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ABSTRACT This paper proposes a strategy to manage an electric vehicle charging station (EVCSs) with a
grid-side interface based on a Modular Multilevel Converter (MMC). The MMC topology is studied due to
its potential for reducing the footprint and the use of active material in the internal distribution system by
allowing for transformer-less connection to the medium voltage distribution grid. However, heterogeneous
charging demands and arrival-departure profiles of the electric vehicles (EVs) could lead to significant
loading unbalances among the MMC arms and among the modules of a single arm. Nevertheless, the current
in the grid interface must be kept balanced and sinusoidal. Furthermore, the voltages of the modules of
an arm must be balanced. This work combines a load management (LM) algorithm with a power flow
management (PFM) algorithm to achieve the required characteristics of grid current and module voltages
under the heterogeneity of the charging demand in MMC-based EVCSs. The PFM algorithm controls the
circulating currents to compensate the phase-to-phase, arm-to-arm and intra-arm unbalances of the given
loading. To minimize the additional losses resulting from active balancing by the PFM, the LM optimizes
the charging schedules and allocations of incoming EVs into charging units in order to minimize phase-to-
phase and arm-to-arm unbalances in the system. The performance of the proposed optimization-based LM
is compared with a rule-based benchmark LM by simulating the daily operation of an example shopping
mall parking with MMC-based grid interface. In scenarios with pronounced unbalance limitations, the
optimization-based LM increases the supplied energy significantly. Real-time (RT) simulations demonstrate
a balanced and sinusoidal grid current profile and balanced module voltages in MMC arms over the daily
scenarios. These results indicate that the proposed strategy combining LM and PFM is applicable for
real-world deployments.

INDEX TERMS Electric vehicle, modular multilevel converter, optimization, wireless power transfer.

I. INTRODUCTION
With the increasing use of electric vehicles EVs, the avail-
ability of charging infrastructures is gaining importance. Due

The associate editor coordinating the review of this manuscript and

approving it for publication was Behnam Mohammadi-Ivatloo .

to this trend, large EV charging stations (EVCS) that can deal
with the charging needs of hundreds of EVs are planned [1].
Installed power of an EVCS with several hundreds of
EV chargers may reach several megawatts. In particular
for densely populated urban areas, the compactness of the
electrical installation can be crucial. However, most of the
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available literature studying megawatt-level EVCSs consider
the infrastructure requirements for a few fast or ultra-fast DC
chargers [2]–[4], where the systems’ compactness does not
play an important role. One of the few literature examples,
which addresses the hardware requirements of a large EVCS,
considers a relatively spacious environment such as an airport
parking [5].

This paper addresses a special grid interface topology
that is particularly interesting for large scale EVCSs in
space-constrained urban areas, as it has the potential to
significantly reduce the footprint and the requirements for
the internal electrical installations. This topology is based on
a modular multilevel converter (MMC) where each module
supply voltage at floating potential to a single wireless
charging unit (WCU) [6]. An overview of the studied
configuration is shown in Fig. 1. In such a configuration the
overall system load is expected to be unevenly distributed
between the arms due to the heterogeneous presence and
demand of the hosted EVs. However, for the system to
remain connected to public grid, it is necessary to keep
the three-phase grid current balanced and sinusoidal despite
the loading unbalances between MMC phases and arms.
Moreover, loading unbalances between the modules of a
single arm may require high circulating currents within the
MMC topology to avoid voltage collapse or over-voltage in
the MMC modules [6], [7].

It is demonstrated in [6] that limitation of the internal load
unbalance can significantly reduce the required circulating
currents and the corresponding losses associated with the
active balancing control. Furthermore, it is shown in [8]
how distribution of a required charging load over a longer
period of time also can help to reduce the required balancing
effort while leading to increased utilization of the installed
power capability of the infrastructure. Thus, it is clear that
the operation of the studied EVCS topology can significantly
benefit from the implementation of an appropriate load
management (LM) strategy.

For other EVCS topologies with similar constraints,
previous studies have explored how the temporal flexibility
of the load can ease the unbalance problem. For instance,
a virtual SOC is introduced in [9], as a metric for representing
the aggregated flexibility of a particular MMC arm, which
is then utilized for optimizing the power management.
However, the previous studies neglect the heterogeneity
of the arrival and departure times of the individual EVs
in the management and do not consider the possibility to
allocate arriving vehicles within the studied topology. Thus,
the previously published approaches do not fully utilize
the flexibility that can be achieved by LM. To exploit
all controllable features, this paper introduces a modified
implementation of the optimization-based LM strategy pro-
posed in [10]. This strategy, for simplicity referred to in the
following as ‘‘optimal LM,’’ optimizes the distribution of the
charging load in the MMC arms by controlling the charging
schedules and by allocation of an incoming EV to a charging
unit within a specific arm. The strategy consists of three

FIGURE 1. Proposed connection layout of large charging infrastructure
for wireless EV charging with MMC-based grid interface [6].

optimization models that respectively optimize the charging
schedules (optimal scheduling), distribution of the vehicles
among the MMC arms (optimal allocation) and short-term
power references of the individual charging units (optimal
intervention).

The performance of the optimal LM strategy is com-
pared to a rule-based benchmark strategy, which does not
optimize the charging profiles and the distribution of EVs
into the MMC arms. The comparisons demonstrate that
identical scenarios can be handled with smaller phase-to-
phase and arm-to-arm unbalances thanks to the optimal LM
strategy. As the unbalance that a real system can tolerate
would be limited by its current rating and the allowable
additional losses due to the balancing control, the unbal-
ance reduction enabled by the optimal LM translates into
increased energy supply in identically constrained scenarios.
Hence, the proposed strategy promises increased revenue
for EVCS operators and higher demand fulfillment rates for
EV users.

This study combines the optimal LM strategy with a
power flow management (PFM) in a cascaded fashion. For
a given event scenario, that is arrival/departures of EVs
with certain charging demands, the optimal LM finds the
loading scenario that will minimize the phase-to-phase and
arm-to-arm unbalances; for the loading scenario given by
the optimal LM, the PFM produces the required circulating
currents to ensure three-phase balanced and sinusoidal grid
current and voltage balance between the modules within the
MMC arms. In this paper, the PFM algorithm introduced
in [6] is used with the following modification: a look-up
table based approach is preferred for calculation of intra-
arm balancing. The look-up table contains the optimal values
of second harmonic circulating current for a finite number
of intra-arm unbalance scenarios. This enables intra-arm
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balancing without solving a non-linear optimization problem
in real-time.

A real-time (RT) simulation setup is introduced to emulate
the system operation of an MMC-based EVCS where
both LM and PFM are implemented, and this serves as
validation for the proposed management concept. With
RT simulations, the capability of the look-up table-based
approach for intra-arm balancing is also investigated. The
simulation results indicate that the combined LM and PFM
management strategy maintains the three-phased balanced
grid current and voltage balance in the daily operation of the
example shopping mall EVCS scenario and thus validate the
practicability of the combined strategy.

The contributions of this work can be summarized as
follows. First, all controllable features in an MMC system
are exploited in EV charging context. Second, to reduce the
computation requirement for calculating the second harmonic
component of the circulating current required for handling
intra-arm unbalance, a look-up table-based approach is
introduced. Third, the overall operation of a controlled
system is validated via RT simulations to demonstrate the
practicability of the introduced management strategy. To best
of the authors’ knowledge, this paper presents the first work
that exploits all controllable features of an MMC-based
EVCS in a LM strategy and validates the practicability of the
strategy via RT simulations.

II. CHARGING FACILITY WITH MODULAR CONVERTER
BASED GRID INTERFACE
In the reference topology, which is depicted in Fig. 1, the
series connection of several LV modules allows for direct
connection to distribution systems at medium voltage levels.
Each phase of theMMC topology consists of upper and lower
arms that are connected between the phase and the positive
and negative star-points, respectively.

The topology illustrated in the Fig. 1 relies on EV
charging by WCUs based on inductive power transfer,
with one charger being supplied by each of the MMC
modules. The WCUs are assumed because their inherent
galvanic isolation, which will separate the EVs to be charged
from the floating electrical potential of the MMC modules
[6], [7]. Furthermore, utilization of WCUs can be a preferred
solution in terms of user convenience [11] and space coverage
in a parking. However, the same topology could also be used
for plugged charging units with dedicated galvanic isolation.
Thus, the particular technology for charging the individual
EVs from the modules of the MMC topology is not within
the scope of this work. For the sake of generality we will refer
to the charging equipment in the MMC modules as charging
units (CUs).

As can be seen in Fig. 1, an MMC-based charging configu-
ration enables transformer-less connection to the distribution
grid, and consequently reduces the space requirements and
system costs of the large-scale EV charging infrastructure.
For the system to remain connected to public grid, it is
necessary to keep the three-phase grid current balanced

and sinusoidal despite expected loading unbalances between
MMC phases and arms. To enable stable grid connection,
a proper control strategy is required to ensure balanced grid
current while regulating the average value of the capacitor
voltage in all the modules. Due to the requirement for
handling internal unbalances, the control strategy proposed
in [6] could also be easily adapted for operation under
unbalanced ac grid voltage conditions, as long as the load
can be supplied within the current rating of the grid interface.
As the studied topology is in essence a Voltage Source
Converter (VSC), the converter can also easily control its
ac-side currents under severe grid faults. Thus, the main
challenge for protection of the proposed topology against
ac-side faults is the design and implementation of strategies
for limiting the arm currents to safe values while considering
the internal balancing requirements.

Protection of the studied topology against internal faults
can be more challenging than protection against grid-
side faults. However, previous works such as [7] and [6],
recommend to operate the system with a relatively high
voltage redundancy. This implies operation with a total
available capacitor voltage in each arm that is higher than
the peak ac-side voltage. Such a redundancy can also enable
handling internal faults in individual MMC modules or CUs,
without interrupting the overall system operation thanks to
the modular structure. Indeed, any faulted module or CU can
be easily bypassed, and a high voltage margin implies that
the system can continue operation with one or more faulted
modules without the need for increasing the average capacitor
voltage.

Since the studied topology is intended for large-scale
charging facilities that can accommodate several hundreds
of EVs, it also has a significant potential for providing
vehicle-to-grid (V2G), or vehicle-to-vehicle (V2V) ser-
vices. In broader context of V2G functionality, the usual
challenges are the lack of standards, cyber-security and
battery degradation. In case of an MMC-based system,
there exist also topology related challenges. Thus, due
to its unbalance limitations, the feasible V2G discharge
potential of an MMC-based system can be smaller than
the summation of individual discharge potentials of the
participating EV batteries. Avoiding such limitations would
require over-rating of the installation to allow for the higher
circulating currents that would be needed for the internal
power balancing control. Nevertheless, in scenarios with
highly regular arrival/departure profiles such as residential
garages, limitations to the operation due to these constraints
can usually be avoided by proper LM. In this paper, though,
only unidirectional charging is considered.

III. LOAD MANAGEMENT
For management of MMC-based charging facilities three
constraints must be considered. i) The power supplied to each
EV is limited due to the nominal power rating of the charging
units. ii) The battery capacities of the EVs are limited
and state-of-charge (SOC) of the batteries increase during
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charging. iii) The circulating currents that compensate phase-
to-phase, arm-to-arm and intra-arm unbalances are limited
by the system components such as cables and switching
devices in the MMC-based electrical installation. Among the
mentioned constraints, i) and ii) exist in any EV charging
control problem; many authors in the literature proposed
alternative techniques such as linear programming [12],
stochastic dynamic programming [13], and machine learn-
ing [14], all taking into account these constraints. On the
other hand, iii) is specific for MMC-based EVCSs. The
unbalance limitations determine the power supply capability
of the system. Since an EV reaching full SOC affects the load
distribution in the system and, thus, the future unbalances, the
problem addressed in this work is more complex than most
EV charging coordination problems.

The literature provides some references to deal with similar
unbalance issues in multi-sectional networks. The authors
of [15]–[18] propose scheduling strategies to minimize the
three phase unbalances in LV networks with single phase
residential connections. However, the MMC-based topology
presents a unique problem since not only phase unbal-
ances (horizontal) are problematic but also the unbalances
between the arms of the same phase (vertical) and the
modules of the same arm (intra-arm).

To limit the complexity in LM, this paper suggests
to decouple the overall problem by the same approach
considered in [10]. The referenced LM strategy considers a
generic topology where CUs in a large EVCS are clustered
and clusters are fed through dedicated feeders, each having
its own load factor limitation. The strategy optimizes the
distribution of the charging load over charger clusters in
order to prevent the clusters from local overloading, which
occurs while other clusters have a large margin for additional
demand. The reference strategy combines three optimization
models that, respectively, optimize the charging schedules
(optimal scheduling), distribution of the vehicles among the
charger clusters (optimal allocation) and short-term power
references of charging units (optimal intervention).

In this work, MMC arms are deemed as charger clusters.
However, they do not have an inherent load factor constraint
as assumed in the referred work. Instead, the unbalances
between the MMC arms are operational constraints. There-
fore, the strategy from the referred work was modified
with additional constraints. In the modified strategy, once
an EV arrives in the charging facility, firstly a reference
schedule is determined based on the actual and desired
SOC, energy capacity of the EV battery and estimated
departure time (scheduling). By considering the reference
schedules of all EVs in the system, the optimal position
(i.e. an MMC module) is selected for the incoming EV
(allocation). The scheduling and allocation optimizations
are executed sequentially upon the arrival of a single EV.
In addition, the LM strategy includes another optimization
model that controls the real-time ratings of the chargers
considering the individual references of the allocated cars and
the unbalance limitations of the MMC (intervention). The

intervention model is executed periodically with the actual
optimization parameters.

A. OPTIMAL SCHEDULING
When an EV arrives in the charging facility at time tA, it is
assumed that the current state of charge s∗(tA) and the energy
capacity E of the vehicle battery are communicated to the
charging station operator (CSO). In addition to s∗(tA) and
E , the user declares an estimate for the departure time tD.
Optionally, the user may specify a target SOC level for the
departure s∗(tD). If s∗(tD) is not specified, it is assumed that
the EV owner aims at 100% SOC. In this work, it is assumed
that all mentioned parameters are accurately known.

With the given parameters, the CSO calculates the refer-
ence schedules p∗ = ( p∗(t) p∗(t+1t) ... )T over a scheduling
horizon t ∈ [tA, tD) discretized by 1t . In the vector p∗, each
p∗(t) is an optimization variable that represents the power to
be supplied to the EV at a time interval t . The scheduling
optimization produces also the reference SOCs for particular
t steps, s∗(t), which are in effect dependent upon p∗:

0.0 ≤ p∗(t) ≤ PC (1)

s∗(t +1t) = s∗(t)+
p∗(t) · η ·1t

E
(2)

0.0 ≤ s∗(t) ≤ 1.0 (3)

It is assumed that the CUs in each MMC module have
the capability of modulating power between 0 and its power
rating, PC . The supply capability of a charger is expressed
with the constraint (1). In (2)-(3), s∗(t + 1t) and s∗(t)
represent the SOC in successive time intervals. (2) and (3)
ensure respectively that SOC increases according to the
supplied energy at each time interval and that energy capacity
of the EV battery is respected. With the given charger rating
and time, the SOC must be increased from s∗(tA) to s∗(tD).

The optimization objective of the schedules problem
is minimizing the charging cost. Therefore, the power is
weighted with the time-depending electricity price κ(t) in the
objective function:

min
tD∑
t=tA

κ(t) · p∗(t) (4)

The calculated p∗ and s∗ are passed over to the optimal
allocation model as optimization parameters.

B. OPTIMAL ALLOCATION
The relationship between the circulating current and the
horizontal, vertical and intra-arm unbalances are highly
nonlinear. In order to build a scalable optimal allocation
model two assumptions were considered. First, the impact
of the intra-arm unbalances can be neglected in allocation
decisions because the proper voltage redundancy in theMMC
arms enables module voltage stability independently from
the intra-arm distribution of the load. Second, the principle
that the less unbalance leads to the less circulating current
applies almost always; the local exceptions to this rule occur
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rather temporarily without affecting long-term operational
objectives of the system and, thus, can be neglected.

Based on the aforementioned assumptions, the allocation
model that was presented in the previous work of the
authors [19] was adopted. The adopted model neglects
intra-arm unbalances and considers only the power unbalance
between the phases (horizontal) and the arms of each
phase (vertical) as the system constraints rather than the
circulating currents. The reference schedules p∗ calculated
through (1)-(4), are used as optimization parameters in the
allocation problem.With l indexing the leg (phase), a the arm
and n the module, a particular MMC module is represented
by l, a, n. Since the position in a particular arm does not affect
the horizontal and vertical unbalances, the allocation options
are represented by six binary variables xl,a, each indicating
allocation a particular arm:

3∑
l=1

2∑
a=1

xl,a = 1 (5)

xl,a + Il,a ≤ N (6)

Above (5) ensures allocation to only one of the MMC
arms. Il,a is an integer parameter which indicates the number
of connected EVs in the arm l, a. With N representing the
number of modules in an arm, (6) ensures that the incoming
EV is sent to an MMC arm with a vacant module. With
p∗l,a,n(t) being the reference schedule of the EV connected
in the module l, a, n and p∗(t) the schedule of the incoming
EV, the arm power and power become respectively p∗l,a(t) and
p∗l (t) after the allocation:

p∗l,a(t) = p∗(t) · xl,a +
N∑
n=1

p∗l,a,n (7)

p∗l (t) = p∗l,1(t)+ p
∗

l,2(t) (8)

The objective of the optimization model is the minimiza-
tion of the total cumulative unbalance of the system over
the optimization horizon t ∈ [0,T ). The unbalance term
u = ( u(t) u(t+1t) ... u(T−1t) )T , aggregates the total vertical
unbalances (the load difference between upper and lower
arms of the phases) and horizontal unbalances (the load
difference between the phases of the MMC:

u =
3∑
l=1

| p∗l,1 − p
∗

l,2 | +
∑

l1 6=l2∈{1,2,3}

| p∗l1 − p
∗
l2 | (9)

min
T∑
t=0

u(t) (10)

By solving the optimal allocation problem, the MMC arm
to allocate the incoming EV is identified. Since the position
in a particular arm does not affect the horizontal and vertical
unbalances, a random module is selected to connect the EV.
After module selection, the reference SOC s∗ calculated for
the incoming EV at the scheduling step becomes the reference
SOC of the connected MMC module, s∗l,a,n.

C. OPTIMAL INTERVENTION
The model for the optimal intervention is, in essence,
a reference tracking algorithm that enforces the unbalance
constraints of the MMC while adjusting the charging rates of
all CUs in the real-time operation. These adjustments ensure
that the loading unbalance is always kept within the tolerable
limits while the references schedules are tracked as long as
possible. The optimal intervention problem is formulated as
a model predictive control (MPC) problem. In this problem
real time charging rates of the MMC modules, pl,a,n(t), are
the main control variables and the SOCs of the connected
cars, sl,a,n(t), are the state variables which evolve according
to pl,a,n(t) and the energy capacity of the EV batteries, El,a,n:

sl,a,n(t +1t) = sl,a,n(t)+
pl,a,n(t) · η ·1t

El,a,n
(11)

socl,a,n(t) variables are upper and lower bounded with the
same constraint as given in (2). Equation (1) was modified
slightly in order to limit the charging power of the MMC
modules with respect to presence of the connected cars.
Bl,a,n(t) is the binary presence parameter that has the value
of 1 at the time steps before the departure tD of the connected
car and 0 at the later time steps:

0.0 ≤ pl,a,n(t) ≤ Bl,a,n(t) · PC (12)

The individual module powers aggregate into the arm,
pl,a(t), and phase pl(t) powers, as shown in (13-20). The
vertical and horizontal unbalance constraints, (15-16), are
expressed in normalized terms with respect to the arm and
power capacities. For example, the selection (β = 10%)
means that the system is allowed to tolerate vertical and
horizontal unbalance up to 10% of the arm and phase power
capacities respectively:

pl,a(t) =
N∑
n=1

pl,a,n(t) (13)

pl(t) = pl,1(t)+ pl,2(t) (14)

−β · N · PC ≤ pl,1(t)− pl,2(t) ≤ β · N · PC (15)

−β · 2N · PC ≤ pl(t)− pm(t) ≤ β · 2N · PC (16)

It is important to note that variations in the efficiency of
the converter in each module and the corresponding charging
units due to the operating point are neglected in the control
model. Therefore, it is assumed that the system can perfectly
transfer any calculated pl,a,n(t) as long as the unbalance
constraints are respected.

The objective function consists of as many elements as
the number of modules in the MMC system. This function
models the deviation from the reference SOC schedules
separately at the individual level while penalizing the
aggregated deviation from the reference schedules s∗ at the
end of an optimization horizon T :

min
3∑
l=1

2∑
a=1

N∑
n=1

∣∣s∗l,a,n(T )− sl,a,n(T )∣∣ (17)
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where s∗l,a,n(t) is the reference SOC of the EV connected to
the module l, a, n at a time interval t .

IV. POWER FLOW MANAGEMENT
This section introduces the methodology to achieve
three-phase balanced and sinusoidal grid currents and voltage
balancing among all the modules of the three phase MMC
charging infrastructure. The circulating current can be
controlled independently in each phase and is composed of
dc-, fundamental frequency and second harmonic frequency
components. These components enable compensation of
horizontal, vertical, and intra-arm unbalances respectively.

As commonly preferred in MMC literature, such as [20],
this paper utilizes 6 and 1 notations to simplify mathemat-
ical expression of the control variables and interpretation of
the balancing requirements. Thus, the loading of the studied
topology is expressed by:

p6l =
pl,1 + pl,2

2
(18)

p1l =
pl,1 − pl,2

2
(19)

where pl,1 and pl,2 indicate, respectively, the power of the
upper and lower arms of phase l. For the sake of simplicity,
the terms are referred to as 6 and 1 components of the
respective quantities such that p6l is mentioned as the 6
component of the phase power of l.

A. COMPENSATION OF HORIZONTAL UNBALANCE
Compensation of horizontal unbalance can be achieved by
introduction of a dc circulating current [21], [22]. Assuming
balanced grid voltages, the power absorbed from the grid
should be divided equally between the three phases. In case of
a power mismatch between the three phases, a dc circulating
current is required to compensate the horizontal unbalance:

idcl =

2∑
a=1

pl,a − 1/3
3∑
l=1

2∑
a=1

pl,a

2
2∑

a=1
vl,a

(20)

In this equation, vl,a is the voltage of the associated arm. The
sum of dc components of the three phases is equal to zero,
since the studied topology does not have a DC link terminal.
Therefore, the dc component of circulating current allows the
power to be transferred from one phase (leg) to another. It can
be interpreted from equation (20), that distributing the load
equally between the three phases will minimize the required
dc component of circulating current.

B. COMPENSATION OF VERTICAL UNBALANCE
Compensation of vertical unbalances requires independent
power flow between upper and lower arms of each phase. The
fundamental frequency component of the circulating current
enables power exchange between the upper and lower phase
arms. In [6], the fundamental frequency components required
for compensating given vertical unbalances is defined as a

function of aggregated arm powers pl,a. The referred work
applies 6/1 notations to derive the expression for required
fundamental frequency component in terms of symmetrical
components as follows:

Re(i6+ω) = −
1
v̂g
·
p11 + p

1
2 + p

1
3

3
(21)

Re(i6−ω) = −
1
v̂g
·
2p11 − (p12 + p

1
3 )

3
(22)

Im(i6−ω) =
1
v̂g
·

1
√
3
· (p12 − p

1
3 ) (23)

where i6+ω and i6−ω, respectively, represent positive and
negative sequence components of fundamental frequency
circulating current. The equation (21) indicates that the
real part of the fundamental frequency positive sequence
circulating current, Re(i6+ω), relates to the overall vertical
unbalance in the system. From (22) and (23), it follows
that the real Re(i6+ω) and imaginary parts Im(i6+ω) of the
fundamental frequency negative sequence circulating current
compensate the vertical unbalances in different phases.

C. INTRA-ARM CAPACITOR VOLTAGE BALANCING
According to [6], for the average voltage across the module
capacitors to remain stable, following condition must hold:

1
Ti

∫ Ti

0

il,a +
∣∣il,a∣∣

2
.dt ≥ km.

pMl,a
vl,a

(24)

where is Ti the fundamental period. Within Ti the module
loads are assumed to be constant. In this equation, km is the
necessary redundancy factor that serves as a safety margin for
the non-modeled losses and the delays in the control. pMl,a is
the maximum load of the modules in arm l, a and vl,a the
DC-link voltage. With il,a being the arm current, il,a+|il,a|

2
in (24) represents the positive values of the arm current with
an ideal insertion index, which only allows charging current
to flow into the capacitor from ac-side to the dc-side.

In most MMC applications such as [23], conventional
sorting algorithms can guarantee nominally identical capac-
itor voltages. However, in the studied application, modules
within a single arm can have considerably different loading.
To ensure the condition in (24) is fulfilled, the authors of [6]
propose to add a second harmonic component il,2ω to the arm
current as follows:

il,a(t) = il,dc + Re(il,a,ω · ejωt )+ Re(il,2ω · ej2ωt ) (25)

In certain cases, when the arms are highly loaded, the
dc and fundamental frequency components are sufficient to
satisfy the charge balance equation (24). However, when the
intra-arm unbalances are significant, an additional second
harmonic current needs to be injected to fulfill the necessary
voltage stability condition. Since il,2ω leads to losses during
the operation, the intra-arm balancing problem is defined as
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an optimization problem:

minf (x) =
3∑
l=1

∫ Ti

0
|il,2ω(t).dt| (26)

x = [il,2ω] = [Re(il,2ω), Im(il,2ω)] (27)

p = [pl,a, pMl,a] (28)
3∑
l=1

Re(il,2ω) = 0 (29)

3∑
l=1

Im(il,2ω) = 0 (30)

In the optimization model (26)-(30), f (x) is the objective
function minimizing the absolute value of total second
harmonic current, and x represents the optimization variables
comprising of the real Re(il,2ω) and imaginary Im(il,2ω)
parts of the second harmonic current of each phase. The
optimization problem is a function of twelve parameters
in p, including the aggregated power of each arm and the
maximum existing load power in each arm.

By representing the necessary condition for module
voltage stability with the maximum load in each arm, the
rule (24) fulfills the stability condition for the rest of the
modules within the arm. Therefore, the inequality (24) is
an optimization constraint. The equality constraints (29)
and (30) enforce Kirchhoff current law for the real and
imaginary part of the second harmonic circulating current.

This convex optimization problem can be solved using
interior point method. However, by taking into account the
computation power constraints, this paper applies a look-up
table based approach to calculate required second harmonic
components in the real-time operation. The details of the
implementation of circulating current control is presented in
section V alongside with the real-time simulation setup.

V. REAL-TIME SIMULATION SETUP
The modular charging system of Fig. 1 was first modeled
in MATLAB-Simulink. This model was then split into
multiple subsystems so as to be compatible for simulations
in real-time using the real-time digital simulator OP5707
from OPAL-RT [24]. For the purpose of real-time simulation,
the model has been split into four subsystems including
the Graphical User Interface (GUI) subsystem and the
three computational subsystems consisting of the control,
modulation and electrical circuit subsystems. The MMC
and the MV grid is modelled in the electric subsystem.
Each computational subsystem is executed in real-time on
one of the Central Processing Unit (CPU) cores of the
real-time digital simulator target OP5707. Data exchange
between computational subsystems is synchronous through
shared memory and it is asynchronous between the GUI
subsystem and computational subsystems. Figure 2 shows the
aforementioned subsystems of the simulation.

Computational subsystems are executed with a fixed
time-step and in order for the simulation to be executed in

FIGURE 2. Overview of real-time simulation model subsystems.

real-time, the simulation output from each of the compu-
tational subsystems should be available for the rest of the
computational subsystems by the end of this fixed time step.
A longer computation time than the associated time step will
result in loss of data.

The electrical circuit subsystem, specifically the MMC
and its switching frequency limit the maximum time step.
For real-time simulation to be feasible, the computation
time in modulation and control subsystems must be smaller
than this limit. The computation tasks performed by the
modulation subsystem are not computationally complex
and thus, do not influence the selection of the time step.
In the control subsystem, two of the functions, dc and
fundamental frequency component calculations are rela-
tively trivial. However, the second harmonic component is
calculated by solving a non-linear optimization problem,
which may require long computation times in certain loading
scenarios.

Selection of a constant time-step that is sufficiently large
to calculate the required second harmonic current in all
possible scenarios would require a very large time step and
this might be an hindrance to simulate the system in real-time.
Therefore, to achieve a small and comparatively constant
computation time for different arm loading values in the real-
time operation, a look-up table was deployed that contains
the optimal values of second harmonic circulating current
for a finite number of states i.e. MMC loading scenarios.
To generate the look-up table, N opt number of optimization
problems have to be solved offline:

N opt
= (k1 × k2)6 (31)

In (31), k1 is the number of discretized states of each input
loading power parameter of the look-up table and k2 is the
number of discretized states of maximum module power for
each arm. As stated in Section IV-C, the optimal values of the
second harmonic components depend on 12 input parameters:
pl,a and pMl,a of each arm. To decrease the required N opt ,
we assume a constant pMl,a of 1pu in (24), which represents
the worst case scenario, i.e. a scenario in which the maximum
second harmonic component of the circulating current is
required to be compensated. This selection ensures that,
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FIGURE 3. Look-up table visualisation.

despite some inefficiencies in the operation, module voltages
are kept stable in all loading scenarios.When pMl,a are removed
from the optimization problem, (28) and (31) reduce to the
following respectively:

p = [p6l,a] (32)

N opt
= k61 (33)

In this selection, the look-up table is a 6-dimensional (6D)
matrix. For the sake of visualization, Figure 3 illustrates
the structure of the look-up table as two nested cubes
(3D matrices), where the outer cube represents the states
of upper arm powers pl,1 and inner cube for lower arm
powers pl,2.

It is important to note that, in theory, there exist an
infinite number of states in the continuous operating range
of MMC modules while a look-up table can only contain
a finite number of states. The optimal second harmonic
values for the non-simulated operating points, which reside
between two states in the look-up tables, are interpolated
with nearest neighbor interpolationmethod [25]. This method
assigns the output value of an input, that is not among
the pre-calculated input states to the nearest data point that
exists in the look-up table. This method does not necessarily
provide themost accurate interpolated value for each scenario
but as it inherently removes the risk of diverging from the
optimized curve, it is found to be a robust method for this
application.

Deploying a look-up table in the control subsystem
rather than having to solve optimization problems makes it
possible to obtain the required second harmonic currents in
significantly shorter time period, allowing for the real-time
simulation of the systems with larger scales. On the other
hand, such simplification results in higher second harmonic
injection than the optimal value, which could be obtained by
solving the original optimization problem (26)-(28) in certain
cases.

Figure 4 shows the difference between the second har-
monic current calculated by the optimization and interpolated
values from the look-up table with nearest neighbor interpo-
lation method for a sample case of p. In the tested case, the
loading of all arms except p1,1 are kept constant at certain pu
values and the value of p1,1 is varied within 0 ≤ p1,1 ≤ 1pu
such that p = [p1,1, 0.1, 0.2, 0, 0.5, 0.7]. The dashed line

TABLE 1. Summary of the charging system parameters.

shows the optimized value and the continuous line shows
the interpolated values. As can be seen in this figure, the
interpolated second harmonic value deviates slightly from
the values obtained by solving the optimization problem.
In section VII, it is demonstrated that the look-up table
based second harmonic values can still ensuremodule voltage
stability.

VI. TEST SCENARIO
A. USE CASE SPECIFICATION
We tested the proposed management strategy in a scenario
taking place in an example shopping mall parking on a
Saturday. The tested scenario was generated by sampling
542 EVs from hypothetical models ModelA, ModelB, Mod-
elC with respectively 55 ,40 and 32 kWh battery capacities;
the batteries of these models can be charged with maximum
22 ,12 and 7 kW power respectively. Random arrival and
departure times were assigned to each EV such that their
parking duration ranges between 2-4 hours. The generated
scenario starts with a vacant parking; the first EV arrives at
12:00 and the last one leaves at 21:05. In this period, each
EV visits the parking only once with an arrival SOC ranging
between 40%-90%.

B. TOPOLOGY PARAMETERS AND SIMULATION MODELS
A charging infrastructure that consists of 300 MMCmodules
(50 per arm) is considered in the simulations. Each of the EV
chargers have 22 kW power rating. Table 1 summarizes the
parameters of the considered electrical installation.

The scenarios are simulated in Python by neglecting the
uncertainties in SOC measurement of the EV batteries and
considering that the SOCs increase according to (11) as long
the power rating of the chargers are respected. Furthermore,
the arm power equations (13) are considered to hold true
as long as the unbalance stays in the limits defined by the
tolerance β.

C. IMPLEMENTATION OF THE OPTIMIZATION MODELS
The optimization models are implemented by using the
library Pyomo [26]. In the simulated cases, the time dis-
cretization,1t , of 5min is selected for all three optimization
models. The optimization horizon for optimal allocation
problem in these tests are 4 hours as it is the maximum
parking duration of the EVs in the shopping mall park. The
horizon for optimal intervention is limited by 1 hour since the
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FIGURE 4. Comparison of optimized and interpolated second harmonic current amplitude.

given conditions can significantly change by the introduction
of new cars in the system in few hours. The problems are
solved by using the optimization solver CPLEX [27].

D. BENCHMARK LM AND PERFORMANCE METRIC FOR
EVALUATION OF THE PROPOSED LM
In the following sections the performance of the proposed
optimization-based LM is evaluated. For the sake of simplic-
ity, this strategy is referred to as optimal LM (O-LM) in the
discussions. This section defines a benchmark LM (B-LM)
strategy to evaluate the performance of O-LM.

The B-LM is a rule-based strategy. In B-LM, the charging
profiles are not scheduled and therefore, the EVs start
charging immediately after the connection. An incoming
EV is allocated to one of the modules in the arm that
accommodates the least number of EVs at the moment of
arrival. It is important to note that, unlike the O-LM, the
B-LM takes the allocation decisions without considering
the future loading. Likewise, the B-LM does not have a
forward-looking selective approach to intervene the load
when the unscheduled charging denotes an unbalance that
exceeds the tolerable limit β. In this case, the power
of the arms that cause excessive unbalance are reduced
by modulating each module with the same factor without
distinguishing the demands and departures of the connected
EVs.

To quantify the performance of alternative LM approaches
we define a metric eσ that measures the cumulative energy
that is transferred to the EV batteries in a given scenario
taking place within a simulation horizon of [t0, tF ]:

eσ =
t=tF∑
t=t0

3∑
l=1

2∑
a=1

N∑
n=1

pl,a,n(t) · η ·1T (34)

VII. SIMULATION RESULTS
A. NUMERICAL SIMULATIONS
To investigate the impact of applied LM strategy on loading
unbalances, we analyzed the arm and phase power profiles
by applying both benchmark and optimal LM in the scenario
that is introduced in Section VI-A. For this analysis,
we allowed unlimited horizontal and vertical unbalances in
the simulations by selecting β = 100% in (15) and (16).
The resulting powers of the MMC arms in benchmark and
optimal LM cases are plotted in Fig. 5. Fig. 6 and 7 depict,
respectively, the absolute values of the horizontal and vertical
unbalances observed in these simulations.

According to the simulation results, whenB-LM is applied,
the horizontal unbalance between phases often exceeds
100 kW reaching 214 kW (between phases 1 and 3) at
14:50. On the other hand, the maximum unbalance between
two phases observed in O-LM is 58 kW. Likewise, the
O-LM keeps the vertical unbalance always under 55 kW
whereas the vertical unbalance exceeds 110 kW several times
in B-LM. The simulation results illustrated in Fig. 6 and
Fig. 7 denote the clear superiority of O-LM over B-LM
in terms of loading unbalance. In a real-world deployment,
the balancing capability of an MMC system is determined
by the switching devices and cables; unbalances exceeding
the system capabilities are rejected in order to maintain the
balanced grid current. Therefore, unbalance reduction can
translate into an increase in supplied energy. To evaluate
the impact the optimal LM in this aspect, we applied it in
scenarios with pronounced unbalance limitations.

To quantify the performance in an objective way, we com-
pared energy supplied by B-LM and O-LM in large number
of scenarios. To this end, we modified the original scenario
presented in Section VI-A by shifting the arrivals/departures
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FIGURE 5. Arm powers in B-LM and O-LM.

FIGURE 6. Horizontal unbalances in B-LM and O-LM.

FIGURE 7. Vertical unbalances in B-LM and O-LM.

of randomly selected EVs by ±5 minutes without changing
the arrival/target SOC and parking duration. 100 unique but
similar scenarios were obtained through these modifications.
These scenarios are referred to as modified scenarios in the
discussions. We simulated each modified scenario for the
selection of β = 0% and β = 2%. It is important to note that
the selection β = 0% indicates the requirement of a strict
balancing between MMC-arms. In β = 2%, the maximum
allowed arm-to-arm unbalances is 1/50 of the installed power

of an MMC arm, which accounts for the power rating of a
single CU in our scenario.

The comparisons indicate that, in scenarios under 0%
unbalance tolerance condition, O-LM gives 2%-15% rise to
the supplied energy. The impact of selected management
strategy on eσ gradually decreases with the relaxation in
unbalance tolerance. Under β = 2% in 73% of the
scenarios, the O-LM enables 1-3% supply increase; in the
rest of the scenarios the improvement is within 3-5%.
Figure 8 shows the histograms of cumulative energy supply
in 100 modified scenarios for two cases where unbalance
is critically constrained i.e. β = 0% and β = 2%.
In the zero-tolerance to unbalance case, which is shown in
Figure 8(a), the frequency distribution of B-LM is relatively
symmetrical; on the other hand, the graph of O-LM is highly
skewed to the right. The histograms of both strategies for
β = 2% case, Figure 8(b), are concentrated into high
supply intervals. Nevertheless, the supply in B-LM ranges
between 9450-9850 kWh interval while it is always within
9850-9900 kWh range in O-LM. These results indicate that
the performance B-LM is affected significantly when the
arrival/departure times shift by ±5 minutes whereas the
O-LM’s response is greatly uniform under such variations.

The numerical simulations show that the benchmark LM
can guarantee 9900 kWh energy supply in all scenarios in
case of β = 10% -which optimal LM guarantees in case
of β = 2%. In practice, larger unbalance tolerance can be
obtained only through a corresponding over-sizing of system
components such as larger cable cross-sections. Therefore,
these results also clarify the importance of the LM strategy
for the system sizing and investment costs.

B. REAL-TIME SIMULATIONS
To demonstrate that the optimal LM is suitable to operate
the MMC-based EVCS, we applied it together with PFM
that controls the circulating currents to achieve three phase
balanced and sinusoidal grid current and module voltage
stability. With the setup depicted in Fig. 2, we performed
RT simulations for the case that allows for 10% vertical and
horizontal unbalances. The reason underlying this selection
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FIGURE 8. Energy supply histograms in 100 modified scenarios.

is to test the function of PFM in a scenario where loading
unbalances can be significant. In RT-simulations, we investi-
gated the intra-arm balancing capability (i.e. module voltage
stabilization) of the look-up table approach as well as the
horizontal and vertical balancing capability of the PFM
algorithm. To this end, we compared the scenarios i) without
injection of the second harmonic circulating current versus
ii) with second harmonic current calculated by using the
look-up tables.

Fig. 9 shows the minimum module voltages observed in
RT-simulations. As can be seen in Fig. 9(a), without proper
injection of the second harmonic circulating current, the
module voltages frequently drop to zero. Clearly, the system
is not operable in this case. On the other hand, when the
intra-arm a second harmonic current specified by the look-up
table is injected, the PFM guarantees the stability of module
voltages in each arm as illustrated in Fig. 9(b).
We investigated the impact of the system operation in

fully controlled scenario -with LM controlling load and
PFM algorithm compensating the unbalances- on the current
drawn from the MV grid. The grid current wave-forms,
Iabc, are observed in the RT simulations. Fig. 10 depicts
the daily profiles of the currents drawn by the MMC from
the grid. Identical amplitude of the three phases of the
grid currents throughout the simulation horizon verifies the
function of horizontal and vertical load balancing controls.
To observe the wave-forms of the grid current and voltage,
we plotted the observed values of these quantities for few

FIGURE 9. Minimum module voltage.

FIGURE 10. Grid current in each phase of the grid in daily operation of
MMC-based EVCS.

FIGURE 11. Wave-forms of the grid current and voltage for few
fundamental periods in highly unbalanced case.

fundamental periods after 16:30 where the highest unbalance
load occurs in the O-LM scenario. The perfectly balanced
sinusoidal current wave-form depicted in Fig. 11 demonstrate
the balancing capability of the PFM.

VIII. CONCLUSION
This paper presents a load management (LM) strategy for
the large-scale electric vehicle (EV) stations with a grid-side
interface based on a modular multilevel converter (MMC)
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topology. In this strategy, the charging profile of an incoming
EV is optimized with the goal of charging cost minimization
(optimal scheduling). Based on this schedule, the EV
is allocated to an MMC arm in a way that minimizes
horizontal (between MMC phases) and vertical (between
arms of the same phase) unbalances over a future horizon
(optimal allocation). During the operation, the system tracks
the schedules set forth by optimal scheduling under the
unbalance constraints of the MMC considering (optimal
intervention).

To assess the performance of the proposed LM strategy,
several scenarios representing the operation of a typical
shopping mall parking facility are generated and simulated.
The results obtained in these simulations are compared
with those of a benchmark LM approach, which does
not control the schedules and allocates the EVs to the
arms with minimum number of connected EVs without
considering the loading unbalances. The comparisons show
that optimal LM reduces vertical and horizontal unbalances
significantly. Thanks to the unbalance reduction enabled
by the optimal LM, the supply potential of the system
increases by up-to 15% in certain scenarios where the system
rejects all horizontal and vertical unbalances. Furthermore,
optimal LM prove to respond consistently to nearly identical
scenarios while the benchmark LM’s performance can show
a great variability under small changes in the scenario.
e.g. ±5 minutes of shifts in connection events.
To demonstrate that the strategy can be implemented

in a practical system, real-time simulations are performed.
In these simulations, the optimal LM strategy determines the
loading of the MMC arms while a power flow management
algorithm controlling the internal power flows between and
within MMC arms ensures that the current drawn from the
public three phase grid is balanced and sinusoidal and the
MMC module voltages are stable. The real-time simulation
results indicate that the proposed strategy is applicable to
manage the charging operations in a shopping mall or other
scenarios with highly random behavior of the EVs.
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