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Abstract—Localization and synchronization in wireless net-
works are strongly related when they are based on internode time
measurements. We leverage this relation by presenting a mes-
sage passing algorithm forcooperative simultaneous localization
and synchronization (CoSLAS). The proposed algorithm jointly
estimates the locations and clock parameters of the network
nodes in a fully decentralized manner while requiring time
measurements and communications only between neighboring
nodes and making only minimal assumptions about the network
topology. Low computation and communication requirements
are achieved by a hybrid use of sample-based and Gaussian
belief propagation. Our simulations demonstrate performance
advantages of the proposed CoSLAS algorithm over separate
state-of-the-art localization and synchronization algorithms.

Index Terms—Network synchronization, localization, dis-
tributed estimation, belief propagation, particle methods, Gaus-
sian message passing, factor graph, CoSLAS.

I. I NTRODUCTION

Locating nodes in large-scale wireless networks is impor-
tant in many applications [1]. Cooperative self-localization
(CSL) algorithms exhibit better coverage and accuracy than
traditional noncooperative algorithms [1]–[3]. CSL relies on
distance measurements between nodes, which are often ex-
tracted from timing measurements. The latter require highly
accurate synchronization of nodes [1] or knowledge of clock
imperfections [4]. The strong relation between distance and
timing estimates suggests that synergies may be leveraged by
performing localization and synchronization jointly. Existing
approaches to joint CSL and synchronization [5]–[9] place
significant constraints on the network topology. Several state-
of-the-art algorithms for pure CSL [2], [3] and pure synchro-
nization [10], [11] run a message passing scheme on a factor
graph, which avoids these constraints.

In this paper, we present a factor graph formulation of
cooperative simultaneous localization and synchronization
(CoSLAS) that consistently combines the separate factor
graphs for CSL and synchronization. We also propose a fully
distributed, cooperative belief propagation message passing
algorithm that jointly estimates all sensor locations and the
frequency and time offsets of all local clocks. This algorithm
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is hybrid in that it uses both sample-based and parametric
message representations. The algorithm has low requirements
regarding the measurement and communication hardware, and
the topology constraints are equivalent to those of pure CSL
algorithms. In parallel to this work, we also propose a fully
sample-based CoSLAS algorithm in [12]. The algorithm in
[12] has higher communication requirements while being
significantly less complex.

This paper is organized as follows. The system and statisti-
cal models are described in Sections II and III, respectively. In
Section IV, the CoSLAS factor graph and the corresponding
message passing algorithm are presented. Finally, simulation
results are discussed in Section V.

II. SYSTEM MODEL

We consider a wireless network ofN static nodes, where
a nodei ∈ I , {1, . . . , N} belongs either to a setM of
synchronous master nodes (MNs) with known locations1 or
to a setA of asynchronous agent nodes (ANs) with unknown
locations, i.e.,I = M∪A. The two-dimensional (2D) location
of nodei is xi = [xi yi]

T and its local clock time is

ci(t) = αit+ βi . (1)

Here, αi and βi are, respectively, the local clock skew and
phase offset with respect to the true timet. Both are referred
to as the local clock parametersθi , [αi βi]

T.
The abilities for information exchange are represented by

the communication setC ⊆ I× I. If two nodesi, j ∈ I are
able to communicate, then(i, j)∈C and(j, i)∈C. Without loss
of generality, communication between MNs is not considered,
i.e., (i, j) /∈ C if i, j ∈ M. For eachi ∈ A, we define a
neighborhood setTi ⊆ I \{i} that consists of allj ∈ I that
communicate withi, i.e. j ∈ Ti if and only if (i, j) ∈ C. We
note that unambiguous localization in 2D requires|Ti| ≥ 3
∀i ∈ A and |M| ≥ 3. An example of a network withN = 7
nodes and its connectivity graph are shown in Fig. 1.

Via the communication links, node pairs(i, j)∈ C exchange
packets to measure their local clock parametersθi, θj and their
distancedij , ‖xi−xj‖. More specifically, nodei transmits
Kij ≥ 1 packets to nodej, and nodej transmitsKji ≥ 1

1The generalization of our method to the case where the set of spatial MNs
differs from the set of temporal MNs is straightforward.
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Fig. 1. Connectivity (communication) graph of a wireless network with |M|=
3 MNs (shaded) and|A|=4 ANs.

packets to nodei. Thekth “i→j” packet (wherek ∈ {1, . . . ,

Kij}) leaves nodei at time t(k)ij,0 and arrives at nodej at
measured time

t
(k)
ij,1 = t

(k)
ij,0 + δ

(k)
ij , with δ

(k)
ij =

dij
v0

+ u
(k)
ij . (2)

Here,δ(k)ij is the delay expressed in true time,v0 is the speed

of light, and u(k)ij ∼ N (0, σ2
u) is measurement noise that is

modeled as Gaussian and independent acrossi, j, and k.
The transmit and receive times are recorded in local time,
resulting in the time stampsci(t

(k)
ij,0) and cj(t

(k)
ij,1). A similar

discussion applies to the transmission of thekth packet from
node j to node i (where k ∈ {1, . . . ,Kji}); the resulting
time stamps arecj(t

(k)
ji,0) and ci(t

(k)
ji,1). The clock functions

ci(t) and cj(t) and time stamps are visualized in Fig. 2. A
communication protocol ensures that these time stamps are
available at both nodesi andj. The aggregated measurement
of nodes i and j is thus given bycij , [cT

i→j c
T
j→i]

T,

with ci→j ,
[

cj(t
(1)
ij,1) · · · cj(t

(Kij)
ij,1 )

]T
and cj→i ,

[

ci(t
(1)
ji,1)

· · · ci(t
(Kji)
ji,1 )

]T
. For later use, we also define the (recorded, not

measured) time stamp vectorsc̃i→j ,
[

ci(t
(1)
ij,0) · · · ci(t

(Kij)
ij,0 )

]T

and c̃j→i ,
[

cj(t
(1)
ji,0) · · · cj(t

(Kji)
ji,0 )

]T
.

Using (1) and (2), the following relation between the time
stampsci(t

(k)
ij,0) andcj(t

(k)
ij,1) is obtained:

cj(t
(k)
ij,1) = ψ

(k)
i→j(θi,θj , dij) + u

(k)
ij αj , (3)

with

ψ
(k)
i→j(θi,θj , dij) ,

ci(t
(k)
ij,0)−βi

αi
αj + βj +

dij
v0
αj . (4)

A similar relation betweencj(t
(k)
ji,0) and ci(t

(k)
ji,1) is obtained

by exchangingi and j in (3), (4).

III. STATISTICAL MODEL

The goal of CoSLAS is to simultaneously estimate the
locationsxi and clock parametersθi of all ANs i∈A based
on the available time stamps between neighboring nodes.
Bayesian estimation relies on the posterior distribution of the
xi andθi, which in turn involves the likelihood function and
the prior distribution. It will be convenient to consider the
distancesdij as further parameters, which are however related
to the corresponding node locations asdij = ‖xi−xj‖.

A. Likelihood Function

Because of (3) and the statistical properties of theu
(k)
ij , the

local likelihood function of nodesi and j, with (i, j)∈C, is

j

i

t

ci(t
(k)
ij,0)

ci(t
(k+1)
ij,0 )

ci(t
(k+2)
ij,0 )

cj(t
(k)
ij,1)

cj(t
(k+1)
ij,1 )

cj(t
(k+2)
ij,1 )

cj(t
(l)
ji,0)

cj(t
(l+1)
ji,0 )

ci(t
(l)
ji,1)
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ji,1 )

· · ·

· · ·

c(t) cj(t)

ci(t)

Fig. 2. Local clock functionsci(t) andcj(t), local time measurements (time
stamps), and corresponding packet transmissions for nodesi andj.

p(cij |θi,θj , dij)

= Gij exp

(

−
‖ci→j −ψi→j‖

2

2α2
jσ

2
u

−
‖cj→i−ψj→i‖

2

2α2
iσ

2
u

)

,

where Gij , (2πα2
jσ

2
u)

−Kij/2(2πα2
iσ

2
u)

−Kji/2, ψi→j ,
[

ψ
(1)
i→j(θi,θj , dij) · · · ψ

(Kij)
i→j (θi,θj , dij)

]T
, and ψj→i ,

[

ψ
(1)
j→i(θj ,θi, dij) · · · ψ

(Kji)
j→i (θj ,θi, dij)

]T
. In what follows,

it will be convenient to consider the transformed clock pa-
rametersϑi = [λi νi]

T with λi , 1/αi and νi , βi/αi.
As discussed in [11], approximatingα2

iσ
2
u and α2

jσ
2
u by σ2

u

leads to an accurate Gaussian representation in terms of the
transformed clock parametersϑi andϑj :

p(cij |ϑi,ϑj , dij) ∝ exp

(

−
‖Aijϑi +Bijϑj + dijad‖2

2σ2
u

)

,

(5)
with

Aij ,

[

−c̃i→j 1Kij

cj→i −1Kji

]

, Bij ,

[

ci→j −1Kij

−c̃j→i 1Kji

]

,

andad , − 1
v0

1Kij+Kji
. Here,1K denotes the all-ones vector

of dimensionK.
Finally, since the measurementscij and ci′j′ are condi-

tionally independent unless(i, j) = (i′, j′), the (approximate)
global likelihood function is obtained as

p(c|ϑ,d) =
∏

(i,j)∈C

p(cij |ϑi,ϑj , dij) . (6)

Here,c is the total measurement vector (obtained by stacking
all local measurementscij , (i, j) ∈ C), d is the vector of all
distancesdij , andϑ is the vector of allϑi, i ∈ I.

B. Prior Distribution

Because the MNs have perfect knowledge of their clock
parameters, we use the priorp(ϑi) = δ(ϑi − ϑ̃i), i ∈ M,
whereϑ̃i denotes the true transformed clock parameter of MN
i and δ(·) denotes the Dirac delta function. For the ANs, we
use the Gaussian priorp(ϑi) = N (µp,i,Σp,i), i ∈ A, with
µp,i = [1 0]T (note thatϑi = [1 0]T would correspond to
αi =1 andβi =0) andΣp,i = diag

{

σ2
λi
, σ2

νi

}

. As explained
in [11], we setσ2

λi
= σ2

αi
, whereσ2

αi
is typically given by

the oscillator specification, and we chooseσ2
νi

large (resulting
in an uninformative prior forνi = βi/αi) since no prior
information on the clock phaseβi is available. Because the
MNs have also perfect knowledge of their locations, we use



the location priorp(xi) = δ(xi−x̃i), i∈M, wherex̃i denotes
the true location of MNi. For the ANs,i ∈ A, we have no
prior information on the location. Therefore, we use a uniform
prior p(xi) that covers the whole localization area.

Assuming that all clocks and locations are independent, and
recalling thatdij = ‖xi−xj‖, we obtain the joint prior of
x , [xT

1 · · · x
T
N ]T, ϑ, andd as

p(x,ϑ,d) = p(d|x)p(x)p(ϑ)

=
∏

(i,j)∈C

φ(xij , dij)
∏

i′∈I

p(xi′)p(ϑi′) , (7)

with φ(xij , dij) , δ(dij −‖xi−xj‖).

C. Posterior Distribution and Estimators

Using Bayes’ rule as well as (6) and (7), we obtain the joint
posterior distribution ofx, ϑ, andd:

p(x,ϑ,d|c)

∝ p(c|ϑ,d) p(x,ϑ,d)

=
∏

(i,j)∈C

φ(xij , dij) p(cij |ϑi,ϑj , dij)
∏

i′∈I

p(xi′)p(ϑi′) . (8)

The minimum mean-square error (MMSE) estimates ofxi and
ϑi are given by [13]

x̂i =

∫

xi p(xi|c) dxi , ϑ̂i =

∫

ϑi p(ϑi|c) dϑi . (9)

Here, p(xi|c) and p(ϑi|c) are obtained from the joint
posterior p(x,ϑ,d|c) by marginalization, i.e.,p(xi|c) =
∫

p(x,ϑ,d|c) d∼{xi} and p(ϑi|c) =
∫

p(x,ϑ,d|c) d∼{ϑi},
where∼{y} denotes all variables buty.

IV. D ISTRIBUTED PARAMETER ESTIMATION

Since the MMSE estimators in (9) require a marginaliza-
tion, iterative belief propagation (BP) on a factor graph [14]
expressing the factorization structure of the joint posterior in
(8) can be used for an efficient approximate computation.
In our case, this factor graph can be easily obtained from
the connectivity graph (cf. Fig. 1) by the transformation
shown in Fig. 3. An example of a basic building block
of the resulting CoSLAS factor graph, corresponding to the
connection between nodesi and j with (i, j) ∈ C, is shown
in Fig. 4. We note that Fig. 3 and Fig. 4 use the shorthands
φij = φ(xij , dij), pij = p(ci→j |ϑi,ϑj , dij), px,i = p(xi),
andpϑ,i = p(ϑi); furthermore, variable and factor vertices are
depicted by circles and rectangles, respectively.

A. Message Passing

At each vertex of the factor graph, messages are calculated
according to the BP rules (sum-product algorithm) [14] and
passed along the edges of the factor graph to neighboring
vertices. In some cases, this requires packet transmissions
(these come in addition to the packet transmissions used to
measure the time stamps). More specifically, a message from
a variable vertexri—which may correspond to a vector, e.g.,
xi—to a factor vertexf is calculated as

⇒ ⇒ ⇒

i
to nodei to nodej

j

px,i xi

pϑ,i ϑi

to xi to xj

to ϑjto ϑi

φij

dij

pij

px,jxj

pϑ,jϑj

(a) (b) (c)

Fig. 3. Transformation of a physical network (connectivity graph) into a factor
graph: (a) MN, (b) connection, (c) AN.

mri→f (ri) ∝
∏

v∈V(ri)\{f}

mv→ri(ri) , (10)

whereV(v) denotes the set of neighboring vertices of vertex
v. Conversely, a message from a factor vertexf to a variable
vertexri is calculated as

mf→ri(ri) ∝

∫

f(r)
∏

rj∈V(f)\{ri}

mrj→f (rj) d∼{rj} , (11)

where the functionf(r) corresponds to factor vertexf and
r is the vector of all involved variables (includingri). An
approximation of the marginal posterior ofri (“belief”) is then
obtained as

b(ri) ∝
∏

f∈V(ri)

mf→ri(ri) . (12)

Hereafter, we will use the following message naming con-
vention (cf. Fig. 4). Messages that are available at nodei and
also involve nodej will be denoted asm(q)

l,ij or m(q)
l,ji, where

l is an identification number,ij indicates messages calculated
at nodei, ji indicates messages provided by nodej to node
i via transmission of a packet, andq is the iteration index.

B. Message Representation

We propose a hybrid parametric/nonparametric representa-
tion of the various messages. Because the likelihood function
in (5) is Gaussian, messagesm(q)

l,ij linked to the function vertex
pij (see Fig. 4) can be represented by a Gaussian distribution
[11], [14], i.e., m(q)

l,ij = N
(

µ
(q)
l,ij ,Σ

(q)
l,ij

)

for l ∈ {2, 5, 6, 8}.

This is a parametric representation in terms of the meanµ
(q)
l,ij

xi

ϑi

φij

dij

pij

m
(q)
1,ij m

(q)
1,ji

m
(q)
7,ij m

(q)
3,ij m

(q)
4,ij

m
(q)
5,ij m

(q)
6,ijm

(q)
2,ij

m
(q)
8,ij

m
(q)
2,ji

xj

ϑj

Fig. 4. Example of a building block of the CoSLAS factor graph,cor-
responding to the connection between nodesi andj with (i, j)∈C.



and the covarianceΣ(q)
l,ij (or varianceσ2(q)

l,ij , for l = 6). For

messagesm(q)
l,ij linked to the function vertexφij , because of

the nonlinear locations-distance relation expressed byφij , we
use a nonparametric representation [2] by a set ofNs samples

(particles) s(q,k)l,ij and weightsw(q,k)
l,ij , i.e., m(q)

l,ij

△
≈
{

s
(q,k)
l,ij ,

w
(q,k)
l,ij

}Ns

k=1
for l ∈ {1, 3, 4, 7}. The weights are normalized,

i.e.,
∑Ns

k=1 w
(q,k)
l,ij = 1.

Using these representations in (10)–(12) leads to parameter
updates as described in [11] and sample updates as described
in [2]. The interface between parametric and sample represen-
tations is given by the variable vertexdij . As the incoming
messagem(q)

5,ij is Gaussian, it can be directly sampled, and the

parameters of the outgoing messagem
(q)
6,ij are then calculated

as the sample mean and sample variance.

C. The CoSLAS Algorithm

Applying the message passing rules with appropriate
scheduling leads to the CoSLAS message passing algorithm
presented below. The following steps are performed by every
AN, whereas MNs only perform the first two steps. Step 1 is
the initialization, and steps 2–6 constitute one message passing
iteration (with iteration indext). All nodes operate in parallel.
Approximations of the estimates (9) can be computed at any
iteration q if needed.2 If a message is not updated during an
iteration, it remains unchanged, i.e.m(q)

l,ij = m
(q−1)
l,ij .

1) Initialization (q = 1): For i ∈ I and j ∈ Ti ∩ A, the
messagesm(1)

1,ij and m
(1)
2,ij are set equal to the respective

location and clock priors. The messagesm(1)
1,ij are annotated

with an “informative” flag, which is true for MNs (i∈M) and
false for ANs (i ∈A). ANs setµ(1)

6,ij and σ2(1)
6,ij according to

geometrical considerations regarding the distances.
2) Message transmission between nodes: Node i∈I con-

veys to its neighborsj ∈ Ti ∩A the messagesm(q)
2,ij and, if

informative,m(q)
1,ij via packet transmissions. More specifically,

node i transmits to each nodej ∈ Ti ∩A , 2 + 3 real values
(mean and covariance matrix) corresponding tom

(q)
2,ij and2Ns

real values (Ns equally weighted particles) corresponding to
m

(q)
1,ij .
3) Messages from pij to φij: For all neighborsj ∈ Ti

that provide an informativem(q)
1,ji, AN i∈A computesm(q)

5,ij

in Gaussian form (parametersµ(q)
5,ij andΣ

(q)
5,ij) andm(q)

3,ij in

sample form (samples/weights
{

s
(q,k)
3,ij , w

(q,k)
3,ij

}Ns

k=1
).

4) Messages from φij to pij: For all neighborsj ∈ Ti for
which m(q)

1,ij andm(q)
1,ji are informative, ANi ∈A computes

m
(q)
4,ij in sample-based form: from equally weighted samples

s
(q,k)
1,ij and s

(q,k)
1,ji representingm(q)

1,ij and m(q)
1,ji, respectively,

equally weighted samples representingm(q)
4,ij are calculated as

s
(q,k)
4,ij = ‖s

(q,k)
1,ij −s

(q,k)
1,ji ‖. Subsequently, the mean and variance

2More specifically, a location estimate can be calculated fromthe sam-
ples

{

x
(q,k)
i

}Ns

k=1
representing the marginal beliefb(q)(xi) as x̂

(q)
i =

1
Ns

∑Ns

k=1 x
(q,k)
i , and estimates of the clock parameters can be obtained

from the meanµ(q)
i of the Gaussian distribution representing the marginal

belief b(q)(ϑi) as α̂(q)
i = 1/µ

(q)
1,i and β̂(q)

i = µ
(q)
2,i /µ

(q)
1,i .

representingm(q)
6,ij are computed as the sample mean and

sample variance, respectively of
{

s
(q,k)
4,ij

}Ns

k=1
.

5) Marginal belief b(q)(xi); messages m(q)
7,ij and m(q+1)

1,ij :

At AN i∈A, equally weighted samples
{

s
(q,k)
7,ij

}Ns

k=1
represent-

ing the incoming messagem(q)
7,ij from eachj ∈ Ti providing

informative location input are computed as [2]

s
(q,k)
7,ij = s

(q,k)
1,ji + s

(q,k)
3,ij

[

sin(ϕ(q,k))

cos(ϕ(q,k))

]

.

Here, theϕ(q,k) are drawn from a uniform distribution on
the interval[0, 2π). To compute samples

{

x
(q,k)
i

}Ns

k=1
repre-

senting the marginal beliefb(q)(xi) (cf. (12)) and samples
{

s
(q+1,k)
1,ij

}Ns

k=1
representing the messagem(q+1)

1,ij (cf. (10)),
several messages represented by sample sets have to be
multiplied. This is done by means of [2, Alg. 2], using only
informative messages. If the messagem

(q+1)
1,ij can be computed

from informative messages of at least one neighborj′ other
than j, i.e. j′∈ Ti \ {j}, m(q+1)

1,ij is marked as informative.

6) Marginal belief b(q)(ϑi); messages m(q)
8,ij and m(q+1)

2,ij :

At AN i ∈ A, the incoming messagem(q)
8,ij from each in-

formative neighborj∈Ti is computed using standard Gaussian
expressions [11]. The marginal beliefb(q)(ϑi) and the updated
outgoing messagesm(q+1)

2,ij , j ∈Ti are computed according to
(12) and (10), respectively. This requires the multiplication of
Gaussian messages and a Gaussian prior, which can again be
done using standard Gaussian expressions [11].

V. NUMERICAL ANALYSIS

We evaluated the performance of the proposed CoSLAS
algorithm on a network consisting of three MNs (M =
{1, 2, 3}) and four ANs (A = {4, 5, 6, 7}). The connectivity
graph of the network is as shown in Fig. 1. The node
locations arexi = [ξim ηim]T, where ξi is the ith ele-
ment of {0, 0, 65, 10, 35, 50, 25} and ηi is the ith element of
{0, 40, 40, 15, 15, 20, 30}. The communication range isR =
30m. The number of time stamp transmissions/measurements
is Kij = Kji = 50, and the measurement noise variance
is σ2

u = 10−15 s2. The clock skewsαi were drawn from a
Gaussian distribution with mean1 and standard deviation10−4

(= 100ppm), and the phase offsetsβi were drawn from a
uniform distribution on the interval[−1s, 1s] . The messages
m

(q)
6,ij were initialized toµ(1)

6,ij = 2R/3 andσ2(1)
6,ij =R2/18.

In Fig. 5, we compare the performance of the proposed
hybrid BP algorithm for CoSLAS (briefly referred to as
“CoSLAS-HBP”) with the performance of the purely sample-
based BP algorithm for CoSLAS proposed in [12] (“CoSLAS-
PBP”), of the BP-based synchronization algorithm described
in [11] (“Sync-BP”), and of a CSL algorithm that first es-
timates the clock parameters by running four iterations of
the algorithm [11] and then performs hybrid BP-based CSL
using these clock parameters3 (“Sync-Loc-BP”). These results
were obtained by averaging over 500 simulation runs (and

3This CSL algorithm corresponds to [2] when distance measurements are
obtained via time stamp measurements rather than using perfectly known
clocks. Our setting corresponds to a measurement variance of0.95m2 in [2].
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Fig. 5. Average RMSE of (a) clock skew, (b) clock phase, and (c) location versus message passing iteration indexq.

measurement noise realizations). The number of samples,Ns,
was 1000 for CoSLAS-HBP and 10000 for CoSLAS-PBP.
(Note that, despite using ten times more samples, CoSLAS-
PBP [12] is significantly less computationally complex than
CoSLAS-HBP.) The average root-mean-square-errors (RM-
SEs) of clock skew estimation, clock phase estimation, and
location estimation are shown in Fig. 5(a), (b), and (c), re-
spectively. Looking at the clock RMSEs in Fig. 5(a) and (b), it
is seen that the proposed CoSLAS-HBP converges faster than
CoSLAS-PBP to the same error floor as Sync-BP. Regarding
the location RMSE, one can see from Fig. 5(c) that CoSLAS-
HBP eventually achieves a lower RMSE than CoSLAS-PBP.
However, further experiments showed that the advantage in
localization accuracy of CoSLAS-HBP over CoSLAS-PBP
decreases for a growing measurement noise variance (whenNs

is fixed). Compared to Sync-Loc-BP, CoSLAS-HBP exhibits a
significantly faster convergence to about the same final RMSE.

To summarize, in this setting CoSLAS-HBP outperforms
CoSLAS-PBP with respect to both clock and location estima-
tion accuracy. This comes at the cost of a higher computational
complexity; however, the communication requirements are
lower. In addition, due to the lower dimensionality of the
messages and beliefs represented by particles in CoSLAS-HBP
compared to CoSLAS-PBP, the required number of particles
is smaller by about an order of magnitude; this results in
significantly lower memory requirements.

Furthermore, the clock-estimation accuracy of CoSLAS-
HBP equals that of Sync-BP and its location-estimation accu-
racy equals that of Sync-Loc-BP (but with faster convergence).
Thus, using the same number of packet transmissions for
time measurements as Sync-BP or Sync-Loc-BP, CoSLAS-
HBP achieves an equal or better performance while having
the advantage of estimating the clocks and locations jointly.

VI. CONCLUSIONS

We presented a factor graph framework and a message pass-
ing algorithm for distributed cooperative simultaneous local-
ization and synchronization (CoSLAS) in wireless networks.
Based on local internode time measurements and communi-
cations, the proposed CoSLAS algorithm jointly estimates the
locations and clock parameters of the network nodes in a fully
decentralized manner while making only minimal assumptions
about the network topology. The methodology of factor graphs

and belief propagation is employed to leverage the strong
interdependency of localization and synchronization. Theuse
of Gaussian and sample-based message representations results
in reduced computation and communication requirements. Nu-
merical simulations show that the proposed CoSLAS algorithm
outperforms separate localization and synchronization given
the same total number of time measurements.
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