in Proc. 47th Asilomar Conf. Signals, Systems, Computers, Pacific Grove, CA, Nov. 2013
Copyright 2013 IEEE

Cooperative Simultaneous Localization
and Synchronization: A Distributed
Hybrid Message Passing Algorithm

Bernhard Etzlinger, Florian Meyef, Andreas Springér Franz Hlawatsch and Henk Wymeerséh

*Johannes Kepler University, Linz, Austria, {b.etzlinger, a.springer}@nthfs.jku.at
fVienna University of Technology, Vienna, Austria, {florian.meyer, franz.hlawatsch}@tuwien.ac.at
fChalmers University of Technology, Gothenburg, Sweden, henkw@chalmers.se

Abstract—Localization and synchronization in wireless net- is hybrid in that it uses both sample-based and parametric
works are strongly related when they are based on internode time message representations. The algorithm has low requirements
measurements. We leverage this relation by presenting a mes-eqading the measurement and communication hardware, and

sage passing algorithm forcooperative simultaneous localization . .
and synchronization (COSLAS). The proposed algorithm jointly the topology constraints are equivalent to those of pure CSL

estimates the locations and clock parameters of the network algorithms. In parallel to this work, we also propose a fully
nodes in a fully decentralized manner while requiring time sample-based CoSLAS algorithm in [12]. The algorithm in

measurements and communications only between neighboring [12] has higher communication requirements while being
nodes and making only minimal assumptions about the network significantly less complex.

topology. Low computation and communication requirements . - ) -
are achieved by a hybrid use of sample-based and Gaussian This paper is organized as follows. The system and statisti-

belief propagation. Our simulations demonstrate performance Cal models are described in Sections Il and l1I, respectively. In

advantages of the proposed CoSLAS algorithm over separate Section |V, the CoSLAS factor graph and the corresponding

state-of-the-art localization and synchronization algorithms. message passing algorithm are presented. Finally, simulation
Index Terms—Network synchronization, localization, dis- results are discussed in Section V.

tributed estimation, belief propagation, particle methods, Gaus-

sian message passing, factor graph, CoSLAS. Il. SYSTEM MODEL

We consider a wireless network &f static nodes, where
|. INTRODUCTION anodei € T = {1,...,N} belongs either to a sett of
Locating nodes in large-scale wireless networks is imposynchronous master nodes (MNs) with known locattoos
tant in many applications [1]. Cooperative self-localizatiofy a setA of asynchronous agent nodes (ANs) with unknown
(CSL) algorithms exhibit better coverage and accuracy th@itations, i.e.Z = MU.A. The two-dimensional (2D) location
traditional noncooperative algorithms [1]-[3]. CSL relies ogf node: is x; = 2 yi]T and its local clock time is
distance measurements between nodes, which are often ex-
tracted from timing measurements. The latter require highly cit) = ait + Bi - @)

accurate ;ynchronization of nodes.[l] or knowledge of clogere, o, and B; are, respectively, the local clock skew and
imperfections [4]. The strong relation between distance apflase offset with respect to the true timeBoth are referred
timing estimates suggests that synergies may be leveragegd¥s the local clock parameteds 2 [a; 3]
performing Iocal_iz_ation and synchronizat.ion_jointly. EXisting The abilities for information exchange are represented by
approaches to joint CSL and synchronization [5]-[9] plagge communication sef C Z x Z. If two nodesi, j € Z are
significant constraints on the network topology. Several statgs|e to communicate thefn, j) €C and(j, i) € C. Without loss
of-the-art algorithms for pure CSL [2], [3] and pure synchrogs generality, communication between MNs is not considered,
nization [10], [11] run a message passing scheme on a factar (i,7) ¢ C if i,j € M. For eachi € A, we define a
graph, which avoids these constraints. _ neighborhood sef; C Z\{i} that consists of allj € Z that

In this paper, we present a factor graph formulation @ommunicate withi, i.e. j € 7; if and only if (i, j) € C. We
cooperative smultaneo_us Iocallzatlon and synchronization ,gie that unambiguous localization in 2D requitds| > 3
(CoSLAS) that consistently combines the separate factgf- 4 and |M| > 3. An example of a network withV =7
graphs for CSL and synchronization. We also propose a fuliyges and its connectivity graph are shown in Fig. 1.
dlstrlputed, cooperative pellef propagation message passingji the communication links, node paifs ;) € C exchange
algorithm that ngntly estimates all sensor Iocatlpns anc_J ﬂ}ﬁickets to measure their local clock paramefiere; and their
frequency and time offsets of all local clocks. This algo”thrﬂistancedij 2 ||x; —x;]|. More specifically, node transmits

This work was supported in part by the Linz Center of Mechatronics (LCMg(ij > 1 packets to nodg, and node;j transmitSKji > 1

in the framework of the Austrian COMET-K2 programme, by the Austrian
Science Fund (FWF) under Grant S10603 (Statistical Inference), and by théThe generalization of our method to the case where the set of spatial MNs
European Research Council under Grant 258418 (COOPNET). differs from the set of temporal MNs is straightforward.
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Fig. 1. Connectivity (communication) graph of a wireless raskwith | M| = a(t®y)  altie) T :
3 MNs (shaded) andl4d| =4 ANs. .
Fig. 2. Local clock functions;(t) andc;(t), local time measurements (time
packets to node. The kth “i — 5" packet (wherek € {1’ ..., stamps), and corresponding packet transmissions for noged ;.
K,;}) leaves node at time tﬁf}, and arrives at nodg at
measured time p(cij|6;,8;,dij)
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Here,ég“) is the delay expressed in true time, is the speed

of light, and u§f> ~ N(0,02) is measurement noise that iswhere G;; = (2770¢?03)7K""'/2(27rafag)7K"i/2, Yisj
i i )2 1 Kij T

modeled as Gaussian and independent acipgs and k. [¢§_Zj(gi,9j7dij) A J)(Oi,0j7dij)] and p;_,;

)]

. T . . i—j
The transmit and receive times are recorded in local time, (1) (Kj)
resulting in the time stamps (+!*)) and ¢;(£%)). A similar .ﬁbﬂ(‘ﬁi(gj’o"’d“) s (0,03, dig)] - In what follows,

. - . ig,0/ = AN it will be convenient to consider the transformed clock pa-
discussion applies to the transmission of ik packet from rametersd; — [\ v,]T with A 2 1/a; and v 2 Bi/au
node j to node (V\Ez)erek < {1(’k')"’Kji}); the resulting 5 discussied in 1[11]1 approxirz‘natingzaz2 and 022-02 be 012
- . ! U Jj-u u
time stamps are;(t;; o) and ci(tj; ;). The clock functions 654 1o an accurate Gaussian representation in terms of the
ci(t) and¢;(t) and time stamps are visualized in Fig. 2. A on<formed clock parametets andd;:
communication protocol ensures that these time stamps are ’
available at both nodesandj. The aggregated measurement 9 |Aij9; + By;0; + dijaql?

: o : s 1 1o plegldi 95, diy) oc expl - 3 ;
of nodesi and j is thus given byc;; = [c;,; c; ;] 202
with ey £ [e,(th) - e (t57)] and e, 2 1)) witn ©
ci(t;f{i))] . For later use, we also define the (recorded, not A B {—GHJ- 1. } B. 2 { Cisj —1K.}
) : ~ 1 Kij T i = 1] , i =2 N k¥ ,
measured) time stamp vectdis,; £ [ci(t( IS i(tgj’o ))] J cji —lg,, N ETE 7

45,0
=~ Kii)\1T
ande;; 2 [e;(t5;) - ¢ (t54")] - s 1
Using (12 and (2), the following relation between the tim@ndaas = —5 1x, 1k, Here, 1 denotes the all-ones vector

(k) k) - of dimensionk.
stampsei(tj) ande; (¢, ) is obtained: Finally, since the measurements; and c,;; are condi-

RN oK) g g g (k) . tionally independent unless, j) = (¢, j), the (approximate)
ci(ti)) = 0, 0.(0:,0;,di;) + u; o, 3 . LT .
i(t0) = Vis; (60,05, dig) + iy 3) global likelihood function is obtained as

> >

’
T

with
O 9,d) = [ plesld:.9;,dyy)- 6)
k cl(ti',o) Bi d;; p(C‘ ) P(Cij|Vi, Uj, Qi
0;1);(0:,0;,di5) £ ]ai aj + B + v; aj. (4) (i)ec

Here,c is the total measurement vector (obtained by stacking
all local measurements;;, (i,7) € C), d is the vector of all
distancesi;;, andd is the vector of alkd;, i € Z.

A similar relation betweern; (t(ffy)o) and ci(tg.'iﬂ) is obtained
by exchanging andj in (3), (4).

IIl. STATISTICAL MODEL B. Prior Distribution

The goal of COSLAS is to simultaneously estimate the gecayse the MNs have perfect knowledge of their clock
locationsx; and clock parameter8; of all ANs i c .4 based parameters, we use the pript9;) = 5(9; — 9;), i € M
on the available time stamps between neighboring nodggerey; denotes the true transformed clock parameter of MN
Bayesian estimation relies on the posterior distributibthe , o4 5(-) denotes the Dirac delta function. For the ANs, we
x; and@;, which in turn involves the likelihood function and ,se the ‘Gaussian prigr(9;) = N (ppi, Sp), i € A witr;
the prior distribution. It will be convenient to considereth , [ 0] (note thatd; — [1 O]Tp7V\’/ouFl)a ,corresr;ond o

7/L -

distancesl;; as further parameters, which are however relat%grf 1 and 8; =0) and X, = diag{c2 02 }. As explained

to the corresponding node locationsds = |[x; —x;||. in [11], we seto? = o2, whereo?, is typically given by

o ) the oscillator speéificatic;n, and we E:hoos% large (resulting

A. Likelihood Function in an uninformative prior for; = B:/a;) since no prior
Because of (3) and the statistical properties ofﬁﬁ@, the information on the clock phasg; is available. Because the

local likelihood function of nodes and j, with (i,j)€C,is  MNs have also perfect knowledge of their locations, we use



the location priop(x;) = (x; —X;), i € M, wherex; denotes

the true location of MNi. For the ANs,i € A, we have no i @ rrrrrrrrr RIS : @ J
prior information on the location. Therefore, we use a umifo to node;  to node;
prior p(x;) that covers the whole localization area. [} [}
Assuming that all clocks and locations are independent, and
recalling thatd;; = ||x; —x;||, we obtain the joint prior of Paid @ @ Pz
x = [x]---x§]T, 9, andd as
p(x,9.d) = p(d|x) p(x) p(9) poi](9:) , (9)
= H o(xij, dij) HP(Xi/)P(ﬁi')a ) @) (b) (©
(.1)ec rer Fig. 3. Transformation of a physical network (connectivitagh) into a factor
with ¢ (x5, dij) = 8(dij — [[xi — ;). graph: (2) MN, (b) connection, (c) AN.
C. Posterior Distribution and Estimators My, (15) H Moosr (74) (10)
Using Bayes' rule as well as (6) and (7), we obtain the joint veEV(E)\{f}

2o b d: _ _ _
posterior distribution ok, 9, and whereV(v) denotes the set of neighboring vertices of vertex

p(x,9,d|c) v. Conversely, a message from a factor verfeto a variable
 plc|d, d) p(x, 9, d) vertexr; is calculated as
= 1 o(xij dij) pleil®:, 9, dig) [T p(xi)p(®ir). (8) Mg (ri) o /f(r) [T meostrd~ir}, Q1)
(i,5)€C ieT r; €V(\{ri}
The minimum mean-square error (MMSE) estimateg,0dnd where the functionf(r) corresponds to factor vertek and
9, are given by [13] r is the vector of all involved variables (including). An

. . approximation of the marginal posterior of (“belief”) is then
Xi Z/Xip(xi\c) dx;, 9 :/ﬁip(ﬁﬂc) dd;. (9 obtained as

Here, p(x;|c) and p(¥;|c) are obtained from the joint
posterior p(x, Y, d|c) by marginalization, i.e.,p(x;|c) =
[ p(x,9,d|c) d~{x;} andp(3;|c) = [ p(x,,d|c) d~{V;}, Hereafter, we will use the following message naming con-

b(ri) o< ] mpn(ri) . 12)

Fev(r:)

where~ {y} denotes all variables but vention (cf. Fig. 4). Messages that are available at nioaled
also involve nodej will be denoted aSnI(f’i)j or ml(f‘j)i, where
IV. DISTRIBUTED PARAMETER ESTIMATION [ is an identification numbet¥,j indicates messages calculated

at nodei, ji indicates messages provided by ngde node
Since the MMSE estimators in (9) require a marginalizg-yia transmission of a packet, ands the iteration index.

tion, iterative belief propagation (BP) on a factor grap#][1
expressing the factorization structure of the joint pastein B. Message Representation
(8) can be used for an efficient approximate computation:.
In our case, this factor graph can be easily obtained fromWe propose a hybrid parametric/nonparametric representa-
the connectivity graph (cf. Fig. 1) by the transformatioion of the various messages. Because the likelihood foncti
shown in Fig. 3. An example of a basic building blockn (5) is Gaussian, messageéqi)j linked to the function vertex
of the resulting CoSLAS factor graph, corresponding to the; (see Fig. 4) can be represented by a Gaussian distribution
connection between nodésand j with (i, j) € C, is shown [11], [14], i.e., mgq}] = N(ug’ﬂ)wzl(?j) for I € {2,5,6,8}.
in Fig. 4. We note that Fig. 3 and Fig. 4 use the shorthang$,s is a parametric representation in terms of the ”ﬁ%ﬁ
Gij = ¢(Xij,dij), pij = p(Cimsj|Vi,95,diz), D2 = P(X4), "

andpy,; = p(v;); furthermore, variable and factor vertices are @ @
depicted by circles and rectangles, respectively. O ”g . my
X K X
m? <q>LJ (a) @
A. Message Passing 7.4 ms,iaf ‘mw
At each vertex of the factor graph, messages are calculated GD
according to the BP rules (sum-product algorithm) [14] and
passed along the edges of the factor graph to neighboring mg®. msfﬁj? mé‘,’fj @
vertices. In some cases, this requires packet transmsssion @ > ' i | 2.9 @
(these come in addition to the packet transmissions used to o= L] ’

measure the time stamps). More specifically, a message from

a variable vertex;—which may correspond to a vector, €.9.rig. 4. Example of a building block of the CoSLAS factor gramur-
x;—t0 a factor vertexf is calculated as responding to the connection between nodlesd j with (¢, 5) €C.



and the covarianc@l(% (or varianceo,?gj), for | = 6). For representingmé‘fgj are computed as the sample mean and

messagesnl(?i)j. linked to the function vertex);;, because of sample variance, respectively {)I;f[f,;f)}]kvil.
the nonlinear locations-distance relation expressee;pywe 5) Marginal belief b(? (x;); messages m(7q)_ and mgqﬂ):
use a nonparametric representation [2] by a seé¥pkamples . . (q,k’§] N, "
A At AN i€ A, equally weighted sampless,”;”” } . represent-

(particles) s\ and weightsw%", i.e., m(? = {s?¥ . . (@) ok -

(k)N Lij Lij v = LG Lis 7 ing the incoming messagez;fij from eachj € 7; providing
w7}, 2, for 1 e {1,3,4,7}. The weights are normalized,informative location input are computed as [2]
: N, b
ie., ZkZI’wl(?ij ) 1. o B (eh (e [sin(e@R)

Using these representations in (10)—(12) leads to paramete Sri; = S1j; T 5345 { (k) ] .
updates as described in [11] and sample updates as described 7 Leos(pt?™)
in [2]. The interface between parametric and sample represeiere, the(¢*) are drawn from a uniform distribution on

tations is given by the variable vertek;. As the incoming the interval[0, 2r). To compute sample%xgq"")}:}; repre-

messagené‘fzj is Gaussian, it can be directly sampled, and th&enting the marginal belief(? (x;) (cf. (12)) and samples

parameters of the outgoing messagg) are then calculated {s(q“’k)}fj;l representing the message(q“) (cf. (210)),

4] 1,ij 1,4
as the sample mean and sample variance. several messages represented by sample sets have to be
multiplied. This is done by means of [2, Alg. 2], using only
C. The CoSLAS Algorithm informative messages. If the messagiﬁg U can be computed

Applving the message bassing rules with aporo riaﬁeom informative messages of at least one neighfjasther
PPYINg o P J ppToP ie.j’ e Ti\{j}, m{**V) is marked as informative.

scheduling leads to the CoSLAS message passing algoritmﬂnj* 1,ij

presented below. The following steps are performed by every6) Marginal belief b(? (¥9;); messages mé% and mg?;;-l)i

AN, whereas MNs only perform the first two steps. Step 1 i&t AN i € A, the incoming messagmé‘?gj from each in-
the initialization, and steps 2—6 constitute one messag&m® formative neighboy € 7; is computed using standard Gaussian
iteration (with iteration index). All nodes operate in parallel. expressions [11]. The marginal beligf) (+9;) and the updated

Approximations of the estimates (9) can be computed at aﬂMtgomg message,glnggl), jeT; are Computed according to

iteration ¢ if needed’: If a message is not u?dalt)ed during ap12) and (10), respectively. This requires the multipliatof
P

iteration, it remains unchanged, |ml(ql)7 =My - Gaussian messages and a Gaussian prior, which can again be
1) Initialization (¢ = 12: ForieZ andj € T;N A, the done using standard Gaussian expressions [11].

messagesmfi)j and m(;ij are set equal to the respective

location and clock priors. The messagaéli)j are annotated V. NUMERICAL ANALYSIS

with an “informative” flag, which is true for MNsi € M) and

false for ANs (€ A). ANs sety'). anda;;) according to

geometrical considerations regarding the distances.

We evaluated the performance of the proposed CoSLAS
algorithm on a network consisting of three MNgU( =

o ) . {1,2,3}) and four ANs @ = {4,5,6,7}). The connectivity
2) Message transmission between nodes NodeieT con- graph of the network is as shown in Fig. 1. The node

veys to its neighborg € 7; N A the messagemg‘fgj and, if |5cations arex; = [&m n;m|T, where & is the ith ele-
informative,m\”); via packet transmissions. More specificallyment of {0, 0,65, 10,35, 50,25} and, is the ith element of
node: transmits to each nodge 7, N A, 2 + 3 real values {0, 40,40,15,15,20,30}. The communication range & =
(mean and covariance matrix) correspondingif); and2N,  30m. The number of time stamp transmissions/measurements
real values V, equally weighted particles) corresponding tgs K;; = Kj; = 50, and the measurement noise variance
mng)] is 02 = 107 s%. The clock skewsy; were drawn from a

3) Messages from p;; to ¢;;: For all neighborsj € 7, Gaussian distribution with mednand standard deviatior)—*

that provide an informativeng‘f]).i, AN ie A computeSrné‘fgj (= 100 ppm), and the phase offsets were drawn from a

in Gaussian form (parameteys’); and =(").) andm’). in un(i;)orm distribution on t?f) interva)—1s, 15]2-( 1)The messages
sample form (samples/weigh{$(3‘f;f),wg?;f)}kN;). mg';; were initialized topg ;; = 2R/3 and oy, = R?/18.

e - : . _ In Fig. 5, we compare the performance of the proposed
hé}) hMges ‘ZOT;?” o ],j”f' For 'aII ne|ghborSg €7 for hybrid BP algorithm for CoSLAS (briefly referred to as
W((I;(): My andmyj; are informative, ANi € A COMPUteS «co51 AS-HBP”) with the performance of the purely sample-
in sample-based form: from equally weighted samplasased BP algorithm for CoSLAS proposed in [12] (“COSLAS-

My ;s
sﬁfg and sg‘g’;) representingmg‘fzj and mgqjl respectively, PBP”), of the BP-based synchronization algorithm desctibe

equally weighted samples representin{f/); are calculated as In [11] (*Sync-BP?), and of a CSL algorithm that first es-
Slak) Hs(q,k)_s(q,k)ll Subsequentl tr71e mean and varianct'mates the clock parameters by running four iterations of
dig P Py q Y. the algorithm [11] and then performs hybrid BP-based CSL
2More specifically, a location estimate can be calculated ftbm sam- using thesg clock paramet.ér(SSync-Loc—BE”). Th,ese results
ples {x(**)}N: "representing the marginal beligf®)(x;) as %9 = Were obtained by averaging over 500 simulation runs (and

1\} ZkN_Sl xgq’k), and estimates of the clock parameters can be obtained, _ ) .
N N (@ This CSL algorithm corresponds to [2] when distance measurtsrare

from the meary;”" of the Gaussian distribution representing the margin@ptained via time stamp measurements rather than using pgriautivn

belief b() (19;) asdl(.(” = l/pgqi) and BAEQ) = u;"g /ugqg. clocks. Our setting corresponds to a measurement varian@®om? in [2].
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Fig. 5. Average RMSE of (a) clock skew, (b) clock phase, arjddcation versus message passing iteration ingex

measurement noise realizations). The number of samplgs, and belief propagation is employed to leverage the strong
was 1000 for CoSLAS-HBP and 10000 for CoSLAS-PBRmnterdependency of localization and synchronization. Uike
(Note that, despite using ten times more samples, CoSLA&-Gaussian and sample-based message representatiolts resu
PBP [12] is significantly less computationally complex thaim reduced computation and communication requirements. Nu
CoSLAS-HBP.) The average root-mean-square-errors (RNkherical simulations show that the proposed CoSLAS algarith
SEs) of clock skew estimation, clock phase estimation, andtperforms separate localization and synchronizativergi
location estimation are shown in Fig. 5(a), (b), and (c), réhe same total number of time measurements.

spectively. Looking at the clock RMSEs in Fig. 5(a) and (b), i
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