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Abstract: Developing modern products involves numerous domains (controlling, production, en-
gineering, etc.) and disciplines (mechanics, electronics, software, etc.). The products have become
increasingly complex while their time to market has decreased. These challenges can be over-
come by Model-Based Systems Engineering (MBSE), where all development data (requirements,
architecture, etc.) is stored and linked in a system model. In an MBSE system model, product require-
ments at the system level can lead to numerous technical variants with conflicting objectives at the
parameter level. To determine the best technical variants or tradeoffs, Multidisciplinary Analysis and
Optimization (MDAO) is already being used today. Linking MBSE and MDAO allows for mutually
beneficial synergies to be expected that have not yet been fully exploited. In this paper, a new
approach to link MBSE and MDAO is proposed. The novelty compared to existing approaches is
the reuse of existing MBSE system model data. Models developed during upstream design and
test activities already linked to the MBSE system model were integrated into an MDAO problem.
Benefits are reduced initial and reconfiguration efforts and the resolution of the MDAO black-box
behavior. For the first time, the MDAO problem was modeled as a workflow using activity diagrams
in the MBSE system model. For a given system architecture, this workflow finds the design variable
values that allow for the best tradeoff of objectives. The structure and behavior of the workflow
were formally described in the MBSE system model with SysML. The presented approach for linking
MBSE and MDAO is demonstrated using an example of an electric coolant pump.

Keywords: model-based systems engineering; mbse; multidisciplinary analysis and optimization;
mdao; centrifugal pump; automotive coolant pump; development; design; test; optimization

1. Introduction
1.1. Motivation

Boundary conditions such as increasingly stringent emissions legislation and advanc-
ing urbanization pose technological challenges for the automotive industry. In addition,
stakeholder requirements regarding functionality, quality, and cost-efficiency are increas-
ing [1]. These challenges are increasingly being met by four key trends [2]: electrification,
autonomous driving, connected vehicles, and shared mobility. All these trends require
the use of mechanical, electronic, and software systems onboard the automobile. Because
of the progressive integration of these systems, modern vehicles can be understood as
cyber-physical systems (CPS) [3]. A key characteristic of CPS is their complexity [4,5]. The
increasing implementation of the aforementioned trends leads to an increasing system
complexity of vehicles and their systems, which must be managed in development [6].
Furthermore, the rapid development and innovation of technologies lead to ever-increasing
technological change [7]. To remain competitive in the market, automotive original equip-
ment manufacturers (OEMs) and suppliers must not only continuously innovate but also

Appl. Sci. 2022, 12, 5316. https://doi.org/10.3390/app12115316 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115316
https://doi.org/10.3390/app12115316
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0551-8031
https://orcid.org/0000-0003-4451-3978
https://orcid.org/0000-0002-9178-0596
https://orcid.org/0000-0002-8993-3637
https://orcid.org/0000-0002-7564-288X
https://doi.org/10.3390/app12115316
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115316?type=check_update&version=1


Appl. Sci. 2022, 12, 5316 2 of 24

keep the time to market short despite increasing complexity [8]. Cost, schedule, and scope
overruns of projects are often attributed to unmanaged complexity [9]. Overall, companies
are under pressure to develop innovative, complex products in ever shorter timeframes.
The well-known development approach of Model-Based Systems Engineering (MBSE)
offers the potential to make complexity manageable during the development of automotive
products [10]. In MBSE, development data is continuously linked in a central MBSE system
model compared to document-based, classical development approaches. In this case, “a
system model is a representation of the target system or one or more of its subsystems” [11].
It combines domain-specific and domain-independent parts (simulation models), structures
(architectures), and artifacts [11]. Development projects using MBSE are characterized,
among other things, by improved traceability and consistency in a rigorous MBSE system
model and the reuse of development data and models [12]. As a result, MBSE can help to
reduce development time and cost [13–15]. System modeling with MBSE is mostly realized
in the universal, graphical modeling language SysML. SysML thereby emphasizes aspects
of system architecting [16] but lacks in providing analytical and numerical methods. Such
methods are provided by using additional tools and toolchains [17]. These methods include
sensitivity analyses, searching design spaces for optimal solutions, and trade studies [18],
among others [19]. This lack of integration leads to a gap between system architecting
and system analysis [16]. A similar gap persists between system architecting in MBSE and
system analysis using domain-specific simulation models [20].

If requirements are formulated at the system level, with system design it is possible
to identify numerous technical variants that differ in their design variables. Fulfilling the
requirements of these technical variants can be conflicting, and a conflict of objectives can
arise that must be resolved appropriately. Since MBSE methods are usually employed
to design a small number of variants, only a few variants may be found that meet the
requirements. Accordingly, the best possible objective values are unknown, and the conflict
of objectives cannot be resolved in the best possible way. To identify technical variants with
the best possible objective values, Multidisciplinary Analysis and Optimization (MDAO)
methods are already being used today [21]. MDAO is an engineering discipline that uses
numerical optimization to design multidisciplinary systems [22]. It can examine large
areas of the design variable space. With MDAO, technical variants with optimal objective
values can be found, and the conflict of objectives can be resolved with a suitable tradeoff.
MDAO is considered in the literature to be both a method [23] and a tool [24] in developing
complex products. MDAO requires a high initial effort, which for example, in aviation, can
take 60–80% of the project time [25]. When MDAO is used in the development process, the
implementation [22] and the principles considered are often only partially formalized [25].
MDAO is then a black box on which changes such as extensions, detailing, and maintenance
are time-consuming to implement.

To solve this problem, MBSE can be used in conjunction with MDAO, and this linking
has many advantages. By formalizing an MDAO problem in the MBSE system model, its
black box behavior can be resolved. The formalization simplifies changes to the MDAO
problem, such as extensions, detailing, and maintenance, thus reducing the reconfiguration
effort. The initial effort of implementing an MDAO problem can also be reduced as
development data and models already available in the MBSE system model can be reused.

1.2. Problem Statement

Deploying MDAO in system development allows to explore large parts of the design
space, identify technical variants with the best objective values and resolve conflicting
objectives appropriately. However, several challenges arise in classical document-centered
system development approaches (Figure 1, left). These include for MDAO:

• high initial efforts due to distributed data
• high reconfiguration efforts
• black box behavior due to lack of formalization
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The high initial effort arises in the setup of MDAO. Various development data of the
system are required for MDAO. This includes, among others, requirements, models and
parameter sets. This development data is usually distributed among different sources and
participants in the project and must be gathered costly. Once executed, the results of MDAO
must be distributed accordingly to each development data source with corresponding effort.
Which development data and system aspects are ultimately included in MDAO and how
they are linked is often not formalized, so MDAO exhibits black box behavior. The high
reconfiguration effort arises because changes to development data are communicated via
several different paths. The lack of formalization makes it difficult to implement changes.

The linking of MDAO and MBSE is shown in Figure 1, right. In this case, the MBSE
system model acts as a single source of truth (SSO) for MDAO, as all data (requirements,
models, . . . ) related to the developed product are centrally stored. The initial effort for
MDAO is reduced because the required development data exists in the MBSE system model
in parts or completely [26]. Results of MDAO are systematically transferred to the linked
model elements of the system architecture. The formalization of MDAO in the MBSE
system model resolves its black box behavior. Therefore, which and how development
data are considered in MDAO is always traceable. Changes to the development data have
an immediate effect on MDAO, so that the reconfiguration effort of the MDAO problem
is reduced. Due to these benefits, numerous research engages with methods for linking
MBSE and MDAO.

1.3. Contribution

Section 5 provides a review of previous research linking MBSE and MDAO. However,
existing approaches insufficiently address development data (e.g., models) reused from
system development activities. As a result, existing potentials to reduce the initial imple-
mentation effort of MDAO remain untapped. Therefore, the following research question
shall be answered in this paper:

How to link MDAO to MBSE system models taking advantage of existing models?
The following main contributions are made to answer the research question:

• A novel approach (Section 2) is developed to link MDAO in MBSE system models.
The novelty lies in reusing existing development data. For this, data from the system
specification and models from design (Section 2.2.1) and test activities (Section 2.2.2)
are reused. Utilizing an analogy (Section 2.2.3), design and test activities are mapped
to system optimization (Section 2.3). Reusing development data from design and test
activities reduces the initial effort of MDAO.

• For the first time, the MDAO problem is formalized in the MBSE system model as an
optimization workflow. The purpose is to resolve the MDAO black box behavior and
reduce the reconfiguration effort (Sections 3.1–3.3).

The approach is applied to the optimal design of an electric coolant pump, and
exemplary numerical results are presented (Section 3.4).
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2. Materials and Methods

The methodological approach of this paper is shown in Figure 2. The main goal is
to identify an optimal parameter set for a given system architecture of an MBSE system
model by reusing existing development data in model form. The first step is a system
specification in which requirements and a suitable system architecture are defined. In the
next step of system design, parameters of the system architecture are identified. In the
system test, it is verified that the system with the previously identified parameters meets the
defined requirements. System design and system tests make use of models. The result of
performing system design and test workflows is a suitable set of parameters for the system
architecture. Based on the system specification and the models used in system design and
test, a system optimization problem (MDAO) is formulated. The execution of the system
optimization and solution of the MDAO problem identifies an optimal parameter set for
the system architecture. System design, system test, and the executable part of the system
optimization are executable workflows.
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System Design and System Test are modeled as workflows in the MBSE system model.
A workflow is a sequence of executable actions (e.g., implemented models, guidelines,
standards) for a specific purpose [27]. A design workflow generates a parameter set that
parameterizes the system architecture based on calculation rules from a set of design
variables. These parameters describe, for example, geometric dimensions and system
behavior. A test workflow is used to test the parameterized system architecture in defined
cases and check the fulfillment of requirements. If requirements are not met, the design
variables are adjusted, and design and test workflows are executed again.

With increasing system complexity, it is difficult to estimate which design variable
changes are suitable for finding a good technical variant or any technical variant. Fur-
thermore, a conflict of objectives can arise that cannot be resolved appropriately by a
manual iteration in the design and test workflows. In this case, an optimization workflow
is formulated and executed from existing models of the design and test workflows. The
result of the optimization workflow is an optimal parameter set of the system architecture.
In this paper, we proposed formalizing the optimization workflow by three modeling
approaches: workflow architecture, internal behavior, and executable behavior. The main
purposes of the formalization are the resolution of the MDAO black box behavior and the
provision of a means to parameterize the system architecture with an optimal parameter set.
The workflow architecture captures the hierarchical relationships between the workflow
elements. In the internal behavior, the black box character of the underlying MDAO of
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the optimization workflow is resolved by formalizing the utilized models, their interfaces,
and execution orders. From this formalization, the MDAO problem is implemented in an
external tool. The executable behavior triggers the solution of the MDAO problem from
the MBSE system model. The results are fed back to the MBSE system model and provide
an optimal parameter set for the system architecture.

2.1. System Specification

For example, the optimum design of an electric coolant pump in a vehicle is considered
regarding the objectives of electric energy consumption and installation space. For this,
five design variables are considered: rotational speed, flow rate, and head (i.e., pressure
difference between pump intake and outlet) in the best efficiency design point, as well as
the impeller vane exit angle and number of impeller blades. The speed of conventional
belt-driven coolant pumps is fixed to the speed of the internal combustion engine. This
means that the flow rate cannot be supplied as required. The flow rate is therefore adapted
by throttling or bypassing, and as a result, energy losses occur. In contrast, electric coolant
pumps can provide volume flows as required by adjusting the pump speed, thus helping
to reduce energy consumption and ultimately achieve CO2 targets [28]. The optimal design
is discussed in the literature [29–32].

The main function of an electric coolant pump is to generate a flow rate. To do this,
electrical energy is converted to mechanical energy, and this mechanical energy is then
applied to the coolant. The amount of electrical energy that can be supplied to the system
is controlled to match the provided flow rate to the demand. This relationship is described
in Figure 3. The functional architecture of the generate flow rate function is modeled using
Koller’s approaches [33]. The described functions represent elementary functions that are
realized by principle solutions. In this way, functions and the physical product are linked.
The language profile SysML4FMArch was used for the modeling [3]. This approach is
particularly suitable because products in the automotive industry are increasingly being
developed on a function-oriented basis instead of on a component-oriented basis, as has
been the case to date [34].
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For linking function and physical product in systems engineering, alternatives exist in
the literature, such as the contact and channel approach (C&C-A) [35].

Principle solutions consist of a physical effect that acts in a set of active surfaces
consisting of materials. The principle solution for the function apply mechanical energy to
fluid is a hydrodynamic pump and shown as an example in Figure 4. The physical effect
used in this case is hydrodynamics. The active surface set is formed by an impeller and its
pump housing. Multiple parameters describe the active surface set, nine of which ultimately
define the physical behavior, i.e., the physical effect of the hydrodynamic pump. For the
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given parameters and provided interface pressure and speed inputs, the physical effect
calculates the acting torque and provided flow rate of the pump. The choice of parameters
is therefore decisive for whether and to what extent requirements (e.g., flow rate) are
satisfied. The parameter values are determined by an appropriate development process.
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2.2. System Design and Test
2.2.1. Design Workflow

Design workflows can identify suitable parameter values of the solution architec-
ture [27]. A design workflow model established procedures for design, such as those given
in norms, standards, and guidelines in an executable form in the MBSE system model. The
design workflow is modeled as an activity diagram for this purpose. The design workflow
of a pump impeller is shown as an example in Figure 5. It is divided into three sections: get,
calculate and set.

The design of the pump impeller requires the selected values of the design variables to
perform calculations. Actions in the get section, therefore, read the associated values from
the MBSE system model and make them available for further actions. The following five
design variables (cf. get section Figure 5) are set by the systems engineer and read from the
MBSE system model:

• Rotational speed nOpt, flow rate QOpt and head Hopt in the best efficiency design point
indexed as Opt

• Impeller vane exit angle β2
• Number of impeller blades zU

The calculate section contains actions that use methods to calculate parameter values
of the principle solution. These actions can represent simple analytical relationships (as in
calculatePumpInstallationSpace) or trigger extensive calculations stored in external tools (as
in calculatePumpDimensions). Although the design of the pump is based on principles of
hydrodynamics, the calculation in calculatePumpDimensions differs from the model of the
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physical effect in Figure 4. The physical effect models the in- (rotational speed and pressure
difference) and output (torque and flow rate) behavior of the pump. In contrast, the design
workflow determines the necessary parameters of the physical effect. After the calculations
in the workflow, the parameter values must be transferred back to the MBSE system model.
The values can be used by further calculations or checked for requirement satisfaction. The
following eleven parameter values (cf. set section in Figure 5) are calculated from the five
design variables and written back to the MBSE system model:

• Parameter values of the pump characteristic curve a, b, c, d
• Head coefficient ψTh
• Impeller diameter D2 and width b2
• Pump installation space VPump

• Shaft power at zero net flow rate P0
• Exchange flow rate at zero net flow rate Qa
• Characteristic pump rotational speed nq
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2.2.2. Test Workflow

Design workflows determine parameter values of principle solutions for defined
design scenarios. With this determined parameter value set, a technical variant is created.
In contrast to design workflows, test workflows check whether the developed technical
variant meets all requirements. This is necessary because not all boundary conditions and
requirements are generally considered in the design. For example, hydrodynamic pumps
are designed for the best efficiency point consisting of rotational speed, flow rate, and
head (pressure difference between pump intake and output). During operation, however,
the speed is varied to adapt the flow rate to the heat dissipation requirements in the
cooling circuit. The pump is then operated off the best efficiency point. The resulting
energy consumption in operation is, therefore, a quantity that is not captured by the design
workflow but calculated in the test workflow. Identifying the most suitable design point
considering the later operation is an engineering challenge.

In this paper, the exemplary requirements for the electric coolant pump, as shown in
Figure 6 will be considered for the test workflow.
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From the higher-level requirements for high efficiency, low installation space, and
stable operation, a range of values are derived for the head coefficient. The head coefficient
is a characteristic value calculated from the physical quantities of a pump and characterizes
its operating behavior [36]. The head coefficient should be as high as possible for compact
and efficient pumps [37]. A lower bound of ψTh,min = 1.0 is therefore selected. However,
a head coefficient that is too high can lead to unstable flow rate behavior and vibration
excitations in the cooling circuit [38]. The value of the head coefficient is therefore limited to
ψTh,max = 1.3 using a practical value according to [39]. The installation space requirement
is further refined in maximum impeller diameter and width. These limits depend on the
application and are here set to D2,max = 150 mm and b2,max = 30 mm. Additionally, the
pump shall be operated at a maximum speed of nmax = 2500 1

min for noise and material
strength reasons. Further requirements weigh the importance of installation space and
efficiency of the pump. The so defined weights can be used to compare different technical
variants. The WLTC is used as the design cycle. The pump must provide enough flow rate
to dissipate the heat generated by the engine in the cycle. The requirements are checked
utilizing constraint elements in the MBSE system model. For brevity, only one such element
is shown in Figure 6 for the upper limit of the head coefficient. These constraints are later
reused identically in MDAO.

A test workflow is modeled similarly to the design workflow in an activity diagram
(Figure 7). It consists of the sections get, calculate, and set. In the present example, two
successive tests in the form of simulations are performed: A mechanical (calculateMech-
Power) and an electrical (calculateElEnergy) performance test. The implementations of
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calculateMechPower and calculateElEnergy are described in detail in Section 3.4. For the
mechanical performance test, the previously determined pump impeller design variable
values and the flow rate cycle are loaded using get actions. The mechanical performance
test determines the time histories of the mechanical pump torque and rotational speed,
as well as the maximum required pump speed ncycle,max in the flow rate cycle. For the
electrical performance test, parameter values of the electric motor are loaded by means of
get actions. This test receives the additional time histories of torque and speed and calcu-
lates the consumed electrical energy EEl in the flow rate cycle. The design of the electric
motor is not considered in this paper. Therefore, the parameter values of the electric motor
remain constant. After the electrical performance test, the results of the test workflow are
transferred back to the MBSE system model using set actions, that is, the parameter values
of ncycle,max and EEl . There, it is checked to see whether the specified requirements are met.
For example, the permitted maximum speed is compared to the calculated quantitative
value. The consumption of electrical energy is not further specified in the requirements;
thus, it could be compared to benchmarks and technical variants. If requirements are not
met, a new and suitable technical variant must be found.
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2.2.3. Design and Test Process

The process of executing the design and test workflows is shown in Figure 8. This
manual process is characterized by decisions at each stage based on intuition or experi-
ence [40].

First, in Figure 8, the system is specified in the MBSE system model. The system
specification includes the collection and definition of requirements and the derivation of
a suitable functional and solution architecture. From this, simulation models are derived
and linked in design and test workflows. The design workflow uses these models and
other calculations (norms, standards, and guidelines) to determine the parameters of the
solution architecture. In the test workflow, parameter values are calculated and checked
for requirement satisfaction. If requirements are not met, the design variables are changed,
and the design and test workflows are executed again. If the requirements are met, the
design can be approved and detailed. There may arise the case that no technical variant
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can fulfill the requirements. Then requirements can be relaxed, or they can be returned to
a previous development phase to adapt the system architecture. These two cases are not
considered in this paper.
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In the case of the electric coolant pump, there are any number of technical variants that
meet the exemplary requirements (Figure 6). However, during the design and test activities,
the pump installation space and electric energy consumption arise as conflicting objectives.
This means that the requirements for the highest efficiency and smallest installation space
are met to varying degrees by different technical variants.

With increasing system complexity, it is difficult to estimate which design variable
changes are suitable for finding a good variant or any variant at all. Furthermore, it is un-
clear which design variables are particularly suitable for responding to requirement changes.

2.3. System Optimization

To avoid a costly manual iteration, an analogy of the design and test process with
a general MDAO process (Figure 9) is considered. Similar to the manual iteration, the
process starts with a system specification. In addition, the optimization problem must
be formulated. If the optimization algorithm needs starting values, an initial system
design is provided. The optimization itself is divided into two parts: analysis and the
optimization algorithm. In the analysis, objective and constraint functions are evaluated.
In the manual iteration, this corresponds to the execution of the test workflow as well
as the requirement verification. In the case of optimization, quantifiable requirements
are formulated as constraint functions and evaluated automatically by the optimization
algorithm. The contents of the analysis can be selected freely. If the execution of the
test workflow requires a previous execution of the design workflow, it can be placed in
the analysis. The optimization algorithm receives the evaluated objective and constraint
function values and uses defined criteria to decide whether optimality has been achieved.
If not, the design variables are updated and supplied to the analysis. This iteration is
performed until optimality is reached. If optimality is reached, the optimization outputs
one or more optimal technical system variants. If several optimal technical system variants
are available (e.g., in the case of multiobjective optimization), a selection of the best tradeoff
must then be made by the system engineer based on preferences [41].

Compared to the manual iteration (Figure 8), the variation of design variables is per-
formed systematically. Requirement changes can be met by reformulating the constraints.

To make use of the MDAO process in the MBSE system model an optimization work-
flow is proposed.
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3. Results: Optimization Workflow
3.1. Workflow Architecture

The architecture of the optimization workflow describes the hierarchical relationships
of its elements and is, therefore, part of the formalization process in Figure 2. The workflow
architecture is modeled as a block definition diagram (bdd) and is shown in Figure 10.
Similar to the design and test workflows, the optimization workflow consists of the sections
get, calculate and set. Calculate consists of the parts optimize and select. The block select is
used to select the most suitable tradeoff if multiple optimal variants are available. Optimize
consists of an analysis and an optimization algorithm (corresponding Figure 9). [In the analy-
sis, objectives, and constraints (implemented as functions) are evaluated. The optimization
algorithm performs the optimization task.
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3.2. Internal Behavior

The internal behavior describes the sequence and execution order of the optimization
workflow elements. It includes the definition of used models, the exchanged parameters
at interfaces, and considered system requirements in MDAO. It is also the workflow
architecture part of the formalization process in Figure 2. The internal behavior of the



Appl. Sci. 2022, 12, 5316 12 of 24

optimize block (Figure 11) describes the exchange of design variables as well as evaluated
objective functions f and constraint functions g between the optimization algorithm and the
analysis (cf. Figure 9).
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The internal behavior of the objectives block is shown in Figure 12. In this depiction,
the design variables and the objectives are defined. For example, all design variables of
the design workflow were adopted (cf. Figure 5). The objectives were defined based on
the identified conflict of objectives in the manual iteration (pump installation space and
electrical energy consumption). Model elements of the design (calculatePumpDimensions,
calculatePumpInstallationSpace) and test (calculateMechPower, calculateElEnergy) workflows
were reused in the description of the internal behavior (cf. Figures 5 and 7).
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The activity diagram for calculating the constraints is given in Figure 13. On the
input side, the calculation receives the current values of the design variables. On the
output side, the values of the constraint functions (g1 . . . g5) are returned. The values of
the constraints result in the execution of actions of the design (calculatePumpDimensions)
and test (calculateMechPower) workflows. The actions for checking the requirements use the
same constraints that refine the requirements (cf. Figure 6).
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3.3. Executable Behavior

The executable behavior of the optimization workflow triggers the solution of the
MDAO problem in an external tool. The executable behavior of the optimization workflow
is modeled in an activity diagram (Figure 14). In the get section, necessary parameters
such as the flow rate cycle are read out from the MBSE system model and provided to
the calculate section. The upper and lower variation bounds of the design variables are
loaded collectively in the Boundaries action. These limits can be based on empirical values
or physical limits. Furthermore, the parameter values of the requirements (B2max, D2max,
PsiThmax, PsiThmin, Nmax) are loaded, and thus the constraints of the optimization are
parameterized. In this paper, a genetic algorithm is used for optimization. Therefore, a
hyperparameter of the population size is loaded. The two weights, WVPump and WEel, are
used to select the technical variant with the best tradeoff between installation space and
electrical energy consumption from the resulting pareto front. The numerical values of the
weights are defined in the requirements (cf. Figure 6).

The calculate section consists of an optimize and a select action. Optimize calculates a
matrix of non-dominating technical variants (pareto front) by solving the optimization prob-
lem. The optimize action is implemented in an external tool reusing the predefined models
in the internal behavior description. This corresponds to the implementation process in
Figure 2. The select action weights the technical variants on the pareto front to determine
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the best tradeoff. In the set section, the design variable values of the selected tradeoff are
transferred to the MBSE system model to be checked for requirement satisfaction.
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In the MBSE system model, the optimize action exhibits black box behavior, which
is resolved with the help of the workflow architecture (Figure 10) and internal behavior
(Figures 11 and 12).

Changes in the requirement values (maximum diameter, flow rate cycle, etc.) can
directly be considered in the optimization execution. For this purpose, the values linked to
the requirements are automatically transferred to the optimize action by the corresponding
actions (D2max, FlowRateCycle, etc.) in Figure 14. Likewise, the variation limits of the design
variables can be changed via the defined interfaces. This reduces the reconfiguration effort
of the MDAO problem.

New requirements, other objectives, and design variables, as well as new calculation
steps, represent changes to the internal behavior of the optimization workflow. These
changes must be specified in the internal behavior by the systems engineer and, on this
basis, reimplemented in new executable behavior.

3.4. Numerical Results

Executing the optimization workflow (cf. Figure 2) produces numerical results, which
are presented below. The visualization of the resulting MDAO problem is given as an
extended design structure matrix (XDSM) in Figure 15. A Matlab implementation of
the genetic algorithm NSGA-II is used as the optimization algorithm, which can handle
discrete and real-valued design variables and consider constraints and multiple objec-
tives. The algorithm is suitable for optimizing various engineering problems ranging from
gearboxes [42,43] to wind farms [44,45].

A pump is designed based on five design variables. With this design, a mechanical
shaft power must be provided to the pump for a given flow rate cycle. The connected
electrical motor provides this shaft power and consumes an amount of electrical energy
in the process. Four variables (head coefficient ψTh, maximum rotational speed nmax,
maximum impeller width b2 and diameter D2) are constrained by five nonlinear constraints
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(g), which are given by the system requirements (Figure 6). The installation space of the
pump VPump ( f1) and the required amount of electrical energy EEl ( f2) are objectives.
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The design of the electric coolant pump is based on the procedure in [39]. The design
determines the flow characteristics (described by the pump characteristic curve), efficiency,
and spatial dimensions of the pump. In the design process under consideration, five design
variables are available for this purpose: pump rotational speed nOpt, flow rate QOpt and
head Hopt in the best efficiency point as well as impeller vane exit angle β2 and number
of impeller blades zU . The mathematical optimization problem is formulated as follows
(Equation (1)):

minimize f (x) =
(
VPump, EEl

)
by varying x =

(
nOpt, QOpt, Hopt, β2, zU

)
subject to g1(x) = D2 − D2,max < 0

g2(x) = b2 − b2,max < 0
g3(x) = ncycle,max − nmax < 0

g4(x) = ψTh − ψTh,max < 0
g5(x) = ψTh,min − ψTh < 0

(1)

The pump characteristic curve (Equation (2)) defines the head H and flow rate Q
behavior of the pump at constant rotational speed. The coefficients a, b, c, and d are
functions of ψTh, QOpt, HOpt and nq and determined using the design workflow.

H = a · Q3 + b · Q2 + c · Q + d (2)

The system characteristic curve describes the head and flow rate behavior of the
cooling circuit. An operating point consisting of head and flow rate is set as the intersection
of the pump characteristic curve and the system characteristic curve. In the considered
pump application, the necessary flow rate depends on the amount of heat to be dissipated
by the cooling circuit. The operating point is therefore changed by adjusting the pump
rotational speed. This operating point shift is modeled by scaling the pump characteristic
curve according to the affinity laws in Equations (3) and (4). Index I indicates the unscaled,
and index II the scaled operating point. The system characteristic curve remains constant.

QI I
QI

=

(
nI I
nI

)
(3)

HI I
HI

=

(
nI I
nI

)2
(4)



Appl. Sci. 2022, 12, 5316 16 of 24

These relationships are shown in Figure 16. Changing the pump speed to adjust the
flow rate to the demand generally results in a decrease in pump efficiency η.
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Variable 𝑸𝑸 𝑯𝑯 
Lower limit 30 𝑙𝑙

𝑚𝑚𝑚𝑚𝑚𝑚
 4.9 kPa 

Upper limit 363.4 𝑙𝑙
𝑚𝑚𝑚𝑚𝑚𝑚

 30 kPa 

The installation space of the pump impeller (𝑓𝑓1 in Figure 15) is calculated from its 
diameter and width, which are provided by the pump dimensioning. The pump 
dimensioning provides a total of nine quantities for calculating the mechanical shaft 
power (Figure 15). 

The mechanical shaft power of the pump 𝑃𝑃𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎  is composed of four components 
(Equation (5)). 𝑃𝑃ℎ  is the hydrodynamic power and takes into account power for 
conveying the net flow rate and the occurring gap loss flows. The disk friction power 𝑃𝑃𝑅𝑅 
includes all losses caused by fluid friction on rotating components wetted by the pumped 
coolant. The mechanical power 𝑃𝑃𝑚𝑚  includes all losses that occur at the bearings and 
dynamic seals. Exchange losses 𝑃𝑃𝑎𝑎  occur mainly when the pump is operated at a 
significantly lower flow rate than the best efficiency point. The pump is then in partial 
load operation, characterized by turbulence behind the pump impeller. Backflows occur, 
which act back on the impeller and are captured in the additional power 𝑃𝑃𝑎𝑎. 
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The losses of the electric motor 𝑃𝑃𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are described by the analytical approximate 
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In this paper, the coolant flow rate requirement of an internal combustion engine for a
mid-size vehicle in the Worldwide harmonized Light-duty vehicles Test Cycle (WLTC) is
considered. In the driving cycle, the engine power and, therefore, heat generation varies
over time. This results in a varying coolant flow rate. Due to the varying flow rate, the
pump is not operated continuously at its best efficiency point. The resulting operating
range of the pump in the WLTC is given in Table 1. For efficient operation, it is crucial
to appropriately select the best efficiency point of the pump along with the number of
impeller blades and impeller vane exit angle.

Table 1. Maximum and minimum flow rate and head values in the WLTC.

Variable Q H

Lower limit 30 l
min 4.9 kPa

Upper limit 363.4 l
min 30 kPa

The installation space of the pump impeller ( f1 in Figure 15) is calculated from its diam-
eter and width, which are provided by the pump dimensioning. The pump dimensioning
provides a total of nine quantities for calculating the mechanical shaft power (Figure 15).

The mechanical shaft power of the pump Psha f t is composed of four components
(Equation (5)). Ph is the hydrodynamic power and takes into account power for conveying
the net flow rate and the occurring gap loss flows. The disk friction power PR includes
all losses caused by fluid friction on rotating components wetted by the pumped coolant.
The mechanical power Pm includes all losses that occur at the bearings and dynamic seals.
Exchange losses Pa occur mainly when the pump is operated at a significantly lower flow
rate than the best efficiency point. The pump is then in partial load operation, characterized
by turbulence behind the pump impeller. Backflows occur, which act back on the impeller
and are captured in the additional power Pa.

Psha f t = Ph + PR + Pm + Pa (5)

The losses of the electric motor Pel, loss are described by the analytical approximate
Equation (6) [46]. The torque T and the angular velocity ω correspond to the operating
point of the electric motor and are determined by the calculation step of the mechanical
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power demand (Figure 15). The parameters kc, ki, kω , and C were determined by numerical
fitting of the efficiency map of the known and unvaried electric motor.

Pel, loss = kc · T2 + ki · ω + kω · ω3 + C (6)

The consumption of electrical energy ( f2 in Figure 15) is determined by time integration
of the mechanical power and electrical power loss (Equation (7)).

Eel =
∫

Psha f t + Pel,lossdt (7)

The design variables are varied within the limits specified in Table 2. The limits of
nOpt, QOpt and Hopt are selected based on trial executions. The limits of the number of
impeller blades and impeller vane exit angle β2 are selected based on empirical values
according to the literature [39].

Table 2. Variation limits of the design variables.

Design Variable nOpt QOpt HOpt β2 zU

Lower limit 1500 1
min 60 l

min 12 kPa 25◦ 7
Upper limit 3000 1

min 600 l
min 30 kPa 35◦ 9

In this paper, we present the results of the multiobjective optimization using pareto
fronts. A pareto front contains all variants which do not dominate each other with respect
to their objectives. If two variants are compared on the pareto front, one variant will be
better in one objective and worse in the other [40].

The pareto front of the optimization problem regarding the constraints is shown in
Figure 17. It can be seen that spatially compact pumps have a higher energy consumption.
Efficient pumps, on the other hand, take up a larger installation space. The influence of the
design parameter nOpt of the best efficiency point is shown as an example. Here, higher
rotational speeds in the best efficiency point lead to more compact but less efficient pumps.
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In this paper, the best tradeoff (cf. select in Figure 14) is selected by a weighted rating
of the two objectives (Equation (8)). For this purpose, the objective values EEl and VPump
of each technical variant on the pareto front are first scored. An objective with the lowest
value is assigned the score S of 10, an objective with the highest value is assigned the score
S of 1. Objective values in between are assigned a linear interpolated score between 1
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and 10. A variant on the pareto front is thus assigned two scores between 1 and 10. By
specifying two weights w, both variant scores are reduced to one. The two weights describe
the importance of the objectives to the systems engineer. The technical variant with the
highest total score Stot corresponds to the most preferred variant. A similar approach is
used in [47].

Stot = wEEl · SEEl + wVPump · SVPump (8)

The selection of the most suitable variant is shown as an example in Figure 18. The
pump installation space was weighted at 80% (wVPump = 0.8) and the energy consumption
of 20% (wEEl = 0.2) importance (cf. Figure 6).
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The values of the selected technical variant are summarized in Table 3. It represents
the best variant in the context of system preference [41]. The limits of the variables nOpt
and QOpt are not exploited by the optimization algorithm. For the variables Hopt, β2 and
zU it can be seen that the variation limits are reached.

Table 3. Numerical values of the selected technical variant in Figure 18.

Design Variables Objectives

nOpt QOpt Hopt β2 zU EEl VPump
1635 1

min 150 l
min 12.11 kPa 34.95◦ 9 123.53 kJ 47203 mm3

In principle, other decision-making techniques are also applicable. In the literature,
FUZZY, LINMAP [48], and TOPSIS [49] are used, among others.

The results from Table 3 are transferred to the MBSE system model and represent an
optimal set of parameters of the system architecture (cf. Figure 2).

4. Discussion

The developed approach for linking MDAO with an MBSE system model enables
extending the analytical possibilities in MBSE. Large areas of the design variable and
the resulting solution space can be explored. As a result, technical variants with the best
objectives are identified, and conflicting objectives are resolved with an appropriate tradeoff.
The formal description of the MDAO problem in the MBSE system model resolves its black
box behavior. Necessary changes in case of new requirements or new available models
become transparent, which reduces the reconfiguration effort. If a conflict of objectives
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is identified based on an existing design and test workflows, the presented approach can
be used to formulate an MDAO problem. By reusing models from existing design and
test workflows, the initial implementation effort of the MDAO problem is reduced. The
formalization of MDAO is carried out employing architecture and internal behavior. These
descriptions are transferred to the executable behavior of the workflow, which triggers the
execution and solution of the MDAO problem.

Limitations

The transfer of the internal behavior to the executable behavior is done manually at
the current time. For the purpose of automatability, a model-to-model transformation of
the internal behavior into the executable behavior should be investigated in future work.
Additionally, the get and set functions must be implemented manually for each parame-
ter. One solution might be combining multiple get or set functions into one overarching
function, as presented in Figure 14. However, this reduces flexibility.

The developed approach was only applied to one MDAO architecture (Figure 15).
In the future, its usefulness for other MDAO architectures must be examined. Although
the approach can be used in the early stages of development, it assumes that models
and workflows are already in place and that a conflict of objectives has been identified.
This limits the applicability for deviating boundary conditions. Another limitation of the
approach is that MDAO, which considers many parameters, would lead to crowded acitvity
diagrams.

5. Related Work

Chaudemar et al. conduct a literature review on the joint use of MBSE and MDAO in
the early stages of development [26]. They come to three conclusions: First, there is a lack of
confidence that the MDAO problem correctly represents the MBSE system model. Second,
the MDAO formulation takes a non-negligible amount of time. At the same time, necessary
information is already available in the MBSE system model. Third, MDAO solutions are
rarely implemented in the MBSE system model. As reasons, the lack of expressiveness of
the MBSE languages and high manual effort are indicated.

Aiello et al. [50] link MDAO and MBSE using the three branches of approach, type,
and tool for refining requirements. Thus MDAO is to be used already in the early phases of
the requirement formulation. The approach stands for the fact that the MBSE triggers the
MDAO execution and the MDAO results enrich the MBSE system model. The type describes
a coupling of language and methodical level. On the language level, the description in the
MBSE system model is extended by new stereotypes for requirements used for the MDAO
formulation (e.g., solver, model accuracy, etc.). Methodically, five steps are proposed
to read out these requirements from the MBSE system model and enrich them through
MDAO. Papyrus and OpenMDAO are used as tools. The use case is the dimensioning
of a drone battery. Reuse of models is not addressed, and the MDAO problem remains
a black box for the system engineer. A further work [51] focuses on the refinement of
requirements in MBSE by linking them to MDAO. For this purpose, tool interfaces between
TTool, OpenMDAO, and UPPAAL-SMC are implemented.

Jeyaraj et al. [52] describe a framework for the joint use of MBSE and MDAO. The
MBSE system model contains all the system specification information. MDAO is used to
evaluate individual architectures. In the presented example, the MBSE system specification
is enriched with MDAO input parameters, and these parameters are extracted and finally
evaluated in MDAO. Finally, the MDAO results are fed back into the MBSE system model.
The procedure is demonstrated in an aircraft application. The MDAO problem remains a
black box in the MBSE system model.

Ciampa et al. [24] describe a linking of MBSE and MDAO using an architectural frame-
work. In this context, the concept of a development system and a system of interest (SoI) is
introduced. A development system is one of the supporting systems (simulation, MDAO,
etc.) for the development of the SoI in different phases. It is proposed to use MBSE for the
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development of MDAO systems and thus accelerate the development of SoI. The MDAO
system is formally described in structure and behavior by an MDAO system architecture.
The MDAO system architecture is developed using an architectural framework consisting
of ontology (nomenclature and terminology) and viewpoints (organizational, architectural,
lifecycle, process, requirements). In this way, the so-called upstream engineering phases
(system identification, specification, architecting), which are formalized by the MBSE, are
linked to the downstream engineering phases (system synthesis and exploration), including
MDAO. The definition of MDAO as an individual system establishes a vertical integra-
tion into the development of complex systems. So far, only high-level elements of this
MBSE-driven approach to developing MDAO systems have been published. The reuse of
existing development data and models of the system of interest was not described. It is not
addressed how MDAO is executed and how the parameterization of the system of interest
architecture is accomplished.

Min et al. [53] describe the integration of SysML and the process integration and
design optimization framework (PIDO) of the ModelCenter software. The integration
allows to model analyses in SysML and to transfer and execute them one-to-one in the
analysis environment. For this purpose, a tool-specific profile is presented, in which the
considered models have to be embedded. The goal of the integration is the representation
of knowledge and traceability of the analyses. A drawback is that the description of the
analysis context is specific to a commercial tool.

Leserf et al. [54] describe a method and implementation to formulate optimization
problems from SysML descriptions and solve them in the PyOpt environment. For this
purpose, new stereotypes are defined in SysML to describe a Multi-Domain Optimization
(MDO) context. The MDO context is formulated problem-specifically in a parametric
diagram. From this description, a constraint satisfaction multicriteria optimization problem
(CSMOP) is generated and solved in an optimization framework. This approach requires
that the optimization problem can be described in parametric diagrams. Integration and
execution of more extensive calculation approaches, as required in developing mechatronic
systems (e.g., simulation models), were not described.

6. Summary and Future Work

In this paper, a means of linking MDAO and an MBSE system model while reusing
development data from the MBSE system model components was described. Starting from
a system specification, solutions were identified for the system functions to fulfill. The solu-
tions had parameters that determined their physical behavior and requirement satisfaction.
Appropriate parameters of the solutions were determined using design workflows. Test
workflows were then executed to test the requirements fulfillment of the selected param-
eters. If requirements were not met, the design variables were changed, and design and
test workflows were manually executed again. In this sequence, it remained unclear which
design variables had to be changed, and how, to obtain the best possible technical variant.

To avoid the manual iteration of sequentially executing design and test workflows, an
optimization workflow is proposed. It is formalized in the MBSE system model utilizing
three model approaches: workflow architecture, internal behavior, and executable behavior.
In the workflow architecture, the elements of the optimization workflow are described
hierarchically. In the internal behavior, the internal structure, including interfaces and the
execution order of the elements, are defined. Existing MBSE system model components are
reused to describe the internal behavior. With the help of the model approaches of workflow
architecture and internal behavior, the executable behavior of the optimization workflow
is implemented. The executable behavior is provided as an action in the activity diagram.
The execution takes place in an external tool, but always remains transparent concerning
the models used and the principles and the requirements considered. Changes in the
requirement values can directly be considered in the execution of the optimization. The
optimization workflow approach is demonstrated using the example of the optimization of
an electric coolant pump. A conflict of objectives arises between pump installation space
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and electrical energy consumption requirements, so that spatially compact pumps are
less efficient.

Currently, the executable behavior must be implemented manually from the MBSE
system model in an external tool. Future work will focus on an automatic model trans-
formation from internal to executable behavior. Furthermore, the transferability of the
approach to other MDAO architectures will be investigated.
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Nomenclature

β2 Impeller vane exit angle
η Pump efficiency
ψTh Head coefficient
ψTh,min Minimum head coefficient specified by requirements
ψTh,max Maximum head coefficient specified by requirements
ω Angular velocity of the pump impeller
a Parameter of the pump characteristic curve
b Parameter of the pump characteristic curve
b2 Impeller width
b2,max Maximum impeller width specified by requirements
c Parameter of the pump characteristic curve
C Electric motor loss coefficient
C&C-A Contact and channel approach
CPS Cyber-physical system
CSMOP Constraint satisfaction multicriteria optimization problem
d Parameter of the pump characteristic curve
D2 Impeller diameter
D2,max Maximum impeller diameter specified by requirements
EEl Consumed electrical energy in the flow rate cycle
f Objective function
g Constraint function
H Head
HOpt Head in the best efficiency design point
kc Electric motor loss coefficient
ki Electric motor loss coefficient
kω Electric motor loss coefficient
MBSE Model-Based Systems Engineering
MDAO Multidisciplinary Analysis and Optimization
ncycle,max Maximum required pump speed in the flow rate cycle
nmax Maximum pump speed specified by requirements
nOpt Rotational speed in the best efficiency design point
nq Characteristic pump rotational speed
OEM Original equipment manufacturer
P0 Shaft power at zero net flow rate
Pa Exchange power losses of the pump
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Pel,loss Losses of the electric motor
Ph Hydrodynamic power of the pump
Pm Mechanical power losses of the pump
PR Disk friction power losses of the pump
Psha f t Pump total shaft power
PIDO Process integration and design optimization
Q Flow rate
Qa Exchange flow rate at zero net flow rate
QOpt Flow rate in the best efficiency design point
SEEl Score of electric energy consumption
Stot Total score
SVPump Score of pump installation space
SoI System of interest
SSO Single source of truth
SysML Systems modeling language
T Pump shaft torque
VPump Pump installation space
wEEl Weight of electric energy consumption
wVPump Weight of pump installation space
x Design variable
zU Number of impeller blades
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