheme reads in
case of the local dominant gradient direction

mn∑
i=1

|ẋki |2 < 10−5. (3.37)

For the grey value evolution we end up iterating, if it holds that

mn∑
i=1

|u̇ki |2 < 10−4. (3.38)

Computational Efficiency. Each of both steps of our algorithm has a com-
plexity of O(N · |Ni| · k), where N denotes the number of particles – in our case
this is equivalent to the number of pixels of f –, and |Ni| represents the size of
the neighbourhood of an particle (which is the same for all particles in our setup).
The number of needed iterations is given by k.
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∇fσ

x∗

σ = 0.25 σ = 0.5 σ = 0.75 σ = 1 σ = 2

Figure 3.8: Influence of parameter σ on the orientation of the pre-smoothed
gradient field ∇fσ and the steady state x∗ of the initial value problem (3.27)-
(3.28).

Parameter Selection and Influence. During our experiments we make use
of a grid size h = 1. Furthermore, we set d1 =

√
2. Thus, the eight nearest

neighbours of every pixel i in the image plane are considered in the first step.
The value of ε (cf. (3.29)) is fixed to 10−11.

Local Dominant Gradient Orientation. In dependence on parameter σ, we
present different results for the first step in Figure 3.8. The pictures show the
orientation of the pre-smoothed gradient vectors, as well as the orientation of the
local dominant gradient (steady state of the first evolution (3.27)-(3.28)). The
illustrations make use of the previously mentioned colour coding (cf. Figure 3.7).
Note, that at all positions with zero gradient magnitude the direction was set to
zero (see e.g. the red areas in the surrounding of the fingerprint).
Our results show, that the original gradient field of f is quite noisy. This justifies
the necessity of the first step of our algorithm, since a smooth vector field –
describing the local dominant gradient – is essential for the subsequent grey value
evolution.
From Figure 3.8 it also becomes clear, that an appropriate choice of σ allows
to fill in directional information in regions with small or no gradient magnitude
(see e.g. the differences between the results for σ = 0.25 and σ = 0.5). This
is an important property of our model, since this allows us to smooth not only
directly along the edges of an image, but also in between. On the other hand
– and in accordance with the findings in [Wei99] – one can also observe, that
with increasing value of σ cancellation artefacts for ∇fσ appear, which induce
an irregular vector field x∗ (see e.g. the results for σ = 2). This means that the
value of σ should be chosen carefully and be as small as possible.
In the latter case, the steady state of (3.27)-(3.28) represents a smooth vector field
(cf. Figure 3.8 for σ = 0.5). However, note that close to the boundaries of large
homogeneous regions irregularities will always appear (e.g. surroundings of the
fingerprint). This is related to the fact, that the pre-smoothing might only affect
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the region boundaries and might not influence its inner parts. By definition of
the evolution in (3.27)-(3.29), the particle velocities within those areas are always
zero. Consequently, the original gradient orientation – which is undetermined at
those positions – can be arbitrary, and will not change (we set the angle to zero
as mentioned before). This is highly likely to be in conflict with the orientation of
surrounding regions. Fortunately, these artefacts are negligible since the interior
of large homogeneous regions plays no role in the subsequent grey value evolution.
From (3.32)-(3.33) it is clear, that the velocity in those areas is always zero and
no transport of grey values takes place.

Grey Value Evolution. Based on our previous findings, we choose σ = 0.5 to
estimate a smooth local dominant gradient field (cf. Figure 3.8). In accordance
with [Wei94], we select a sufficiently large neighbourhood radius d2 to approxim-
ate rotational invariance well. For all further experiments we fix d2 = 5. Given
this setup, we apply our grey value evolution for varying values of the parameters
a and b as used in (3.32) and (3.34). We present the filtered images in Figure 3.9.

Parameter a, which steers the general amount of attractive forces between the
particles, can be seen as the counterpart to the diffusion time in diffusion filters.
As one can also see from Figure 3.9, higher values of a go along with an increased
smoothing of the image.
On the other hand, parameter b allows to control how strict deviations from the
local dominant tangent direction should be punished. In the end, this describes
how much smoothing should be done in off-tangent direction. Consequently,
low values of b induce a more blurred image, while with increasing value of b
the anisotropy of the filter rises, leading to clearer structures in the image (cf.
Figure 3.9).
Consequently, one can say that – depending on the input image – an adequate
weighting of both parameters is important. In our case, we think the usage
a = 0.2 and b = 6 offers a good compromise of smoothing and strictness about
the smoothing direction.
When comparing the input image (cf. Figure 3.7) and our results in Figure 3.9
one can clearly see the efficacy of our suggested filter. Apparent gaps (e.g. at the
bottom left or the top of the fingerprint) are closed and overall all lines in the
image are smoothed in tangent direction.

3.4 Conclusions and Outlook

In this chapter, we show that discrete first-order models of swarming have a high
potential in image processing that goes far beyond classical applications as tools
for difficult optimisation tasks: By means of four proof-of-concept applications
we have demonstrated their usefulness as powerful modelling methods. The fact
that these applications serve fairly different goals underlines the genericity of the
swarm-based paradigm: It is a highly versatile framework that can be adapted
in an intuitive way to a broad spectrum of problems. Especially the application
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a = 0.3

a = 0.2

a = 0.1

b = 4 b = 5 b = 6

Figure 3.9: Influence of parameters a and b on the steady state u∗.

as a coherence enhancing image filter illustrates well the potential of swarming
models as a solution strategy for more complex tasks.
A possible starting point for future research might include the study of more
efficient numerical algorithms, the evaluation of different ways to incorporate
neighbourhood information (e.g. in terms of the weighting function w or the ker-
nel functions ka and kr), the equipment of our models with more problem-specific
features, and a more extensive comparison to non-swarm based approaches. On
top of that it makes also sense to study other models of swarming and apply them
to further problems in the broad area of visual computing.
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Chapter 4

Purely Repulsive Models and
Backward Diffusion

“Alles ist Wechselwirkung.” [Eng.: Everything is interaction.]

Alexander von Humboldt, Tagebücher der Amerikanische Reise
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The inverse problem of backward diffusion is known to be ill-posed and highly un-
stable. Backward diffusion processes appear naturally in image enhancement and
deblurring applications. It is therefore greatly desirable to establish a backward
diffusion model which implements a smart stabilisation approach that can be used
in combination with an easy to handle numerical scheme. So far, existing stabil-
isation strategies in literature require sophisticated numerics to solve the under-
lying initial value problem. We derive a class of space-discrete one-dimensional
backward diffusion as gradient descent of energies where we gain stability by
imposing range constraints. Interestingly, these energies are even convex. Fur-
thermore, we establish a comprehensive theory for the time-continuous evolution
and we show that stability carries over to a simple explicit time discretisation
of our model. Finally, we confirm the stability and usefulness of our technique
in experiments in which we enhance the contrast of digital greyscale and colour
images.

4.1 Introduction
Forward diffusion processes are well-suited to describe the smoothing of a given
signal or image. This process of blurring implies a loss of high frequencies or
details in the original data. As a result, the inverse problem, backward diffusion,
suffers from deficient information which are needed to uniquely reconstruct the
original data. The introduction of noise due to measured data increases this dif-
ficulty even further. Consequently, a solution to the inverse problem – if it exists
at all – is highly sensitive and heavily depends on the input data: Even the smal-
lest perturbation in the initial data can have a large impact on the evolution and
may cause large deviations. Therefore, it becomes clear that backward diffusion
processes necessitate further stabilisation.

Previous Work on Backward Diffusion. Already more than 60 years ago,
John [Joh55] discussed the quality of a numerical solution to the inverse diffusion
problem given that a solution exists, and that it is bounded and non-negative.
Since then, a large number of different regularisation methods have evolved which
achieve stability by bounding the noise of the measured and the unperturbed
data [TS96], by operator splitting [KW02], by Fourier regularisation [FXQ07],
or by a modified Tikhonov regulariser [ZM11]. Hào and Duc [HD09] suggest
a mollification method where stability for the inverse diffusion problem follows
from a convolution with the Dirichlet kernel. In [HD11] the same authors provide
a regularisation method for backward parabolic equations with time-dependent
coefficients. Ternat et al. [TOD11] suggest low-pass filters and fourth-order
regularisation terms for stabilisation.
Backward parabolic differential equations also enjoy high popularity in the image
analysis community where they have e.g. been used for image restoration and
image deblurring respectively. The first contribution to backward diffusion dates
back to 1955 when Kovásznay and Joseph [KJ55] proposed to use the scaled
negative Laplacian for contour enhancement. Gabor [Gab65] observed that the
isotropy of the Laplacian operator leads to amplification of accidental noise at
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contour lines at the same time it enhances the contour lines. As a remedy, he
proposed to restrict the contrast enhancement to the orthogonal contour direction
and – in a second step – suggested additional smoothing in tangent direction.
Lindenbaum et al. [LFB94] make use of averaged derivatives in order to improve
the directional sensitive filter by Gabor. However, the authors point out that
smoothing in only one direction favours the emergence of artefacts in nearly
isotropic image regions. They recommend to use the Perona-Malik filter [PM90]
instead. Forces of Perona-Malik type are also used by Pollak et al. [PWK00]
who specify a family of evolution equations to sharpen edges and suppress noise
in the context of image segmentation. In [tFd+94], ter Haar Romeny et al. stress
the influence of higher order time derivatives on the Gaussian deblurred image.
Referring to the heat equation, the authors express the time derivatives in the
spatial domain and approximate them using Gaussian derivatives. Steiner et al.
[SKB98] highlight how backward diffusion can be used for feature enhancement
in planar curves.
In the field of image processing, a frequently used stabilisation technique con-
strains the extrema in order to enforce a maximum-minimum principle. This
is e.g. implemented in the inverse diffusion filter of Osher and Rudin [OR91].
It imposes zero diffusivities at extrema and applies backward diffusion every-
where else. The so-called forward-and-backward (FAB) diffusion of Gilboa et
al. [GSZ02] follows a slightly different approach. Closely related to the Perona-
Malik filter [PM90] it uses negative diffusivities for a specific range of gradient
magnitudes. On the other hand, it imposes forward diffusion for values of low
and zero gradient magnitude. By doing so, the filter prevents the output val-
ues from exploding at extrema. However, it is worth mentioning that – so far
– all adequate implementations of inverse diffusion processes with forward or
zero diffusivities at extrema require sophisticated numerical schemes. They use
e.g. minmod discretisations of the Laplacian [OR91], nonstandard finite difference
approximations of the squared gradient magnitude [WGW09], and splittings into
two-pixel interactions [WWG18].
Another, less popular stabilisation approach implies the application of a fidelity
term and has been used to penalise deviations from the input image [SZ98, CSH78]
or from the average grey value of the desired range [SC97]. Consequently, both
the weights of the fidelity and the diffusion term control the range of the filtered
image.
Further methods achieve stabilisation using a regularisation strategy built on
FFT-based operators [Car14, Car16, Car17] and by the restriction to polynomials
of fixed finite degree [HKZ87]. Mair et al. [MWR96] discuss the well-posedness of
deblurring Gaussian blur in the discrete image domain based on analytic number
theory.
In summary, the presented methods offer an insight into the challenge of handling
backward diffusion in practice and underline the demand for careful stabilisation
strategies and sophisticated numerical methods.
In this chapter we are going to present an alternative approach to deal with back-
ward diffusion problems. It prefers smarter modelling over smarter numerics. To
understand it better, it is useful to recapitulate some relations between diffusion
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and energy minimisation.

Diffusion and Energy Minimisation. For the sake of convenience we assume
a one-dimensional evolution that smoothes an initial signal f : [a, b]→ R. In this
context, the original signal f serves as initial state of the diffusion equation

∂tu = ∂x
(
g(u2

x)ux
)

(4.1)

where u = u(x, t) represents the filtered outcome with u(x, 0) = f(x). Addi-
tionally, let ux = ∂xu and assume reflecting boundary conditions at x = a and
x = b. Given a nonnegative diffusivity function g, growing diffusion times t
lead to simpler representations of the input signal. From Perona and Malik’s
work [PM90] we know that the smoothing effect at signal edges can be reduced
if g is a decreasing function of the contrast u2

x. As long as the flux function
Φ(ux) := g(u2

x)ux is strictly increasing in ux the corresponding forward diffu-
sion process ∂tu = Φ′(ux)uxx involves no edge sharpening. This diffusion can be
regarded as the gradient descent evolution which minimises the energy

E[u] =

∫ b

a

Ψ(u2
x) dx. (4.2)

The potential function Ψ̃(ux) = Ψ(u2
x) is strictly convex in ux, increasing in

u2
x, and fulfils Ψ ′(u2

x) = g(u2
x). Furthermore, the energy functional has a flat

minimiser which is – due to the strict convexity of the energy functional – unique.
The gradient descent / diffusion evolution is well-posed and converges towards
this minimiser for t→∞. Due to this classical emergence of well-posed forward
diffusion from strictly convex energies it seems natural to believe that backward
diffusion processes are necessarily associated with non-convex energies. However,
as we will see, this conjecture is wrong.

Contributions of this Chapter. In this chapter, we show that a specific class
of backward diffusion processes are gradient descent evolutions of energies that
have one unexpected property: They are convex! Our second innovation is the
incorporation of a specific constraint: We impose reflecting boundary conditions
in the diffusion co-domain. This means that in case of greyscale images with
an allowed grey value range of (0, 255) the occurring values are mirrored at the
boundary positions 0 and 255. While such range constraints have shown their
usefulness in some other context (see e.g. [NS14a]), to our knowledge they have
never been used for stabilising backward diffusions. For our novel backward
diffusion models, we show also a surprising numerical fact: A simple explicit
scheme turns out to be stable and convergent. Last but not least, we apply our
models to the contrast enhancement of greyscale and colour images.
This chapter is based on our journal paper [BCWW20a] and extends our con-
ference contribution [BCWW18] in several aspects. First, we enhance our model
for convex backward diffusion to support not only a global and weighted setting
but also a localised variant. We analyse this extended model in terms of stabil-
ity and convergence towards a unique minimiser. Furthermore, we formulate a
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simple explicit scheme for our newly proposed approach which shares all import-
ant properties with the time-continuous evolution. In this context, we provide
a detailed discussion on the selection of suitable time step sizes. Additionally,
we suggest two new applications: global contrast enhancement of digital colour
images and local contrast enhancement of digital grey and colour images.

Structure of the Chapter. In Section 4.2, we present our model for con-
vex backward diffusion with range constraints. We describe a general approach
which allows to formulate weighted local and global evolutions. Section 4.3 in-
cludes proofs for model properties such as range and rank-order preservation as
well as convergence analysis and the derivation of explicit steady-state solutions.
Section 4.4 provides a simple explicit scheme which can be used to solve the
occurring initial value problem. In Section 4.5, we explain how to enhance the
global and local contrast of digital images using the proposed model. Further-
more, we discuss the relation to existing literature on contrast enhancement. In
Section 4.6, we draw conclusions from our findings and give an outlook on future
research. Section 4.A contains supplementary material, including derivations and
further experiments.

4.2 Model
Let us now explore the roots of our model and derive – in a second step – the
particle evolution which forms the heart of our method and which is given by the
gradient descent of a convex energy.

4.2.1 Motivation from Swarm Dynamics

The idea behind our model goes back to the scenario of describing a one-di-
mensional evolution of particles within a closed system. Recent literature on
mathematical swarm models employs a pairwise potential U : Rn → R to charac-
terise the behaviour of individual particles (see e.g. [DCBC06, CHDB07, GP04,
GF07, CFTV10] and the references therein). The potential function allows to
steer attractive and repulsive forces among swarm mates. Physically simplified
models like [GP03] neglect inertia and describe the individual particle velocity
∂tvi within a swarm of size N directly as

∂tvi = −
N∑
j=1
j 6=i

∇U(vi − vj), i = 1, . . . , N, (4.3)

where vi and vj denote particle positions in Rn. These models are also referred to
as first order models and we provide a more detailed introduction in Chapter 3.
Often they are inspired by biology and describe long-range attractive and short-
range repulsive behaviour between swarm members. The interplay of attractive
and repulsive forces leads to flocking and allows to gain stability for the whole
swarm. Inverting this behaviour – resulting in short-range attractive and long-
range repulsive forces – leads to a highly unstable scenario in which the swarm
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1l 1 1r2l 2 2r3l 3 3r4l 4 4r

-1 0 1 2

Figure 4.1: Four particles with positions in (0, 1) and their reflections at the left
and right domain boundary (labelled l and r accordingly). Particle 2, for example,
gets repelled by the particles 1, 3, 4, 1l, 2r, 3r, 4r.

splits up into small separating groups which might never reach a point where
they stand still. One would expect that a restriction to repulsive forces only will
increase this instability even further. However, we will present a model which
copes well with exactly this situation. In our set-up every particle moves within
the open interval (0, 1) and has an interaction radius of size 1. Keeping this in
mind, let us briefly examine the two main assumptions of the evolution. First,
there exist reflections for all particles at the left and right domain boundary.
Secondly, the particles repel each other and – furthermore – get repelled by the
reflections. However, due to the limited viewing range, only one of the two
reflections of a certain particle is considered at any given time, namely the one
which is closer to the reference particle (see Figure 4.1). A special case occurs if
the reference particle is located at position 0.5: the repulsive forces of both of its
own reflections equal out.

4.2.2 Discrete Variational Model

We propose a dynamical system which has its roots in a spatial discretisation of
the energy functional (4.2). Furthermore, we make use of a decreasing energy
function Ψ : R+

0 → R and a global range constraint on u. The corresponding flux
function Φ is defined as Φ(s) := Ψ ′(s2)s.
Our goal is to describe the evolution of one-dimensional – not necessarily distinct
– particle positions vi ∈ (0, 1), where i = 1, . . . , N . Therefore, we extend the
position vector v = (v1, . . . , vN)T with the additional coordinates vN+1, . . . , v2N

defined as v2N+1−i := 2 − vi ∈ (1, 2). This extended position vector v ∈ (0, 2)2N

allows to evaluate the energy function

E(v,W ) =
1

4
·

2N∑
i=1

2N∑
j=1

wi,j · Ψ((vj − vi)2), (4.4)

which models the repulsion potential between all positions vi and vj. The coef-
ficient wi,j denotes entry j in row i of a constant non-negative weight matrix
W = (wi,j) ∈ (R+

0 )2N×2N . It models the importance of the interaction between
position vi and vj. All diagonal elements of the weight matrix are positive, i.e.
wi,i > 0,∀i ∈ {1, 2, . . . , 2N}. In addition, we assume that the weights for all
extended positions are the same as those for the original ones. Namely, we have

wi,j = wi, 2N+1−j = w2N+1−i, j = w2N+1−i, 2N+1−j (4.5)
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Ψa,n(s2) Ψ ′a,n(s2) Φa,n(s)

a·
(
(s−1)2n−1

)
a·n
s
· (s− 1)2n−1 a ·n ·(s−1)2n−1

Table 4.1: One exemplary class of penaliser functions Ψ(s2) for s ∈ [0, 1] with
n ∈ N, a > 0 and corresponding diffusivity Ψ ′(s2) and flux Φ(s) functions.

for 1 ≤ i, j ≤ N .
For the penaliser function Ψ we impose several restrictions which we discuss
subsequently. Table 4.1 shows one reasonable class of functions Ψa,n as well as the
corresponding diffusivities Ψ ′a,n and flux functions Φa,n. In Figure 4.2 we provide
an illustration of three functions using a = 1 and n = 1, 2, 3. The penaliser is
constructed following a three step procedure. First, the function Ψ(s2) is defined
as a continuously differentiable, decreasing, and strictly convex function for s ∈
[0, 1] with Ψ(0) = 0 and Φ−(1) = 0 (left-sided derivative). Next, Ψ is extended to
[−1, 1] by symmetry and to R by periodicity Ψ

(
(2 + s)2

)
= Ψ(s2). This results in

a penaliser Ψ(s2) which is continuously differentiable everywhere except at even
integers, where it is still continuous. Note that Ψ(s2) is increasing on [−1, 0] and
[1, 2]. The flux Φ is continuous and increasing in (0, 2) with jump discontinuities
at 0 and 2 (see Figure 4.2). Furthermore, we have that Φ(s) = −Φ(−s) and
Φ(2+s) = Φ(s). Exploiting the properties of Ψ allows us to rewrite (4.4) without
the redundant entries vN+1, . . . , v2N (for details see Section 4.A.1) as

E(v,W ) =
1

2
·
N∑
i=1

N∑
j=1

wi,j ·
(
Ψ((vj − vi)2) + Ψ((vj + vi)

2)
)
. (4.6)

A gradient descent for (4.4) is given by

∂tvi = −∂viE(v,W ) =
∑
j∈Ji1

wi,j · Φ(vj − vi), i = 1, . . . , 2N, (4.7)

where vi now are functions of the time t and

J i1 := {j ∈ {1, 2, . . . , 2N} | vj 6= vi}. (4.8)

Note that for 1 ≤ i, j ≤ N , thus |vj − vi| < 1, the flux Φ(vj − vi) is negative for
vj > vi and positive otherwise, thus driving vi always away from vj. This implies
that we have negative diffusivities Ψ ′ for all |vj − vi| < 1. Due to the convexity
of Ψ(s2), the absolute values of the repulsive forces Φ are decreasing with the
distance between vi and vj. We remark that the jumps of Φ at 0 and 2 are not
problematic here, as all positions vi and vj in the argument of Φ are distinct by
the definition of J i1.
Let us discuss shortly how the interval constraint for the vi, i = 1, . . . , N , is
enforced in (4.4) and (4.7). First, notice that v2N+1−i for i = 1, . . . , N is the
reflection of vi on the right interval boundary 1. For vi and v2N+1−j with 1 ≤ i, j ≤
N and v2N+1−j − vi < 1 there is a repulsive force due to Φ(v2N+1−j − vi) < 0 that
drives vi and v2N+1−j away from the right interval boundary. The closer vi and
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Figure 4.2: Top: Exemplary penaliser functions Ψ̃1,1, Ψ̃1,2, and Ψ̃1,3 extended to
the interval [−1, 3] by imposing symmetry and periodicity with Ψ̃a,n(s) := Ψa,n(s2).
Middle: Corresponding diffusivities Ψ̃ ′1,1, Ψ̃ ′1,2, and Ψ̃ ′1,3 with Ψ̃ ′a,n(s) := Ψ ′a,n(s2).
Bottom: Corresponding flux functions Φ1,1, Φ1,2, and Φ1,3 with Φa,n(s) =
Ψ ′a,n(s2)s.
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v2N+1−j come to this boundary, the stronger is the repulsion. For v2N+1−j−vi > 1,
we have Φ(v2N+1−j−vi) > 0. By Φ(v2N+1−j−vi) = Φ

(
(2−vj)−vi

)
= Φ

(
(−vj)−vi

)
,

this can equally be interpreted as a repulsion between vi and −vj where −vj is
the reflection of vj at the left interval boundary 0. In this case the interaction
between vi and v2N+1−j drives vi and −vj away from the left interval boundary.
Recapitulating both possible cases, it becomes clear that every vi is either repelled
from the reflection of vj at the left or at the right interval boundary, but never
from both at the same time. As ∂tv2N+1−i = −∂tvi holds in (4.7), the symmetry
of v is preserved. Dropping the redundant entries vN+1, . . . , v2N , Equation (4.7)
can be rewritten as

∂tvi =
∑
j∈Ji2

wi,j · Φ(vj − vi)−
N∑
j=1

wi,j · Φ(vj + vi), (4.9)

for i = 1, . . . , N , where the second sum emphasises the repulsions between original
and reflected coordinates in a symmetric way. The set J i2 is defined as

J i2 := {j ∈ {1, 2, . . . , N} | vj 6= vi}. (4.10)

Equation (4.9) denotes a formulation for pure repulsion amongst N different
positions vi with stabilisation being achieved through the consideration of their
reflections at the domain boundary. It is worth mentioning that within (4.6) and
(4.9) we only make use of the first N × N entries of W . In the following, we
denote this submatrix by W̃ and refer to its elements as w̃i,j. Given an initial
vector f ∈ (0, 1)N and initialising vi(0) = fi, v2N+1−i(0) = 2−fi for i = 1, . . . , N ,
the gradient descent (4.7) and (4.9) evolves v towards a minimiser of E.

4.3 Theory
Below we provide a detailed analysis of the evolution and discuss its main proper-
ties. For this purpose we consider the Hessian of (4.6) whose entries for 1 ≤ i ≤ N
read

∂viviE(v, W̃ ) =
∑
j∈Ji2

w̃i,j · Φ′(vj − vi) +
N∑
j=1

w̃i,j · Φ′(vj + vi), (4.11)

∂vivjE(v, W̃ ) =

w̃i,j ·
(
Φ′(vj + vi) − Φ′(vj − vi)

)
, ∀j ∈ J i2,

w̃i,j · Φ′(vj + vi), ∀j ∈ J i3,
(4.12)

where
J i3 := {j ∈ {1, 2, . . . , N} | vi = vj}. (4.13)

4.3.1 General Results

In a first step, let us investigate the well-posedness of the underlying initial value
problem in the sense of Hadamard [Had02].
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Theorem 1 (Well-Posedness). Let Ψ = Ψa,n as defined in Table 4.1. Then the
initial value problem (4.9) is well-posed since

(a) it has a solution,

(b) the solution is unique, and

(c) it depends continuously on the initial conditions.

Proof. The initial value problem (4.9) can be written as

v̇(t) = f(v(t)) := −∇vE(v(t),W ) (4.14)
v(0) = v0 (4.15)

with v(t) ∈ R2N and t ∈ R+
0 where we make use of the fact that W is a constant

weight matrix.
In case f(v(t)) is continuously differentiable and Lipschitz continuous all three
conditions (a)–(c) hold. Existence and uniqueness directly follow from [Per01,
chapter 3.1, Theorem 3]. Continuous dependence on the initial conditions is
guaranteed due to [Per01, chapter 2.3, Theorem 1] which is based on Gronwall’s
Lemma [Gro19]. Thus, let us now prove differentiability and Lipschitz continuity
of f(v(t)).

Differentiability: Differentiability follows from the fact that all functions Φa,n
are continuously differentiable. As a consequence the partial derivatives of (8)
w.r.t. vi exist for i = 1, . . . , 2N .

Lipschitz Continuity: The Gershgorin circle theorem (cf. Chapter 2.1.5) al-
lows to estimate a valid Lipschitz constant L as an upper bound of the spectral
radius of the Jacobian of (4.9). For 1 ≤ i ≤ N the entries read

∂vi(∂tvi) =−
∑
j∈Ji2

w̃i,j ·
(
Φ′(vj − vi) + Φ′(vj + vi)

)
− 2 ·

∑
j∈Ji3

w̃i,j · Φ′(vj + vi)

(4.16)

∂vj(∂tvi) =

w̃i,j ·
(
Φ′(vj − vi)− Φ′(vj + vi)

)
, ∀j ∈ J i2,

−w̃i,j · Φ′(vj + vi), ∀j ∈ J i3.
(4.17)

The radii of the Gershgorin discs fulfil

ri =
N∑
j=1
j 6=i

∣∣∂vj(∂tvi)∣∣
=
∑
j∈Ji2

w̃i,j · |Φ′(vj − vi)− Φ′(vj + vi)|+
∑
j∈Ji3
j 6=i

w̃i,j · |Φ′(vj + vi)|

<
∑
j∈Ji2

w̃i,j · |Φ′(vj − vi)− Φ′(vj + vi)|+
∑
j∈Ji3

w̃i,j · |Φ′(vj + vi)|

=: r̃i, i = 1, . . . , N.

(4.18)
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Then we have |λi − ∂vi(∂tvi)| < r̃i for 1 ≤ i ≤ N where λi denotes the i-th
eigenvalue of the Jacobian of (4.9). This leads to the bounds

λi <
∑
j∈Ji2

w̃i,j ·
(
|Φ′(vj − vi)− Φ′(vj + vi)| − (Φ′(vj − vi) + Φ′(vj + vi))

)
+
∑
j∈Ji3

w̃i,j ·
(
|Φ′(vj + vi)| − 2 · Φ′(vj + vi)

)
≤
∑
j∈Ji2

w̃i,j ·
(
|Φ′(vj − vi)|+ |Φ′(vj + vi)| + |Φ′(vj − vi)|+ |Φ′(vj + vi)|

)
+
∑
j∈Ji3

w̃i,j ·
(
|Φ′(vj + vi)|+ 2 · |Φ′(vj + vi)|

)
≤ 4 · LΦ ·

∑
j∈Ji2

w̃i,j + 3 · LΦ ·
∑
j∈Ji3

w̃i,j

< 4 · LΦ ·
N∑
j=1

w̃i,j, i = 1, . . . , N, (4.19)

where LΦ represents the Lipschitz constant of the flux function Φ. Using the same
reasoning one can show that

λi > −4 · LΦ ·
N∑
j=1

w̃i,j, i = 1, . . . , N. (4.20)

Consequently, an upper bound for the spectral radius – and thus for the Lipschitz
constant L of the gradient of (4.9) – reads

L ≤ max
1≤i≤N

|λi| < 4 · LΦ · max
1≤i≤N

N∑
j=1

w̃i,j =: Lmax. (4.21)

For our specific class of flux functions Φa,n a valid Lipschitz constant LΦ is given
by

LΦ = a · n · (2n− 1) · 22n−2 (4.22)

such that we have

L < 4 · a · n · (2n− 1) · 22n−2 · max
1≤i≤N

N∑
j=1

w̃i,j. (4.23)

This concludes the proof.

Next, let us show that no position vi can ever reach or cross the interval boundaries
0 and 1.

Theorem 2 (Avoidance of Range Interval Boundaries). For any weighting matrix
W̃ ∈ (R+

0 )N×N all N positions vi which evolve according to (4.9) and have an
arbitrary initial value in (0, 1) do not reach the domain boundaries 0 and 1 for
any time t ≥ 0.
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Proof. Equation (4.9) can be written as

∂tvi =
∑
j∈Ji2

w̃i,j ·
(
Φ(vj − vi)− Φ(vj + vi)

)
−
∑
j∈Ji3

w̃i,j · Φ(2vi), (4.24)

where 1 ≤ i ≤ N . Notice that for j ∈ J i2 we have

lim
vi→0+

Φ(vj − vi)− Φ(vj + vi) = 0 , (4.25)

lim
vi→1−

Φ(vj − vi)− Φ(vj + vi) = 0 , (4.26)

where the latter follows from the periodicity of Φ. Consequently, any position vi
which gets arbitrarily close to one of the domain boundaries 0 or 1 experiences
no impact by positions vj with j ∈ J i2, and the first sum in (4.24) gets zero. The
definition of Ψ(s2) implies that

Ψ ′(s2) < 0, ∀s ∈ (0, 1), (4.27)
Ψ ′(s2) > 0, ∀s ∈ (1, 2), (4.28)

from which it follows for 1 ≤ i ≤ N that

−Φ(2vi) > 0, ∀vi ∈
(

0,
1

2

)
, (4.29)

−Φ(2vi) < 0, ∀vi ∈
(

1

2
, 1

)
. (4.30)

Now remember that W̃ ∈ (R+
0 )N×N and w̃i,i > 0. In combination with (4.29)

and (4.30) we get

lim
vi→0+

∂tvi > 0 and lim
vi→1−

∂tvi < 0 , (4.31)

which concludes the proof.

Let us for a moment assume that the penaliser function is given by Ψ = Ψa,n from
Table 4.1. Below, we prove that this implies convergence to the global minimum
of the energy E(v, W̃ ).

Theorem 3 (Convergence for Ψ = Ψa,n=1). For t → ∞, given a penaliser Ψa,1
with arbitrary a > 0, any initial configuration v ∈ (0, 1)N converges to a unique
steady state v∗ which is the global minimiser of the energy given in (4.6).

Proof. As a sum of convex functions, (4.6) is convex. Therefore, the function
V (v, W̃ ) := E(v, W̃ ) − E(v∗, W̃ ) (where v∗ is the equilibrium point) is a Lya-
punov function with V (v∗, W̃ ) = 0 and V (v, W̃ ) > 0 for all v 6= v∗. Further-
more, we have

∂tV (v, W̃ ) = −
N∑
i=1

(
∂viE(v, W̃ )

)2 ≤ 0 . (4.32)
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According to Gershgorin’s theorem [Ger31], one can show that the Hessian matrix
of (4.6) is positive definite for Ψ = Ψa,1 from which it follows that E(v, W̃ ) has a
strict (global) minimum. This implies that the inequality in (4.32) becomes strict
except in case of v = v∗, and guarantees asymptotic Lyapunov stability [Lya92]
of v∗. Thus, we have convergence to v∗ for t→∞.

Remark 1. Theorem 3 can be extended to the case of n = 2 and – in a weaker
formulation – to arbitrary n ∈ N. The proofs for both cases are based on a
straightforward application of the Gershgorin circle theorem. For details we refer
to the supplementary material in Section 4.A.1.

(a) Given that Ψ = Ψa,n=2, let us assume that one of the following two condi-
tions

• vi 6= 1
2
, or

• there exists j ∈ J i2 for which vj 6= 1− vi and w̃i,j > 0,

is fulfilled for every i ∈ [1, N ] and t ≥ 0. Then the Hessian matrix of (4.6) is
positive definite and convergence to the strict global minimum of E(v, W̃ )
follows.

(b) For all penaliser functions Ψ = Ψa,n, one can show that the Hessian matrix
of (4.6) is positive semi-definite. This means that our method converges to
a global minimum of E(v, W̃ ). However, this minimum does not have to
be unique.

In general, the steady-state solution of (4.9) depends on the definition of the
penaliser function Ψ . Based on (4.24), and assuming that Ψ = Ψa,n, a minimiser
of E(v, W̃ ) necessarily fulfils the equation

0 =
∑
j∈Ji2

w̃i,j ·
(
(v∗j−v∗i −1)2n−1−(v∗j +v∗i −1)2n−1

)
−
∑
j∈Ji3

w̃i,j ·(2v∗i −1)2n−1, (4.33)

where i = 1, . . . , N .

4.3.2 Global Model

If all positions vi interact with each other during the evolution, i.e. w̃i,j > 0
for 1 ≤ i, j ≤ N , we speak of our model as acting globally. Below, we prove the
existence of weight matrices W̃ for which distinct positions vi and vj (with i 6= j)
can never become equal (assuming that the positions vi, i = 1, . . . , N , are distinct
for t = 0). This implies that the initial rank-order of vi is preserved throughout
the evolution.

Theorem 4 (Distinctness of vi and vj). Among N initially distinct positions
vi ∈ (0, 1) evolving according to (4.9), no two ever become equal if w̃j,k = w̃i,k > 0
for 1 ≤ i, j, k ≤ N, i 6= j.
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Proof. Given N distinct positions vi ∈ (0, 1), equation (4.9) can be written as

∂tvi =
N∑
k=1
k 6=i

w̃i,k · Φ(vk − vi)−
N∑
k=1

w̃i,k · Φ(vk + vi), (4.34)

for i = 1, . . . , N . We use this equation to derive the difference

∂t (vj − vi) = (w̃j,i + w̃i,j) · Φ(vi − vj)

+
N∑
k=1
k 6=i,j

(
w̃j,k · Φ(vk − vj) − w̃i,k · Φ(vk − vi)

)

−
N∑
k=1

(
w̃j,k · Φ(vk + vj) − w̃i,k · Φ(vk + vi)

)
,

(4.35)

where 1 ≤ i, j ≤ N . Assume w.l.o.g. that vj > vi and consider (4.35) in the limit
vj − vi → 0. Then we have

lim
vj−vi→0

(w̃j,i + w̃i,j) · Φ(vi − vj) > 0, (4.36)

if w̃j,i + w̃i,j > 0, which every global model fulfils by the assumption that w̃i,j > 0
for 1 ≤ i, j ≤ N . This follows from the fact that Φ(s) > 0 for s ∈ (−1, 0).
Furthermore, we have

lim
vj−vi→0

N∑
k=1
k 6=i,j

(
w̃j,k · Φ(vk − vj)− w̃i,k · Φ(vk − vi)

)

−
N∑
k=1

(
w̃j,k · Φ(vk + vj)− w̃i,k · Φ(vk + vi)

)

=
N∑
k=1
k 6=i,j

(w̃j,k − w̃i,k) · Φ(vk − vi)−
N∑
k=1

(w̃j,k − w̃i,k) · Φ(vk + vi)

= 0 if w̃j,k = w̃i,k for 1 ≤ k ≤ N. (4.37)

In conclusion, we can guarantee for global models with distinct particle positions
that

lim
vj−vi→0

∂t (vj − vi) > 0, (4.38)

if w̃j,k = w̃i,k where 1 ≤ i, j, k ≤ N and i 6= j. According to (4.38), vj will always
start moving away from vi (and vice versa) when the difference between both gets
sufficiently small. Since the initial positions are distinct, it follows that vi 6= vj
for i 6= j for all times t.

A special case occurs if all entries of the weight matrix W̃ are set to 1 – i.e.
W̃ = 11T with 1 := (1, . . . , 1)T ∈ RN . For this scenario, we obtain an analytic
steady-state solution which is independent of the penaliser Ψ :
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Theorem 5 (Analytic Steady-State Solution for W̃ = 11T). Under the as-
sumption that (vi) is in increasing order, W̃ = 11T, and that Ψ(s2) is twice
continuously differentiable in (0, 2) the unique minimiser of (4.4) is given by
v∗ = (v∗1, . . . , v

∗
2N)T, v∗i = (i− 1/2)/N , i = 1, . . . , 2N .

Proof. With W̃ = 11T, Equation (4.4) can be rewritten without the redundant
entries of v (for details see Section 4.A.1) as

E(v) =
N−1∑
i=1

N∑
j=i+1

Ψ((vj − vi)2) +
1

2
·
N∑
i=1

Ψ(4v2
i ) +

N−1∑
i=1

N∑
j=i+1

Ψ((vj + vi)
2). (4.39)

From this, one can verify by straightforward, albeit lengthy calculations that
∇E(v∗) = 0. Moreover, one finds that the Hessian of E at v∗ is

D2E(v∗) =
N∑
k=1

AkΦ
′
(
k

N

)
(4.40)

Here, Ak are sparse symmetric N ×N -matrices given by

Ak = 2I − Tk − T−k + Hk+1 + H2N−k+1, (4.41)
AN = I + HN+1, (4.42)

for k = 1, . . . , N − 1, where the unit matrix I, the single-diagonal Toeplitz
matrices Tk, and the single-antidiagonal Hankel matrices Hk are defined as

I =
(
δi,j
)N
i,j=1

, (4.43)

Tk =
(
δj−i,k

)N
i,j=1

, (4.44)

Hk =
(
δi+j,k

)N
i,j=1

. (4.45)

Here, δi,j denotes the Kronecker symbol, δi,j = 1 if i = j, and δi,j = 0 otherwise.
All Ak, k = 1, . . . , N are weakly diagonally dominant with positive diagonal, thus
positive semidefinite by Gershgorin’s Theorem. Moreover, the tridiagonal matrix
A1 is of full rank, thus even positive definite. By strict convexity of Ψ(s2), all
Φ′(k/N) are positive, thus D2E(v∗) is positive definite.
As a consequence, the steady state of the gradient descent (4.9) for any initial
data f (with arbitrary rank-order) can – under the condition that W̃ = 11T – be
computed directly by sorting the fi: Let σ be the permutation of {1, . . . , N} for
which (fσ−1(i))i=1,...,N is increasing (this is what a sorting algorithm computes), the
steady state is given by v∗i = (σ(i)− 1/2)/N for i = 1, . . . , N (cf. Figure 4.3).

Additionally, we present an analytic expression for the steady state of the global
model given a penaliser function Ψ = Ψa,n (cf. Table 4.1) with n = 1.

Theorem 6 (Analytic Steady-State Solution for Ψ = Ψa,n=1). Given N distinct
positions vi in increasing order and a penaliser function Ψ = Ψa,n=1, the unique
minimiser of (4.4) is given by

v∗i =

i∑
j=1

w̃i,j − 1
2
w̃i,i

N∑
j=1

w̃i,j

, i = 1, . . . , N. (4.46)
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1 2 3 4 5 6 7

0 1initial state

1 2 3 4 5 6 7

0 1steady state

Figure 4.3: Application of the global model to a system of 7 particles with weight
matrix W̃ = 11T.

1 2 3 4 5 6 7

0 1initial state

1 2 3 4 5 6 7

0 1
steady state

Figure 4.4: Application of the global model to a system of 7 particles with w̃i,k =
1/k for 1 ≤ i, k ≤ N .

Proof. The presented minimiser follows directly from (4.33). Figure 4.4 provides
an illustration of the steady state.

Finally, and in case all entries of the weight matrix W̃ are set to 1, we show that
the global model converges – independently of Ψ – to a unique steady state:

Theorem 7 (Convergence for W̃ = 11T). Given that W̃ = 11T, any initial
configuration v ∈ (0, 1)N with distinct entries converges to a unique steady state
v∗ for t→∞. This is the global minimiser of the energy given in (4.6).

Proof. Using the same reasoning as in the proof for Theorem 3 we know that
inequality (4.32) holds. Due to the positive definiteness of (4.40) it follows that
E(v, W̃ ) has a strict (global) minimum which implies that the inequality in (4.32)
becomes strict except in case of v = v∗. This guarantees asymptotic Lyapunov
stability of v∗ and thus convergence to v∗ for t→∞.

4.3.3 Relation to Variational Signal and Image Filtering

Let us now interpret v1, . . . , vN as samples of a smooth 1D signal u : Ω → [0, 1]
over an interval Ω of the real axis, taken at sampling positions xi = x0 + i h with
grid mesh size h > 0. We consider the model (4.4) with wi,j := γ(|xj−xi|), where
γ : R+

0 → [0, 1] is a non-increasing weighting function with compact support [0, %).
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Theorem 8 (Space-Continuous Energy). Equation (4.4) can be considered as a
discretisation of

E[u] =
1

2

∫
Ω

(
W (u2

x) +B(u)
)

dx (4.47)

with penaliser W (u2
x) ≈ C Ψ(u2

x) and barrier function B(u) ≈ DΨ(4u2), where
C and D are positive constants.

Remark 2.

(a) The penaliser W is decreasing and convex in ux. The barrier function B
is convex and it enforces the interval constraint on u by favouring values u
away from the interval boundaries. The discrete penaliser Ψ generates both
the penaliser W for derivatives and the barrier function B.

(b) Note that by construction of W the diffusivity
g(u2

x) := W ′(u2
x) ∼ Ψ ′(u2

x) has a singularity at 0 with −∞ as limit.

(c) The cut-off of γ at radius % implies the locality of the functional (4.47)
that can thereby be linked to a diffusion equation of type (4.1). Without a
cut-off, a nonlocal diffusion equation would arise instead.

Proof of Theorem 8. We notice first that vj − vi and vi + vj for 1 ≤ i, j ≤ N are
first-order approximations of (j − i)hux(xi) and 2u(xi), respectively.

Derivation of the PenaliserW . Assume first for simplicity that Ψ(s2) = −κs,
κ > 0 is linear in s on [0, 1] (thus not strictly convex). Then we have for a part
of the inner sums of (4.4) corresponding to a fixed i:

1

2

( N∑
j=1

γ(|xj − xi|) · Ψ
(
(vj − vi)2

)
+

2N∑
j=N+1

γ(|xj − x2N+1−i|) · Ψ
(
(vj − v2N+1−i)

2
))

=
N∑
j=1

γ(|xj − xi|) · Ψ
(
(|vj − vi|)2

)
≈ −κhux(xi)

N∑
j=1

γ(|j − i|h) · |j − i|

= hΨ
(
ux(xi)

2
) N−i∑
k=1−i

|k| γ(|k|h)

≈ hΨ(ux(xi)
2) · 2

h2

∫ %

0

zγ(z)dz

=: hCΨ(ux(xi)
2),

(4.48)

where in the last step the sum over k = 1 − i, . . . , N − i has been replaced
with a sum over k = −b%/hc, . . . b%/hc, thus introducing a cutoff error for those
locations xi that are within the distance % from the interval ends. Summation
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over i = 1, . . . , N approximates
∫

Ω
CΨ(u2

x)dx from which we can read offW (u2
x) ≈

CΨ(u2
x).

For Ψ(s2) that are nonlinear in s, Ψ(ux(xi)
2) in (4.48) is changed into a weighted

sum of Ψ
(
(kux(xi))

2
)
for k = 1, . . . , N − 1, which still amounts to a decreasing

function W (u2
x) that is convex in ux. Qualitatively, W ′ then behaves the same

way as before.

Derivation of the Barrier Function B. Collecting the summands of (4.4)
that were not used in (4.48), we have, again for fixed i,

1

2

( 2N∑
j=N+1

γ
(
|xj − xi|

)
· Ψ
(
(vj − vi)2

)
+

N∑
j=1

γ
(
|xj − x2N+1−i|

)
· Ψ
(
(vj − v2N+1−i)

2
))

=
N∑
j=1

γ
(
|xj − xi|

)
· Ψ
(
(vi + vj)

2
)

≈
(

2

h

∫ %

0

γ(z)dz + 1

)
· Ψ(4u(xi)

2)

=: hD · Ψ(4u(xi)
2),

(4.49)

and thus after summation over i analogous to the previous step
∫

Ω
B(u) dx with

B(u) ≈ DΨ(4u2).

Similar derivations can be made for patches of 2D images. A point worth noticing
is that the barrier function B is bounded. This differs from usual continuous
models where such barrier functions tend to infinity at the interval boundaries.
However, for each given sampling grid and patch size the barrier function is just
strong enough to prevent W from pushing the values out of the interval.

4.4 Explicit Time Discretisation
Up to this point we have established a theory for the time-continuous evolution
of particle positions. In order to be able to employ our model in simulations
and applications we need to discretise (4.9) in time. Subsequently, we provide
a simple yet powerful discretisation which preserves all important properties of
the time-continuous model. An approximation of the time derivative in (4.9) by
forward differences yields the explicit scheme

vk+1
i = vki + α ·

∑
`∈Ji2

w̃i,` · Φ(vk` − vki )− α ·
N∑
`=1

w̃i,` · Φ(vk` + vki ), (4.50)

for i = 1, . . . , N , where α denotes the time step size and an upper index k
refers to the time kα. In the following, we derive necessary conditions for which
the explicit scheme preserves the position range (0, 1) and the position ordering.
Furthermore, we show convergence of (4.50) in dependence of α.
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Theorem 9 (Avoidance of Range Interval Boundaries of the Explicit Scheme).
Let LΦ be the Lipschitz constant of Φ restricted to the interval (0, 2). Moreover,
let 0 < vki < 1, for every 1 ≤ i ≤ N , and assume that the time step size α of the
explicit scheme (4.50) satisfies

0 < α <
1

2 · LΦ · max
1≤i≤N

N∑̀
=1

w̃i,`

. (4.51)

Then it follows that 0 < vk+1
i < 1 for every 1 ≤ i ≤ N .

Proof. In accordance with (4.24) the explicit scheme (4.50) can be written as

vk+1
i = vki +α ·

∑
`∈Ji2

w̃i,` ·
(
Φ(vk` − vki )−Φ(vk` + vki )

)
−α ·

∑
`∈Ji3

w̃i,` ·Φ(2vki ), (4.52)

where i = 1, . . . , N . Now assume that 0 < vki , v
k
j < 1 and let us examine the

contribution of the two summation terms in (4.52). We need to distinguish the
following five cases:
1. If vki = vkj ≤ 1

2
then 2vki ∈ (0, 1]. Thus,

0 ≤ −Φ(2vki ). (4.53)

2. If 1
2
< vki = vkj then 2vki ∈ (1, 2). Thus, using Φ(1) = 0,

|Φ(2vki )| = |Φ(2vki )− Φ(1)| ≤ |2vki − 1| · LΦ < 2vki · LΦ. (4.54)

3. If vki < vkj then vkj − vki , vkj + vki ∈ (0, 2). Thus,

|Φ(vkj + vki )− Φ(vkj − vki )| ≤ LΦ · 2vki . (4.55)

4. If vkj < vki ≤ 1
2
then vkj − vki ∈ (−1, 0) and vkj + vki ∈ (0, 1). Thus,

0 ≤ Φ(vkj − vki )− Φ(vkj + vki ), (4.56)

0 ≤ −Φ(2vki ). (4.57)

5. Finally, if vkj < vki and 1
2
< vki , using the periodicity of Φ we get

|Φ(vkj − vki )− Φ(vkj + vki )| = |Φ(vkj + vki )− Φ(2 + vkj − vki )| ≤ 2vki · LΦ. (4.58)

Combining (4.50) with (4.51) and (4.53)–(4.58) we obtain that

vk+1
i − vki =− α ·

∑
`∈Ji2

w̃i,` ·
(
Φ(vk` + vki )− Φ(vk` − vki )

)
− α ·

∑
`∈Ji3

w̃i,` · Φ(2vki )

≥− α · LΦ · 2vki ·
N∑
`=1

w̃i,`

>− vki , (4.59)

from which it directly follows that vk+1
i > 0, as claimed.

The proof for vk+1
i < 1 is straightforward. Assume w.l.o.g. that ṽki := 1− vki . For

the reasons given above, we obtain ṽk+1
i > 0. Consequently, 1 − vk+1

i > 0 and
vk+1
i < 1 follows.
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Theorem 10 (Rank-Order Preservation of the Explicit Scheme). Let LΦ be the
Lipschitz constant of Φ restricted to the interval (0, 2). Furthermore, let v0

i , for
i = 1, . . . , N , denote the initially distinct positions in (0, 1) and – in accordance
with Theorem 4 – let the weight matrix W̃ have constant columns, i.e. w̃j,` = w̃i,`
for 1 ≤ i, j, ` ≤ N . Moreover, let 0 < vki < vkj < 1 and assume that the time step
size α used in the explicit scheme (4.50) satisfies

0 < α <
1

2 · LΦ · max
1≤i≤N

N∑̀
=1

w̃i,`

. (4.60)

Then we have vk+1
i < vk+1

j .

Proof. For distinct positions, (4.50) reads

vk+1
i = vki + α ·

N∑
`=1
` 6=i

w̃i,` · Φ(vk` − vki )− α ·
N∑
`=1

w̃i,` · Φ(vk` + vki ) (4.61)

for i = 1, . . . , N . Considering this explicit discretisation for ∂tvi and ∂tvj we
obtain for i, j ∈ {1, 2, . . . , N}:

vk+1
j − vk+1

i = vkj − vki + α · (w̃j,i + w̃i,j) · Φ(vki − vkj )

+ α ·
N∑
`=1
` 6=i,j

(
w̃j,` · Φ(vk` − vkj )− w̃i,` · Φ(vk` − vki )

)

− α ·
N∑
`=1

(
w̃j,` · Φ(vk` + vkj )− w̃i,` · Φ(vk` + vki )

)
.

(4.62)

Now remember that vki < vkj by assumption and that – as a consequence –

α · (w̃j,i + w̃i,j) · Φ(vki − vkj ) > 0. (4.63)

Using the fact that w̃j,k = w̃i,k for 1 ≤ i, j, k ≤ N and that Φ is Lipschitz in (0, 2),

58



4.4. EXPLICIT TIME DISCRETISATION

we also know that

T1 := α ·
N∑
`=1
6̀=i,j

∣∣∣w̃j,` · Φ(vk` − vkj )− w̃i,` · Φ(vk` − vki )
∣∣∣

= α ·
N∑
`=1
6̀=i,j

w̃j,` ·
∣∣∣Φ(vk` − vkj )− Φ(vk` − vki )

∣∣∣
≤ α · LΦ · |vki − vkj | ·

N∑
`=1
`6=i,j

w̃j,` , (4.64)

T2 := α ·
N∑
`=1

∣∣∣w̃j,` · Φ(vk` + vkj )− w̃i,` · Φ(vk` + vki )
∣∣∣

= α ·
N∑
`=1

w̃j,` ·
∣∣∣Φ(vk` + vkj )− Φ(vk` + vki )

∣∣∣
≤ α · LΦ · |vkj − vki | ·

N∑
`=1

w̃j,` . (4.65)

Let the time step size α fulfil (4.60). Then we can write

T1 + T2 < 2 · LΦ · 2 · |vkj − vki | ·
N∑
`=1

w̃j,` < vkj − vki . (4.66)

In combination with T1, T2 ≥ 0, it follows that

T2 − T1 ≥ −T2 − T1 > −(vkj − vki ), (4.67)

and we immediately know that vkj − vki − T1 + T2 > 0. Together with (4.62) and
(4.63) we get 0 < vk+1

j − vk+1
i , as claimed.

Theorem 11 (Convergence of the Explicit Scheme). Let (4.6) be a twice continu-
ously differentiable convex function. Then the explicit scheme (4.50) converges
for time step sizes

0 < α ≤ 1

2 · LΦ · max
1≤i≤N

N∑
j=1

w̃i,j

<
2

L
, (4.68)

where LΦ denotes the Lipschitz constant of Φ restricted to the interval (0, 2) and
L refers to the Lipschitz constant of the gradient of (4.6).

Proof. Convergence of the gradient method to the global minimum of E(v, W̃ )
is well-known for continuously differentiable convex functions with Lipschitz con-
tinuous gradient and time step sizes 0 < α < 2/L (see e.g. [Nes04, Theorem
2.1.14]). A valid Lipschitz constant is given by Lmax as defined in (4.21). Con-
sequently, the time step sizes α need to fulfil (4.68) in order to ensure convergence
of (4.50). The smaller or equal relation results from (4.21). The latter defines
Lmax > L such that τ = 2/Lmax represents a valid time step size.
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Remark 3 (Optimal Time Step Size). The optimal time step size, i.e. the value
of α which leads to most rapid descent, is given by α = 1/L (see e.g. [Nes04,
2.1.5]). Thus, we suggest to use α = 1/Lmax.

4.5 Application to Image Enhancement

Now that we have presented a stable and convergent numerical scheme, we apply
(4.50) to enhance the contrast of digital greyscale and colour images. Throughout
all experiments we use Ψ = Ψ1,1 (cf. Table 4.1 and Figure 4.2).

4.5.1 Greyscale Images

The application of the proposed model to greyscale images follows the ideas
presented in [BW16]. We define a digital greyscale image as a mapping f :
{1, . . . , n} × {1, . . . ,m} → [0, 1]. Note that all grey values are mapped to the
interval (0, 1) to ensure the validity of our model before processing. The grid
position of the i-th image pixel is given by the vector xi whereas vi denotes the
corresponding grey value. Subsequently, we will see that a well-considered choice
of the weighting matrix W̃ allows either to enhance the global or the local contrast
of a given image.

Global Contrast Enhancement

For global contrast enhancement we make use of the global model as discussed
in Section 4.3.2. Only the N different occurring grey values vi – and not their
positions in the image – are considered. We let every entry w̃i,j of the weighting
matrix denote the frequency of grey value vj in the image. Assuming an 8-
bit greyscale image this leads to a weighting matrix of size 256 × 256 which
is independent of the image size. As illustrated in Figure 4.5, global contrast
enhancement can be achieved in two ways: As a first option one can use the
explicit scheme (4.50) to describe the evolution of all grey values vi up to some
time t (see column two of Figure 4.5). The amount of contrast enhancement
grows with increasing values of t. In our experiments an image size of 481× 321
pixels and the application of the flux function Φ1,1 with LΦ = 1 imply an upper
bound of 1/(2 · 481 · 321) for α. Thus, we can achieve the time t = 2 · 10−6 in
Figure 4.5 in a single iteration. If one is only interested in an enhanced version of
the original image with maximum global contrast there is an alternative, namely
the derived steady state solution for linear flux functions (4.46). The results
are shown in the last column of Figure 4.5. This figure also confirms that the
solution of the explicit scheme (4.50) converges to the steady-state solution (4.46)
for t→∞. From (4.46) it is clear that this steady state is equivalent to histogram
equalisation. In summary, this means that the application of our global model to
greyscale images offers an evolution equation histogram equalisation which allows
to control the amount of contrast enhancement in an intuitive way through the
time parameter t.
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Original image t = 2 · 10−6 Steady state (4.46)

Figure 4.5: Global contrast enhancement using Φ = Φ1,1 and greyscale versions
of images from the BSDS500 [AMFM11].

Local Contrast Enhancement

In order to achieve local contrast enhancement we use our model to describe the
evolution of grey values vi at all n ·m image grid positions. The change of every
grey value vi depends on all grey values within a disk-shaped neighbourhood of
radius % around its grid position xi. We assume that

w̃i,j := γ(|xj − xi|), ∀i, j ∈ {1, 2, . . . , N}, (4.69)

where we weight the spatial distance |xj − xi| by a function γ : R+
0 → [0, 1] with

compact support [0, %) which fulfils

γ(x) ∈ (0, 1], if x < %,

γ(x) = 0, if x ≥ %.
(4.70)

The choice of γ is application dependent. However, it usually makes sense to
define γ(x) as a non-increasing function in x. Possible choices are e.g.

γ1(x) =

{
1, if x < %,

0, else,
(4.71)

γ2(x) =


1− 6x

2

%2
+ 6x

3

%3
, if 0 ≤ x < %

2
,

2 · (1− x
%
)3, if %

2
≤ x < %,

0, else,
(4.72)
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which are both sketched in Figure 4.6. When applying this local model to images

x
%

γ1(x)

1

x
%

γ2(x)

1

Figure 4.6: Box function γ1 and scaled cubic B-spline γ2.

we make use of mirroring boundary conditions in order to avoid artefacts at the
image boundaries. Figure 4.7 provides an example for local contrast enhancement
of digital greyscale images. Again, we describe the grey value evolution with
the explicit scheme (4.50). Furthermore, we use γ1 to model the influence of
neighbouring grey values. As is evident from Figure 4.7, increasing the values for
t goes along with enhanced local contrast.

4.5.2 Colour Images

Based on the assumption that our input data is given in sRGB colour space
[SACM96, Int99] (in the following denoted by RGB) we represent a digital colour
image by the mapping f : {1, . . . , n} × {1, . . . ,m} → [0, 1]3. Subsequently, our
aim is the contrast enhancement of digital colour images without distorting the
colour information. This means that we only want to adapt the luminance but not
the chromaticity of a given image. For this purpose, we convert the given image
data to YCbCr colour space [Pra01, Section 3.5] since this representation provides
a separate luminance channel. Next, we perform contrast enhancement on the
luminance channel only. Just as for greyscale images we map all Y-values to the
interval (0, 1) to fulfil our model requirements. After enhancing the contrast, we
transform the colour information of the image back to RGB colour space.
At this point it is important to mention that the colour gamut of the RGB colour
space is a subset of the YCbCr colour gamut and during the conversion process of
colour coordinates from YCbCr to RGB colour space the so-called colour gamut
problem may occur: Colours from the YCbCr colour gamut may lie outside the
RGB colour gamut and thus cannot be represented in RGB colour coordinates.
Naik and Murthy [NM03] state that a simple clipping of the values to the bounds
creates undesired shift of hue and may lead to colour artefacts. In order to avoid
the colour gamut problem we adapt the ideas presented by Nikolova and Steidl
[NS14a] which are based on the intensity representation of the HSI colour space
[GW08, Section 6.2.3]. Using the original and enhanced intensities, they define
an affine colour mapping and transform the original RGB values. This preserves
the hue and results in an enhanced RGB image. It is straightforward to show
that their algorithms are valid for any intensity f̂ of type

f̂ = cr · r + cg · g + cb · b, (4.73)
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Original image t = 2 · 10−5 t = 4 · 10−5

Figure 4.7: Local contrast enhancement using Φ = Φ1,1, γ = γ1, % = 60, and
greyscale versions of images from the BSDS500 [AMFM11].

with cr + cg + cb = 1 and cr, cg, cb ∈ [0, 1], where r, g, and b denote RGB colour
coordinates. Thus, they are applicable to the luminance representation of the
YCbCr colour space, too, i.e. cr = 0.299, cg = 0.587, cb = 0.114. Tian and Cohen
make use of the same idea in [TC17]. As in [NS14a], our result image is a convex
combination of the outcomes of a multiplicative and an additive algorithm (see
[NS14a, Algorithm 4 and 5]) with coefficients λ and 1 − λ for λ ∈ [0, 1]. During
our experiments we use a fixed value of λ = 0.5 (for details on how to choose λ
we refer to [NS14a]). An overview of our strategy for contrast enhancement of
digital colour value images is given in Figure 4.8.

Global Contrast Enhancement

Again, we apply the global model from Section 4.3.2 in order to achieve global
contrast enhancement. As mentioned before, we consider the N different occur-
ring Y-values of the YCbCr representation of the input image and denote them
by vi (similar to Section 4.5.1 we neglect their positions in the image). Every
entry of the weighting matrix w̃i,j contains the number of occurences of the value
vj in the Y-channel of the image. It becomes clear that the application of our
model – in this setting – basically comes down to histogram equalisation of the
Y-channel. Figure 4.9 shows the resulting RGB images after global contrast en-
hancement. Similar to the greyscale scenario, we can either apply the explicit
scheme (4.50) or – for Φ = Φa,1 – estimate the steady state solution following
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Input Image
sRGB

Converted Image
YCbCr

Enhanced Image
YCbCr

Multiplicative Enhanced Image
sRGB

Additive Enhanced Image
sRGB

Output Image
sRGB

sRGB to YCbCr Backward Diffusion

Affine Colour Transform

Convex Combination

Figure 4.8: Procedure of contrast enhancement for digital colour images following
[NS14a].

(4.46). For the first case the amount of contrast enhancement grows with the
positive time parameter t. The second column of Figure 4.9 shows the results for
Φ = Φ1,1 given time t. The corresponding steady state solutions are illustrated in
the last column of Figure 4.9.

Local Contrast Enhancement

In a similar manner – and adapting the ideas from Subsection 4.5.1 – we achieve
local contrast enhancement in colour images. For this purpose we describe the
evolution of Y-values vi at all n · m image grid positions using a disk-shaped
neighbourhood of radius % around the corresponding grid positions xi. The entries
of the weighting matrix W̃ follow (4.69). In combination with mirrored boundary
conditions the explicit scheme (4.50) allows to increase the local contrast of an
image with growing t. Figure 4.10 shows exemplary results for Φ = Φ1,1 and
γ = γ1 (cf. (4.71)). Note, how well – in comparison to the global set-up in
Figure 4.9 – the structure of the door gets enhanced while the details of the door
knob are preserved. The differences are even larger in the second image: For
both the couple in the foreground and the background scenery, contrast increases
which implies visibility also for larger times t.

4.5.3 Parameters

In total, our model has up to six parameters: Φ, α, t, λ, %, and γ. During our
experiments we have fixed Φ(s) to the linear flux function Φ1,1(s) and λ to 0.5.
Valid bounds for the time step size α are given in Theorems 9–11. From the
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Original image t = 5 · 10−7 Steady state (4.46)

Figure 4.9: Global contrast enhancement using Φ = Φ1,1, λ = 0.5, and images
from [Kod].

theory in Section 4.3 and the subsequent experiments on greyscale and colour
images it becomes clear that the amount of contrast enhancement grows with
the diffusion time. Thus, it remains to discuss the influence of the parameters
% and γ. We found out that the neighbourhood radius % affects the diffusion
time and controls the amount of perceived local contrast enhancement, i.e. it
steers the localisation of the contrast enhancement process. Whereas small radii
lead to high contrast in already small image areas, the size of image sections
with high contrast increases with %. For sufficiently large values of % global
histogram equalisation is approximated. Another interesting point is the choice
of the weighting function γ. Overall, choosing γ = γ1 leads to more homogeneous
contrast enhancement resulting in smoother perception. For γ = γ2 the focus
always lies on the neighbourhood centre which implies even more enhancement
of local structures than in the preceding case. We provide exemplary results in
Figure 4.11. In summary, γ2 leads to more enhancement which, however, also
creates undesired effects in smooth or noisy regions. Thus, we prefer γ1 over γ2.
Further experiments which visualise the effect of the parameters can be found in
the supplementary material in Section 4.A.2.

4.5.4 Related Work from an Application Perspective

Now that we have demonstrated the applicability of our model to digital images
we want to discuss briefly its relation to other existing theories in the context of
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Original image t = 1 · 10−5 t = 2 · 10−5

Figure 4.10: Local contrast enhancement using Φ = Φ1,1, γ = γ1, % = 60, λ = 0.5,
and images from [Kod].

image processing.
As mentioned in Section 4.5.1, applying the global model – the entries of W̃
representing the grey value frequencies – is identical to histogram equalisation
(a common formulation can e.g. be found in [GW08]). Furthermore, there exist
other closely related histogram specification techniques – such as [SC97, NS14b,
NWC13] – which can have the same steady state. If we compare our evolution
with the histogram modification flow introduced by Sapiro and Caselles [SC97],
we see that their flow can also be translated into a combination of repulsion
among grey-values and a barrier function. However, in [SC97] the repulsive force
is constant, and the barrier function quadratic. Thus, they cannot be derived
from the same kind of interaction between the vi and their reflected counterparts
as in our paper.
Referring to Section 4.5.1, there also exist well-known approaches which aim
to enhance the local image contrast such as adaptive histogram equalisation –
see [PAA+87] and the references therein – or contrast limited adaptive histogram
equalisation [Zui94]. The latter technique tries to overcome the over-amplification
of noise in mostly homogeneous image regions when using adaptive histogram
equalisation. Both approaches share the basic idea with our approach in Sec-
tion 4.5.1 and perform histogram equalisation for each pixel, i.e. the mapping
function for every pixel is determined using a neighbourhood of predefined size
and its corresponding histogram.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: (a): Original image (683 × 384 px) of Flatowturm (Potsdam, Ger-
many) taken by the author. (b): Greyscale version. (c): Version with locally
enhanced contrast using t = 3 · 10−5, % = 60, γ = γ1. (d): Greyscale version with
locally enhanced contrast using t = 3 · 10−5, % = 60, γ = γ1. (e): Version with
locally enhanced contrast using t = 20 · 10−5, % = 60, γ = γ2. (f): Greyscale
version with locally enhanced contrast using t = 20 · 10−5, % = 60, γ = γ2.

Another related research topic is the rich field of colour image enhancement which
we broach in Section 4.5.2. A short review of existing methods – as well as two new
ideas – is presented in [BK07]. Therein, Bassiou and Kotropoulus also mention
the colour gamut problem for methods which perform contrast enhancement in a
different colour space and transform colour coordinates to RGB afterwards. Of
particular interest are the publications by Naik and Murthy [NM03] and Nikolova
and Steidl [NS14a] whose ideas are used in Section 4.5.2. Both of them suggest
– based on an affine colour transform – strategies to overcome the colour gamut
problem while avoiding colour artefacts in the resulting image. A recent approach
which also makes use of these ideas is presented by Tian and Cohen [TC17]. Ojo
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et al. [OSA16] make use of the HSV colour space to avoid the colour gamut
problem when enhancing the contrast of colour images. A variational approach
for contrast enhancement which tries to approximate the hue of the input image
was recently published by Pierre et al. [PAB+17].

4.6 Conclusions and Outlook
In this chapter we have presented a mathematical model which describes pure
backward diffusion as gradient descent of strictly convex energies. The underlying
evolution makes use of ideas from the area of collective behaviour and – in terms
of the latter – our model can be understood as a fully repulsive discrete first
order swarm model. Not only it is surprising that our model allows backward
diffusion to be formulated as a convex optimisation problem but also that it is
sufficient to impose reflecting boundary conditions in the diffusion co-domain in
order to guarantee stability. This strategy is contrary to existing approaches
which either assume forward or zero diffusion at extrema or add classical fidelity
terms to avoid instabilities. Furthermore, discretisation of our model does not
require sophisticated numerics. We have proven that a straightforward explicit
scheme is sufficient to preserve the stability of the time-continuous evolution. In
our experiments, we show that our model can directly be applied to contrast
enhancement of digital greyscale and colour images.
We see our contribution mainly as an example of stable modelling of backward
parabolic evolutions that create neither theoretical nor numerical problems. We
are convinced that this concept has far more widespread applications in inverse
problems, image processing, and computer vision. Exploring them will be part
of our future research.
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4.A. SUPPLEMENTARY MATERIAL

4.A Supplementary Material

4.A.1 Derivations

Derivation of Equation (4.6)

First, Equation (4.4) can be reformulated as

E(v,W ) =
1

4
·

2N∑
i=1

2N∑
j=1

wi,j · Ψ((vj − vi)2)

=
1

4
·
(

N∑
i=1

2N∑
j=1

wi,j · Ψ((vj − vi)2)

+
N∑
i=1

2N∑
j=1

w2N+1−i,j · Ψ((vj − 2 + vi)
2)

)

=
1

4
·
N∑
i=1

N∑
j=1

(
wi,j · Ψ((vj − vi)2)

+ wi,2N+1−j · Ψ((2− vj − vi)2)

+ w2N+1−i,j · Ψ((vj − 2 + vi)
2)

+ w2N+1−i,2N+1−j · Ψ((2− vj − 2 + vi)
2)

)
.

Using

Ψ((2 + s)2) = Ψ(s2) = Ψ((−s)2),

and

wi, j = w2N+1−i, j = wi, 2N+1−j = w2N+1−i, 2N+1−j,

the energy simplifies to

E(v,W ) =
1

2
·
N∑
i=1

N∑
j=1

wi,j ·
(
Ψ((vj − vi)2) + Ψ((vj + vi)

2)
)
.

Positive (Semi-)Definiteness of the Hessian Matrix in Remark 1

Assuming a penaliser function Ψ(s2) = Ψa,n(s2) according to Table 4.1, the flux
function and its derivative read

Φ(s) = a · n · (s− 1)2n−1,

Φ′(s) = a · n · (2n− 1) · (s− 1)2n−2.
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Therefore, the entries of the Hessian (4.11) and (4.12) adapt to

∂viviE(v, W̃ ) = a · n · (2n− 1) ·(∑
j∈Ji2

w̃i,j ·
(

(vj − vi − 1)2n−2 + (vj + vi − 1)2n−2

)
+

∑
j∈Ji3

w̃i,j · (vj + vi − 1)2n−2

)
,

∂vivjE(v, W̃ ) = a · n · (2n− 1) · w̃i,j ·(
(vj + vi − 1)2n−2 − (vj − vi − 1)2n−2

)
, ∀j ∈ J i2,

∂vivjE(v, W̃ ) = a · n · (2n− 1) · w̃i,j · (vj + vi − 1)2n−2, ∀j ∈ J i3.

Using the Gershgorin circle theorem it is now possible to derive the range of all
eigenvalues of the Hessian matrix. The radius of the Gershgorin discs is given by

ri =
N∑
j=1
j 6=i

∣∣∂vivjE(v, W̃ )
∣∣

= a · n · (2n− 1) ·(∑
j∈Ji2

w̃i,j ·
∣∣∣∣(vj + vi − 1)2n−2 − (vj − vi − 1)2n−2

∣∣∣∣+

∑
j∈Ji3
j 6=i

w̃i,j · (vj + vi − 1)2n−2

)
, ∀i = 1, . . . , N.

Note that the difference di := ∂viviE(v, W̃ )− ri fulfils

di = a · n · (2n− 1) ·(∑
j∈Ji2

w̃i,j ·
(

(vj − vi − 1)2n−2 + (vj + vi − 1)2n−2 −
∣∣∣∣(vj + vi − 1)2n−2 − (vj − vi − 1)2n−2

∣∣∣∣)+

w̃i,i · (2vi − 1)2n−2

)
≥ a · n · (2n− 1) · w̃i,i · (2vi − 1)2n−2

≥ 0, ∀i = 1, . . . , N,

where we have used the triangle inequality and the fact that w̃i,i > 0 and vi ∈
(0, 1). From the theory of Gershgorin it is known that λi ≥ di for 1 ≤ i ≤ N .
Therefore, the eigenvalues of the Hessian are non-negative and the Hessian is
positive semi-definite.
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Case n = 1. For n = 1 the difference di satisfies

di = a ·
(

2 ·
∑
j∈Ji2

w̃i,j + w̃i,i

)
> 0, ∀i = 1, . . . , N,

since w̃i,i > 0 and as a consequence of λi ≥ di for 1 ≤ i ≤ N the Hessian matrix
is positive definite.

Case n = 2. For n = 2 the difference di reads

di = 6 · n ·
(∑

j∈Ji2

w̃i,j ·
(

(vj − vi − 1)2 + (vj + vi − 1)2

− |(vj + vi − 1)2 − (vj − vi − 1)2|
)

+ w̃i,i · (2vi − 1)2

)

= 6 · n ·
(∑

j∈Ji2

w̃i,j · (2v2
j + 2v2

i − 4vj + 2− 4vi · |vj − 1|)

+ w̃i,i · (2vi − 1)2

)
.

Since vj ∈ (0, 1) we know that |vj − 1| = 1− vj and we get

di = 6 · n ·
(

2 ·
∑
j∈Ji2

w̃i,j · (v2
j + 2vjvi + v2

i − 2vj − 2vi + 1)

+ w̃i,i · (2vi − 1)2

)

= 6 · n ·
(

2 ·
∑
j∈Ji2

w̃i,j ·
(

(vj + vi)
2 − 2 · (vj + vi) + 1

)

+ w̃i,i · (2vi − 1)2

)

= 6 · n ·
(

2 ·
∑
j∈Ji2

w̃i,j · (vj + vi − 1)2 + w̃i,i · (2vi − 1)2

)
.

Therefore, if for 1 ≤ i ≤ N at least one of the two conditions

• vi 6= 1
2
(since w̃i,i > 0),

• ∃j ∈ J i2 with vj 6= 1− vi and w̃i,j > 0,

holds, one can guarantee λi ≥ di > 0 and thus positive definiteness of the Hessian
matrix.
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Derivation of Equation (4.39)

Using W̃ = 11T, (4.4) adapts to

E(v) =
1

4
·

2N∑
i=1

2N∑
j=1

Ψ((vj − vi)2)

=
1

4
·
(

N∑
i=1

N∑
j=1

Ψ((vj − vi)2) +
N∑
i=1

N∑
j=1

Ψ((2− vj − vi)2)

+
N∑
i=1

N∑
j=1

Ψ((vj − 2 + vi)
2) +

N∑
i=1

N∑
j=1

Ψ((2− vj − 2 + vi)
2)

)

=
1

2
·
(

N∑
i=1

N∑
j=1

Ψ((vj − vi)2) +
N∑
i=1

N∑
j=1

Ψ((vj + vi)
2)

)
.

Splitting the sums into i < j, i = j, and i > j we get

E(v) =
1

2
·
(
N−1∑
i=1

N∑
j=i+1

Ψ((vj − vi)2) +
N∑
i=1

Ψ(0) +
N−1∑
j=1

N∑
i=j+1

Ψ((vj − vi)2)

+
N−1∑
i=1

N∑
j=i+1

Ψ((vj + vi)
2) +

N∑
i=1

Ψ(4v2
i ) +

N−1∑
j=1

N∑
i=j+1

Ψ((vj + vi)
2)

)
.

Finally, use Φ(0) = 0, switch i and j in the third term of each row, and use
(vj − vi)2 = (vi − vj)2 to obtain

E(v) =
1

2
·
(

2 ·
N−1∑
i=1

N∑
j=i+1

Ψ((vj − vi)2) +
N∑
i=1

Ψ(4v2
i )

+ 2 ·
N−1∑
i=1

N∑
j=i+1

Ψ((vj + vi)
2)

)

=
N−1∑
i=1

N∑
j=i+1

Ψ((vj − vi)2) +
1

2
·
N∑
i=1

Ψ(4v2
i ) +

N−1∑
i=1

N∑
j=i+1

Ψ((vj + vi)
2).
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4.A.2 Parameters for Local Contrast Enhancement

Subsequently, we illustrate the influence of the parameters t, %, and γ on the
results of our local contrast enhancement model while keeping Φ = Φ1,1 and
λ = 0.5 fixed. In Figure 4.12, we illustrate the relation of t and % and its effect on
the resulting contrast enhanced image. In Figure 4.13, we show how the results
differ between weighting function γ1 and γ2.

% = 20 % = 30 % = 40

t
=

0.
00

01
8

t
=

0.
00

01
5

t
=

0.
00

01
2

t
=

0.
00

00
9

t
=

0.
00

00
6

t
=

0.
00

00
3

Figure 4.12: Relation of t and % when applying our model to greyscale images
using γ = γ1. Time increases from bottom to top. Radius increases from left to
right.
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(a) t = 1 · 10−5. (b) t = 2 · 10−5. (c) t = 3 · 10−5.

(d) t = 5 · 10−5. (e) t = 10 · 10−5. (f) t = 20 · 10−5.

(g) t = 1 · 10−5. (h) t = 2 · 10−5. (i) t = 3 · 10−5.

(j) t = 5 · 10−5. (k) t = 10 · 10−5. (l) t = 20 · 10−5.

Figure 4.13: Influence of the weighting function γ when applying our model to
greyscale and colour images using % = 60 and λ = 0.5. (a)-(c): greyscale input
data and γ = γ1. (d)-(f): greyscale input data and γ = γ2. (g)-(i): colour
input data and γ = γ1. (j)-(l): colour input data and γ = γ2.
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Chapter 5

Evolutions for One-Dimensional
Signal Approximation

“Although this may seem a paradox, all exact science is
dominated by the idea of approximation. When a man tells you
that he knows the exact truth about anything, you are safe in
infering that he is an inexact man.”

Bertrand Russell, The Scientific Outlook
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This chapter is dedicated to the problem of finding optimal piecewise constant
and linear approximations for arbitrary one-dimensional signals and extends the
conference publication [BWD19] which is joint work with Joachim Weickert and
Yehuda Dar. Motivated from a compression context these approximations should
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consist of a specified number of samples and minimise the mean squared error
to the original signal. We formulate this approximation estimation task in terms
of a discrete energy minimisation problem which turns out to be – in general –
nonconvex. Besides the generic formulation we derive a specific energy for the
case of piecewise constant and linear approximation signals.
Initially, we restrict ourselves to piecewise constant approximations and discuss
suitable minimisation strategies. In this context we reformulate a recent adaptive
sampling method by Dar and Bruckstein [DB19] in a compact and transparent
way. This allows us to analyse its limitations when it comes to violations of its
three key assumptions: signal smoothness, local linearity, and error balancing.
As a remedy, we propose a direct energy optimisation approach which does not
rely on any of these assumptions and employs a particle swarm optimisation al-
gorithm. Furthermore, we investigate the applicability of first-order optimisation
methods. Our experiments show that for nonsmooth signals or low sample num-
bers, the direct optimisation approach offers substantial qualitative advantages
over the Dar–Bruckstein method. Additionally, we observe that the gradient
descent algorithm and related methods represent a useful solution strategy for
continuous piecewise linear input signals. As a more general contribution, we
disprove the optimality of the principle of error balancing for optimising data in
the `2-norm.
In a next step, we discuss our energy-based solution strategy for piecewise lin-
ear approximation functions. The increased problem complexity requires to solve
a two-staged convex-nonconvex optimisation problem for which we use a com-
bination of the gradient descent and a particle swarm optimisation algorithm to
achieve high-quality results. Corresponding experiments can be regarded as a
proof of concept and advise to interpolate given discrete input data linearly.

5.1 Introduction
Sampling and reconstruction of continuous signals is one of the fundamental
concepts in signal processing. On the one hand side there exists the classical
sampling theory (see e.g. [Jer77] for a review) which relies on the idea of uni-
form sampling. It teaches us that signals with limited overall bandwidth can
be reconstructed perfectly from discrete data. An extension and localisation of
this theory proves that lossless signal reconstruction from nonuniformly sampled
data is possible if the sampling rate gets adapted to the local signal bandwidth
[Hor68, CPL85, BPP98, WO07, AD19, MA09, AG01]. Signal reconstruction in
case of nonuniform samples also plays an important role for the purpose of noise
removal. In particular, piecewise constant signals are considered in the literature,
see e.g. [VB17, LJ11] and the references therein.
These ideas have heavily influenced the area of signal compression which rep-
resents another important and highly relevant application. Aiming at higher
compression rates, in particular lossy signal representations become an attract-
ive option. Recently, Dar and Bruckstein [DB19] have introduced a simple and
efficient adaptive sampling strategy for approximating 1-D signals by piecewise
constant functions. It involves three assumptions: smoothness, local linearity,

76



5.1. INTRODUCTION

and error balancing. In practice, however, signals can be nonsmooth, they can
violate local linearity, and the optimality of error balancing is unclear. Thus,
finding an optimal approach for the general case remains an open problem.

Contributions of this Chapter. Subsequently, we investigate a new approach
to one-dimensional function approximation which is closely connected to the fields
of adaptive sampling, segmentation, and lossy signal approximation. In this
context, we come up with an energy minimisation approach which favours globally
optimal piecewise signal approximations that minimise the mean squared error
(MSE) (see Chapter 2.1.4). We put special emphasis on digital input signals and
adapt the energy to piecewise constant and piecewise linear output signals. In a
compression sense our ansatz focusses on the idea of gaining the highest possible
approximation quality for a specified and limited number of samples which is
directly related to the required file size when storing the data.
For piecewise constant approximations we provide – based on the work by Bel-
hachmi et al. [BBBW09] – an alternative and simpler derivation of the Dar–
Bruckstein model. The latter allows us to quantify the effects of violating local
linearity and to disprove the optimality of error balancing.
As a remedy, we propose an energy minimisation model which does neither rely
on smoothness nor local linearity or error balancing. Furthermore, it is not re-
stricted to a specific type of input and output signal. In this work, we analyse
this model in detail for piecewise constant and piecewise linear input signals.
With the help of a minimal example we illustrate adequate numerical optim-
isation strategies to solve the arising nonconvex minimisation problem. For all
occurring scenarios, a particle swarm optimisation (PSO) algorithm performs well
(see Chapter 2.2.5). Apart from that, we discuss the applicability of first-order
methods like the gradient descent method (see Chapter 2.2.1).
With the help of comprehensive experiments on synthetic and real world data
we validate our theoretical results for both types of output signals (piecewise
constant and piecewise linear signals). Additionally, we find that the quality of
our novel approach can exceed the one of the Dar–Bruckstein method.

Structure of the Chapter. In Section 5.2, we formulate the general problem
statement for one-dimensional signal approximation. We discuss its most im-
portant characteristics and adaptation to piecewise constant and linear output
signals. Furthermore, we focus on the interpretation of discrete input data in
terms of piecewise constant and linear functions. In Section 5.3 we reformulate
and analyse the Dar–Bruckstein model. The successive Section 5.4 is dedicated
to the evaluation of suitable numerical minimisation techniques for our direct
energy optimisation approach. In Section 5.5 we present experiments for smooth
and nonsmooth input functions for which we evaluate the efficacy of our proposed
energy minimisation approach. This includes – amongst others – a comparison to
the Dar–Bruckstein model for piecewise constant approximation functions. We
conclude with a summary and outlook in Section 5.6.
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5.2 Modelling One-Dimensional Signal Approxim-
ation

In this section we formalise the approximation problem and highlight possible
adaptations to the function type of the desired output signal. Additionally, we
discuss the treatment of digital input signals.

5.2.1 Problem Statement

In the following we assume that we are given a signal domain [a, b] ⊂ R and some
integrable one-dimensional input signal f : [a, b]→ R. Our aim is to approximate
f by a piecewise-defined function u : [a, b]→ R which minimises the mean squared
error (MSE) w.r.t. f . We require that the function u consists of N segments.
The vector x := (x0, x1, . . . , xN)T contains the positions of all N + 1 segment
boundaries which fulfil

a =: x0 < x1 < . . . < xN−1 < xN := b. (5.1)

Based on this, our problem of finding the `2-optimal approximation u of f comes
down to minimising the discrete energy

Ef (x,u) =
1

b− a
N−1∑
i=0

xi+1∫
xi

(
f(y)− u(y)

)2
dy, (5.2)

where u ∈ RP denotes a vector containing P samples of u. Depending on the ap-
plication, this may be interpreted as function approximation, adaptive sampling,
segmentation, or lossy signal compression.
Referring to the input signal f we define the functions

g(x) := f 2(x), (5.3)

F (x) :=

x∫
a

f(y) dy, (5.4)

G(x) :=

x∫
a

g(y) dy, (5.5)

which we use throughout our analysis of the model.
In this work, we focus on two different model adaptations being discussed be-
low: the first one dealing with piecewise constant approximation functions uc(x),
another one considering piecewise linear functions u`(x).

5.2.2 The Approximation Functions u

Piecewise Constant Approximation Functions uc(x)

In our first scenario, we approximate f by a piecewise constant function of type

uc(x) :=

{
ui, if x ∈ [xi, xi+1) and 0 ≤ i < N − 1,

uN−1, if x ∈ [xN−1, xN ].
(5.6)
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Consequently, we set P = N and use u := (u0, u1, . . . , uN−1)T. Once the segment
boundaries x are known, the `2-optimal approximation of f is given by the mean
value of each sampling interval:

ui :=
1

xi+1 − xi

xi+1∫
xi

f(y) dy, for 0 ≤ i ≤ N − 1. (5.7)

We observe that uc is completely determined by f and x. This allows us to
rewrite the energy (5.2) as

Ef (x) =
1

b− a
N−1∑
i=0

xi+1∫
xi

(
f(y)− ui

)2
dy (5.8)

=

b∫
a

(
f(y)

)2
dy

b− a − 1

b− a
N−1∑
i=0

(
xi+1∫
xi

f(y) dy

)2

xi+1 − xi
. (5.9)

Although (5.8) does not look very complicated, in general the energy is non-
smooth, nonconvex, and may have many local minima.

Piecewise Linear Approximation Functions u`(x)

In our second setup we assume that – on each interval [xi, xi+1] – the function
u`(x) is given by linear interpolation

u`(x) :=
xi+1 − x
xi+1 − xi

ui +
x− xi
xi+1 − xi

ui+1, for x ∈ [xi, xi+1], (5.10)

where i = 0, 1, . . . , N − 1. This results in a piecewise linear and continuous
function u`(x) on the domain [a, b] which is based on P = N + 1 samples denoted
by u := (u0, u1, . . . , uN)T. Using

u2
`(x) =

(
xi+1ui − xiui+1 − x(ui − ui+1)

xi+1 − xi

)2

, for i = 0, 1, . . . , N − 1, (5.11)

in combination with (5.2) our approximation problem comes down to minimising
the discrete energy

Ef (x,u) =

b∫
a

f 2(y) dy

b− a − 1

b− a
N−1∑
i=0

S(f, ui, ui+1, xi, xi+1)

xi+1 − xi
, (5.12)
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which again represents the MSE of u w.r.t. f . We denote the contribution of
each segment [xi, xi+1] by

S(f, ui, ui+1, xi, xi+1) := 2(xi+1ui − xiui+1)

xi+1∫
xi

f(y) dy

− 2(ui − ui+1)

xi+1∫
xi

yf(y) dy

− (xi+1ui − xiui+1)2

+ (xi+1ui − xiui+1)(ui − ui+1)(xi+1 + xi)

− 1
3
(ui − ui+1)2(x2

i+1 + xi+1xi + x2
i ), (5.13)

where i = 0, 1, . . . , N − 1. As we have seen in the previous section about piece-
wise constant approximation functions uc(x), the estimation of ideal values u is
considerably easier than finding optimal boundary positions x. This behaviour
carries over to piecewise linear approximation functions u`(x). More specifically,
let us now show that the corresponding energy (5.12) is strictly convex in u which
means that for every boundary configuration x there exists a unique minimiser
u of Ef (x,u).

Theorem 12 (Strict Convexity of Ef (x,u) in u). The energy Ef (x,u) is strictly
convex in u.

Proof. Note, that we make use of E := Ef (x,u) throughout this proof for better
readability. First, let us consider ∇uE, the gradient of (5.12) w.r.t. u. We have

∂u0E = − 1

(b− a)(x1 − a)

(
2x1

x1∫
a

f(y) dy − 2

x1∫
a

yf(y) dy

− 2(x1u0 − au1)x1

+ x1(u0 − u1)(x1 + a)

+ (x1u0 − au1)(x1 + a)

− 2
3
(u0 − u1)(x2

1 + x1a+ a2)

)
,

(5.14)
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∂uiE = − 1

(b− a)(xi − xi−1)

(
− 2xi−1

xi∫
xi−1

f(y) dy + 2

xi∫
xi−1

yf(y) dy

+ 2(xiui−1 − xi−1ui)xi−1

− xi−1(ui−1 − ui)(xi + xi−1)

− (xiui−1 − xi−1ui)(xi + xi−1)

+ 2
3
(ui−1 − ui)(x2

i + xixi−1 + x2
i−1)

)

− 1

(b− a)(xi+1 − xi)

(
2xi+1

xi+1∫
xi

f(y) dy − 2

xi+1∫
xi

yf(y) dy

− 2(xi+1ui − xiui+1)xi+1

+ xi+1(ui − ui+1)(xi+1 + xi)

+ (xi+1ui − xiui+1)(xi+1 + xi)

− 2
3
(ui − ui+1)(x2

i+1 + xi+1xi + x2
i )

)
,

(5.15)

∂uNE = − 1

(b− a)(b− xN−1)

(
− 2xN−1

b∫
xN−1

f(y) dy + 2

b∫
xN−1

yf(y) dy

+ 2(buN−1 − xN−1uN)xN−1

− xN−1(uN−1 − uN)(b+ xN−1)

− (buN−1 − xN−1uN)(b+ xN−1)

+ 2
3
(uN−1 − uN)(b2 + bxN−1 + x2

N−1)

)
,

(5.16)

for i = 1, 2, . . . , N − 1. Based on the elements of the gradient, we derive the
Hessian of (5.12) w.r.t. u:

∂u0u0E = −−2x1 + x2
1 + x1a+ x2

1 + x1a− 2
3
(x2

1 + x1a+ a2)

(b− a)(x1 − a)

=
2(x2

1 − 2x1a+ a2)

3(b− a)(x1 − a)

=
2(x1 − a)2

3(b− a)(x1 − a)

=
2(x1 − a)

3(b− a)
, (5.17)
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∂u0u1E = −2ax1 − x2
1 − ax1 − ax1 − a2 + 2

3
(x2

1 + x1a+ a2)

(b− a)(x1 − a)

=
x2

1 − 2x1a+ a2

3(b− a)(x1 − a)

=
(x1 − a)2

3(b− a)(x1 − a)

=
x1 − a

3(b− a)
, (5.18)

∂uiui−1
E = −2xixi−1 − xi−1xi − x2

i−1 − x2
i − xixi−1 + 2

3
(x2

i + xixi−1 + x2
i−1)

(b− a)(xi − xi−1)

=
x2
i−1 − 2xixi−1 + x2

i

3(b− a)(xi − xi−1)

=
(xi − xi−1)2

3(b− a)(xi − xi−1)

=
xi − xi−1

3(b− a)
, (5.19)

∂uiuiE = −−2x2
i−1 + xi−1xi + x2

i−1 + xi−1xi + x2
i−1 − 2

3
(x2

i + xixi−1 + x2
i−1)

(b− a)(xi − xi−1)

−−2x2
i+1 + x2

i+1 + xi+1xi + x2
i+1 + xi+1xi − 2

3
(x2

i+1 + xi+1xi + x2
i )

(b− a)(xi+1 − xi)

=
2(x2

i − 2xixi−1 + x2
i−1)

3(b− a)(xi − xi−1)
+

2(x2
i+1 − 2xi+1xi + x2

i )

3(b− a)(xi+1 − xi)

=
2(xi − xi−1)2

3(b− a)(xi − xi−1)
+

2(xi+1 − xi)2

3(b− a)(xi+1 − xi)

=
2(xi − xi−1 + xi+1 − xi)

3(b− a)

=
2(xi+1 − xi−1)

3(b− a)
, (5.20)

∂uiui+1
E = −2xixi+1 − x2

i+1 − xi+1xi − xixi+1 − x2
i + 2

3
(x2

i+1 + xi+1xi + x2
i )

(b− a)(xi+1 − xi)

=
xi+1 − 2xi+1xi + x2

i

3(b− a)(xi+1 − xi)

=
(xi+1 − xi)2

3(b− a)(xi+1 − xi)

=
xi+1 − xi
3(b− a)

, (5.21)
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∂uNuN−1
E = − 2bxN−1 − xN−1b− x2

N−1 − b2 − bxN−1

(b− a)(b− xN−1)

−
2
3
(b2 + bxN−1 + x2

N−1)

(b− a)(b− xN−1)

=
b2 − 2bxN−1 + x2

N−1

3(b− a)(b− xN−1)

=
b− xN−1

3(b− a)
, (5.22)

∂uNuNE = − −2x2
N−1 + xN−1b+ x2

N−1 + xN−1b+ x2
N−1

(b− a)(b− xN−1)

+
2
3
(b2 + bxN−1 + x2

N−1)

(b− a)(b− xN−1)

=
2(b2 − 2bxN−1 + x2

N−1)

3(b− a)(b− xN−1)

=
2(b− xN−1)2

3(b− a)(b− xN−1)

=
2(b− xN−1)

3(b− a)
, (5.23)

where we again assume i = 1, 2, . . . , N − 1. All other entries of the Hessian
vanish. Due to the fact that the Hessian is symmetric, all of its eigenvalues are
real-valued. Using (2.10), we estimate the Gershgorin radii of the Hessian:

r0 =
x1 − a

3(b− a)
, (5.24)

ri =
xi+1 − xi−1

3(b− a)
, for i = 1, 2, . . . , N − 1, (5.25)

rN =
b− xN−1

3(b− a)
. (5.26)

We make use of the fact that the segment boundaries x0, x1, . . . , xN are – accord-
ing to (5.1) – sorted in ascending order. Based on the Gershgorin Circle Theorem
(see Chapter 2.1.5) we conclude that every eigenvalue λ of the Hessian fulfils at
least one of the following three conditions:

0 <
x1 − a

3(b− a)
≤ λ ≤ x1 − a

b− a ≤ 1, (5.27)

0 <
xi+1 − xi−1

3(b− a)
≤ λ ≤ xi+1 − xi−1

b− a ≤ 1, for i = 1, 2, . . . , N − 1, (5.28)

0 <
b− xN−1

3(b− a)
≤ λ ≤ b− xN−1

b− a ≤ 1. (5.29)

Consequently, all eigenvalues are positive such that the Hessian is positive definite
and E is strictly convex in u. This concludes the proof.
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In order to find the optimal tonal values u for a given boundary configuration x
it suffices to solve the initial value problem

u̇(t) = −∇uEf (x,u) (5.30)
u(t) = u0 (5.31)

which describes a gradient descent process on the energy with arbitrary initial
tonal values u0 ∈ RP . As a consequence of Theorem 12, the steady-state of this
process

u∗ := lim
t→∞

u(t) (5.32)

represents a unique minimiser of Ef (x,u) for fixed boundary positions x. An ap-
propriate technique to estimate u∗ is e.g. the gradient descent method discussed
in Chapter 2.2.1. One can use (5.27)–(5.29) to derive the Lipschitz estimate

L̃ :=
max {x1 − a, {xi+1 − xi−1 | i ∈ [1, N − 1]} , b− xN−1}

b− a ≤ 1, (5.33)

and to set – according to (2.18) – a time step size α which guarantees convergence
of the gradient descent method. Note, that in this case even the comparatively
large time step size α = 1 is being considered stable.
It becomes clear that the estimation of the optimal function u` – as in case of
a piecewise constant function uc – only depends on f and x. As a consequence,
also the approximation problem for u` reduces to the task of finding the boundary
positions x which minimise the energy (5.12). However, this remains a difficult
problem since the energy might still be a nonsmooth and nonconvex function
with numerous local minima as we will see in Chapter 5.4.

5.2.3 Digital Input Signals f

Our approximation model covers – amongst others – the important class of digital
input signals. In the context of our model, we expect digital input data to be given
in terms of a uniformly sampled discrete real-valued input signal with samples
f := (f1, f2, . . . , fn)T ∈ Rn. Furthermore, we assume that each fi represents
either a sample of a piecewise constant or piecewise linear function f : [a, b]→ R
taken at position

pi = a+
h

2
+ (i− 1)h, for i = 1, 2, . . . , n, (5.34)

where h denotes the sampling distance

h :=
b− a
n

. (5.35)

For notational convenience we introduce the left and right boundary positions

`i := pi − h
2

and ri := pi + h
2
, for i = 1, 2, . . . , n, (5.36)

of an interval of width h with centre pi.
Let us now take a look at the specific functions f , g, F , and G for the piecewise
constant and piecewise linear case.
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Piecewise Constant Input Signals

The functions f(x) and g(x) are given by

f(x) =

{
fi, if x ∈ [`i, ri) and i = 1, 2, . . . , n− 1,

fn, if x ∈ [`n, rn],
(5.37)

g(x) =

{
f 2
i , if x ∈ [`i, ri) and i = 1, 2, . . . , n− 1,

f 2
n, if x ∈ [`n, rn].

(5.38)

For y1, y2 ∈ [`i, ri] and i = 1, 2, . . . , n the integrals of f(x) and g(x) simplify to
y2∫
y1

f(z) dz = fi(y2 − y1), (5.39)

y2∫
y1

g(z) dz = f 2
i (y2 − y1). (5.40)

As a consequence, the functions F (x) and G(x) read

F (x) =



f1(x− `1), if x ∈ [`1, r1),

i−1∑
j=1

fjh+ fi(x− `i), if x ∈ [`i, ri) and i = 2, 3, . . . , n− 1,

n−1∑
j=1

fjh+ fn(x− `n), if x ∈ [`n, rn],

(5.41)

G(x) =



f 2
1 (x− `1), if x ∈ [`1, r1),

i−1∑
j=1

f 2
j h+ f 2

i (x− `i), if x ∈ [`i, ri) and i = 2, 3, . . . , n− 1,

n−1∑
j=1

f 2
j h+ f 2

n(x− `n), if x ∈ [`n, rn].

(5.42)

From (5.37) and (5.38) it becomes clear that – in general – f and g represent non-
continuous functions on the domain [a, b]. Furthermore, we have F ∈ C0([a, b])
and G ∈ C0([a, b]).

Example Function. In order to illustrate the properties of our model and to
explain reasonable solution strategies we present a simple example which we use
throughout the theoretical part of this chapter. We consider the discrete input
signal

f1 := (8, 5.5, 2, 3)T (5.43)

on a domain [a, b] with a := 0 and b := 4. The signal consists of n = 4 samples
taken at the positions

p1 :=

(
1

2
,
3

2
,
5

2
,
7

2

)T

(5.44)
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with sampling distance h = 1. Using (5.37), (5.38), (5.41), and (5.42) we get

f1(x) :=


8, if 0 ≤ x < 1,

5.5, if 1 ≤ x < 2,

2, if 2 ≤ x < 3,

3, if 3 ≤ x ≤ 4,

(5.45)

g1(x) :=


64, if 0 ≤ x < 1,

30.25, if 1 ≤ x < 2,

4, if 2 ≤ x < 3,

9, if 3 ≤ x ≤ 4,

(5.46)

F1(x) :=


8x, if 0 ≤ x < 1,
11x+5

2
, if 1 ≤ x < 2,

4x+19
2

, if 2 ≤ x < 3,
6x+13

2
, if 3 ≤ x ≤ 4,

(5.47)

G1(x) :=


64x, if 0 ≤ x < 1,
121x+135

4
, if 1 ≤ x < 2,

16x+345
4

, if 2 ≤ x < 3,
36x+285

4
, if 3 ≤ x ≤ 4.

(5.48)

Plots of all four functions can be found in Figure 5.1.

Piecewise Linear Input Signals

Similar derivations can be made for a piecewise linear input signal. We get

f(x) =


f1, if x ∈ [a, p1),

mix+ ti, if x ∈ [pi, pi+1) and i = 1, 2, . . . , n− 1,

fn, if x ∈ [pn, b],

(5.49)

g(x) =


f 2

1 , if x ∈ [a, p1),

m2
ix

2 + 2mitix+ t2i , if x ∈ [pi, pi+1) and i = 1, 2, . . . , n− 1,

f 2
n, if x ∈ [pn, b],

(5.50)

with
mi :=

fi+1 − fi
h

, and ti :=
pi+1fi − pifi+1

h
. (5.51)

For y1, y2 ∈ [pi, pi+1] and i = 1, 2, . . . , n− 1, the integrals of f(x) and g(x) read
y2∫
y1

f(z) dz =
mi

2
(y2

2 − y2
1) + ti(y2 − y1), (5.52)

y2∫
y1

g(z) dz =
m2
i

3
(y3

2 − y3
1) +miti(y

2
2 − y2

1) + t2i (y2 − y1). (5.53)

86



5.2. MODELLING ONE-DIMENSIONAL SIGNAL APPROXIMATION

0 1 2 3 4

2

4

6

8

x

f 1
(x
)

0 1 2 3 4
0

20

40

60

x

g 1
(x
)

0 1 2 3 4

0

5

10

15

20

x

F
1
(x
)

0 1 2 3 4

0

50

100

x

G
1
(x
)

Figure 5.1: The functions f1(x), g1(x), F1(x), and G1(x) as defined in (5.45),
(5.46), (5.47), and (5.48).

Consequently, the functions F (x) and G(x) are given by

F (x) =



f1(x− x0), if x ∈ [a, p1),

f1h
2

+
i−1∑
j=1

pj+1∫
pj

f(y) dy +

x∫
pi

f(y) dy, if x ∈ [pi, pi+1),

f1h
2

+
n−1∑
j=1

pj+1∫
pj

f(y) dy + fn(h− b+ x), if x ∈ [pn, b],

(5.54)

G(x) =



f 2
1 (x− a), if x ∈ [a, p1),

f21h

2
+

i−1∑
j=1

pj+1∫
pj

g(y) dy +

x∫
pi

g(y) dy, if x ∈ [pi, pi+1),

f21h

2
+

n−1∑
j=1

pj+1∫
pj

g(y) dy + f 2
n

(
h
2
− b+ x

)
, if x ∈ [pn, b],

(5.55)

where i = 2, 3, . . . , n− 1.
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Let us now take a brief look at the smoothness properties of the input signal and
its related functions, too. Referring to (5.49) and (5.50), we observe that – by
construction – f, g ∈ C0([a, b]). As a consequence, we have F,G ∈ C1([a, b]).

Example Function. Also in case of a piecewise linear input signal f we use the
samples f1 (see (5.43)) and their sampling positions p1 (see (5.44)) to define an
exemplary function on the domain [a, b] with a := 0 and b := 4. In combination
with (5.49), (5.50), (5.54), and (5.55) this results in

f2(x) :=



8, if 0 ≤ x < 1
2
,

−5
2
x+ 37

4
, if 1

2
≤ x < 3

2
,

−7
2
x+ 43

4
, if 3

2
≤ x < 5

2
,

x− 1
2
, if 5

2
≤ x < 7

2
,

3, if 7
2
≤ x ≤ 4,

(5.56)

g2(x) :=



64, if 0 ≤ x < 1
2
,

25
4
x2 − 185

4
x+ 1369

16
, if 1

2
≤ x < 3

2
,

49
4
x2 − 301

4
+ 1849

16
, if 3

2
≤ x < 5

2
,

x2 − x+ 1
4
, if 5

2
≤ x < 7

2
,

9, if 7
2
≤ x ≤ 4,

(5.57)

F2(x) :=



8x, if 0 ≤ x < 1
2
,

−5
4
x2 + 37

4
x− 5

16
, if 1

2
≤ x < 3

2
,

−7
4
x2 + 43

4
x− 23

16
, if 3

2
≤ x < 5

2
,

1
2
x2 − 1

2
x+ 101

8
, if 5

2
≤ x < 7

2
,

3x+ 13
2
, if 7

2
≤ x ≤ 4,

(5.58)

G2(x) :=



64x, if 0 ≤ x < 1
2
,

− 2
15

(
− 5

2
x+ 37

4

)3
+ 1504

15
, if 1

2
≤ x < 3

2
,

− 2
21

(
− 7

2
x+ 43

4

)3
+ 1315

14
, if 3

2
≤ x < 5

2
,

1
3

(
x− 1

2

)3
+ 181

2
, if 5

2
≤ x < 7

2
,

9x+ 68, if 7
2
≤ x ≤ 4.

(5.59)

See Figure 5.2 for the corresponding function plots.

5.3 The Dar–Bruckstein Method

Recently Dar and Bruckstein [DB19] have proposed an approach to solve the
approximation problem for piecewise constant functions uc(x) (as presented in
Chapter 5.2.2) very efficiently.
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Figure 5.2: The functions f2(x), g2(x), F2(x), and G2(x) as given in (5.56), (5.57),
(5.58), and (5.59).

5.3.1 Compact Reformulation of the Dar–Bruckstein Method

To explain the underlying ideas and assumptions in a simple and transparent
way, we reformulate its derivation. This reformulation is inspired by work of
Belhachmi et al. [BBBW09, Section 6].
Denoting the squared error in the interval [xi, xi+1] by

ei :=

xi+1∫
xi

(
f(y)− ui

)2
dy , (5.60)

we can write the energy function (5.8) as

Ef (x) =
1

b− a
N−1∑
i=0

ei . (5.61)

Dar and Bruckstein assume that the input signal f is a continuously differentiable
(C1) function and that N is large enough such that f can be approximated well
by a linear function within each interval [xi, xi+1] for i = 0, 1, . . . , N−1. Thus, in
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(xi, xi+1) we have

f ′(x) =
f(xi+1)− f(xi)

xi+1 − xi
=: f ′i , (5.62)

f(x) = f(xi) + (x− xi) f ′i , (5.63)
ui = 1

2
(f(xi) + f(xi+1)) . (5.64)

Using this in (5.60) and applying some simple calculations yields

ei = 1
12
h3
i f
′ 2
i (5.65)

where hi := xi+1 − xi denotes the interval width.
As a heuristics for minimising the global energy (5.61), one may assume that x
is optimal if all local errors ei are balanced. Using e0 = e1 = ... = eN−1 = const.
with (5.65) gives the following proportionalities:

f ′ 2i ∼ 1

h3
i

=⇒ 1

hi
∼ 3

√
f ′ 2i . (5.66)

Since 1/hi can be seen as a measure for the local density of the sampling points,
one should choose the interval boundaries for optimal sampling proportional
to 3
√
f ′ 2i . Consequently, Dar and Bruckstein select x such that every segment

[xi, xi+1] contains the same amount of the cube root of the squared signal deriv-
ative. More precisely:

xi+1∫
xi

3

√(
f ′(y)

)2
dy =

1

N

b∫
a

3

√(
f ′(y)

)2
dy =: Topt (5.67)

for i = 0, 1, . . . , N − 1. The threshold Topt is computed a priori. Thus, the
analytical formula (5.67) allows to estimate the interval boundaries x in a simple
and efficient way.

5.3.2 Limitations of the Dar–Bruckstein Method

We have seen that the Dar–Bruckstein approach relies on three assumptions: C1-
smoothness, local linearity, and error balancing. Let us now analyse the impact
of these assumptions on the optimality of the method in detail.

• Obviously the smoothness assumption on f is violated if the signal is nondif-
ferentiable or noisy.

• To quantify inaccuracies caused by violations of the local linearity assump-
tion, we derive a formula for ei that does not use this assumption. We can
rewrite (5.60) as

ei =

xi+1∫
xi

(
f(y)− f(ξi)

)2
dy , (5.68)
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where we have used the continuity of f , which guarantees that there exists
a ξi ∈ [xi, xi+1] with f(ξi) = ui. With the mean value theorem, Equation
(5.68) becomes

ei =

xi+1∫
xi

(ξi − y)2
(
f ′(θi)

)2
dy (5.69)

= 1
3

(
(xi+1−ξi)3 + (ξi−xi)3

) (
f ′(θi)

)2 (5.70)

for a suitable θi ∈ [xi, xi+1]. Using hi = xi+1−xi and defining ηi :=
(xi+1−ξi)/hi allows to rewrite (5.70) as

ei = 1
3

(
1− 3ηi + 3η2

i

)
h3
i

(
f ′(θi)

)2
. (5.71)

Comparing the exact error (5.71) with the error (5.65) that exploits local
linearity shows the following: Since ξi ∈ [xi, xi+1], we know that ηi ∈ [0, 1].
However, only for ηi = 1

2
, we obtain 1

3
(1− 3ηi + 3η2

i ) = 1
12
. In the worst case

with ηi = 0 or 1, this factor becomes 1
3
. Moreover, since f ∈ C1[a, b], there

exist constants m := min[a,b] f
′ and M := max[a,b] f

′ . Thus,
(
f ′(θi)

)2 can
attain any value between m2 and M2, which can differ substantially from
f ′2i . This shows that without local linearity, (5.65) can be violated severely.
Moreover, (5.67) does no longer balance the errors then.

• While the principle of error balancing sounds plausible, one cannot prove
that it is fulfilled for the globally optimal u which minimises the MSE. We
provide a simple counterexample in Section 5.4.2 (Approximation of f1(x)
using N = 2, Figure 5.3).

5.4 Direct Energy Optimisation

The preceding discussion shows that it can be desirable to renounce all three
assumptions of the Dar–Bruckstein model. Interestingly, there is a surprisingly
simple solution: We can rely directly on the discrete model Ef (x,u) as given
in (5.2), which is perfect from a modelling viewpoint. This ansatz also allows
to estimate approximation functions of arbitrary type while the Dar–Bruckstein
method restricts itself to piecewise constant u. However, we have to deal with a
challenging optimisation problem (cf. Chapter 5.2).

5.4.1 Particle Swarm Optimisation (PSO)

Since we cannot expect to find an efficient algorithm with formal convergence
guarantees to a global minimum, we use a nature-inspired metaheuristic that
ends up in a good local minimum. Based on our tests, we recommend to minimise
(5.2) by a Particle Swarm Optimisation (PSO) approach. This means that – on
the one hand – we abandon formal convergence guarantees, while – on the other
hand – we benefit from a versatile and flexible algorithm which does not impose
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any additional restrictions on our problem. For this reason, we can use PSO in
all our occurring scenarios. We refer to Section 2.2.5 for details on the algorithm
itself.

5.4.2 First-Order Optimisation Methods

Nonetheless, we want to examine the usability of first-order optimisation methods
for the minimisation of Ef (x,u), too. Without any doubt, these techniques can
only represent a serious alternative in case of sufficiently simple and smooth
energy landscapes for which a reasonable initialisation exists. This would allow
to benefit from the convergence of first-order methods to a local energy minimum
which is either equal or close to the global energy minimum.
Especially, the idea of backtracking line search (see Section 2.2.4) turns out to be
an effective tool when dealing with unpleasant energies. Below, we employ two
minimal examples to sketch the idea of how first-order methods allow to solve the
approximation problem with piecewise constant functions uc. In Chapter 5.5, we
prove experimentally that these ideas carry over to real world scenarios.

Minimal Examples for Piecewise Constant Functions uc(x)

We consider a minimal setup using the input functions f1 and f2 – as defined in
(5.45) and (5.56) – for which we try to find the corresponding optimal approxim-
ation function uc. The latter shall consist of N = 2 segments with correspond-
ing boundaries x = (x0, x1, x2)T. According to (5.1) we have x0 = a = 0 and
x2 = b = 4. Consequently, our task reduces to the estimation of the remaining
segment boundary x1 which minimises – referring to (5.9) – the energy

Ef (x1) =
G(4)

4
− (8F (4)F (x1)− 4F 2(4))x1 − 16F 2(x1)

16x1(−4 + x1)
. (5.72)

Approximation of f1(x) using N = 2. Using (5.45)-(5.48) in combination
with (5.72) leads to the energy

Ef1(x1) :=
429

16
− (148F1(x1)− 1369)x1 − 16F 2

1 (x1)

16x1(−4 + x1)
(5.73)

=
429

16
−



160x1−1369
16x1−64

, if 0 ≤ x1 < 1,

330x21−1439x1−100

16x1(−4+x1)
, if 1 ≤ x1 < 2,

232x21−571x1−1444

16x1(−4+x1)
, if 2 ≤ x1 < 3,

300x1+169
16x1

, if 3 ≤ x1 ≤ 4,

(5.74)

which we visualise in Figure 5.3. As one can see, this energy has a unique global
minimum at x1 = 2 and kinks at the jump positions of the input function f1:
x1 = 1, x1 = 2, and x1 = 3. Consequently, it is not differentiable there. We
also illustrate f1 and the approximation uc resulting in the lowest MSE (using
x1 = 2) for N = 2 in Figure 5.3. It is remarkable that the idea of error balancing

92



5.4. DIRECT ENERGY OPTIMISATION

0 1 2 3 4

2

4

x1

E
f
1
(x

1
)

Energy Ef1

0 1 2 3 4

2

4

6

8

x

Si
gn

al
V

al
ue

f1(x) and uc(x) for x1 = 2

f1(x)
uc(x)

Figure 5.3: Energy Ef1 and the optimal approximation function uc(x) for the
piecewise constant f1(x) in case of N = 2.

– which is used in the Dar–Bruckstein model – is not even appropriate for this
simple example: The error in the left segment of uc is clearly larger than in the
right segment.
Now, let us consider the first- and second-order derivative of Ef1

E ′f1(x1) =



− 729
16(−4+x1)2

, if 0 < x1 < 1,

−119x21−200x1+400

16x21(−4+x1)2
, if 1 < x1 < 2,

357x21−2888x1+5776

16x21(−4+x1)2
, if 2 < x1 < 3,

169
16x21

, if 3 < x1 < 4,

(5.75)

E ′′f1(x1) =



729
8(−4+x1)3

, if 0 < x1 < 1,

119x31+300x21−1200x1+1600

8x31(−4+x1)3
, if 1 < x1 < 2,

−357x31+4332x21−17328x1+23104

8x31(−4+x1)3
, if 2 < x1 < 3,

− 169
8x31
, if 3 < x1 < 4,

(5.76)

in order to better understand how to employ first-order optimisation methods for
the minimisation of (5.74). We sketch both functions in Figure 5.4 and observe,
that

max
x1∈X

|E ′′f1(x1)| < 365

64
, where X = {(0, 1) ∪ (1, 2) ∪ (2, 3) ∪ (3, 4)}. (5.77)

With the help of this information, we investigate the feasibility of applying the
gradient descent method (see Chapter 2.2.1) without and with backtracking line
search (see Chapter 2.2.4) to our approximation problem. Subsequently, we use
the abbreviations GD (gradient descent) and GD–BTLS (gradient descent with
backtracking line search) to refer to both algorithms.
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Figure 5.4: First- and second-order derivative of Ef1 , where x1 ∈ X.
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Figure 5.5: Different behaviour of the gradient descent method without and with
backtracking line search when minimising Ef1 .

For a moment we ignore the kinks of the energy function and estimate the optimal
time step size for GD based on (5.77) and according to (2.19) as

α =
64

365
. (5.78)

Below, we use this step size for GD and as initial step size for GD–BTLS. Fur-
thermore, we choose two arbitrary initial values: x0

1 = 0.1 and x0
1 = 3.4. For

both, we apply GD and GD–BTLS with the aim to minimise (5.74) and to detect
its global minimiser x∗1 = 2. Figure 5.5 shows the estimated boundary position
xk1 in dependence of the number of iterations k.
As one can see, GD fails in both cases: The estimate xk1 oscillates around the
optimal value x∗1 = 2 for k ≥ 7 (in case of x0

1 = 0.1) and k ≥ 5 (in case of
x0

1 = 3.4). This was to be expected due to the fact that the energy function
is – because of its kinks – not differentiable. This violates the assumptions of
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Figure 5.6: Energy Ef2 and the optimal approximation function uc(x) for the
piecewise linear f2(x) in case of N = 2.

GD stated in Chapter 2.2.1 such that classical convergence results do not apply
anymore.

In contrast, the GD–BTLS algorithm performs well. It converges – in both cases
– to the desired boundary value x∗1 = 2. More precisely, we get an error of
|xk1 −x∗1| < 10−4 for k ≥ 15 (in case of x0

1 = 0.1) and k ≥ 16 (in case of x0
1 = 3.4).

Approximation of f2(x) using N = 2. For the piecewise linear input function
f2 we use (5.56)-(5.59) in combination with (5.72) to derive the energy

Ef2(x1) = 26− (148F (x1)− 1369)x1 − 16
(
F (x1)

)2

16x1(−4 + x1)
(5.79)

= 26−



160x1−1369
16x1−64

, if 0 ≤ x1 <
1
2
,

−400x41+2960x31−200x21−21164x1−25

256x1(−4+x1)
, if 1

2
≤ x1 <

3
2
,

−784x41+5488x31−5416x21−17396x1−529

256x1(−4+x1)
, if 3

2
≤ x1 <

5
2
,

−16x41+328x31−1120x21+2806x1−10201

64x1(−4+x1)
, if 5

2
≤ x1 <

7
2
,

300x1+169
16x1

, if 7
2
≤ x1 ≤ 4.

(5.80)

A plot of the energy is given in Figure 5.6. The energy function appears to
be a smooth function and we have Ef2 ∈ C1,1

Lf2
((0, 4)) with Lipschitz constant
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Lf2 = 68023
13500

which we derive below. The energy’s first derivative is given by

E ′f2(x1) =



− 729
16(−4+x1)2

, if 0 < x1 ≤ 1
2
,

400x51−3880x41+11840x31−10982x21−25x1+50

128x21(−4+x1)2
, if 1

2
< x1 ≤ 3

2
,

784x51−7448x41+21952x31−19530x21−529x1+1058

128x21(−4+x1)2
, if 3

2
< x1 ≤ 5

2
,

16x51−260x41+1312x31−837x21−10201x1+20402

32x21(−4+x1)2
, if 5

2
< x1 ≤ 7

2
,

169
16x21

, if 7
2
< x1 < 4,

(5.81)

and plotted in Figure 5.7. As one can see, the energy Ef2 has a unique global
minimum of approximately 0.67793632 at the only root of E ′f2 which is x1 ≈
1.649014285. The corresponding optimal approximation uc of f2 is shown on the
right hand side of Figure 5.6. Without considering the kinks of f2 the second
derivative of Ef2 reads

E ′′f2(x1) =



729
8(−4+x1)3

, if 0 < x1 <
1
2
,

400x61−4800x51+19200x41−25396x31+75x21−300x1+400

128x31(−4+x1)3
, if 1

2
< x1 <

3
2
,

784x61−9408x51+37632x41−48748x31+1587x21−6348x1+8464

128x31(−4+x1)3
, if 3

2
< x1 <

5
2
,

16x61−192x51+768x41−3574x31+30603x21−122412x1+163216

32x31(−4+x1)3
, if 5

2
< x1 <

7
2
,

− 169
8x31
, if 7

2
< x1 < 4,

(5.82)

and is shown in Figure 5.7. We observe that

max
x1∈X

|E ′′f2(x1)| < 68023

13500
, with X = (0, 4) \ {1

2
, 3

2
, 5

2
, 7

2
}, (5.83)

which corresponds to the previously stated Lipschitz estimate Lf2 . In contrast
to our first example considering Ef1 , our current energy function Ef2 fulfils all
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requirements of the gradient descent method (see Chapter 2.2.1). This allows us
to apply the gradient descent algorithm using the optimal time step size

α =
1

Lf2
=

13500

68023
(5.84)

and to benefit from the method’s local convergence guarantees. For our spe-
cific scenario we validate the convergence to the global energy minimum x∗1 =
1.649014285 using the same initial values as in our previous example: x0

1 = 0.1
and x0

1 = 3.4. This results in an error |xk1 − x∗1| < 10−4 for k ≥ 5 (in case of
x0

1 = 0.1) and k ≥ 7 iterations (in case of x0
1 = 3.4).

5.5 Experiments
Let us now evaluate the approximation quality of the previously studied ap-
proaches. We examine the approximation problem for piecewise constant func-
tions uc and the approximation problem for piecewise linear functions u` separ-
ately. Throughout our experiments we assume a number of segments N ∈ [2, 100].
For the scenario of piecewise constant approximation functions uc we compare
the Dar–Bruckstein method, uniform (re-)sampling, and our direct energy op-
timisation strategy (using the numerical optimisation techniques introduced in
Chapter 2.2). As a naive approach, uniform (re-)sampling provides a lower qual-
ity threshold which can be reached with minimal effort. It is used as a reference
for cost-benefit analysis and should be excelled by all other approaches.
In case of piecewise linear approximation functions u`, we assess the performance
of our direct optimisation approach using the SPSO algorithm (see Chapter 2.2.5).
In all experiments we employ own implementations of the algorithms, i.e.:

• We have implemented the Dar–Bruckstein model as is proposed in [DB19,
Subsection 2.1] using (5.67).

• We have implemented the Standard Particle Swarm Optimisation 2011 al-
gorithm which we introduce in Chapter 2.2.5. We adhere to [ZCR13].

• As first-order optimisation techniques, we have implemented the gradient
descent method (see Chapter 2.2, Algorithm 1), the heavy ball method (see
Chapter 2.2, Algorithm 2), and Adaptive FSI schemes (see Chapter 2.2,
Algorithm 3).

• Our implementation of the heavy ball method involves an optional adaptive
time step size strategy. The latter makes use of the descent property of the
gradient descent method for differentiable functions [Nes04, (1.2.12)] and
ensures that the energy values decrease at least as good as specified in
this inequality. In order to adapt the time step size we scale the Lipschitz
estimate by a factor of 1.05 every time the descent condition is not fulfilled
and update α based on (2.22).

• Additionally, we have implemented backtracking line search (see Algorithm 4
in Chapter 2.2) as an automatic time step size selection strategy.
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If not stated otherwise, we run the SPSO algorithm 50 times for each specified
value of N and report the minimum of our MSE computations (also referred to
as minMSE). This is done because the SPSO algorithm involves randomisation
and the quality of multiple program runs with identical parameters may differ
somewhat. Additionally, we use a maximum number of

• 10000 iterations (k ≤ 10000) in case of piecewise constant approximation
functions, and

• 1000 iterations (k ≤ 1000) in case of piecewise linear approximation func-
tions,

as a stopping criterion for SPSO.
Whenever we use the symbol � to display results, this refers to an experiment
with random initialisation of the segment boundaries x (following a uniform dis-
tribution) which we terminate after 60 minutes. This is done to compare the
performance of SPSO to a brute force approach. To ensure comparability of the
results we run all of these experiments on a single core of the same machine:
Intel® CoreTM i7-6700 CPU (3.40GHz), 32 GB RAM, Debian 9.11.

5.5.1 Piecewise Constant Approximation Functions uc(x)

In our experiments for piecewise constant approximation functions uc we consider
three different types of input functions f :

1. smooth input signals f ,

2. piecewise constant input signals f ,

3. piecewise linear input signals f .

Smooth Input Signals

In our first experiment we want to solve the approximation problem for the
smooth chirp signal

f3(x) := 255 cos(2πx(1 + 5x)), for x ∈ [0, 1], (5.85)

which is illustrated in Figure 5.8. It was also studied in [DB19]. It constitutes a
prototype for a smooth signal, which is nevertheless challenging in its high fre-
quent part. We try to find its optimal piecewise constant approximation function
uc in dependency of its number of segments N as discussed in Chapter 5.2.2.
Subsequently, we compare the following techniques with regard to their efficacy
and effectiveness to minimise the MSE (5.8):

• Uniform (Re-)Sampling (US),

• the Dar–Bruckstein method (DB),

• our direct energy optimisation approach using
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Figure 5.8: Smooth chirp signal f3(x) as defined in (5.85).

– Standard Particle Optimisation 2011 (SPSO) with a swarm size of
n = 1000, as well as

– Adaptive FSI schemes (AFSI) where the results from US, DB, and
SPSO (using minMSE) serve as initialisation (in the following denoted
by AFSI [US], AFSI [DB], and AFSI [SPSO]).

Let us now discuss the results of the corresponding experiments which we present
in Figure 5.9 and Table 5.1.
In general, SPSO – amongst the three elementary solution strategies US, DB,
and SPSO – performs best followed by DB and US performing worst. Only for
N ∈ {95, 100}, DB performs better than SPSO and for N ∈ {2, 5, 6, 7, 8, 9, 10, 14}
even US gives better results than DB. This supports our discussion of the Dar–
Bruckstein method in Chapter 5.3.2: For low values of N the local linearity
assumption is violated. This leads to significant inaccuracies and DB performs
worse than US. The effect caused by this violation vanishes with increasing N .
When a sufficiently high number of segments N is reached the original signal
resembles a linear function in each section and DB can beat SPSO.
Next, we observe that SPSO is the only (elementary) method which is able to
detect a local energy minimum at all. We conclude this from the fact that AFSI
is guaranteed to converge to a local minimum for f3 and that SPSO leads to the
same MSE as AFSI [SPSO] for N = 5 and N = 10. Furthermore, the results for
SPSO and AFSI [SPSO] differ by less than one for N ∈ {20, 30, 40} which means
that the approximation provided by SPSO is at least close to a local optimum.
Overall, AFSI can improve US, DB, and SPSO for all investigated values of N .
While we get no or only small improvements with AFSI [SPSO], the MSE can be
reduced significantly when initialising AFSI with the results from US and DB.
For low values of N , AFSI [SPSO] is the method of choice. Starting from N ≥ 24
AFSI [SPSO] and AFSI [DB] give results of similar quality and for N ≥ 37
AFSI [DB] is superior to AFSI [SPSO]. AFSI [US] is always inferior to both other
approaches.
Additionally, the improvements gained with AFSI prove that we have to deal with
a complex energy landscape: AFSI never converges to the same local minimum
no matter which one of the three different initialisations we use.

99



CHAPTER 5. EVOLUTIONS FOR ONE-DIMENSIONAL SIGNAL
APPROXIMATION

N
U
S

A
F
S
I
[U

S
]

D
B

A
F
S
I
[D

B
]

S
P
S
O

A
F
S
I
[S
P
S
O
]

µ
M

S
E

σ
M

S
E

m
in

M
S

E
m

ax
M

S
E

5
31

00
8.
99

22
83

1.
95

32
16

6.
87

31
61

4.
25

19
05

5.
49

0.
00

19
05

5.
49

19
05

5.
49

19
05

5.
49

10
18

21
2.
44

14
35

6.
27

23
65

5.
93

14
47

4.
85

12
01

4.
77

45
9.
47

11
13

1.
75

12
43

1.
60

11
13

1.
75

20
12

06
2.
19

51
57

.2
9

56
61

.0
0

36
73

.7
7

45
56

.3
7

63
2.
89

34
03

.2
3

59
98

.2
7

34
03

.1
6

30
47

60
.9
8

21
88

.7
8

25
90

.8
6

18
23

.6
7

20
37

.9
0

67
.9
0

19
06

.9
5

22
85

.7
6

19
06

.7
3

40
27

96
.5
4

14
31

.3
4

14
77

.4
8

11
32

.8
0

12
18

.4
9

37
.1
7

11
77

.5
5

13
57

.2
6

11
77

.1
7

50
18

27
.8
0

94
6.
87

97
5.
92

76
8.
76

85
4.
12

20
.7
6

82
3.
13

90
7.
48

82
1.
86

60
12

84
.0
3

69
4.
65

68
6.
30

55
0.
15

62
4.
44

13
.3
7

60
1.
65

66
5.
50

59
8.
79

70
94

9.
98

51
9.
00

51
0.
96

42
1.
75

47
9.
90

9.
26

46
0.
10

51
3.
00

45
1.
85

80
73

0.
64

41
8.
87

37
7.
20

32
7.
71

38
3.
08

6.
95

36
7.
62

40
0.
07

36
1.
57

90
57

9.
10

33
4.
26

30
7.
64

26
5.
66

31
1.
04

5.
11

30
1.
63

32
8.
83

29
4.
40

10
0

47
0.
12

28
0.
56

24
7.
84

21
7.
79

25
8.
05

4.
25

24
9.
73

26
9.
60

24
1.
98

Table 5.1: Mean squared error of uc w.r.t. f3.
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Figure 5.9: Approximation quality of uc for the smooth chirp signal f3.

In Figure 5.10 we see the best approximation functions forN = 11 using AFSI [US],
AFSI [DB], and AFSI [SPSO]. At first glance the three solutions seem to be of
similar visual quality and it is hard to identify the best. In order of decreas-
ing MSE we have: AFSI [US] (MSE: 11078.56), AFSI [DB] (MSE: 10733.56),
AFSI [SPSO] (MSE: 9655.13). A more detailed view at Figure 5.10 allows to
understand why AFSI [SPSO] is superior to the other two methods: The approx-
imation error concentrates on high signal frequencies. Using AFSI [SPSO] we
have small deviations from the input signal for low and average frequencies while
the approximation u cannot reproduce high frequencies of f (e.g. for x ∈ [0.8, 1]).
For limited N this sounds like a reasonable strategy to optimise the corresponding
MSE.
On the other hand, AFSI [US] and AFSI [DB] don’t follow this principle and
deviate from the original signal already for lower frequencies: x ∈ [0.7, 0.85] for
AFSI [US]; x ∈ [0.65, 0.75] for AFSI [DB]. Consequently, this results in a higher
MSE.
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Figure 5.10: Best piecewise constant approximations of f3 for N = 11.

Piecewise Constant Input Signal

In our next experiments we consider two piecewise constant input signals. The
first one is based on the uniformly sampled version of (5.85) using n = 100
samples. In the following we refer to this signal as the piecewise constant chirp
signal. The second signal represents line 51 of the 8–bit test image trui (cf.
Figure 5.11). We assume that within each of its 256 pixels the function values
are constant. Subsequently, we refer to the latter as the trui 51 signal. Both
signals are illustrated in Figure 5.12. Again, we try to find the optimal piecewise
constant approximation function uc for a given number of segments N . Since
the input function f is a discrete and non-differentiable function we employ the

Figure 5.11: Test image trui, 256× 256 pixels.
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Figure 5.12: Uniformly sampled chirp signal with n = 100 samples and the trui 51
signal with n = 256 samples. Both interpreted as a piecewise constant function.

following techniques and compare the quality of the resulting approximations:

• Uniform (Re-)Sampling (US),

• the Dar–Bruckstein method (DB) using central differences and mirrored
boundaries to estimate the signal derivative f ′ and the threshold (5.67),

• our direct energy optimisation approach using

– Standard Particle Optimisation 2011 (SPSO) with a swarm size of
n = 1000,

– the gradient descent method with backtracking line search (GD) using
the results from US and DB as initialisation (subsequently referred to
as GD [US] and GD [DB]),

– the heavy ball method with adaptive time step size (HB) also using
the results from US and DB as initialisation (referred to as HB [US]
and HB [DB]), and

– SPSO, GD, and HB based on a random initialisation in the previously
mentioned 60 minute brute force experiment denoted by SPSO �,
GD �, and HB �.
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Table 5.2: Mean squared error of uc w.r.t. the piecewise constant chirp signal.
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Figure 5.13: Approximation quality of uc for the piecewise constant chirp signal.

Piecewise Constant Chirp Signal. First, we take a look at the results for the
piecewise constant chirp signal which we provide in Table 5.2 and Table 5.3. A
visualisation of the corresponding approximation quality is given in Figure 5.13.
Like for the smooth input signal the results for SPSO are better than for DB and
US. Only for small values of N , DB performs worse than US. Again, we trace this
back to the violation of the linearity assumption of the Dar–Bruckstein method.
Furthermore, we have a special case for N = 100. In this setting US leads to the
global optimal solution since our input signal consists of 100 equally distributed
samples. Note, that any of the methods which are not based on US comes close
to the global optimum in this specific case.
Considering all applied methods, SPSO gives the best results. Especially with
growingN the difference to the other approaches becomes quite large. ForN = 80
the MSE of the second best technique HB [DB] is e.g. 2.3 times higher. This
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N SPSO � GD � HB � N SPSO � GD � HB �

5 18997.25 18997.79 18997.25 60 366.62 1509.40 1206.36
10 10301.46 10632.16 10337.38 70 292.39 1372.26 863.67
20 3299.23 4659.68 3769.24 80 151.75 1152.21 719.53
30 1919.83 3024.63 2626.71 90 95.33 1061.00 594.46
40 887.85 2515.75 1939.97 100 85.69 824.72 508.56
50 626.41 1937.49 1294.22

Table 5.3: Mean squared error of uc w.r.t. the piecewise constant chirp signal.

is also in contrast to the smooth input signal experiments where the differences
among all approaches are much smaller.
Overall, the best two-step approach appears to be HB which – in most cases
– beats GD for both initialisations. Besides, it turns out that DB represents a
better initialisation for HB than US. This can e.g. be seen for N = 50 where the
MSE for HB [US] is 1.4 times higher than for HB [DB] .
From our brute force experiment lasting 60 minutes we learn that also in this
case SPSO is superior to the other two techniques (see Table 5.3). For N ≥ 20
SPSO � beats GD � and HB � significantly: e.g. for N = 70 the MSE of the
second best method HB � is almost 3 times higher than for SPSO �.
If we take a deeper look at the best approximations uc of the piecewise constant
chirp signal we observe the same behaviour as for the input signal f3. In Fig-
ure 5.14 we present the outcome for N = 11. Again, the SPSO approach ensures
a good signal approximation for low and average signal frequencies (x ∈ [0, 0.85])
and shifts errors to the high frequencies (x > 0.85). The quality of both other
methods already suffers at lower frequencies (x ∈ [0.7, 0.85]) which leads to a
higher MSE. Consequently, SPSO gives the best results (MSE: 8914.82), followed
by HB [DB] (MSE: 10488.75) and HB [US] (MSE: 11060.02).

Piecewise Constant trui 51 Signal. The next scenario which we discuss is
the piecewise constant approximation of the piecewise constant trui 51 signal. We
state the MSE for the applied methods in Table 5.4 and provide the corresponding
visualisation in Figure 5.15. Please note that we do not list and plot the results
for the heavy ball method (HB) in this case. The implemented adaptive time
step size selection strategy turned out to be inappropriate such that HB could
not improve any of the given initialisations. Consequently, the usage of HB was
of no benefit such that we skip a discussion of its results here. Apart from that,
we find very similar behaviour as for the approximation of the piecewise constant
chirp signal. Overall, we get the following ranking of the applied techniques (in
order of increasing MSE): SPSO, GD [DB], DB, GD [US], US. Only for N ≤ 20,
GD [US] gives better results than DB. In the same range of N , GD [US] and
GD [DB] lead to almost identical MSE values. Furthermore, we observe that
the application of a first-order optimisation technique can improve the results
of both, US and DB, to some extent. However, we benefit only little in case of
GD [DB] while GD [US] leads to remarkable improvements over US. Again, the
60 minute experiment shows that SPSO � is superior to other techniques like –
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Table 5.4: Mean squared error of uc w.r.t. the piecewise constant trui 51 signal.
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Figure 5.14: Best piecewise constant approximations of the piecewise constant
chirp signal for N = 11.

in this case – GD �.
Next, we take a look at the best piecewise constant signal approximations for
N = 10. From Table 5.4 we get that the MSE for GD [DB] is about 1.7 times
larger than for SPSO which gives the best results for N = 10. GD [US] with
a MSE of 196.38 lies in between of both methods. We show the corresponding
approximation functions uc in Figure 5.16. It becomes clear that also visually
SPSO adapts best to the input signal, e.g. for x ∈ [0, 60] or x ∈ [150, 190]. In
the same regions GD [DB] can only provide a rough approximation of the input
signal.

Piecewise Linear Input Signal

In our next experiments we make use of piecewise linear input functions. Accord-
ing to the minimal example discussed in Chapter 5.4.2 this can lead to a smooth
energy function which allows the usage of more pleasant optimisation techniques
than for piecewise constant input functions. For this scenario we consider the
same input data as in the previous case, i.e.

• 100 uniformly taken samples of f3 (as defined in (5.85)), and

• the 256 grey values of line 51 of the 8-bit test image trui (cf. Figure 5.11)
which we assume to be located at the corresponding pixel centres.

This time – however – we interpolate linearly between the samples and refer to the
resulting signals as the piecewise linear chirp signal and the piecewise linear trui
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Figure 5.15: Approximation quality of uc for the piecewise constant trui 51 signal.

51 signal. The corresponding input functions f are illustrated in Figure 5.17. For
both signals we want to estimate the optimal piecewise constant approximation
function uc given a desired number of segments N . Based on our findings in
Chapter 5.4.2, we do this using

• Uniform (Re-)Sampling (US),

• the Dar–Bruckstein method (DB), using (5.51) to estimate f ′ and the
threshold (5.67), and

• our direct energy optimisation approach with

– Standard Particle Optimisation 2011 (SPSO) with a swarm size of
n = 1000,

– Adaptive FSI schemes (AFSI) where the results from US, DB, and
SPSO serve as initialisation (referred to as AFSI [US], AFSI [DB], and
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Figure 5.16: Best piecewise constant approximations of the piecewise constant
trui 51 signal for N = 10.

AFSI [SPSO]), and

– randomly initialised SPSO and GD in a 60 minute brute force experi-
ment denoted by SPSO � and GD �.

Piecewise Linear Chirp Signal. Initially, we want to study the approxima-
tion results for the piecewise linear chirp signal provided in Table 5.5 and Fig-
ure 5.18.
In general, the model ranking in terms of increasing MSE is given by: AFSI [DB],
AFSI [SPSO], SPSO, AFSI [US], DB, US. Apart from that, AFSI [SPSO] gives
the lowest approximation error for N ≤ 24 and AFSI [US] performs better than
AFSI [DB] for N ≤ 10. We observe that AFSI can improve the results of US a
lot in this range: e.g. the MSE decreases by almost 27% for N = 5. Another
reason why AFSI [US] can beat AFSI [DB] might by the weak performance of
DB for low N where it sometimes even results in higher errors than US (e.g. for
N = 10). Although f is guaranteed to be a piecewise linear function, the local
linearity assumption of DB is violated for low N : the input signal f cannot be
represented by a linear function within each segment [xi, xi+1].
It is also worth mentioning that US gives better results than DB for N > 88.
In our opinion this is related to the fact that the piecewise linear chirp signal
reduces to 100 uniformly distributed samples. By model definition US can give a
somewhat good – though not perfect – approximation when coming close to this
number of signal samples.
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Table 5.5: Mean squared error of uc w.r.t. the piecewise linear chirp signal.
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Figure 5.17: The piecewise linear chirp signal at the top and the piecewise linear
trui 51 signal below.

Let us now judge the overall performance of SPSO. Considering all values of N ,
SPSO on its own already gives good results. For higher values – N ≥ 54 – AFSI
leads to minor improvements such that we conclude that applying AFSI to SPSO
results is not worth the effort. For N = 54 both MSE values differ for the first
time by more or equal than 5 · 10−3. This difference increases with growing N
and approaches 3.5 for N = 100.
Things look different for US and DB: The application of AFSI can greatly improve
the results such that the MSE sometimes even decreases by more than 50 percent
(see e.g. US for N = 30). On average, the MSE of US and DB is 1.8 times higher
than for AFSI [US] and AFSI [DB].
Due to the fact that AFSI always converges to a local energy minimum, our
experiments again prove the complicated shape of our energy function: no matter
which initialisation we choose – US, DB, or SPSO – we always end up in a different
minimiser. Based on our findings we conclude that one should use SPSO or
AFSI [SPSO] for N ≤ 24 whereas for higher N we suggest AFSI [DB].
From our 60 minute experiment it becomes clear that SPSO � and AFSI � with
random initialisation yield identical results for N ≤ 12. Furthermore, AFSI �
gives slightly better results than SPSO � for N ≥ 60. We trace this back to
the difficulty of SPSO to deal with high dimensional problems as mentioned by
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Figure 5.18: Approximation quality of uc for the piecewise linear chirp signal.

[ZCR13].
In Figure 5.19 we show the best piecewise constant approximations for N =
11 estimated using AFSI [US], AFSI [DB], and SPSO. Note that AFSI cannot
improve the results of SPSO in this setting such that we don’t discuss it here.
Overall, the outcome resembles our results for the smooth and the piecewise
constant chirp signal: Only when using SPSO, the approximation signal uc can
deal well with low and average input signal frequencies and shifts the error to
the high frequent parts (x ∈ [0.86, 1]). Both other methods already fail at the
approximation of lower signal frequencies (x ∈ [0.7, 0.82]).

Piecewise Linear trui 51 Signal. In our last experiment, we aim at finding
piecewise constant approximation functions uc which resemble the piecewise linear
trui 51 signal. The relationship between the occurring MSE and the corresponding
segment number N becomes clear from the results presented in Table 5.6 and
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Figure 5.19: Best piecewise constant approximations of the piecewise linear chirp
signal for N = 11.

Figure 5.20. We refrain from plotting the results of AFSI [SPSO] and SPSO �

since they are identical to those of SPSO: the MSE differs by less than 10−2.
We observe that for every N ∈ [2, 100] it is always SPSO which provides the
boundary configuration x resulting in the lowest MSE. Only in case of N = 5
other methods like AFSI [US] and AFSI [DB] yield the same MSE value. For
N ≥ 18, AFSI [DB] yields the second lowest MSE values, followed by AFSI [US],
DB, and US. Like for the piecewise linear chirp signal, AFSI [US] beats AFSI [DB]
for low values of N . Furthermore, US gives better results than DB for very small
N , i.e. N < 5. The approximation error of AFSI [DB] comes close to the MSE
of SPSO with growing N : While for N = 10 there is a significant gap (the MSE
of AFSI [DB] is 1.5 times higher than for SPSO) both methods yield results of
almost identical quality for N = 100.
Although AFSI cannot improve the SPSO results, it causes dramatic enhance-
ment when initialised with the outcome of US and DB: the MSE for US is on
average 3.5 time higher than for AFSI [US], the MSE values for DB are on average
2.0 times higher than for AFSI [DB].
When considering the results of our 60 minute brute force random experiment we
see that AFSI � is not able to beat SPSO �.
Let us now take a look at Figure 5.21 which shows the best approximations of
the piecewise linear trui 51 signal for N = 10 using the results of AFSI [US],
AFSI [DB], and SPSO. Altogether, the three methods provide a good approx-
imation of the input signal. However, SPSO clearly outperforms the other two
techniques for x ∈ [150, 185] where its approximation adapts well to the input
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Figure 5.20: Approximation quality of uc for the piecewise linear trui 51 signal.

signal structure. In comparison, AFSI [US] and AFSI [DB] only provide a flat
approximation there. Considering the whole domain, AFSI [DB] gives the crudest
result and – accordingly – the highest MSE. Our findings are similar to those for
N = 10 for the piecewise constant trui 51 signal shown in Figure 5.16. How-
ever, for the piecewise linear input signal the applied techniques seem to have
less difficulties to adapt to the input signal.

5.5.2 Piecewise Linear Approximation Functions u`(x)

The second part of our experiments is dedicated to optimal piecewise linear ap-
proximation functions u` for piecewise constant and piecewise linear input func-
tions f . More precisely, we want to find the function u` which minimises the
MSE w.r.t. the input signals f1, f2, the piecewise constant trui 51 signal, and
the piecewise linear trui 51 signal. Based on our findings in Chapter 5.2.2, we
follow our direct energy optimisation strategy and employ a combination of the
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Figure 5.21: Best piecewise constant approximations of the piecewise linear trui
51 signal for N = 10.

Standard Particle Optimisation 2011 (SPSO) algorithm (see Chapter 2.2.5) and
the gradient descent (GD) method (see Chapter 2.2.1) to estimate a minimiser
of the energy (5.12) for a given number of segments N . We use GD to calculate
the unique minimiser u for given segment boundaries x. The strict convexity of
Ef (x,u) in u (cf. Theorem 12) allows us to do this efficiently. Accordingly, we
utilise SPSO to find the boundary configuration x which results in the lowest
MSE.
For f1 and f2 we use a swarm size of n = 100, when working with the trui
51 signal data we set n = 1000. In every experiment we initialise the segment
boundaries x randomly on the signal domain following a uniform distribution.
Nevertheless, the boundary positions are sorted and fulfil (5.1). As mentioned
before, we estimate the corresponding initial optimal tonal configuration u with
the help of the gradient descent algorithm.

Minimal Example Using f1 and f2. In order to get a better understanding
of the estimation process for piecewise linear approximation functions u` we begin
our experiments with an investigation of the approximation problem for the input
functions f1 (as defined in (5.45)) and f2 (as defined in (5.56)). Both functions
can be regarded as a minimalistic representative of a piecewise constant and a
piecewise linear function and are shown in Figure 5.1 and Figure 5.2. In our
experiments, we consider N = 2, 3, . . . , 7 segments for both input functions. We
provide the resulting MSE values in Table 5.7 and illustrate them together with
the corresponding functions u` for N = 4 and N = 7 in Figure 5.22.
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Figure 5.22: Piecewise linear approximation of f1 and f2.

N SPSO f1 SPSO f2 N SPSO f1 SPSO f2

2 0.54314 0.085843 5 0.26523 0.003112
3 0.25468 0.013562 6 0.03008 0.003927
4 0.27604 0.011146 7 0.02845 0.002846

Table 5.7: Mean squared error of u` w.r.t. f1 and f2.
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Figure 5.23: Approximation quality of u` for the piecewise constant (trui-pc) and
piecewise linear (trui-pl) trui 51 signal.

As one can see, the MSE values for the continuous linear input f2 are lower than
for f1 for all values of N : On average the MSE for f1 is 25 times higher. This
makes sense since there are no jumps in the function f2 (for f1 there are jumps)
and according to (5.10) we do not allow any jumps in the approximation function
u`. Thus, by definition u` is better suited to approximate f2 than f1. Nevertheless,
the approximation of f1 works – from this point of view – surprisingly well. For
N = 7 we observe only small difficulties for x ∈ [2, 4] while for N = 4 we only
get a crude approximation of f1. This is different when using the input signal
f2. Already for N = 2 the approximation function u` fits f2 well: The MSE is
below 10−1 and significantly lower than for the piecewise constant input function.
As shown in Figure 5.22, we get a good signal approximation for N = 4 and an
almost perfect fit for N = 7. Apart from that, the latter result again emphasises
the difficulty of our minimisation problem: The input function f2 consists – by
definition – of 5 linear segments such that for N ≥ 5 we know that there exist
multiple functions u` which imply an energy value of 0. SPSO allows us to find
a good approximation function but it fails to estimate one of the global energy
minimisers.

Piecewise Constant and Linear trui 51 Signal. Keeping these results in
mind, let us now continue with experiments on real world data. For this purpose
we consider again the piecewise constant and piecewise linear trui 51 input signal
which we refer to as trui-pc and trui-pl below. Both signals are introduced in
Chapter 5.5.1 and we visualise them in Figure 5.12 and Figure 5.17. In our
experiments, we try to estimate the best possible piecewise linear approximation
function u` for trui-pc and trui-pl using N = 2, 3, . . . , 100. The achieved MSE
values for both input functions are given in Table 5.8 and sketched in Figure 5.23.
As before, we obtain – in general – better results for the piecewise linear input
function. Again, we trace this back to our model design and refer to the fact
that continuous piecewise linear approximation functions cannot deal well with
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N SPSO trui–pc SPSO trui–pl N SPSO trui–pc SPSO trui–pl
5 641.86 517.45 60 10.43 7.21
10 314.51 72.21 70 10.01 4.65
20 117.16 23.91 80 8.65 3.56
30 26.40 15.79 90 7.50 3.41
40 14.98 8.12 100 6.13 2.31
50 16.67 7.56

Table 5.8: Mean squared error of u` w.r.t. the piecewise constant (trui-pc) and
piecewise linear (trui-pl) trui 51 signal.

jump discontinuities in the input function. In the specific case of trui-pc and trui-
pl, the MSE for the piecewise constant input is lower only in 8 of 99 cases, i.e.
for N ∈ [2, 6, 13, 14, 15, 24, 35, 38]. The superiority of trui-pc for some particular
values of N can e.g. be explained by the shape of the input signal or the random
and non-deterministic behaviour of SPSO. We observe that on average the MSE
for the input function trui-pc is 2.5 times higher than for trui-pl. As one can also
see from Figure 5.23 the gap between the MSE for trui-pc and trui-pl becomes
larger with a growing number of segments N .
On top of that, we want to compare the estimated approximation functions
with lowest MSE for both input functions, trui-pc and trui-pl, in case of N ∈
{5, 10, 20}. For this purpose, we again consider Table 5.8 and the corresponding
plots in Figure 5.24. First of all, we notice that the main characteristics of the
input signals are captured in both settings. However, not only in terms of MSE
but also visually, the achieved approximation of trui-pl excels the one of trui-pc.
For example, the central signal bump – x ∈ [110, 160] – is only resembled properly
for N = 20 in case of trui-pl. For N = 10, the estimate u` fails to approximate
trui-pc for x ∈ [130, 200]. Obviously, the approximation error in case of trui-pl
is much lower for this region of x. In general, we observe that for the input sig-
nal trui-pl there exist less “undershoots” than for trui-pc. Overall, the achieved
functions tend to cross the input signal more often and represent a more crude
approximation when using trui-pc.

5.6 Conclusions and Outlook
Within this chapter we investigated the problem of attaining `2-optimal approx-
imations of one-dimensional signals for a fixed number of samples. In particular,
we focussed on piecewise constant and piecewise linear functions which approx-
imate interpolated discrete input data.
In the beginning, we provided a general energy-based model for one-dimensional
signal approximation. On top, we introduced the corresponding nonconvex min-
imisation problem which aims at finding the global minimiser of the MSE w.r.t.
the original signal. This also included adapted energy formulations for piecewise
constant and piecewise linear output signals. In this context, we showed that the
problem of finding optimal sample positions is in general nonconvex while the es-
timation of the corresponding optimal sample values is convex and can be solved
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Figure 5.24: Best piecewise linear approximations of the piecewise constant and
the piecewise linear trui 51 signal for N ∈ {5, 10, 20}.
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with minimal effort. This coincides with previous research from the area of ho-
mogeneous diffusion [MHW+12] which studied the spatial and tonal optimisation
of inpainting masks.
In a second step, we have supplied a simple alternative derivation of the recent
Dar–Bruckstein model. As part of its analysis, we analysed the limitations of
their approach and pointed out that the approximation quality suffers in case
of violations of the signal smoothness or local linearity. Furthermore, we proved
that also error balancing can induce suboptimal approximations.
Motivated by these findings, we pursued the idea of direct minimisation of the
previously introduced energy. In this way, we renounced all limiting assumptions
of the Dar–Bruckstein model and provided an approach which leads to a globally
optimal solution in case the corresponding nonconvex optimisation problem can
be solved exactly. For this purpose, we suggested two fundamentally different
solution strategies. Independent of the signal characteristics, a particle swarm
optimisation approach achieves high quality approximations. However, due to its
random nature it lacks of any convergence guarantees. We showed that numerical
first-order optimisation methods – which provide such guarantees – represent a
reasonable alternative for Lipschitz continuous input signals. Furthermore, an
adaptation to less regular signals involving jumps turned out to be possible with
the help of automatic time step size selection via backtracking line search.
In our experiments for piecewise constant approximations, we evaluated the qual-
ity of our direct energy minimisation approach in comparison to the Dar–Bruck-
stein method and uniform resampling. The latter served as a lowest tolerable
quality reference. When considering smooth input signals, we observed that
particle swarm optimisation and first-order optimisation techniques perform al-
most equally well. For low samples numbers N , Adaptive FSI (AFSI) schemes
using Standard Particle Swarm Optimisation 2011 (SPSO) results as initialisation
gained the best quality. For higher N , AFSI initialised with the Dar–Bruckstein
(DB) method works best. With increased problem complexity – in case of piece-
wise constant input signals – the best approximation quality results from SPSO.
It performed clearly better than its followers, the heavy ball (HB) or the gradient
descent (GD) algorithm using DB results for initialisation. In time limited exper-
iments we also validated that SPSO is superior to a random brute force method
(GD and HB with random initialisation). For piecewise linear input we got sim-
ilar behaviour as for smooth input functions: AFSI based approaches and SPSO
attained nearly the same quality. However, SPSO performed constantly better
than the other methods on real world data. In general, we observed weak per-
formance of DB for low sample numbers or signals lacking smoothness. Particle
swarm optimisation represents the method of choice in these cases. Apart from
that, first-order minimisation methods initialised with DB results offer a simple
and efficient alternative to SPSO for piecewise linear or smooth input signals.
Additionally, the experiments showed the eligibility of using SPSO in practice
since applying GD, HB, or AFSI (with SPSO initialisation) lead to no or only
small improvements of the MSE value. This means that SPSO was able to detect
a local minimum or at least provided a solution close to one.
The second part of our experiments dealt with piecewise linear approximations
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and verified our theoretical findings. We found out that also in this setting, SPSO
is a suitable tool to estimate a good signal approximation.
From all experiments, we learned that piecewise linear input signals are more
pleasant to handle than piecewise constant ones. This becomes, for example, rel-
evant when considering alternatives to particle swarm optimisation in the context
of direct energy minimisation. When doing so, we suggest to interpolate samples
linearly in case of discrete input data. In summary, the application of numerical
first-order optimisation methods pays off when initialised with DB or US results.
However, the gained MSE reduction is higher for piecewise linear input functions.
Another interesting fact is that the resulting approximations from SPSO for the
chirp signal – and its discrete variants – show that a MSE minimisation for a
fixed number of samples basically acts as a low pass filter. While the approxima-
tion signal adapts well to the lower frequencies, the error is shifted to high signal
frequencies. This sounds reasonable and implements a well-known practice from
the field of compression.
This chapter sheds light on the possibilities and benefits of direct energy min-
imisation for the purpose of one-dimensional signal approximation. Future re-
search in this area might e.g. concentrate on parameter tuning and speeding-up
for particle swarm optimisation techniques. We found a general parameter set-
ting that worked well in our experiments. However, we believe that the SPSO
model parameters can be adapted in dependency of the input signal character-
istics and the desired number of samples. Doing so could – amongst others –
result in a speed-up of the minimisation process and increase the competitiveness
of the SPSO algorithm. Also, the extension of our theory to a multi-dimensional
setting represents another interesting challenge. Highly relevant applications ex-
ist, e.g. in the field of image processing. Establishing a link to work dealing
with compression, non-uniform sampling, or piecewise constant approximation
[Sau98, KBPW18, Dav11] could be a first step in this direction.
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Chapter 6

Conclusions and Outlook

“We are all apprentices in a craft where no one ever becomes a
master.”

Ernest Hemingway, New York Journal-American

Contents
6.1 Summary and Conclusions . . . . . . . . . . . . . . . . 125

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1 Summary and Conclusions

The focus of this thesis was on evolutionary mathematical models for the purpose
of signal enhancement and approximation. In Chapter 1, we stated three goals
for this present work. First, we wanted to show that – and elaborate how – the
mathematical modelling of swarm dynamics represents an appropriate strategy to
solve image processing tasks. As our second goal, we defined the derivation of a
smart and stable mathematical model for pure backward diffusion. The last aim
we formulated was to provide new insights into the optimal adaptive sampling of
arbitrary one-dimensional signals under the constraint of limited resources. To
achieve these goals, we designed and analysed domain-specific gradient descent
processes. Subsequently, we summarise our contributions in the different areas.

Attractive-Repulsive Swarming Models for Image Processing. In Chap-
ter 3, we built on the idea of attractive-repulsive discrete first-order models of
swarming. They describe the movement of individual swarm members with the
help of potential forces, a principle which is well-known in literature for modelling
swarm dynamics. We extended the time evolution of discrete first-order models
with an additional weighting function and obtained a model which is covered by
the theory of nonsymmetric nonlocal evolutions. In experiments, we proved the
usefulness of our model as an intuitive modelling tool for image processing tasks.
We used our model to formulate grey scale quantisation, contrast enhancement,
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line detection, and coherence enhancement as a swarm evolution which solves the
corresponding problem in its steady state.

Purely Repulsive Models and Backward Diffusion. Motivated by the
concept of a purely repulsive discrete first-order model of swarming, we presented
a new and intelligent model for a specific class of backward diffusion in Chapter 4.
Our model is characterised by remarkable properties: First of all, we designed the
model in such a way that it implements globally negative diffusivities. Further-
more, we equipped our model with reflecting boundary conditions in the diffusion
co-domain in order to stabilise the underlying ill-posed backward diffusion prob-
lem. This was the first time that this type of constraint is used within the context
of backward diffusion. In our model analysis, we pointed out that our backward
diffusion process describes a gradient descent evolution on a convex energy. This
was not to be expected and allowed us to prove convergence of our model to a
unique minimiser. Closely connected, we discussed an important numerical be-
nefit of our model: In contrast to existing approaches, already a simple explicit
scheme inherits the stability and convergence properties of the time-continuous
evolution. In our experiments, we demonstrated the applicability of our back-
ward diffusion model for the purpose of global and local contrast enhancement of
greyscale and colour images.

Evolutions for One-Dimensional Signal Approximation. Our study of
`2-optimal one-dimensional signal approximation was the topic of Chapter 5.
Therein, we discussed the unsolved problem of estimating a piecewise-defined
function for a fixed number of samples that represents an approximation to an
arbitrary input signal which is optimal in a least-squares sense. For the benefit
of minimal model restrictions, we followed a direct minimisation approach of an
energy which is nonconvex in general. In the context of piecewise constant and
piecewise linear approximation functions, we showed that our task reduces to an
estimation of optimal interval boundaries. This was based on our finding that –
for given interval boundaries – there exists a unique set of optimal sample values
which can be determined easily. For piecewise constant approximation functions,
we provided a concise reformulation of the Dar–Bruckstein model that allowed
us to prove the ineligibility of error balancing as a criterion for `2-optimality. In
our experiments for piecewise constant approximation functions, we compared
the approximation quality of our approach using a particle swarm optimisation
strategy and numerical first-order methods with the results of the Dar–Bruckstein
model. We achieved results of high quality and could outperform the method of
Dar and Bruckstein. Additionally, we illustrated the high potential of our model
in experiments for piecewise linear approximation functions.

General Conclusions. Not only this PhD thesis has highlighted the value of
looking into a subject from its roots but also the rich potential and chances this
strategy has to offer. We began our journey with an exploration of the highly
interdisciplinary field of swarm dynamics. A deeper understanding of existing
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models and the embedding into a well-established mathematical framework en-
abled us to express swarm evolutions in terms of differential equations. In a next
step, we successfully used this achievement to reformulate image processing tasks
as swarming processes that allow an intuitive understanding of abstract methods.
This new possibility to express and reinterpret classical problems offered us – in
combination with the flexibility of our evolution equations – the chance to derive
a novel and ground-breaking model for solving the backward diffusion equation
with standard numerics. In case of our signal approximation studies, we could
disprove the suitability of error balancing as an optimality criterion and provided
new insights along with state-of-the-art results. Hence, we see how important it
is to question even basic assumptions or apparently solved problems. For us this
was the key to progress and success.

6.2 Outlook

In addition to the proposals made at the end of the individual chapters, let us
briefly discuss a few more potential future research directions.

Purely Repulsive Models and Backward Diffusion. As proposed, our
backward diffusion model from Chapter 4 allows to describe the evolution of
one-dimensional data like – in our case – grey or intensity values of digital im-
ages. A reasonable extension of the suggested evolution represents the devel-
opment of a theory for the n-dimensional case. Amongst others, this requires
to solve potential issues regarding the non-uniqueness of the corresponding min-
imiser and the smart implementation of the reflecting boundary conditions in a
multi-dimensional setup. On the other hand, this could pave the road for fur-
ther application scenarios. Connected to our experiments, such an n-dimensional
model could be directly applied to colour images. Other interesting use cases
might be the processing of depth maps or three-dimensional models as used in
computer vision or the navigation of autonomous vehicles in robotics.

Evolutions for One-Dimensional Signal Approximation. Our approach
in Chapter 5 reveals the idea of signal approximation with tonal optimisation.
This is a common approach in image processing and – more specifically – in image
compression. Inspired by this, and based on our findings, we suggest to study an
evolutionary process which models the idea of density approximation in a two-
dimensional setup. This could be useful for inpainting and compression of digital
images. One possible starting point for research could be the implementation of
a minimisation process on the inpainting or reconstruction error of the image.
In this context, powerful tools to achieve this goal could be Voronoi diagrams
or Delaunay triangulations of the image domain. Both concepts would allow to
define a model that acts on well-defined subsets of the image domain. Helpful
ideas for modelling could e.g. be found in works on stippling [Sec02], hierarchical
data representation [SBHJ00], or centroidal Voronoi tessellations [DFG99].
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Overall, we believe in the future of nature-inspired evolution models that rely
on a well-founded mathematical background as such approaches represent solid,
powerful, and intuitive ways to solve difficult problems. In this work, we could
just scratch the surface of evolution equations which are inspired by studies on
swarm behaviour. At the same time, we were able to discover the rich potential of
this idea and appreciated the interdisciplinarity in our work. The understanding
of connections to other research areas and well-known mathematical models was
of great importance and motivated us to study the – amongst others – occurring
complex dynamics. In conclusion, we think that our contributions provide a good
basis for future research and hope that they will serve as an inspiration for further
studies.

128



Appendix A

Bibliography

[AD19] R. Alexandru and P. L. Dragotti. Time-based Sampling and Recon-
struction of Non-bandlimited Signals. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing, ICASSP 2019,
Brighton, United Kingdom, pages 7948–7952. IEEE, May 2019.

[AG01] A. Aldroubi and K. Gröchenig. Nonuniform Sampling and Recon-
struction in Shift-Invariant Spaces. SIAM Review, 43(4):585–620,
2001.

[AMFM11] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour Detec-
tion and Hierarchical Image Segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 33(5):898–916, 2011.

[ARRM14] R. Aranda, M. Rivera, and A. Ramirez-Manzanares. A flocking
based method for brain tractography. Medical Image Analysis,
18(3):515–530, April 2014.

[BBBW09] Z. Belhachmi, D. Bucur, B. Burgeth, and J. Weickert. How to
Choose Interpolation Data in Images. SIAM Journal of Applied
Mathematics, 70(1):333–352, 2009.

[BCWW18] L. Bergerhoff, M. Cárdenas, J. Weickert, and M. Welk. Modelling
Stable Backward Diffusion and Repulsive Swarms with Convex En-
ergies and Range Constraints. In M. Pelillo and E. Hancock, ed-
itors, Energy Minimization Methods in Computer Vision and Pat-
tern Recognition, 11th International Conference, EMMCVPR 2017,
Venice, Italy, volume 10746 of Lecture Notes in Computer Science,
pages 409–423, Cham, March 2018. Springer.

[BCWW20a] L. Bergerhoff, M. Cárdenas, J. Weickert, and M. Welk. Stable Back-
ward Diffusion Models that Minimise Convex Energies. Journal of
Mathematical Imaging and Vision, 62(6):941–960, July 2020.

[BCWW20b] L. Bergerhoff, M. Cárdenas, J. Weickert, and M. Welk. Stable
Backward Diffusion Models that Minimise Convex Energies.
arXiv:1903.03491v2 [math.NA], June 2020.

129



APPENDIX A. BIBLIOGRAPHY

[BK07] N. Bassiou and C. Kotropoulos. Color image histogram equaliza-
tion by absolute discounting back-off. Computer Vision and Image
Understanding, 107(1):108–122, July 2007.

[BM08] C. Blum and D. Merkle, editors. Swarm Intelligence: Introduc-
tion and Applications. Natural Computing Series. Springer, Berlin,
2008.

[BM17] M. R. Bonyadi and Z. Michalewicz. Particle Swarm Optimization
for Single Objective Continuous Space Problems: A Review. Evol-
utionary Computation, 25(1):1–54, 2017.

[BPP98] N. N. Brueller, N. Peterfreund, and M. Porat. Non-stationary sig-
nals: optimal sampling and instantaneous bandwidth estimation. In
Proc. IEEE-SP International Symposium on Time-Frequency and
Time-Scale Analysis, pages 113–115, Pittsburgh, PA, USA, Octo-
ber 1998.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, Cambridge, March 2004.
https://web.stanford.edu/∼boyd/cvxbook/.

[BW16] L. Bergerhoff and J. Weickert. Modelling Image Processing with
Discrete First-Order Swarms. In N. Pillay, P. A. Engelbrecht,
A. Abraham, C. M. du Plessis, V. Snášel, and K. A. Muda, editors,
Advances in Nature and Biologically Inspired Computing, volume
419, pages 261–270. Springer, Cham, 2016.

[BWD19] L. Bergerhoff, J. Weickert, and Y. Dar. Algorithms for Piecewise
Constant Signal Approximations. In 2019 27th European Signal
Processing Conference (EUSIPCO 2019). IEEE, 2019.

[Car14] A. S. Carasso. Compensating operators and stable backward in time
marching in nonlinear parabolic equations. GEM - International
Journal on Geomathematics, 5(1):1–16, April 2014.

[Car16] A. S. Carasso. Stable explicit time marching in well-posed or ill-
posed nonlinear parabolic equations. Inverse Problems in Science
and Engineering, 24(8):1364–1384, 2016.

[Car17] A. S. Carasso. Stabilized Richardson leapfrog scheme in expli-
cit stepwise computation of forward or backward nonlinear para-
bolic equations. Inverse Problems in Science and Engineering,
25(12):1719–1742, 2017.

[Cár18] Giovanno Marcelo Cárdenas. Nonlocal Evolutions in Image Pro-
cessing. PhD thesis, Mathematical Image Analysis Group, Saarland
University, Saarbrücken, Germany, 2018.

130



[CDM91] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization
by ant colonies. In Proceedings of the First European Conference
On Artificial Life, pages 134–142, Paris, France, December 1991.

[CE54] P. J. Clark and F. C. Evans. Distance to Nearest Neighbor
as a Measure of Spatial Relationships in Populations. Ecology,
35(4):445–453, October 1954.

[CFTV10] J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil. Particle, kin-
etic, and hydrodynamic models of swarming. In G. Naldi, L. Pares-
chi, and G. Toscani, editors, Mathematical Modeling of Collect-
ive Behavior in Socio-Economic and Life Sciences, Modeling and
Simulation in Science, Engineering and Technology, pages 297–336.
Birkhäuser, Boston, June 2010.

[CHDB07] Y. L. Chuang, Y. R. Huang, M. R. D’Orsogna, and A. L. Ber-
tozzi. Multi-Vehicle Flocking: Scalability of Cooperative Control
Algorithms using Pairwise Potentials. In 2007 IEEE International
Conference on Robotics and Automation, ICRA 2007, 10-14 April
2007, Roma, Italy, pages 2292–2299, 2007.

[CKJ+02] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks.
Collective Memory and Spatial Sorting in Animal Groups. Journal
of Theoretical Biology, 218(1):1–11, September 2002.

[CPL85] J. J. Clark, M. R. Palmer, and P. D. Lawrence. A transforma-
tion method for the reconstruction of functions from nonuniformly
spaced samples. IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, 33(5):1151–1165, October 1985.

[CS07] F. Cucker and S. Smale. Emergent Behavior in Flocks. IEEE
Transactions on Automatic Control, 52(5):852–862, May 2007.

[CSH78] A. Carasso, J. Sanderson, and J. Hyman. Digital Removal of Ran-
dom Media Image Degradations by Solving the Diffusion Equa-
tion Backwards in Time. SIAM Journal on Numerical Analysis,
15(2):344–367, April 1978.

[Dav11] O. Davydov. Algorithms and Error Bounds for Multivariate Piece-
wise Constant Approximation. In E. H. Georgoulis, A. Iske, and
J. Levesley, editors, Approximation Algorithms for Complex Sys-
tems, pages 27–45, Berlin, 2011. Springer.

[DB19] Y. Dar and A. M. Bruckstein. On High-Resolution Adaptive
Sampling of Deterministic Signals. Journal of Mathematical Ima-
ging and Vision, 61(7):944–966, 2019.

[DCBC06] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S. Chayes.
Self-Propelled Particles with Soft-Core Interactions: Patterns, Sta-
bility, and Collapse. Physical Review Letters, 96:104302, March
2006.

131



APPENDIX A. BIBLIOGRAPHY

[DFG99] Q. Du, V. Faber, and M. D. Gunzburger. Centroidal Voronoi Tes-
sellations: Applications and Algorithms. SIAM Review, 41(4):637–
676, 1999.

[DH72] R. O. Duda and P. E. Hart. Use of the Hough Transformation to
Detect Lines and Curves in Pictures. Communications of the ACM,
15(1):11–15, January 1972.

[FG87] W. Förstner and E. Gülch. A fast operator for detection and precise
location of distinct points, corners and centres of circular features.
In Proc. ISPRS Intercommission Conference on Fast Processing
of Photogrammetric Data, pages 281–305, Interlaken, Switzerland,
June 1987.

[FS13] B. T. Fine and D. A. Shell. Unifying microscopic flocking motion
models for virtual, robotic, and biological flock members. Autonom-
ous Robots, 35(2-3):195–219, October 2013.

[FXQ07] C.-L. Fu, X.-T. Xiong, and Z. Qian. Fourier regularization for a
backward heat equation. Journal of Mathematical Analysis and
Applications, 331(1):472–480, 2007.

[Gab65] D. Gabor. Information theory in electron microscopy. Laboratory
Investigation, 14:801–807, June 1965.

[Gaz13] V. Gazi. On Lagrangian dynamics based modeling of swarm be-
havior. Physica D: Nonlinear Phenomena, 260:159–175, October
2013.

[Ger31] S. Gerschgorin. Über die Abgrenzung der Eigenwerte einer Matrix.
Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences
mathématiques et naturelles, pages 749–754, 1931.

[GF07] V. Gazi and B. Fidan. Coordination and control of multi-agent
dynamic systems: Models and approaches. In E. Sahin, W. M.
Spears, and A. F. T. Winfield, editors, Swarm Robotics, volume
4433 of Lecture Notes in Computer Science, pages 71–102. Springer,
Berlin, 2007.

[GP03] V. Gazi and K. M. Passino. Stability Analysis of Swarms. IEEE
Transactions on Automatic Control, 48(4):692–697, April 2003.

[GP04] V. Gazi and K. M. Passino. Stability analysis of social foraging
swarms. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, 34(1):539–557, February 2004.

[GPS01] H. Goldstein, C. P. Poole, and J. L. Safko. Classical Mechanics.
Pearson, third edition, 2001.

132



[Gro19] T. H. Gronwall. Note on the Derivatives with Respect to a Para-
meter of the Solutions of a System of Differential Equations. Annals
of Mathematics, 20(4):292–296, July 1919.

[GSZ02] G. Gilboa, N. A. Sochen, and Y. Y. Zeevi. Forward-and-backward
diffusion processes for adaptive image enhancement and denoising.
IEEE Transactions on Image Processing, 11(7):689–703, 2002.

[GW08] R. C. Gonzalez and R. E. Woods. Digital Image Processing.
Prentice-Hall, Upper Saddle River, NJ, USA, third edition, 2008.

[Had02] J. Hadamard. Sur les problèmes aux dérivées partielles et leur sig-
nification physique. Princeton University Bulletin, 13:49–52, 1902.

[HD09] D. N. Hào and N. V. Duc. Stability results for the heat equation
backward in time. Journal of Mathematical Analysis and Applica-
tions, 353(2):627–641, May 2009.

[HD11] D. N. Hào and N. V. Duc. Stability results for backward para-
bolic equations with time-dependent coefficients. Inverse Problems,
27(2):025003, January 2011.

[Hen19] C. Henry. SpaceX submits paperwork for 30,000 more Starlink
satellites. https://spacenews.com/spacex-submits-paperwork-for-
30000-more-starlink-satellites/, 2019. Last visited March 7, 2020.

[HKZ87] R. A. Hummel, B. B. Kimia, and S. W. Zucker. Deblurring Gaus-
sian blur. Computer Vision, Graphics, and Image Processing,
38(1):66–80, April 1987.

[Hor68] K. Horiuchi. Sampling Principle for Continuous Signals with Time-
Varying Bands. Information and Control, 13(1):53–61, July 1968.

[HTF09] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Stat-
istical Learning: Data Mining, Inference, and Prediction. Springer
Series in Statistics. Springer, second edition, 2009.

[Int99] International Electrotechnical Commission. IEC 61966-
2-1:1999 - Multimedia systems and equipment - Colour
measurement and management - Part 2-1: Colour man-
agement - Default RGB colour space - sRGB, 1999.
https://webstore.iec.ch/publication/6169.

[Jer77] A. J. Jerri. The Shannon sampling theorem – Its various exten-
sions and applications: A tutorial review. Proceedings of the IEEE,
65(11):1565–1596, November 1977.

[Joh55] F. John. Numerical solution of the equation of heat conduction
for preceding times. Annali di Matematica Pura ed Applicata,
40(1):129–142, December 1955.

133



APPENDIX A. BIBLIOGRAPHY

[Jon06] R. Jones. Myths and Legends of Britain and Ireland. New Holland,
2006.

[KBPW18] L. Karos, P. Bheed, P. Peter, and J. Weickert. Optimising Data
for Exemplar-Based Inpainting. In J. Blanc-Talon, D. Helbert,
W. Philips, D. C. Popescu, and P. Scheunders, editors, Advanced
Concepts for Intelligent Vision Systems, volume 11182 of Lecture
Notes in Computer Science, pages 547–558, Cham, 2018. Springer.

[KE95] J. Kennedy and R. Eberhart. Particle swarm optimization. In
Proceedings of ICNN’95 - International Conference on Neural Net-
works, volume 4, pages 1942–1948, Perth, WA, Australia, Novem-
ber 1995. IEEE.

[KHD13] U. Kirchmaier, S. Hawe, and K. Diepold. A Swarm Intelligence
inspired algorithm for contour detection in images. Applied Soft
Computing, 13(6):3118–3129, June 2013.

[KJ55] L. S. G. Kovásznay and H. M. Joseph. Image Processing. Proceed-
ings of the IRE, 43(5):560–570, May 1955.

[Kod] Kodak Lossless True Color Image Suite.
http://www.r0k.us/graphics/kodak/. Last visited August 31,
2018.

[KW02] S.M. Kirkup and M. Wadsworth. Solution of inverse diffusion prob-
lems by operator-splitting methods. Applied Mathematical Model-
ling, 26(10):1003–1018, 2002.

[LeV07] R. J. LeVeque. Finite Difference Methods for Ordinary and Partial
Differential Equations. SIAM, Philadelphia, 2007.

[LFB94] M. Lindenbaum, M. Fischer, and A. M. Bruckstein. On Gabor’s
contribution to image enhancement. Pattern Recognition, 27(1):1–
8, January 1994.

[LJ11] M. A. Little and N. S. Jones. Generalized methods and solvers
for noise removal from piecewise constant signals. I. Background
theory. Proceedings of the Royal Society A, 467(2135):3088–3114,
June 2011.

[Llo82] S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions
on Information Theory, 28(2):129–136, 1982.

[LPZ12] F. Li, L. Pi, and T. Zeng. Explicit coherence enhancing filter with
spatial adaptive elliptical kernel. IEEE Signal Processing Letters,
19(9):555–558, September 2012.

[LT99] J. Liu and Y. Y. Tang. Adaptive image segmentation with distrib-
uted behavior-based agents. IEEE Transactions on Pattern Ana-
lysis and Machine Intelligence, 21(6):544–551, June 1999.

134



[Lya92] A. M. Lyapunov. The general problem of the stability of motion.
International Journal of Control, 55(3):531–534, 1992.

[MA09] G. R. Murthy and N. Ahuja. Non-uniform sampling: A novel
approach. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, ICASSP 2009, 19-24
April 2009, Taipei, Taiwan, pages 3229–3232. IEEE, April 2009.

[Mac67] J. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In Proceedings of the Fifth Berkeley Sym-
posium on Mathematical Statistics and Probability, Volume 1: Stat-
istics, pages 281–297, Berkeley, California, 1967. University of Cali-
fornia Press.

[Map18] Maplesoft. Maple 2018.2. Waterloo Maple Inc., November 2018.
https://www.maplesoft.com/.

[MB04] D. Marthaler and A. L. Bertozzi. Tracking Environmental Level
Sets with Autonomous Vehicles. In Recent Developments in Cooper-
ative Control and Optimization, volume 3 of Cooperative Systems,
pages 317–332. Springer, New York, 2004.

[MHW+12] M. Mainberger, S. Hoffmann, J. Weickert, C. H. Tang, D. Jo-
hannsen, F. Neumann, and B. Doerr. Optimising Spatial and Tonal
Data for Homogeneous Diffusion Inpainting. In A. M. Bruckstein,
B. M. ter Haar Romeny, A. M. Bronstein, and M. M. Bronstein,
editors, Scale Space and Variational Methods in Computer Vision,
volume 6667 of Lecture Notes in Computer Science, pages 26–37.
Springer, 2012.

[MWR96] B. A. Mair, D. C. Wilson, and Z. Reti. Deblurring the Discrete
Gaussian Blur. In Proceedings of the Workshop on Mathematical
Methods in Biomedical Image Analysis, pages 273–277, Los Alam-
itos, June 1996. IEEE.

[Nes04] Y. Nesterov. Introductory Lectures On Convex Optimization.
Springer, New York, 2004.

[NM03] S. K. Naik and C. A. Murthy. Hue-Preserving Color Image En-
hancement Without Gamut Problem. IEEE Transactions on Image
Processing, 12(12):1591–1598, December 2003.

[NS14a] M. Nikolova and G. Steidl. Fast Hue and Range Preserving
Histogram Specification: Theory and New Algorithms for Color
Image Enhancement. IEEE Transactions on Image Processing,
23(9):4087–4100, September 2014.

[NS14b] M. Nikolova and G. Steidl. Fast Ordering Algorithm for Exact
Histogram Specification. IEEE Transactions on Image Processing,
23(12):5274–5283, December 2014.

135



APPENDIX A. BIBLIOGRAPHY

[NW99] J. Nocedal and S. J. Wright. Numerical Optimization. Springer,
New York, 1999.

[NWC13] M. Nikolova, Y.-W. Wen, and R. Chan. Exact Histogram Specific-
ation for Digital Images Using a Variational Approach. Journal of
Mathematical Imaging and Vision, 46(3):309–325, July 2013.

[OR91] S. Osher and L. Rudin. Shocks and other nonlinear filtering applied
to image processing. In A. G. Tescher, editor, Applications of Di-
gital Image Processing XIV, volume 1567 of Proceedings of SPIE,
pages 414–431. SPIE Press, Bellingham, 1991.

[OSA16] J. A. Ojo, I. D. Solomon, and S. A. Adeniran. Colour-Preserving
Contrast Enhancement Algorithm for Images. In L. Chen, S. Ka-
poor, and R. Bhatia, editors, Emerging Trends and Advanced Tech-
nologies for Computational Intelligence: Extended and Selected
Results from the Science and Information Conference 2015, pages
207–222, Cham, 2016. Springer.

[PAA+87] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselow-
itz, T. Greer, B. M. ter Haar Romeny, J. B. Zimmerman, and
K. Zuiderveld. Adaptive histogram equalization and its variations.
Computer Vision, Graphics, and Image Processing, 39(3):355–368,
1987.

[PAB+17] F. Pierre, J.-F. Aujol, A. Bugeau, G. Steidl, and V.-T. Ta. Vari-
ational Contrast Enhancement of Gray-Scale and RGB Images.
Journal of Mathematical Imaging and Vision, 57(1):99–116, Janu-
ary 2017.

[Per01] L. Perko. Differential Equations and Dynamical Systems. Number 7
in Texts in Applied Mathematics. Springer, third edition, 2001.

[PM90] P. Perona and J. Malik. Scale space and edge detection using an-
isotropic diffusion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 12:629–639, 1990.

[PM92] W. B. Pennebaker and J. L. Mitchell. JPEG: Still image data
compression standard. Springer Science & Business Media, 1992.

[Pol64] B. T. Polyak. Some methods of speeding up the convergence of
iteration methods. USSR Computational Mathematics and Math-
ematical Physics, 4(5):1–17, 1964.

[Pol87] B. T. Polyak. Introduction to Optimization. Optimization Software,
New York, 1987.

[Pra01] W. K. Pratt. Digital Image Processing. Wiley & Sons, New York,
third edition, 2001.

136



[PWK00] I. Pollak, A. S. Willsky, and H. Krim. Image segmentation and
edge enhancement with stabilized inverse diffusion equations. IEEE
Transactions on Image Processing, 9(2):256–266, February 2000.

[Rey87] C. W. Reynolds. Flocks, Herds and Schools: A Distributed Beha-
vioral Model. ACM SIGGRAPH Computer Graphics, 21(4):25–34,
August 1987.

[Rey07] C. W. Reynolds. Boids (Flocks, Herds, and Schools: a Distributed
Behavioral Model). http://www.red3d.com/cwr/boids/, July 2007.
Last visited April 5, 2020.

[RS09] M. Rubenstein and W. M. Shen. Scalable self-assembly and self-
repair in a collective of robots. In 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1484–1489, St.
Louis, Missouri, USA, October 2009. IEEE.

[SACM96] M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta. A Stand-
ard Default Color Space for the Internet - sRGB (Version 1.10).
https://www.w3.org/Graphics/Color/sRGB, November 1996. Last
visited August 31, 2018.

[SAF+14] G. Simone, G. Audino, I. Farup, F. Albregtsen, and A. Rizzi.
Termite Retinex: a new implementation based on a colony of intel-
ligent agents. Journal of Electronic Imaging, 23(1):013006, 2014.

[Sau98] D. Saupe. Optimal piecewise linear image coding. In S. A. Rajala
and M. Rabbani, editors, Visual Communications and Image Pro-
cessing ’98, volume 3309, pages 747–760. International Society for
Optics and Photonics, SPIE, 1998.

[SBHJ00] G. L. Schussman, M. Bertram, B. Hamann, and K. I. Joy. Hier-
archical Data Representations Based on Planar Voronoi Diagrams.
In Proceedings of the 2000 Joint Eurographics and IEEE TCVG
Symposium on Visualization, VisSym 2000, Amsterdam, The Neth-
erlands, May 29-30, 2000, pages 63–72, 2000.

[SC97] G. Sapiro and V. Caselles. Histogram modification via differential
equations. Journal of Differential Equations, 135:238–268, 1997.

[Sec02] A. Secord. Weighted Voronoi stippling. In A. Finkelstein, ed-
itor, Proceedings of the Second International Symposium on Non-
Photorealistic Animation and Rendering, NPAR 2002, Annecy,
France, June 3-5, 2002, pages 37–43. ACM, 2002.

[SGBW10] C. Schmaltz, P. Gwosdek, A. Bruhn, and J. Weickert. Electrostatic
Halftoning. Computer Graphics Forum, 29(8):2313–2327, Decem-
ber 2010.

137



APPENDIX A. BIBLIOGRAPHY

[Sig15] Signal and Image Processing Institute of the University
of Southern California. The USC-SIPI image database.
http://sipi.usc.edu/database/, 2015. Last visited August 16, 2015.

[SK04] H.-R. Schwarz and N. Köckler. Numerische Mathematik.
Vieweg+Teubner, Wiesbaden, eighth edition, 2004.

[SKB98] A. Steiner, R. Kimmel, and A. M. Bruckstein. Planar Shape En-
hancement and Exaggeration. Graphical Models and Image Pro-
cessing, 60(2):112–124, March 1998.

[SP15] D. Shishika and D. A. Paley. Lyapunov stability analysis of a
mosquito-inspired swarm model. In 2015 54th IEEE Conference
on Decision and Control (CDC), pages 482–488, Osaka, Japan,
December 2015. IEEE.

[Sum05] D. J. T. Sumpter. The principles of collective animal behaviour.
Philosophical Transactions of the Royal Society B: Biological Sci-
ences, 361(1465):5–22, November 2005.

[SZ98] N. A. Sochen and Y. Y. Zeevi. Resolution enhancement of colored
images by inverse diffusion processes. In Proc. 1998 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing,
pages 2853–2856, Seattle, WA, May 1998.

[TC17] Q.-C. Tian and L. D. Cohen. Color Consistency for Photo Collec-
tions Without Gamut Problems. In L. Amsaleg, G. Guðmundsson,
C. Gurrin, B. Jónsson, and S. Satoh, editors, MultiMedia Modeling,
volume 10132 of Lecture Notes in Computer Science, pages 90–101,
Cham, January 2017. Springer.

[Tea20] The GIMP Development Team. GNU Image Manipulation Program
2.10.16. February 2020. https://www.gimp.org/.

[tFd+94] B. M. ter Haar Romeny, L. M. J. Florack, M. de Swart, J. Wilting,
and M. A. Viergever. Deblurring Gaussian blur. In F. L. Book-
stein, J. S. Duncan, N. Lange, and D. C. Wilson, editors, Mathem-
atical Methods in Medical Imaging III, volume 2299 of Proceedings
of SPIE, pages 139–148. SPIE Press, Bellingham, July 1994.

[TOD11] F. Ternat, O. Orellana, and P. Daripa. Two stable methods with
numerical experiments for solving the backward heat equation. Ap-
plied Numerical Mathematics, 61(2):266–284, February 2011.

[TOW19] J. A. Tómasson, P. Ochs, and J. Weickert. AFSI: Adaptive Re-
start for Fast Semi-Iterative Schemes for Convex Optimisation. In
T. Brox, A. Bruhn, and M. Fritz, editors, Pattern Recognition,
volume 11269 of Lecture Notes in Computer Science, pages 669–
681, Cham, 2019. Springer.

138



[TS96] U. Tautenhahn and T. Schröter. On Optimal Regularization Meth-
ods for the Backward Heat Equation. Zeitschrift für Analysis und
ihre Anwendungen, 15(2):475–493, 1996.

[TS05] I. Triandaf and I. B. Schwartz. A collective motion algorithm for
tracking time-dependent boundaries. Mathematics and Computers
in Simulation, 70(4):187–202, December 2005.

[UNE20] UNESCO World Heritage Centre. Giant’s Causeway and Cause-
way Coast. https://whc.unesco.org/en/list/369, 2020. Last visited
March 5, 2020.

[VB17] S. M. Vovk and V. F. Borulko. Determination of amplitude levels
of the piecewise constant signal by using polynomial approxima-
tion. Radioelectronics and Communications Systems, 60(3):113–
122, March 2017.

[VCBJ+95] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet.
Novel Type of Phase Transition in a System of Self-Driven Particles.
Physical Review Letters, 75:1226–1229, August 1995.

[VZ12] T. Vicsek and A. Zafeiris. Collective motion. Physics Reports,
517(3–4):71–140, August 2012.

[Wei94] J. Weickert. Anisotropic diffusion filters for image processing based
quality control. In A. Fasano and M. Primicerio, editors, Proc. Sev-
enth European Conference on Mathematics in Industry, pages 355–
362. Teubner, Stuttgart, 1994.

[Wei98] J. Weickert. Anisotropic Diffusion in Image Processing. Teubner,
Stuttgart, 1998.

[Wei99] J. Weickert. Coherence-Enhancing Diffusion Filtering. Interna-
tional Journal of Computer Vision, 31(2/3):111–127, April 1999.

[Wei03] J. Weickert. Coherence-Enhancing Shock Filters. In B. Michaelis
and G. Krell, editors, Pattern Recognition, volume 2781 of Lecture
Notes in Computer Science, pages 1–8. Springer, Berlin, 2003.

[WGW09] M. Welk, G. Gilboa, and J. Weickert. Theoretical foundations
for discrete forward-and-backward diffusion filtering. In X-C. Tai,
K. Mørken, M. Lysaker, and K.-A. Lie, editors, Scale Space and
Variational Methods in Computer Vision, volume 5567 of Lecture
Notes in Computer Science, pages 527–538. Springer, Berlin, 2009.

[WO07] D. Wei and A. V. Oppenheim. Sampling based on local bandwidth.
In 2007 Conference Record of the Forty-First Asilomar Conference
on Signals, Systems and Computers, pages 1103–1107, November
2007.

139



APPENDIX A. BIBLIOGRAPHY

[WWG18] M. Welk, J. Weickert, and G. Gilboa. A Discrete Theory and
Efficient Algorithms for Forward-and-Backward Diffusion Filter-
ing. Journal of Mathematical Imaging and Vision, 60(9):1399–1426,
2018.

[WWS06] M. Welk, J. Weickert, and G. Steidl. From Tensor-Driven Dif-
fusion to Anisotropic Wavelet Shrinkage. In H. Bischof, A. Le-
onardis, and A. Pinz, editors, Computer Vision – ECCV 2006,
Part I, volume 3951 of Lecture Notes in Computer Science, pages
391–403. Springer, Berlin, 2006.

[Yan10a] X.-S. Yang. Nature Inspired Cooperative Strategies for Optimiz-
ation (NICSO 2010), chapter A New Metaheuristic Bat-Inspired
Algorithm, pages 65–74. Springer, Berlin, Heidelberg, 2010.

[Yan10b] X.-S. Yang. Nature-Inspired Metaheuristic Algorithms, chapter
Firefly Algorithm, pages 81–96. Luniver Press, second edition,
2010.

[YBEM10] C. A. Yates, R. E. Baker, R. Erban, and P. K. Maini. Refining
self-propelled particle models for collective behaviour. Canadian
Applied Maths Quarterly, 18(3):299–350, 2010.

[ZCR13] M. Zambrano-Bigiarini, M. Clerc, and R. Rojas-Mujica. Standard
Particle Swarm Optimisation 2011 at CEC-2013: A baseline for
future PSO improvements. In Proceedings of the IEEE Congress
on Evolutionary Computation, CEC 2013, Cancun, Mexico, June
20-23, 2013, pages 2337–2344, Cancun, Mexico, June 2013. IEEE.

[ZM11] Z. Zhao and Z. Meng. A modified Tikhonov regularization method
for a backward heat equation. Inverse Problems in Science and
Engineering, 19(8):1175–1182, 2011.

[Zui94] K. Zuiderveld. Contrast Limited Adaptive Histogram Equaliza-
tion. In P. S. Heckbert, editor, Graphics Gems IV, pages 474–485.
Academic Press Professional, Inc., San Diego, CA, USA, 1994.

140



Appendix B

Own Publications

Journal Papers

1. L. Bergerhoff, M. Cárdenas, J. Weickert, and M. Welk. Stable Backward
Diffusion Models that Minimise Convex Energies. Journal of Mathematical
Imaging and Vision, 62(6):941–960, July 2020. Springer.

Conference Papers

2. L. Bergerhoff and J. Weickert. Modelling Image Processing with Discrete
First-Order Swarms. In N. Pillay, P. A. Engelbrecht, A. Abraham, C. M. du
Plessis, V. Snášel, and K. A. Muda, editors, Advances in Nature and Biolo-
gically Inspired Computing, volume 419 of Advances in Intelligent Systems
and Computing, pages 261–270, Cham, 2016. Springer.

3. L. Bergerhoff, M. Cárdenas, J. Weickert, and M. Welk. Modelling Stable
Backward Diffusion and Repulsive Swarms with Convex Energies and Range
Constraints. In M. Pelillo and E. Hancock, editors, Energy Minimization
Methods in Computer Vision and Pattern Recognition, volume 10746 of
Lecture Notes in Computer Science, pages 409–423, Cham, March 2018.
Springer.

4. L. Bergerhoff, J. Weickert, and Y. Dar. Algorithms for Piecewise Constant
Signal Approximations. 2019 27th European Signal Processing Conference
(EUSIPCO 2019), 2019. IEEE.

Technical Reports

5. L. Bergerhoff, J. Weickert, and Y. Dar. Algorithms for Piecewise Constant
Signal Approximations. arXiv:1903.01320v3 [eess.SP], June 2019.

6. L. Bergerhoff, M. Cárdenas, J. Weickert, and M. Welk. Stable Backward
Diffusion Models that Minimise Convex Energies.
arXiv:1903.03491v2 [math.NA], June 2020.

141



APPENDIX B. OWN PUBLICATIONS

142



Appendix C

Glossary

AFSI . . . . . . adaptive fast semi-iterative

BTLS. . . . . . backtracking line search

DB . . . . . . . Dar–Bruckstein method

GD . . . . . . . gradient descent
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squared function f in Chapter 5

g1, g2 . . . . . . real-valued functions defined in (5.46) and (5.57)
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G . . . . . . . . integral of the function g, defined in (5.5)

G1, G2 . . . . . . integrals of the functions g1 and g2, defined in (5.48) and
(5.59)

G . . . . . . . . matrix containing samples of a two-dimensional signal

G2 . . . . . . . sampled two-dimensional signal data, defined in (2.8)

h . . . . . . . . grid size, sampling distance

h[f ] . . . . . . . histogram of the discrete grey scale image f

h[f ](g) . . . . . frequency of the grey value g in the discrete grey scale
image f

hi . . . . . . . . width of the i-th interval

Hk . . . . . . . Hankel matrix

Hi(g
k
i , |gki − xki |) . random point from the hypersphere around gki with radius

|gki −xki |
i . . . . . . . . index variable

j . . . . . . . . index variable

J i1, J
i
2, J

i
3 . . . . . sets of natural numbers

k . . . . . . . . time level, iteration number, or index

k1, k2, k3, k4 . . . kernel functions, defined in (3.11)-(3.14)

ka . . . . . . . . kernel function steering attractive behaviour

kr . . . . . . . . kernel function steering repulsive behaviour

Ki . . . . . . . i-th Gershgorin disc, defined in (2.10)

lki . . . . . . . . position between the previous best position among the
neighbours of particle i and its current position in itera-
tion k, defined in (2.33)

l
k

i . . . . . . . . previous best position among the neighbours of particle i
in iteration k

` . . . . . . . . index variable

`i . . . . . . . . left boundary position, defined in (5.36)

L . . . . . . . . Lipschitz constant
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