
Implicit Mixtures of Restricted Boltzmann Machines

Vinod Nair and Geoffrey Hinton
Department of Computer Science, University of Toronto

10 King’s College Road, Toronto, M5S 3G5 Canada
{vnair,hinton}@cs.toronto.edu

Abstract

We present a mixture model whose components are Restricted Boltzmann Ma-
chines (RBMs). This possibility has not been considered before because com-
puting the partition function of an RBM is intractable, which appears to make
learning a mixture of RBMs intractable as well. Surprisingly, when formulated as
a third-order Boltzmann machine, such a mixture modelcan be learned tractably
using contrastive divergence. The energy function of the model captures three-
way interactions among visible units, hidden units, and a single hidden discrete
variable that represents the cluster label. The distinguishing feature of this model
is that, unlike other mixture models, the mixing proportions are not explicitly
parameterized. Instead, they are defined implicitly via the energy function and
depend on all the parameters in the model. We present results for the MNIST and
NORB datasets showing that the implicit mixture of RBMs learns clusters that
reflect the class structure in the data.

1 Introduction

A typical mixture model is composed of a number of separately parameterized density models each
of which has two important properties:

1. There is an efficient way to compute the probability density (or mass) of a datapoint under
each model.

2. There is an efficient way to change the parameters of each model so as to maximize or
increase the sum of the log probabilities it assigns to a set of datapoints.

The mixture is created by assigning a mixing proportion to each of the component models and
it is typically fitted by using the EM algorithm that alternates between two steps. The E-step uses
property 1 to compute the posterior probability that each datapoint came from each of the component
models. The posterior is also called the “responsibility” of each model for a datapoint. The M-step
uses property 2 to update the parameters of each model to raise the responsibility-weighted sum of
the log probabilities it assigns to the datapoints. The M-step also changes the mixing proportions of
the component models to match the proportion of the training data that they are responsible for.

Restricted Boltzmann Machines [5] model binary data-vectors using binary latent variables. They
are considerably more powerful than mixture of multivariate Bernoulli models1 because they allow
many of the latent variables to be on simultaneously so the number of alternative latent state vectors
is exponential in the number of latent variables rather than being linear in this number as it is with
a mixture of Bernoullis. An RBM withN hidden units can be viewed as a mixture of2N Bernoulli
models, one per latent state vector, with a lot of parameter sharing between the2N component
models and with the2N mixing proportions being implicitly determined by the same parameters.

1A multivariate Bernoulli model consists of a set of probabilities, one per component of the binary data
vector.

1

Hidden units

Visible units

Wij

i

j

(a)

Hidden units

Visible units

1-of-K

activation
i

j

k

Wijk

K component

RBMs

(b)

Hidden units

Visible units

Wijk

1-of-K

activation

i

j

k

(c)

Figure 1: (a) Schematic representation of an RBM, (b) an implicit mixture of RBMs as a third-order
Boltzmann machine, (c) schematic representation of an implicit mixture.

It can also be viewed as a product ofN “uni-Bernoulli” models (plus one Bernoulli model that is
implemented by the visible biases). A uni-Bernoulli model is a mixture of a uniform and a Bernoulli.
The weights of a hidden unit define theith probability in its Bernoulli model aspi = σ(wi), and the
bias,b, of a hidden unit defines the mixing proportion of the Bernoulli in its uni-Bernoulli asσ(b),
whereσ(x) = (1 + exp(−x))−1.

The modeling power of an RBM can always be increased by increasing the number of hidden units
[10] or by adding extra hidden layers [12], but for datasets that contain several distinctly differ-
ent types of data, such as images of different object classes, it would be more appropriate to use a
mixture of RBM’s. The mixture could be used to model the raw data or some preprocessed rep-
resentation that has already extracted features that are shared by different classes. Unfortunately,
RBM’s cannot easily be used as the components of mixture models because they lack property 1:
It is easy to compute theunnormalized density that an RBM assigns to a datapoint, but the normal-
ization term is exponentially expensive to compute exactly and even approximating it is extremely
time-consuming [11]. There is also no efficient way to modify the parameters of an RBM so that
the log probability of the data is guaranteed to increase, but there are good approximate methods [5]
so this is not the main problem. This paper describes a way of fitting a mixture of RBM’s without
explicitly computing the partition function of each RBM.

2 The model

We start with the energy function for a Restricted Boltzmann Machine (RBM) and then modify it
to define the implicit mixture of RBMs. To simplify the description, we assume that the visible and
hidden variables of the RBM are binary. The formulation below can be easily adapted to other types
of variables (e.g., see [13]).

The energy function for a Restricted Boltzmann Machine (RBM) is

E(v,h) = −
∑

i,j

WR
ij vihj , (1)

wherev is a vector of visible (observed) variables,h is a vector of hidden variables, andWR is
a matrix of parameters that capture pairwise interactions between the visible and hidden variables.
Now consider extending this model by including a discrete variablez with K possible states, rep-
resented as aK-dimensional binary vector with 1-of-Kactivation. Defining the energy function in
terms ofthree-way interactions among the components ofv, h, andz gives

E(v,h, z) = −
∑

i,j,k

W I
ijkvihjzk, (2)

whereW I is a 3Dtensor of parameters. Each slice of this tensor along thez-dimension is a matrix
that corresponds to the parameters of each of theK component RBMs. The joint distribution for the
mixture model is

P (v,h, z) =
exp(−E(v,h, z))

ZI

, (3)

2

where
ZI =

∑

u,g,y

exp(−E(u,g,y)) (4)

is the partition function of the implicit mixture model. Re-writing the joint distribution in the usual
mixture model form gives

P (v) =
∑

h,z

P (v,h, z) =

K
∑

k=1

∑

h

P (v,h|zk = 1)P (zk = 1). (5)

Equation 5 defines the implicit mixture of RBMs.P (v,h|zk = 1) is thekth component RBM’s
distribution, withWR being thekth slice of W I . Unlike in a typical mixture model, the mixing
proportionP (zk = 1) is not a separate parameter in our model. Instead, it isimplicitly defined
via the energy function in equation 2. Changing the bias of thekth unit in z changes the mixing
proportion of thekth RBM, but all of the weights of all the RBM’s also influence it. Figure 1 gives
a visual description of the implicit mixture model’s structure.

3 Learning

Given a set ofN training cases{v1, ...,vN}, we want to learn the parameters of the implicit mix-
ture model by maximizing the log likelihoodL =

∑N

n=1 log P (vn) with respect toW I . We use
gradient-based optimization to do this. The expression for the gradient is

∂L

∂W I
= N

〈

∂E(v,h, z)

∂W I

〉

P (v,h,z)

−
N

∑

n=1

〈

∂E(vn,h, z)

∂W I

〉

P (h,z|vn)

, (6)

where〈〉P () denotes an expectation with respect to the distributionP (). The two expectations in
equation 6 can be estimated by sample means if unbiased samples can be generated from the corre-
sponding distributions. The conditional distributionP (h, z|vα) is easy to sample from, but sampling
the joint distributionP (v,h, z) requires prolonged Gibbs sampling and is intractable in practice. We
get around this problem by using the contrastive divergence (CD) learning algorithm [5], which has
been found to be effective for training a variety of energy-based models (e.g. [8],[9],[13],[4]).

Sampling the conditional distributions: We now describe how to sample the conditional distri-
butionsP (h, z|v) andP (v|h, z), which are the main operations required for CD learning. The
second case is easy: givenzk = 1, we select thekth component RBM of the mixture model and
then sample from its conditional distributionPk(v|h). The bipartite structure of the RBM makes
this distribution factorial. So theith visible unit is drawn independently of the other units from the
Bernoulli distribution

P (vi = 1|h, zk = 1) =
1

1 + exp(−
∑

j W I
ijkhj)

. (7)

SamplingP (h, z|v) is done in two steps. First, theK-way discrete distributionP (z|v) is computed
(see below) and sampled. Then, givenzk = 1, we select thekth component RBM and sample from
its conditional distributionPk(h|v). Again, this distribution is factorial, and thejth hidden unit is
drawn from the Bernoulli distribution

P (hj = 1|v, zk = 1) =
1

1 + exp(−
∑

i W I
ijkvi)

. (8)

To computeP (z|v) we first note that

P (zk = 1|v) ∝ exp(−F (v, zk = 1)), (9)

where thefree energy F (v, zk = 1) is given by

F (v, zk = 1) = −
∑

j

log(1 + exp(
∑

i

W I
ijkvi)). (10)

3

If the number of possible states ofz is small enough, then it is practical to compute the quantity
F (v, zk = 1) for everyk by brute-force. So we can compute

P (zk = 1|v) =
exp(−F (v, zk = 1))

∑

l exp(−F (v, zl = 1))
. (11)

Equation 11 defines theresponsibility of thekth component RBM for the data vectorv.

Contrastive divergence learning: Below is a summary of the steps in the CD learning for the
implicit mixture model.

1. For a training vectorv+, pick a component RBM by sampling the responsibilities
P (zk = 1|v+). Let l be the index of the selected RBM.

2. Sampleh+ ∼ Pl(h|v+).

3. Compute the outer productD+
l = v+hT

+.

4. Samplev− ∼ Pl(v|h+).

5. Pick a component RBM by sampling the responsibilitiesP (zk = 1|v−). Let m be the
index of the selected RBM.

6. Sampleh− ∼ Pm(h|v−).

7. Compute the outer productD−
m = v−hT

−.

Repeating the above steps for a mini-batch ofNb training cases results in two sets of outer products
for each componentk in the mixture model:S+

k = {D+
k1, ...,D

+
kM} andS−

k {D−
k1, ...,D

−
kL}. Then

the approximate likelihood gradient (averaged over the mini-batch) for thekth component RBM is

1

Nb

∂L

∂W I
k

≈
1

Nb





M
∑

i=1

D+
ki −

L
∑

j=1

D−
kj



 . (12)

Note that to compute the outer productsD+ andD− for a given training vector, the component
RBMs are selected throughtwo separate stochastic picks. Therefore the setsS+

k andS−
k need not

be of the same size because the choice of the mixture component can be different forv+ andv−.

Scaling free energies with a temperature parameter: In practice, the above learning algorithm
causes all the training cases to be captured by a single component RBM, and the other components to
be left unused. This is because free energy is an unnormalized quantity that can have very different
numerical scales across the RBMs. One RBM may happen to produce much smaller free energies
than the rest because of random differences in the initial parameter values, and thus end up with
high responsibilities for most training cases. Even if all the component RBMs are initialized to the
exact same initial parameter values, the problem can still arise after a few noisy weight updates. The
solution is to use a temperature parameterT when computing the responsibilities:

P (zk = 1|v) =
exp(−F (v, zk = 1)/T)

∑

l exp(−F (v, zl = 1)/T)
. (13)

By choosing a large enoughT , we can make sure that random scale differences in the free energies
do not lead to the above collapse problem. One possibility is to start with a largeT and then gradually
anneal it as learning progresses. In our experiments we found that using a constantT works just as
well as annealing, so we keep it fixed.

4 Results

We apply the implicit mixture of RBMs to two datasets, MNIST [1] and NORB [7]. MNIST is a
set of handwritten digit images belonging to ten different classes (the digits 0 to 9). NORB contains
stereo-pair images of 3D toy objects taken under different lighting conditions and viewpoints. There
are five classes of objects in this set (human,car, plane, truck andanimal). We use MNIST mainly
as a sanity check, and most of our results are for the much more difficult NORB dataset.

Evaluation method: Since computing the exact partition function of an RBM is intractable, it is
not possible to directly evaluate the quality of our mixture model’s fit to the data, e.g., by computing

4

Figure 2: Features of the mixture model with five component RBMs trained on all ten classes of
MNIST images.

the log probability of a test set under the model. Recently it was shown that Annealed Importance
Sampling can be used to tractably approximate the partition function of an RBM [11]. While this
is an attractive option to consider in future work, for this paper we use the computationally cheaper
approach of evaluating the model by using it in a classification task. Classification accuracy is then
used as an indirect quantitative measure of how good the model is.

A reasonable evaluation criterion for a mixture modelling algorithm is that it should be able to find
clusters that are mostly ‘pure’ with respect to class labels. That is, the set of data vectors that a
particular mixture component has high responsibilities for should have the same class label. So it
should be possible to accurately predict the class label of a given data vector from the responsibilities
of the different mixture components for that vector. Once a mixture model is fully trained, we
evaluate it by training a classifier that takes as input the responsibilities of the mixture components
for a data vector and predicts its class label. The goodness of the mixture model is measured by the
test set prediction accuracy of this classifier.

4.1 Results for MNIST

Before attempting to learn a good mixture model of the whole MNIST dataset, we tried two simpler
modeling tasks. First, we fitted an implicit mixture of two RBM’s with 100 hidden units each to
an unlabelled dataset consisting of 4,000 twos and 4,000 threes. As we hoped, almost all of the
two’s were modelled by one RBM and almost all of the threes by the other. On 2042 held-out
test cases, there were only 24 errors when an image was assigned the label of the most probable
RBM. This compares very favorably with logistic regression which needs 8000 labels in addition
to the images and gives 36 errors on the test set even when using a penalty on the squared weights
whose magnitude is set using a validation set. Logistic regression also gives a good indication of the
performance that could be expected from fitting a mixture of two Gaussians with a shared covariance
matrix, because logistic regression is equivalent to fitting such a mixture discriminatively.

We then tried fitting an implicit mixture model with only five component RBMs, each with 25 hidden
units, to the entire training set. We purposely make the model very small so that it is possible to
visually inspect the features and the responsibilities of the component RBMs and understand what
each component is modelling. This is meant to qualitatively confirm that the algorithm can learn a
sensible clustering of the MNIST data. (Of course, the model will have poor classification accuracy
as there are more classes than clusters, so it will merge multiple classes into a single cluster.) The
features of the component RBMs are shown in figure 2 (top row). The plots in the bottom row show
the fraction of training images for each of the ten classes that are hard-assigned to each component.
The learning algorithm has produced a sensible mixture model in that visually similar digit classes
are combined under the same mixture component. For example, ones and eights require many
similar features, so they are captured with a single RBM (leftmost in fig. 2). Similarly, images of
fours, sevens, and nines are all visually similar, and they are modelled together by one RBM (middle
of fig. 2).

5

We have also trained larger models with many more mixture components. As the number of com-
ponents increase, we expect the model to partition the image space more finely, with the different
components specializing on various sub-classes of digits. If they specialize in a way that respects
the class boundaries, then their responsibilities for a data vector will become a better predictor of its
class label.

The component RBMs use binary units both in the visible and hidden layers. The image dimension-
ality is 784 (28× 28 pixels). We have tried various settings for the number of mixture components
(from 20 to 120 in steps of 20) and a component’s hidden layer size (50, 100, 200, 500). Classifica-
tion accuracy increases with more components, until 80 components. Additional components give
slightly worse results. The hidden layer size is set to 100, but 200 and 500 also produce similar
accuracies. Out of the 60,000 training images in MNIST, we use 50,000 to train the mixture model
and the classifier, and the remaining 10,000 as a validation set for early stopping. The final models
are then tested on a separate test set of 10,000 images.

Once the mixture model is trained, we train a logistic regression classifier to predict the class label
from the responsibilities2. It has as many inputs as there are mixture components, and a ten-way
softmax over the class labels at the output. With 80 components, there are only80 · 10 + 10 =
810 parameters in the classifier (including the 10 output biases). In our experiments, classification
accuracy is consistently and significantly higher whenunnormalized responsibilities are used as the
classifier input, instead of the actual posterior probabilities of the mixture components given a data
vector. These unnormalized values have no proper probabilistic interpretation, but nevertheless they
allow for better classification, so we use them in all our experiments.

Table 1: MNIST Test set error rates.

Logistic regression % Test
classifier input error
Unnormalized 3.36%
responsibilities

Pixels 7.28%

Table 1 shows the classification error rate of the re-
sulting classifier on the MNIST test set. As a simple
baseline comparison, we train a logistic regression
classifier that predicts the class label from the raw
pixels. This classifier has784 · 10 + 10 = 7850
parameters and yet the mixture-based classifier has
less than half the error rate. The unnormalized re-
sponsibilities therefore contain a significant amount
of information about the class labels of the images,

which indicates that the implicit mixture model has learned clusters that mostly agree with the class
boundaries, even though it is not given any class information during training.

4.2 Results for NORB

NORB is a much more difficult dataset than MNIST because the images are of very different classes
of 3D objects (instead of 2D patterns) shown from different viewpoints and under various lighting
conditions. The pixels are also no longer binary-valued, but instead span the grayscale range[0, 255].
So binary units are no longer appropriate for the visible layer of the component RBMs. Gaussian
visible units have previously been shown to be effective for modelling grayscale images [6], and
therefore we use them here. See [6] for details about Gaussian units. As in that paper, the variance
of the units is fixed to 1, and only their means are learned.

Learning an RBM with Gaussian visible units can be slow, as it may require a much greater number
of weight updates than an equivalent RBM with binary visible units. This problem becomes even
worse in our case since a large number of RBMs have to be trained simultaneously. We avoid it
by first training a single RBM with Gaussian visible units and binary hidden units on the raw pixel
data, and then treating the activities of its hidden layer as pre-processed data to which the implicit
mixture model is applied. Since the hidden layer activities of the pre-processing RBM are binary, the
mixture model can now be trained efficiently with binary units in the visible layer3. Once trained,
the low-level RBM acts as a fixed pre-processing step that converts the raw grayscale images into

2Note that the mixture model parameters are kept fixed when training the classifier, so the learning of the
mixture model is entirely unsupervised.

3We actually use the real-valued probabilities of the hidden units as the data, and we also use real-valued
probabilities for the reconstructions. On other tasks, the learning gives similar results using binary values
sampled from these real-valued probabilities but is slower.

6

Binary

data

Gaussian visible units

(raw pixel data)

i

j

Pre-processing

transformation

Wij

Hidden units

Wjmk

1-of-K

activation m

k

Figure 3: Implicit mixture model used for MNORB.

binary vectors. Its parameters are not modified further when training the mixture model. Figure 3
shows the components of the complete model.

A difficulty with training the implicit mixture model (or any other mixture model) on NORB is
that the ‘natural’ clusters in the dataset correspond to the six lighting conditions instead of the five
object classes. The objects themselves are small (in terms of area) relative to the background, while
lighting affects the entire image. Any clustering signal provided by the object classes will be weak
compared to the effect of large lighting changes. So we simplify the dataset slightly by normalizing
the lighting variations across images. Each image is multiplied by a scalar such that all images
have the same average pixel value. This significantly reduces the interference of the lighting on
the mixture learning4. Finally, to speed up experiments, we subsample the images from96 × 96 to
32 × 32 and use only one image of the stereo pair. We refer to this dataset as ‘Modified NORB’
or ‘MNORB’. It contains 24,300 training images and an equal number of test images. From the
training set, 4,300 are set aside as a validation set for early stopping.

We use 2000 binary hidden units for the preprocessing RBM, so the input dimensionality of the
implicit mixture model is 2000. We have tried many different settings for the number of mixture
components and the hidden layer size of the components. The best classification results are given
by 100 components, each with 500 hidden units. This model has about100 · 500 · 2000 = 108

parameters, and takes about 10 days to train on an Intel Xeon 3Ghz processor.

Table 2 shows the test set error rates for a logistic regression classifier trained on various input
representations. Mixture of Factor Analyzers (MFA) [3] is similar to the implicit mixture of RBMs
in that it also learns a clustering while simultaneously learning a latent representation per cluster
component. But it is a directed model based on linear-Gaussian representations, and it can be learned
tractably by maximizing likelihood with EM. We train MFA on the raw pixel data of MNORB. The
MFA model that gives the best classification accuracy (shown in table 2) has 100 component Factor
Analyzers with 100 factors each. (Note that simply making the number of learnable parameters
equal is not enough to match the capacities of the different models because RBMs use binary latent
representations, while FAs use continuous representations. So we cannot strictly control for capacity
when comparing these models.)

A mixture of multivariate Bernoulli distributions (seee.g. section 9.3.3 of [2]) is similar to an
implicit mixture model whose component RBMs have no hidden units and only visible biases as
trainable parameters. The differences are that a Bernoulli mixture is a directed model, it has explic-
itly parameterized mixing proportions, and maximum likelihood learning with EM is tractable. We
train this model with 100 components on the activation probabilities of the preprocessing RBM’s
hidden units. The classification error rate for this model is shown in table 2.

4The normalization does not completely remove lighting information from the data. A logistic regression
classifier can still predict the lighting label with 18% test set error when trained and tested on normalized
images, compared to 8% error for unnormalized images.

7

Table 2: MNORB Test set error rates for a logistic regression classifier with different types of input
representations.

Logistic regression classifier input % Test error
Unnormalized responsibilities computed 14.65%

by the implicit mixture of RBMs
Probabilities computed by the transformationWij in 16.07%

fig 3 (i.e. thepre-processed representation)
Raw pixels 20.60%

Unnormalized responsibilities of an MFA model 22.65%
trained on the pre-processed representation in fig 3

Unnormalized responsibilities of an MFA 24.57%
model trained on raw pixels

Unnormalized responsibilities of a Mixture of
Bernoullis model trained on the pre-processed 28.53%

representation in fig 3

These results show that the implicit mixture of RBMs has learned clusters that reflect the class
structure in the data. By the classification accuracy criterion, the implicit mixture is also better than
MFA. The results also confirm that the lack of explicitly parameterized mixing proportions does not
prevent the implicit mixture model from discovering interesting cluster structure in the data.

5 Conclusions

We have presented a tractable formulation of a mixture of RBMs. That such a formulation is even
possible is a surprising discovery. The key insight here is that the mixture model can be cast as a
third-order Boltzmann machine, provided we are willing to abandon explicitly parameterized mixing
proportions. Then it can be learned tractably using contrastive divergence. As future work, it would
be interesting to explore whether these ideas can be extended to modelling time-series data.

References
[1] Mnist database, http://yann.lecun.com/exdb/mnist/.

[2] C. M. Bishop.Pattern Recognition and Machine Learning. Springer, 2006.

[3] Z. Ghahramani and G. E. Hinton. The em algorithm for mixtures of factor analyzers.Technical Report
CRG-TR-96-1, Dept. of Computer Science, University of Toronto, 1996.

[4] X. He, R. S. Zemel, and M. A. Carreira-Perpinan. Multiscale conditional random fields for image labeling.
In CVPR, pages 695–702, 2004.

[5] G. E. Hinton. Training products of experts by minimizing contrastive divergence.Neural Computation,
14(8):1711–1800, 2002.

[6] G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks.Science,
313:504–507, 2006.

[7] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance
to pose and lighting. InCVPR, Washington, D.C., 2004.

[8] S. Roth and M. J. Black. Fields of experts: A framework for learning image priors. InCVPR, pages
860–867, 2005.

[9] S. Roth and M. J. Black. Steerable random fields. InICCV, 2007.

[10] N. Le Roux and Y. Bengio. Representational power of restricted boltzmann machines and deep belief
networks.Neural Computation, To appear.

[11] R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. InICML, Helsinki,
2008.

[12] I. Sutskever and G. E. Hinton. Deep narrow sigmoid belief networks are universal approximators.Neural
Computation, To appear.

[13] M. Welling, M. Rosen-Zvi, and G. E. Hinton. Exponential family harmoniums with an application to
information retrieval. InNIPS 17, 2005.

8

