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Abstract

Fairwashing refers to the risk that an unfair black-box model can be explained by a
fairer model through post-hoc explanation manipulation. In this paper, we inves-
tigate the capability of fairwashing attacks by analyzing their fidelity-unfairness
trade-offs. In particular, we show that fairwashed explanation models can general-
ize beyond the suing group (i.e., data points that are being explained), meaning that
a fairwashed explainer can be used to rationalize subsequent unfair decisions of a
black-box model. We also demonstrate that fairwashing attacks can transfer across
black-box models, meaning that other black-box models can perform fairwashing
without explicitly using their predictions. This generalization and transferability of
fairwashing attacks imply that their detection will be difficult in practice. Finally,
we propose an approach to quantify the risk of fairwashing, which is based on the
computation of the range of the unfairness of high-fidelity explainers.

1 Introduction

As machine learning models are increasingly integrated into the pipeline of high-stakes decision
processes, concerns about their transparency are becoming prominent and difficult to ignore for the
actors deploying them. As a result, post-hoc explanation techniques have recently gained popularity
as they may appear as a potentially viable solution to regain trust in machine learning models’
predictions. More precisely, post-hoc explanation techniques refer to methods used to explain how
black-box ML models produce their outcomes [26, 9]. Current existing techniques for post-hoc
explanations include global and local explanations. In a nutshell, global explanations focus on
explaining the whole logic of the black-box model by training a surrogate model that is interpretable
by design (e.g., linear models, rule-based models or decision trees) while maximizing its fidelity to the
black-box model. In contrast, local explanations aim at explaining a single decision by approximating
the black-box model in the vicinity of the input point through an interpretable model.

However, a growing body of works has recently shown that post-hoc explanation techniques not
only can be misleading [38, 46] but are also vulnerable to adversarial manipulations, wherein an
adversary misleads users’ trust by devising deceiving explanations. This phenomenon has been
demonstrated for a broad range of post-hoc explanation techniques, including global and local
explanations [4, 49], example-based explanations [25], visualization-based explanations [31, 20] and
counterfactual explanations [36]. For instance, in a fairwashing attack [4], the adversary manipulates
the explanations to under-report the unfairness of the black-box models being explained. This attack
can significantly impact individuals who have received a negative outcome following the model’s
prediction while depriving them of the possibility of contesting it.

⇤Work done while at Université du Québec à Montréal
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The fundamental question regarding fairwashing attacks is their manipulability, which we define
as the ability to maximize the fidelity of an explanation model under an unfairness constraint. The
manipulability of fairwashing attacks directly impacts the possibility to detect them. Indeed, if the
manipulability is so low that the explanation manipulation can be detected, the risk of fairwashing is
small and misleading decisions can be avoided. By contrast, if the manipulability is high enough the
manipulation is undetectable, we will be under threat of the use of unfair models whose unfairness
is hidden by malicious model producers through manipulated explanations. In this work, in the
context of fairwashing for global explanations, we provide the first empirical results demonstrating
that the manipulability of fairwashing is likely to be high. To assess the manipulability of fairwashing,
we used the fidelity-unfairness trade-off and evaluated two characteristics of fairwashing, namely
generalization and transferability.

• Generalization of fairwashing beyond the suing group. In a fairwashing attack, a manipulated
explanation is tailored specifically for a suing group of interest so that the explanation is fair
within this group. As the explanation is specific to that group, we hypothesize that the same
explanation can fail for another group. Based on this hypothesis, we assess the manipulability
of fairwashing through its generalization capability. Our results suggest that the fidelity of the
fairwashed explanation evaluated on another group is comparable to the one evaluated on the suing
group. This means that the above hypothesis is negative, in the sense that explanations built to
fairwash a suing group can generalize to another group not explicitly targeted by the attack.

• Transferability of fairwashing beyond the targeted model. In the fairwashing attack, a manipu-
lated explanation is targeted specifically for the deployed black-box model. However, in practical
machine learning, it is usually the case that the deployed model is updated frequently. Thus, we
hypothesize that there can be an inconsistency between the manipulated explanations provided to
the suing group in the past and the currently deployed model. Based on this hypothesis, we quantify
the manipulability of fairwashing through its transferability. Our results suggest that the fidelity of
the fairwashed explanation evaluated on another model is comparable to the one evaluated on the
deployed black-box model. Thus, the above hypothesis is also negative as fairwashed explanations
designed for a specific model can also transfer to another model.

Implications to undetectability. We observed the generalization and transferability of fairwashing
attacks on several datasets, black-box models, explanation models and fairness criteria. As a
consequence, our results indicate that detecting manipulated explanations based on the change of
fidelity alone is not a viable solution (or at least it is very difficult).

Another way of quantifying fairwashing manipulability. In the above experiments, the manipu-
lability of fairwashing was evaluated using the fidelity of explanation and its changes. Our negative
results suggest that fidelity alone may not be an effective metric for quantifying the manipulability
of fairwashing. Thus, we further investigated a different way of quantifying the manipulability
of fairwashing using the Fairness In The Rashomon Set (FaiRS) [17] framework. Our results
indicate that this framework can be effectively used to quantify the manipulability of fairwashing.

Related work. In the context of example-based explanations’ manipulation, Fukuchi et al. [25]
have demonstrated the risk of stealthily biased sampling, which occurs when a model producer
explains the behaviour of its black-box model by sampling a subset of its training dataset. Slack et al.
[49] have shown that variants of LIME [45] and SHAP [39], two popular post-hoc local explanation
techniques, can be manipulated to underestimate the unfairness of black-box models. Following the
same line of work, Le Merrer and Trédan [37] have demonstrated that a malicious model producer
can always craft a fake local explanation to hide the use of discriminatory features. Another work by
Laugel et al. [36] has focused explicitly on the use of counterfactual explanations, which is a form
of example-based explanation. They have demonstrated that generated instances can be unjustified
(i.e., not supported by ground-truth data) for most techniques existing for such type of explanation.
Visualization-based explanation techniques can also be manipulated, as shown by recent works on
saliency map-based explanations’ manipulation. Heo et al. [31] have demonstrated that these types
of explanations are vulnerable to the so-called adversarial model manipulation while Dombrowski
et al. [20] have shown their vulnerability to adversarial input manipulation. In our previous work [4],
we introduced the notion of fairwashing as a rationalization exercise. We devised LaundryML, an
algorithm that can systematically rationalize black-box models’ decisions through global or local
explanations. The details of this method, which form the basis of the fairwashing attacks in this study,
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are given in Section 2.2. A subsequent work [35] has also investigated the possibility that black-box
models can be explained with high fidelity by global interpretable models whose features are very
different from that of the black-box and look innocuous. Finally, several negative aspects of post-hoc
explanations have been reported in recent studies. For instance, post-hoc explanations can mislead
model designers when they are used for debugging purposes [1, 2] or can be leveraged to perform
powerful model stealing attacks [42, 6].

Outline. In Section 2, we review the preliminary notions necessary to understand this work, and
we describe how to explore the fidelity-unfairness trade-offs of a fairwashing attack by using an
✏-constraint method to solve its underlying multi-objective optimization problem. In Section 3, we
present the results obtained from our study for a diverse set of datasets, black-box models, explanation
models and fairness metrics. In Section 4, we consider quantifying the manipulability of fairwashing
using the Fairness In The Rashomon Set (FaiRS) [17] framework. Finally, we discuss the main
implications of our findings in Section 5 as well as its limitations and societal impact in Section 6.

2 Setting and problem formulation

2.1 Notations

Let X 2 X ⇢ Rn denote a feature vector, Y 2 Y = {0, 1} its associated binary label (for simplicity
we assume a binary classification setup without loss of generalization) and G 2 G = {0, 1} a feature
defining a group membership (e.g., with respect to a sensitive attribute) for every data point sampled
from X . In addition, we assume that b : X ! Y refers to a black-box classifier of a particular
model class B (e.g., neural network or ensemble model) mapping any input X 2 X to its associated
prediction Ŷ 2 Y . Finally, let e : X ! Y be a global explanation model from a particular model class
E (e.g., linear model, rule list or decision tree) designed to explain b. In the context of fairwashing
attacks, which we formalize in Definition 2, we refer to the data instances on which the attack is
performed as the suing group.

In this work, we measure the unfairness unfD(f) of a modelf on a dataset D by using statistical
notions of fairness [13, 15, 16, 30], which require a model to exhibit approximate parity according to
a statistical measure across the different groups defined by the group membership G. In particular,
we consider four different statistical notions of fairness, namely statistical parity [22, 13, 33, 23, 51],
predictive equality [15, 16], equal opportunity [30] and equalized odds [15, 34, 30, 50]. The
definitions of these fairness metrics are listed in Table 1.

Table 1: Summary of the different statistical notions of fairness considered.
Fairness notion Definition

Statistical Parity (�SP) |P (Ŷ = 1|G = 0)� P (Ŷ = 1|G = 1)|
Predictive Equality (�PE) |P (Ŷ = 1|Y = 0, G = 0)� P (Ŷ = 1|Y = 0, G = 1)|
Equal Opportunity (�EOpp) |P (Ŷ = 1|Y = 1, G = 0)� P (Ŷ = 1|Y = 1, G = 1)|

Equalized Odds (�EOdds)
|P (Ŷ = 1|Y = 1, G = 0)� P (Ŷ = 1|Y = 1, G = 1)|
and |P (Ŷ = 1|Y = 0, G = 0)� P (Ŷ = 1|Y = 0, G = 1)|

2.2 Problem formulation

Our investigation is motivated by our previous work [4] in which we defined fairwashing in global
and local explanations as a manipulation exercise in which high-fidelity and fairer explanations can
be designed to explain unfair black-box models.

Definition 1 (Global explanation fidelity) Let b be a black-box model, e a global explanation model
for b, and X a set of data instances. Following the definition in [18], the fidelity of e with respect to b
on X is expressed as:

fidelity(e) =
1

|X|
X

x2X

I(e(x) = b(x)).
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Definition 2 (Global fairwashing attack) Let b be a black-box model and Xsg a set of data in-
stances hereafter referred to as suing group. A global fairwashing attack consists in finding an
interpretable global model e = p(b,Xsg) derived from the black-box b and the suing group Xsg

using some attack process p(·, ·), such that e is fairer than b for a given fairness metric.

To realize this, in our previous work [4], we devised LaundryML, an algorithm that can system-
atically fairwash unfair black-box models’ decisions through both global and local explanations.
LaundryML is a constrained model enumeration technique [29, 28] that searches for explanation
models maximizing the fidelity while minimizing the unfairness for a given unfair black-box model.

In this study, we go a step further by determining the fidelity-unfairness trade-offs of the fairwashing
attack and characterizing the manipulability of the fairwashed explanations. For this purpose, we
compute the set of Pareto optimal explanation models describing all the achievable fidelity-unfairness
trade-offs by solving the following problem:

minimize E(xi,b(xi))⇠Dsg
[l(e(xi), b(xi))], subject to unfDsg (e)  ✏, (1)

in which e is the explanation model, l(e(x), b(x)) is the loss function (e.g., cross entropy), Dsg =
{Xsg, b(Xsg)} is formed by the suing group and the prediction of the black-box model b on the suing
group, and ✏ is the value of the unfairness constraint.

3 Experimental evaluation

In this section, we evaluate the manipulability of the fairwashing attack over several datasets, black-
box models, explanation models, and fairness metrics. We start by replicating the results of our
previous study [4], which demonstrate that explanations can be fairwashed. Then, we evaluate two
fundamental properties of fairwashing, namely generalization and transferability2.

Datasets. We have investigated four real-world datasets commonly used in the fairness literature,
namely Adult Income, Marketing, COMPAS, and Default Credit. Table 2 summarizes the main
characteristics of these datasets.

• Adult Income. The UCI Adult Income [21] dataset contains demographic information about
48,842 individuals from the 1994 U.S. census. The associated classification task consists in
predicting whether a particular individual earns more than 50,000$ per year. We used gender
(Female, Male) as group membership for investigating fairness.

• Bank Marketing. The UCI Bank Marketing [43] dataset contains information about 41,175
customers of a Portuguese banking institution contacted as part of a marketing campaign (i.e.,
phone calls), whose goal was to convince them to subscribe to a term deposit. The classification
task consists of predicting who will subscribe to a term deposit. We used age (30-60, not30-60)
as group membership.

• COMPAS. The COMPAS [8] dataset gathers 6,150 records from criminal offenders in Florida
during 2013 and 2014. Here, the classification task consists in inferring who will re-offend within
two years. We used race (African-American, Caucasian) as group membership.

• Default Credit. The Default Credit [21] dataset is composed of information of 29,986 Taiwanese
credit card users. The classification task is to predict whether a user will default in its payments.
We used sex (Female, Male) as group membership.

Preprocessing. Before the experiments, each dataset is split into three subsets, namely the training
set (67%), the suing group (16.5%) and the test set (16.5%). We created 10 different samplings of
the three subsets using different random seeds and averaged the results of over these 10 samples. The
training set is used to learn the black-box models, while the suing group dataset is used to prepare
the explanation models as well to evaluate their fidelity-unfairness trade-offs. Finally, the objective
of the test set is to estimate the accuracy of the black-box models as well as the generalization of
the explanation models beyond their suing groups. For all models (i.e., black-boxes and explanation
models), we used a one-hot encoding of the features of the datasets.

2Our implementations are available at https://github.com/aivodji/characterizing_fairwashing
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Table 2: Summary of the datasets used. N , nf , nohe and nr denote respectively the numbers of data
points, the number of features, the number of one-hot encoded features and the number of rules.

Dataset Category N nf nohe nr

Adult Income Finance 48,842 11 40 177
Marketing Commerce 41,175 20 61 178
COMPAS Justice 6,150 8 11 121
Default Credit Finance 29,986 23 35 188

Black-box models. We have trained four different types of black-box models on each dataset,
namely an AdaBoost classifier [24], a Deep Neural Network (DNN), a Random Forest (RF) [12] and
a XgBoost classifier [14]. To tune the hyperparameters of these models, during their training, we
performed a hyperparameter search with 25 iterations using HyperOpt [10]. The performances (i.e.,
accuracy and unfairness) of the four black-box models on the suing group are provided in Table 3.

Table 3: The performances of the black-box models evaluated on the suing group. Each cell is of the
form

h
accuracy �SP �PE

�EOpp �EOdds

i
.

AdaBoost DNN RF XgBoost

Adult Incomde 0.85 .17 .06
.12 .12 0.85 .16 .06

.06 .07 0.86 .16 .06
.09 .09 0.86 .17 .06

.09 .09

Marketing 0.91 .10 .04
.13 .13 0.91 .09 .04

.09 .09 0.91 .10 .04
.04 .06 0.91 .10 .04

.08 .09

COMPAS 0.68 .24 .25
.14 .25 0.68 .28 .31

.18 .31 0.67 .26 .28
.16 .28 0.68 .27 .30

.18 .30

Default Credit 0.80 .03 .04
.01 .04 0.81 .03 .04

.01 .04 0.81 .03 .03
.01 .03 0.81 .02 .02

.01 .03

Fairwashed explanation models. We solved the optimization problem defined in Equation 1 for
three model classes, namely logistic regression, rule lists and decision trees. For rule lists, we used
FairCORELS [5], a modified version of CORELS [7], which trains rule lists under fairness constraints.
For both logistic regression and decision trees, we used the exponentiated gradient technique [3],
which is a model agnostic technique to train any classifier under fairness constraints3.

3.1 Experiment 1: Replicating the result of Aïvodji et al. [4]

We first demonstrate that the explanations can be fairwashed by replicating the results of our prior
study [4] over a wide range of datasets, black-box models, explanation models and fairness metrics.

Setup. Given a suing group Xsg , for each black-box model b and each fairness metric m, the Pareto
fronts are obtained by sweeping over 300 values of fairness constraints ✏m 2 [0, 1]. For each value of
✏m, an explanation model e✏m is trained to satisfy the unfairness constraint ✏m on Xsg, by solving
the problem in Equation 1 for logistic regression, rule list and decision tree. Then, the effective
unfairness and fidelity (with respect to b) on Xsg are obtained. Finally, the set of non-dominated
points is computed.

Results.4 Top rows in Figure 1 show the fidelity-unfairness trade-offs of fairwashed logistic regres-
sion explainers found for the four black-box models, respectively on Adult Income and COMPAS, for
the suing group, using four different fairness metrics. Figure 2 displays the fidelity of the fairwashed
logistic regression explainers when they are designed to be at least 50% less unfair than the black-box
models they are explaining. Results are shown for all datasets, fairness metrics and three families

3We used the Fairlearn library [11] implementation: https://github.com/fairlearn/fairlearn
4See Appendix C for the results of all the datasets and models.
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of black-box models (AdaBoost, DNN and RF). Consistently over all these results, we observe that
the fairwashed explanation models found for the suing groups were significantly less unfair than
the black-box models while maintaining high fidelity (i.e., the fairwashing attacks were effective
as shown in Figure 1). More precisely, for any combination of fairness metric m and black-box
model b, a fairwashed logistic regression displays an unfairness less than 50% of the unfairness of b
while maintaining a fidelity greater than 92%, 96%, 81% and 90% respectively for Adult Income,
Marketing, COMPAS and Default Credit(c.f., Figure 2). Furthermore, the small change in percentage
of the fidelity of the fairwashed explanation models indicates that fairwashing does not introduce an
important loss in fidelity when compared to non-fairwashed explanations models.
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Figure 1: Fidelity-unfairness trade-off of fairwashing attacks for equalized odds (�EOdds), equal
opportunity (�EOpp), predictive equality (�PE) and statistical parity (�SP) metrics on Adult Income
and COMPAS datasets, using logistic regression as explanation models. Vertical lines denote the
unfairness of the black-box models. Results are averaged over 10 fairwashing attacks. The standard
deviations are shown as shaded regions.

3.2 Experiment 2: Generalization of fairwashing beyond suing groups

We now assess the manipulability of fairwashing attacks in terms of generalization. As a fairwashed
explanation is tailored specifically for a suing group of interest, it could be the case that the same
explanation can fail for another group. Our results detailed below suggest that this is not the case.
That is, the above hypothesis is negative as explanations built to fairwash a suing group can generalize
to another group not explicitly targeted by the fairwashing attack.
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Figure 2: Fidelity of the fairwashed logistic regression explainers that are 50% less unfair than the
black-box models they are explaining. Results (averaged over 10 fairwashing attacks) are shown for
AdaBoost, DNN and RF black-box models, for all datasets and fairness metrics. The content of each
cell is in the form of xy , in which x represents the fidelity of the fairwashed explanation model, and
y its percentage change with respect to the fidelity of the unconstrained explainer, used here as a
baseline.

Setup. We used the same experimental setup as in Experiment 1. However, the unfairness and
fidelity of the explanation model are computed on the test set Xtest such that Xsg \Xtest = ;. As
Xtest is not disclosed to the model producer, the fairwashed explanation may fail to generalize on
Xtest and exhibit unfairness.

Results.5. Bottom rows in Figure 1 show the fidelity-unfairness trade-offs of fairwashed logistic
regression explainers found for the four black-box models on Adult Income and COMPAS, on
the test set, using four different fairness metrics. Overall, the results show that the explanation
models designed for a particular suing group generalize well also to the test set by achieving similar
fidelity-unfairness trade-offs.

Implications to undetectability. One might try to detect manipulated explanations by preparing
a second suing group unknown to the model producer, with the expectation that the manipulated
explanations will fail for that second group. However, the subtle gaps between the trade-offs of the
suing group Xsg and the test set Xtest suggest that this would not be a convincing evidence of the
occurrence of fairwashing. More precisely, only a fraction of cases exhibiting considerable drops in
fidelity could be detected, while the majority of manipulated explanations will go unnoticed.

In addition, the subtle gaps could be made even smaller by adopting robust fairness-enhancing
techniques (e.g., [40]). The fairwashing attack defined in Equation 1 is equivalent to a problem of
training an explanation model under a fairness constraint, in which the training pair (X,Y ) is formed
by the suing group Xsg and the predictions b(Xsg) of the black-box b. As a result, the issue of
generalizing beyond the suing group can be reduced to the problem of generalizing fairness beyond
the training set. Thus, robust fairness-enhancing techniques could potentially enable malicious model
producers to obtain explanation models with better generalizations and smaller gaps.

3.3 Experiment 3: Transferability of fairwashing beyond the targeted model

In this section, we assess the manipulability of the fairwashing attack in terms of transferability.
In practical machine learning, it is usually the case that the deployed model is updated frequently.
Thus, an inconsistency could occur between the manipulated explanations generated before the model
update and the currently deployed model. Our results below suggest that this is not the case, in the
sense that the fairwashed explanation for a specific model can transfer to another model.

Setup. Given a suing group Xsg, a teacher black-box model bteacher (corresponding to an old
model), a fairness metric m, its associated fairness constraint ✏m and a set of student black-box
models bistudent, with i = 1, . . . , n (corresponding to updated models), an explanation model e✏m

5See Appendix C for the results of all the datasets and models.
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is trained to satisfy the unfairness constraint ✏m on Xsg, by solving the problem in Equation 1 for
logistic regression, rule lists and decision trees. Afterwards, the unfairness and fidelity of e✏m are
evaluated with respect to each of the student black-box models bistudent on Xsg . For this experiment,
we considered four black-box models (AdaBoost, DNN, RF and XgBoost). First, we fixed one model
as the teacher model and used the remaining ones as student models. We conducted the experiments
for all four possible combinations of the (teacher, student) models. We evaluated the results on a
number of unfairness constraints (✏ 2 {0.03, 0.05, 0.1}) to simulate both strong and loose fairness
constraints.

Results.6. Figure 3 displays the fidelity and unfairness of fairwashed logistic regression explainers
with respect to both the teacher and the set of student black-box models on the suing group Xsg.
Results are shown for Adult Income and COMPAS, for all fairness metrics and different values of the
unfairness constraint (✏ = 0.05). Overall, our results demonstrate that fairwashed explanations can
generalize well to student black-box models by displaying high fidelity in many cases. For instance,
on Adult Income with a predictive equality constraint set to 0.05, a fairwashed logistic regression
explainer that had a fidelity of 95% for a DNN teacher model successfully transferred to AdaBoost,
RF and XgBoost student models with a fidelity of respectively 94%, 95% and 93%.

Implications to undetectability. If the hypothesis that manipulated explanations are vulnerable to
model updates is true, one would expect that the manipulated explanations generated before the model
update exhibit an inconsistency with the updated model. However, we observed that high-fidelity
explanations can be transferred to another model in many situations. Hence, the change in fidelity
after the model update would not be a reliable evidence for detecting fairwashing attacks as it will
overlook several manipulated explanations with a small drop of fidelity.
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Figure 3: Analysis of the transferability of fairwashing attacks for equalized odds, equal opportunity,
predictive parity and statistical parity on Adult Income and COMPAS datasets, for ✏ = 0.05, and for
fairwashed logistic regression explainers. The result in each cell is in the form of xy

z , in which y
denotes the label agreement between the teacher black-box model and the student black-box model,
x is the fidelity of the fairwashed explanation model and z is its unfairness. Blank cells denotes
the absence of transferability for the unfairness constraint imposed. Results are averaged over 10
fairwashing attacks.

6See Appendix D for the results of all the datasets and models.
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4 Another way of quantifying the manipulability of fairwashing

Our experimental results in the previous section revealed that fairwashed explanations can generalize
to unseen suing groups and can transfer to other black-box models with high fidelity. This suggests
that fidelity alone may not be an effective metric for quantifying the manipulability of fairwashing.
In this section, we consider another way of quantifying the manipulability of fairwashing using the
Fairness In The Rashomon Set (FaiRS) [17] framework.

At a high level, one can say that fairwashing is possible because the set of all the explanations models
for a particular black-box model (at a particular level of fidelity) is diverse in terms of unfairness (i.e.,
contains both fair and unfair explanation models). This phenomenon has been observed for a broad
range of models and domains, and received different names including predictive multiplicity [41],
underspecification [19] and multiplicity in the Rashomon set [48, 27, 47].

Given a model class F , a loss function LD(·) over a dataset D of interest, a reference model f⇤ (e.g.,
optimal explanation model with at least 95% fidelity), and a performance threshold ⌧ 2 [0, 1], the
Rashomon set Rs(F , f⇤, ⌧) is defined as :

Rs(F , f⇤, ⌧) = {f 2 F | LD(f)  (1 + ⌧)LD(f
⇤)} (2)

We can quantify the manipulability of fairwashing by seeking the models with the lowest unfairness
within the Rashomon set. More precisely, if the Rashomon set contains explanation models with
sufficiently low unfairness, then the risk of fairwashing is high as one can adopt such a model as
high-fidelity explanation models with low unfairness. Conversely, if all the models in the Rashomon
set have unfairness close to that of the black-box model, the fairwashing will fail as it is not possible to
find high-fidelity explanation models with an unfairness significantly lower than that of the black-box
model.

A possible way to identify the model with the lowest unfairness in the Rashomon set is to use the
method of Coston et al. [17], which computes the range of the unfairness of high-fidelity explanation
models by solving the following problem:

minimize unfDsg (e), subject to LDsg (e)  v, (3)

in which e is the explanation model, Dsg = {Xsg, b(Xsg)} is formed by the suing group and the
prediction of the black-box model b on the suing group, while v is the value of the constraint on the
loss to explore different levels of fidelity.

Setup. In this experiment, we explore different values for the fidelity ranging from 70% to 98%. In
particular, we solve the problem of minimizing the disparity (and not the absolute disparity) under
constraints of the loss [17, Problem 2] using the reduction approach of Agarwal et al. [3] to explore
the range of unfairness for a fixed value of the loss. We used this approach and swept over different
values of the loss function to compute the range of unfairness of high-fidelity explanation models 7.

Results.8 Figure 4 shows that logistic regression explainers on Adult Income have a wider range of
unfairness in the Rashomon set compared to that of COMPAS. This result implies that the fairwashing
attack has a higher manipulability on Adult Income. This observation is coherent with the results
observed in Experiments 1 and 2 (c.f., Figures 1 and 2) in which, although fairwashing is possible for
both datasets, it is easier (i.e., in terms of the possibility to have high-fidelity with low unfairness) to
perform fairwashing on Adult Income than COMPAS.

5 Conclusion

In this paper, we have investigated the manipulability of fairwashing attacks by analyzing their fidelity-
unfairness trade-offs in diverse situations. In particular, we have demonstrated that fairwashing attacks
have high manipulability. Furthermore, we showed that fairwashed explanations can generalize to
unseen suing groups and can transfer across black-box models by displaying a high fidelity. The
lesson to draw from our investigation is that relying on the fidelity alone and its changes as proxies

7We used the implementation provided by the authors in the public Github repository available at https:
//github.com/asheshrambachan/Fairness_In_The_Rashomon_Set

8See Appendix E for the results of all the datasets and black-box models.
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Figure 4: Range of the statistical parity of logistic regression explainers for different values of the
fidelity for a DNN black-box trained on Adult Income and COMPAS. Horizontal lines denote the
unfairness of the black-box models.

for the quality of a post-hoc explanation can be misleading as a fairwashed explanation model
can exhibit high fidelity even to unseen suing groups and to other black-box models while being
significantly less unfair than the black-box model being explained. Our first result obtained for
the generalization of fairwashed explanations beyond suing groups demonstrates that a fairwashed
explanation model can also rationalize subsequent unfair decisions made by the original black-box
model for free. This precludes the possibility of designing fairwashing detection techniques that
leverage the instability of the unfairness with respect to variations in the suing group. Indeed, such
a technique will most likely fail against fairwashed explanation models designed using stable fair
classification algorithms [32, 40]. Our second result, the transferability of fairwashed explanations
across black-box models, revealed that model producers can use fairwashed explanation models to
rationalize unfair decisions of future black-box models. Since fidelity alone did not prove to be an
effective measure, we investigated another possible way to quantify the manipulability of fairwashing.
To this end, we used the Fairness In The Rashomon Set (FaiRS) framework of Coston et al. [17]
to compute the range of the unfairness of high-fidelity explainers, and observed that it is possible to
quantify the manipulability of fairwashing by using this framework.

Future work. In this study, we focused on statistical notions of fairness defined over binary output
and binary attributes. These definitions of fairness can be extended to continuous output (e.g.,
predicted class probability) [44]. However, investigating the manipulability of fairwashing attacks
to these extended problems remains open. We also hypothesize that one may be able to design a
meta-classifier for detecting fairwashing. Despite the fact that the fidelity of fairwashed explanations
is considerably high, it may be possible that some implicit patterns specific to fairwashing could be
detected and exploited (e.g., the fidelity can be low on specific subgroups). Thus, if there are several
pairs of fairwashed/honest explanations, one might be able to train a meta-classifier to distinguish
between fairwashed and non-fairwashed explainers by seeking such patterns.

6 Limitations and societal impact

Limitations. In this paper, fidelity is defined as the label agreement between the black-box and
explanation models. This definition was first introduced in [18] and is still the popular quality measure
used in global explanation techniques. While there are several criticisms regarding the use of fidelity
as a quality measure, we believe that considering its popularity in the community, it still remains a
reasonable choice to raise awareness about the risk of fairwashing.

Societal impact. One of the objectives of this paper is to raise awareness about the risks that can
occur when post-hoc explanations are used to assess fairness claims. As such, it aims at averting the
potential negative societal impacts of such assessments. Nonetheless, it is possible that malicious
model producers could use the manipulation attacks presented in this paper to perform fairwashing in
the real world. However, in addition to increasing the vigilance of the community, we believe that
this paper makes a significant step towards detecting and preventing such fairwashing attacks.
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