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Abstract

Vision Transformer (ViT) is an attention-based
model architecture that has demonstrated supe-
rior performance on many computer vision tasks.
However, its security properties, in particular, the
robustness against adversarial attacks, are yet to
be thoroughly studied. Recent works have shown
that ViT is vulnerable to attention-based adver-
sarial patch attacks, which covers 1∼3% area of
the input image using adversarial patches and de-
grades the model accuracy to 0%.

This work generally studies the attention-based
patch attack. First, we experimentally observe
that adversarial patches only activate in a few
layers and become lazy during attention updating.
According to experiments, we study how a small
adversarial patch perturbates the whole model.
Based on understanding adversarial patch attacks,
we propose a simple but efficient defense that
correctly detects more than 95%.

1. Introduction
The recent research discovers that the attention-based trans-
former (Vaswani et al., 2017) achieves a remarkable out-
come on computer vision, known as Vision Transformers
(Dosovitskiy et al., 2020) and its variants, e.g., DeiT (Tou-
vron et al., 2021b), etc. However, ViTs do not present strong
robustness and are vulnerable to security attacks such as ad-
versarial attacks (Szegedy et al., 2013). Adversarial attacks
exploit the model gradient and construct an imperceptible
background noise onto the input images that can fool the
models into malfunctioning.

Early studies show that in defending background-noised-
based adversarial attacks, ViTs are more robust than classic
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CNN networks with a comparable model size(Paul & Chen,
2022; Naseer et al., 2021; Gu et al., 2022). The later research
further showed that by adopting adversarial enhancements
such as Image Augmentation(Mao et al., 2022) and Adver-
sarial Training(Herrmann et al., 2022), ViTs achieve even
higher robustness than CNN. However, recent studies (Gu
et al., 2022; Fu et al., 2022; Lovisotto et al., 2022) found
an exception in that ViT can be crushed by attention-based
adversarial patch attacks. Attackers inject the adversarial to-
ken to alter the attention of ViT, which perturbs only 1∼3%
area of the input and degrades the model accuracy drasti-
cally, e.g., 0% (Lovisotto et al., 2022). In contrast, a 20 ∼
30% of input area should be patched for the state-of-the-art
attack in CNN to achieve a similar degradation (Brown et al.,
2017; Wang et al., 2021).

The main strategy of existing defenses toward such attention-
based attacks is adopting Derandomized Smoothing to ViT
(Salman et al., 2022; Chen et al., 2022), which infers ran-
domly sampled images 1,000 times and statistically votes
the model outputs. Such defenses introduce 1,000 times
computational overhead but only achieve 40 ∼ 50% adver-
sarial robustness. Another defense deploys a mask in the
attention block, filtering the largest element (Mu & Wagner,
2021) as they are likely related to adversarial inputs. Atten-
tion mask achieves ∼ 60% robustness but compromises the
benign accuracy from ∼ 85% to ∼ 75%.

In this work, we first design two experiments to deeply un-
derstand why such a small-size patch can crash the entire
ViT model. In the experiment, we remove the connection
of attention blocks. We observe that about 40% of adver-
sarial patches are neutralized by removing the attention
block in only one layer, where there are a total of 12 lay-
ers. Moreover, we observe that layer-wise attention updates
of adversarial tokens are about 50% smaller than benign
tokens. Through observations, we uncover that the adver-
sarial token only activates for a few layers. Further, we
analyze the attention via the Key/Query product. We dis-
cover that the adversarial patch fabricates its key close to
queries of noise features, elevates the column of its score
matrix, and propagates its adversarial pattern to the benign
tokens. According to the behavior of the adversarial token
in different layers, we divide this process into three stages:
the inactivate stage; the activate stage, where the score of
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the adversarial token becomes the most salient; the polluted
stage, where vast noise keys and queries gather closely and
dominate the attention.

We propose AbnoRmality-Masking RObust (ARMRO) that
precisely detects the position of adversarial patches in the
activate stage and masks them from the input. We correctly
detect 95% of adversarial patches and maintain above 80%
robustness against one-patch attacks with only 1% clean
accuracy drop. We achieve 20% ∼ 30% robustness gain
compared to the prior defense. Further, we extend our detect-
ing algorithm and enable the detection against multi-patch
adversarial attacks, and we achieve around 85% correct
detection >70% model robustness.

2. Background
2.1. Attention-Based Transformer

Vision Transformer, by exploiting the self-attention mecha-
nism from the NLP models, e.g., BERT (Devlin et al., 2018),
can outperform traditional convolutional neural networks
(CNNs) for many image-processing tasks. Given an input
image (also the input at the first layer), x(0), that has the
H ×W resolution and C channels, ViT divides the input
image into a sequence of patches, each of which has the
P × P resolution, and then flattens all patches into vec-
tors. That is, the input image can be denoted in patch form:
x(0) ∈ RP×P,N , where N = H×W×C

P 2 is the number of
patches.

The first layer of ViT embeds the input patches into tokens,
x(1), with a higher dimension d (d > P 2). ViT models often
introduce additional tokens for better performance, such as
class tokens or distillation tokens. A ViT model has L layers
where the later layers keep the same dimension. We denote
the tokens matrix as x(l) ∈ Rn×d, l ∈ {1, 2, · · ·L}, where
n = N + 1 is the number of tokens; d is the length of each
token; and l is the layer number.

ViT projects the tokens into query: Q(l) = x(l)W
(l)
Q , key:

K(l) = x(l)W
(l)
K , and value: V (l) = x(l)W

(l)
V , where

Q(l),K(l), V (l) ∈ Rn,d. In practice, the projected matrices
are further divided into H heads, which allows the model to
gather the information from lower dimension subspace and
benefit the model accuracy (Vaswani et al., 2017). These ma-
trices are then denoted as, Q(l,h),K(l,h), V (l,h) ∈ Rn,d/h.
Next, ViT computes the self-attention scores from the dot-
product as follows.

S(l,h) = softmax(
Q(l,h)K(l,h)T√

d/h
) , A(l,h) = S(l,h)V (l,h)

The single-head scores, S(l,h) ∈ Rn,n, measure the corre-
lation between every two tokens; The attention A(l,h) ∈
Rn,d/h multiple the corresponding value to the scores. The
tokens of the main features demonstrate a higher correlating

score with other tokens, and their value contributes more
to the output, whereas the noise features have a smaller
score and contribute less. The single-head attention scores
are then concatenated to form the multi-head attention,
A(l) ∈ Rn,d = Concat(A(l,1), A(l,2), · · · , A(l,H)). Further,
ViT adopts the skip connection between layers, which are
x̂(l) = x(l) +A(l) and x(l+1) = x̂(l) + MLP(x̂(l)).

2.2. Adversarial Patch Attacks in ViT

Szegedy (Szegedy et al., 2013) pioneered the development
of adversarial attack, where imperceptible perturbations to
the inputs can significantly alter the model output. Many
adversarial attacks and defenses were later studied in the
literature. Among them, the adversarial patch attack (Brown
et al., 2017), attaches an adversarial patch to the input im-
age to comprise the model accuracy. While the patch only
changes the pixels in a confined region, it may be placed
freely in the image to yield the strongest attack. Recent
studies showed that ViT is robust against background-noise-
based adversarial attacks (Aldahdooh et al., 2021; Shao
et al., 2021) but more vulnerable to adversarial patch at-
tacks, compared with CNN. For example, Token-Attack
(Joshi et al., 2021), and Patch-Perturbation (Gu et al., 2021)
are patch-based attacks specially developed on ViT.

A strong adversarial patch consists of two critical at-
tributes: the patch position and the patch pattern. The patch
pattern can be computed by Projected Gradient Descent
(PGD)(Madry et al., 2017), To maximize the loss of the
model and alter the output, PGD repeats the gradient descent
by multiple times to train the adversarial patch. We denote
the adversarial patch as x(0)

p , where subscript p ∈ {1, · · ·n}
denotes the position of the target patch. For the intermediate
layers (l > 0), the adversarial token, x(l)

p ∈ Rd, is the p-th
token over n tokens. Instead of identifying the position that
yields the strongest attack, existing works exploit heuristic
approaches to obtain good positions.

The state-of-the-art, Patch-Fool (Fu et al., 2022) and Give-
Me-Your-Attention (GMYA) (Lovisotto et al., 2022) en-
hance patch attacks by redesigning the loss functions. Both
schemes integrate the scores into the loss and maximize the
sum of the scores between every two tokens. Both success-
fully degrade all ViT/DeiT models to 0% within five 16×
16-pixel patches.

Details of how to generate the adversarial patch are in Ap-
pendix A.

3. Prior Art
To defend against patch-based adversarial attacks on ViT,
there exist two types of strategies. One is to adopt a clas-
sic CNN-based adversarial patch defense, Derandomized-
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Figure 1: Attention-Block Removing Test. The results
of benign inputs are plotted in blue boxes, and those for
adversarial inputs are in red boxes. In (a), the curve charts
depict the output of ViT-B/32 after removing the attention
block in each layer. In (b), the curve charts depict the ratio
that model output is altered after the corresponding attention
block is removed.

Smoothing (DS) (Levine & Feizi, 2020), into ViT, which
is certifiably proven effective in CNN. DS first generates
a large amount of structurally-ablated images by randomly
removing 60% to 70% of the content from the original im-
age. Then, it inferences all the ablated images to vote for the
majority to get the classification result. Certifiable-Patch-
Defense (Chen et al., 2022) and Smooth-ViT(Salman et al.,
2022) achieved 30% to 40% robustness with a trade-off that
it introduces around 1,000 times of computational overhead.
Details are in Appendix B.

The other strategy is attention-Mask (Mu & Wagner, 2021),
which integrates an average mask at each attention block
for each layer. They assume that the adversarial tokens
perform suspiciously in the attention block of each layer.
Attention-Mask cannot distinguish whether the adversar-
ial exists, but it indiscriminately selects Nd (commonly
Nd = 5) tokens from each layer to mask, and it expects all
adversarial patches, if exists, to be removed. It first monitors

the value vector for all layers and records the position of the
tokens that are the top-Nd largest. Second, it masks the at-
tention scores and value of all those tokens with the average.
The authors evaluate their schemes at both CIFAR-10 and a
down-sampled ImageNet, ImageNet-100, which shows that
the robustness is improved from 45% to 84%.

Limitations of existing defenses: The main limitation of
the Randomized-Smoothing-based defenses is the heavy
computation, where they randomly sampled one input im-
age and repeatably inferred the Network model about 1,000
times. Moreover, ViT is structurally different from CNN.
The smoothing-based neutralizes the weak connections gen-
erated by adversarial patches, but in ViT, such connections
are stronger. Adopting such protection only achieves about
40% robustness (Salman et al., 2022). The second defense,
attention mask, remove all salient tokens without knowing
which one is adversarial, and the robustness is around 65%.
Moreover, the attention mask would falsely mask the benign
tokens, which leads to about 5% to 10% accuracy drops (cf.
Figure 5 and Appendix J).

4. Observations
None of the existing defenses correctly detect the position of
the adversarial tokens. To precisely locate the adversarial to-
kens, this work starts with in-depth studies of the difference
between adversarial and benign tokens.

In contrast to applying the defense on all layers non-
discriminatorily, as in the Attention-Mask, we consider that
adversarial tokens behave differently in different layers. In
this work, we derive a layer-wise study of the behavior of ad-
versarial tokens. We design two experiments: 1. bypassing
the attention block for each layer and observing the change
of the model output; 2. studying the update of adversarial
tokens in the attention block and comparing it with benign
tokens.

4.1. One-Attention-Block-Removing Test

The prior work(Raghu et al., 2021) uncovered an intriguing
factor of ViT that removing the connection of one attention
block only degrades the accuracy by 4%. It implies that
most information is robustly distributed in multiple layers,
and the attention block for non-removed layers contains
enough information to maintain the correct output. In our
work, we conduct this experiment for the adversarial inputs
and verify their stability and robustness.

In Figure 1 (a), we capture a benign image, labeled as
”Sealyham”, from ImageNet. An adversarial patch placed at
p = 0 (the upper left corner) successfully fools the model
into producing incorrect output as ”Fur coat”. For these two
images, we repeatedly infer the model 12 times for every
12 layers. Each time, we removed the connection of one
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attention block for each layer and leave the connection of
the other 11 blocks unchanged. The output of the benign
image after removing always produces the correct label,
Sealyham (blue curve), where the previous 11 layers do not
significantly alter after removing, and the worst layer, the
12th layer, still maintains 50% confidence. However, for
the adversarial input, the most output after removing still
produces the incorrect label, fur coat (red curve). When
removing the 4th and 7th layers, the output of fur-coat drops
to nearly zero, and also we observe that removing the 7th
layer can recover the correct label, Sealyham.

We continue this study for the other 1,000 images and record
the altering rate of the 1-layer-removing model, and the re-
sults are plotted in Figure 1 (b). For benign inputs, only
around 10% of model output is altered by removing 1-layer
attention, except the last two layers. However, the removing
outputs of adversarial inputs are less stable, and the alter-
ing rate of the front and middle layers increases to more
than 0.2. Moreover, we observe that removing 1-layer atten-
tion can correctly recover the benign classification from the
adversarially-patched inputs, shown by the blue curve at the
right of Figure 1 (b). The recovering rate reaches nearly 0.2
at the middle layer.

4.2. The Update of Adversarial Patch

Through the removing test, we observe that adversarial
patches are commonly activated at a few (or even one) atten-
tion blocks at the middle layers. The correct output can be
recovered by removing the connection in these layers. Since
the skip-connection of the adversarial token is formulated
as, x̂(l)

p = x
(l)
p +A

(l)
p , if the attention update, A(l)

p , is small,
the adversarial tokens are not active in these layers.

We collect 1,000 pairs of adversarial and benign images and
study the attention update of the adversarial tokens in each
layer. At the top of Figure 2 (More results are in Appendix
F), we first study the magnitude of the attention update by
computing the ratio between the l2 norm of A(l)

p and x
(l)
p .

As is shown, the update ratio of the adversarial patch for
each layer is around 0.1, and it is 44% smaller than that of
the benign tokens. Such a ratio is close to zero (<0.01) for
the first few layers. Moreover, to demonstrate the directional
change, we further measure the cosine similarity between
tokens in different layers and plot them at the bottom of Fig-
ure 2. We can also observe that the similarity of adversarial
tokens is 47% higher than that of the benign tokens.

5. Understanding Adversarial Patches
The existing literature (Allen-Zhu & Li, 2022; Carlini et al.,
2019) well explains the principle of adversarial attacks in
CNN, which is manipulating the noise pattern of weights
in Conv or FC layers and forging them into the inputs that
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Figure 2: Layer-Wise Update of Adversarial Token. The
upper two heatmaps depict the distant change of the tokens.
The bottom two heatmaps depict the directional change of
the same token between every two layers. Data is captured
from the average of 1,000 images in ViT-B/32. Results for
other models are in Appendix F.

dominate the model output. Similarly, in ViT, the previous
work(Lovisotto et al., 2022; Fu et al., 2022) shows that ad-
versarial patches or examples manipulate attention scores,
but they did not provide a comprehensive analysis. Instead,
they implement attacks by simply maximizing the entire at-
tention score matrix. In this section, we provide a theoretical
study of how adversarial patches affect the attention score.
We show that a successful adversarial patch maximally am-
plifies the attention score of the noise tokens and lowers
the attention score of main-feature tokens. (Main-feature
tokens represent the major part of the target object, e.g., the
body of Sealyham in Figure1. )

5.1. The Propagation of The Adversarial Pattern

The key part of understanding the adversarial patch is to
convert the matrix multiplication into the following linear
combination format:

A
(l,h)
i =

n∑
j=1

S
(l,h)
i,j · V (l,h)

j

where S
(l,h)
i,j is the element in the i-th row and j-th column

of the score matrix, and V
(l)
j and A

(l)
j are the jth row of

the value matrix and attention matrix. We use S
(l,h)
i,: to de-

note the i-th row in the score matrix and S
(l,h)
:,i to denote

the i-th column. During the attention update, the p-th col-
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umn, S(l,h)
:,p , and the p-th row, S(l,h)

p,: , are perturbed by the
adversarial token.

5.2. How to maximally perturb the attention?

The column score of the adversarial token plays an essen-
tial role in perturbing attention. The attention output of
a benign token i is affected by the adversarial patch by a
scalar product, A(l)

i = S
(l)
i,p · V

(l)
p . As shown in Figure 3 (c),

if the adversarial token successfully elevates the scores in
block 1, 2, and 4, it can propagate the adversarial pattern
from its value vector to other vectors replace the benign
patterns with the adversarial pattern. To maximize this prop-
agation, the adversarial token needs to elevate more scores
at p-th column or a with higher value. The column score is
computed by the matrix-vector product of the query matrix
and key vector. Thus, moving the adversarial keys close to
the center of the query matrix, e.g., K(l,h)

p ← Ei[Q
(l,h)
i ],

is preferred by adversarial patch. Further, the propagated
adversarial pattern is negative to the Fully-Connected (FC)
layers, so the more tokens are polluted, the higher possibil-
ity that the model being crashed. An optimized adversarial
token, x∗,(l)

p , should reach a balance of both maximizing
the score column and containing the most adversarial value
vector.

5.3. The Origin of The Adversarial Patch

To perturb the score matrix in a different layer, the local
optimum, x∗,(l)

p , for each layer, are also different since the
projection weights, W (l)

Q,K,V , are different. During the early
step of PGD training, the adversarial patches are trapped by
a local optimum in a particular layer, i.e., x∗,(l∗)

p (Details
can be found in Appendix C). As the training continues, the
gradient from these layers significantly increases since the
adversarial patch approaches the optimum of these layers.
During the late steps, the adversarial patch is over-fitted
into the local maximum of a few layers without entering the
global maximum of all layers. After the adversarial token
is trapped in one layer, it will lower its row score in other
layers. Figure 3 (d) plots the multiplication between the
adversarial row and value matrix. The product, A(l)

p , is the
attention output of the adversarial token, and it gathers the
benign values based on the row score. As benign patterns
are added to the adversarial token, the adversarial token
will be neutralized by benign patterns if the row score is
too large. Therefore, the PGD method moves the query
vector of the adversarial token away from other keys and
then minimizes the row score. Hence, the update of the
adversarial token during each layer will be small, x(l+1)

p →
x
(l)
p , which explains the observation in Figure 2.

5.4. Three Stages to Crash The Model

With the analysis above, we can illustrate how adversar-
ial patches change inference results layer by layer, which
is shown in Figure 4. We use PCA to project the high-
dimensional queries and keys into a 2D plane. We divide
the inference with an adversarial input into three stages. (1)
Inactive stage, where the adversarial patch does not fall into
the local optimum of these layers, and the adversarial patch
is inactivated. (2) Activated stage, where the adversarial to-
ken reaches the local optimum of these layers and becomes
the most salient one. For example, in Layer 7, the key of the
adversarial token is shifted into the region of queries. In the
activated stage, the score column of the adversarial token
will be highly elevated. The sorted column score is in the
activate stage of Figure 4. The red curve is the adversarial
column, which is significantly larger than other columns.
(3) Polluted stage, where more and more noise tokens are
triggered and acquire the adversarial pattern, and the adver-
sarial pattern is further broadcast which makes the entire
attention graph adversarial. In this stage, the score matrices
become chaotic, and the most salient column might be from
either the adversarial tokens or the polluted tokens.

6. Abnormality-Masking Robust Defense
We propose an abnormality-masking robust (ARMOR) de-
fense, a detect and mask scheme that effectively removes
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Figure 4: Three Stages of How Adversarial Patch Crashes the Model. Data is captured from both benign and adv. of the
Sealyham image in the ViT-B/32 model. Each scatter graph plots 145 keys (blue triangles) and 145 queries (red circles). We
use green lines to circle the adv. keys and queries whose positions are 10% different from their benign examples and dotted
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them in the curve chart. More key/query graphs are in Appendix K.

Algorithm 1 ARMOR
Input: Nd ← The number of tokens to detect
Input: τ ← Threshold to identify whether adversarial
Input: x(0) , f(·)← The input and the model
Input: padv ← ∅
for l = 1 to L do

S
(l)
i ← 1/n ·

∑
j

∑
h S

(l,h)
i,j ▷ Get the mean column score

{s1, · · · , sNd}, {p1, · · · , pNd} ← top-Nd(S
(l)
i )

▷ Record the positions of the top Nd largest scores
for n = 1 to Nd − 1 do

if sn > τ · sn+1 then
padv ← padv ∪ pn ▷ Mark the suspicious token

end if
x
(0)
clean ← {x

(0) \ x(0)
padv} ∪ {x

(0)
padv ← E[x(0)]}

▷ Averagely mask suspicious patches
end for

end for
Output: yclean = f(x

(0)
clean) =0

the effect of adversarial patches. This scheme is based on
the two major weaknesses we found in adversarial patches.
First, in the first few layers, the adversarial tokens are in
the inactive stage (cf. Figure 4). Second, when adversarial
tokens enter the activated stage, their column scores, S(l)

:,p ,
are inevitably elevated.

In detecting multi-patch adversarial attacks, the first chal-
lenge is distinguishing between main-feature tokens and ad-
versarial tokens. For main-feature tokens, typically, tens of

them have a similar attention pattern, so their column scores
should be consistent. For adversarial tokens, since the num-
ber of adversarial patches is smaller, they must elevate their
column score to a higher level to draw enough attention and
inhibit the attention from benign tokens. Therefore, if only
a small amount of tokens obtain much higher column scores
than others, we can consider them adversarial. Another
challenge is distinguishing polluted tokens from adversarial
tokens. In the polluted stage, a number of noise tokens are
polluted, and the column scores of polluted tokens approach
or even exceed the adversarial tokens. They are much more
polluted tokens than adversarial tokens, e.g., Layer 9 and
Layer 10 in Figure 4, and there exists no clear gap between
each polluted token. Although the column scores of pol-
luted tokens are higher than that of main-feature tokens, we
should not consider them as adversarial and remove them
since doing so will damage the clean accuracy.

Since adversarial tokens are only activated in a few layers,
we conduct layer-wise scanning that efficiently catches the
adversarial tokens in the activated stage. If adversarial to-
kens are detected, a mask using the average of the image can
efficiently remove the threat without damaging the model,
which has been verified in prior literature (Naseer et al.,
2021; Paul & Chen, 2022).

We adopt the mask in the images and perform the inference
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Table 1: Robustness Result of ARMRO Against Various Attacks on Different Models

Models AR- Clean Token Attack Patch Fool GMYA
MRO Acc. 1-patch 2-patch 5-patch 1-patch 2-patch 5-patch 1-patch 2-patch 5-patch

ViT-B/16 w/o 85.0% 47.1% 12.2% 0% 33.5% 8.4% 0% 30.2% 2.5% 0%
with 84.1% 83.2% 80.0% 72.5% 82.8% 80.2% 74.0% 82.4% 81.7% 75.0%

ViT-B/16 w/o 84.4% 31.6% 0.7% 0% 17.9% 0% 0% 12.2% 0% 0%
(224) with 83.0% 82.4% 79.7% 70.1% 82.3% 78.8% 72.3% 81.5% 79.8% 67.5%

ViT-B/32 w/o 81.6% 12.7% 0% 0% 7.1% 0% 0% 9.9% 0% 0%
with 80.7% 79.6% 76.6% 67.2% 79.3% 77.1% 69.1% 78.5% 77.4% 70.7 %

ViT-L/32 w/o 83.4% 28.1% 5.8% 0% 12.7% 0.6% 0% 19.4% 6.3% 0%
with 81.9% 80.8% 79.4% 73.1% 80.3% 76.5% 71.9% 81.0% 78.4% 70.9%

DeiT-B/16 w/o 85.2% 57.7% 28.4% 3.5% 41.7% 17.3% 0% 43.0% 14.6% 0%
with 84.5% 84.1% 82.4% 75.3% 83.5% 80.6% 73.6% 83.6% 79.3% 74.3%

again, which makes all layers clean. Algorithm 1 depicts
the detail of ARMOR. First, we scan the mean value of each
column in score matrices for all layers. Second, we look
for the top-Nd largest mean column scores, where Nd is a
preset coefficient stating the number of tokens needed to
detect. Empirically, we set Nd = 5, because we consider
that the number of adversarial patches should be clearly
smaller than the main-feature patches, and setting a larger
detecting number, e.g., Nd = 10, increases the possibility
of false positives. If encountering more than Nd adversarial
patches, we can perform multiple rounds of ARMOR. Third,
we detect the abnormally large elements within the top-Nd

scores. We set a threshold, τ ; if one or a few elements are τ
times larger than others, we mark it (or them) as suspicious.
For each model, we use 100 images to find an optimal τ , and
usually, setting τ is set between 1.5 to 2.5 for most models
(see Section D). Finally, we record all the suspicious patches
and adopt a mask with the average of the image at the image
input (Layer 0), E[x(0)], and perform the inference again to
acquire the clean output.

Note that we assume the area (equivalent to the number)
of adversarial patches is limited, as pointed out in prior
studies (Brown et al., 2017; Liu et al., 2018), or it would be
easily observed by human eyes.

7. Evaluation
7.1. Experiment Setting

To evaluate the variety of our defense, we experiment
with five models: ViT-B/16, ViT-B/16-224, ViT-B/32,
ViT-L/32, and DeiT-T/16. The testing models contain
different patch sizes (16 and 32), different numbers of
layers (Base: 12, and Large: 24), different input sizes
of tokens (224 and 384), and different model architec-
tures (DeiT and ViT). All models are pre-trained from the
open-source database, where three ViT models are from
PyTorch-Pretrained-ViT (Wightman, 2019), and

the DeiT model is from Facebook-Research-DeiT
(Touvron et al., 2021a). We also verify the robustness of
our proposal, ARMRO, via three adversarial patch attacks,
Token-Attack, PatchFool, and GMYA. PatchFool attack is
open-sourced (Fu et al., 2022). Since we failed to access the
fine-tuning detail of GMYA, our implementation of GMYA
is weaker than they reported. For comparison with the
related work, we implement Attention-Mask. We choose
384× 384× 3 images randomly sampled from ImageNet
2012 (Deng et al., 2009). All codes are written in Python
and PyTorch (Paszke et al., 2019) Platform.

7.2. Defense Robustness

In Table 1, we test three attacks to verify the robustness of
ARMRO. In the experiment, we use 100 images to learn the
detection threshold, τ , for each model. We set the number
of detection as Nd = 5. We show the difference between
inference with defense and without defense for each model.
Initially, we evaluate the clean accuracy by inferring the
clean dataset. ARMRO compromises around 1% of clean
accuracy, and the degradation on ViT-L is more extensive for
its larger model size or patch size. More layer in the model
enlarges the chances of incorrectly detecting the benign
patch as adversarial, and a larger patch size amplifies the
impact of masking the benign.

We evaluate the defense robustness toward three different
patch attacks, and we test all 1-patch, 2-patch, and 5-patch
attacks. We set the perturbation radius of the adversarial
patch to 0.8, which means the value of each pixel can be
altered to 204/255. The size of adversarial patches is equal
to the patch size of the model, e.g., it is 32× 32 pixels for
ViT/32 and 16 × 16 pixels for ViT/16. A 32×32 patch
covers 0.69% area of 384×384 images, and five patches
cover 3.4% of the area.

Our proposal achieves promising robustness, where the ro-
bustness is measured by inferring the images with adversar-
ial patches. For the 1-patch attack, we can correctly detect
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76.3% 76.1% 73.8%
68.7%

66.4%
60.2% 60.9% 62.0 % 60.1%

55.8%

80% 84% 84% 85%

(a)  Attention-Mask
Model Acc.

(Clean Dataset)
Robustness.

(Adv. Dataset)
Correct

Detection

𝑁𝑁𝑑𝑑= 1𝑁𝑁𝑑𝑑= 2 𝑁𝑁𝑑𝑑= 3𝑁𝑁𝑑𝑑= 4 𝑁𝑁𝑑𝑑= 5𝑁𝑁𝑑𝑑=0
(b)  Our Proposal, ARMRO
𝑁𝑁𝑑𝑑= 1𝑁𝑁𝑑𝑑= 2 𝑁𝑁𝑑𝑑= 3 𝑁𝑁𝑑𝑑= 4𝑁𝑁𝑑𝑑= 5𝑁𝑁𝑑𝑑=0

81.6%

81.6% 81.1% 80.9% 80.9% 80.7%

77.8% 78.5% 78.5% 78.7%

95% 97% 97% 97 % 97 %

7.1%
84% 90% 93% 95% 96%

3% 7 % 9 % 10% 10%

80.7%

78.5%

False
Positive

7.1%

78%

Figure 5: Comparison to Attention-Mask. Both schemes
are tested by 1-patch Patch-Fool attacks on ViT-B/32. Nd

states the number of detection, and Nd = 0 means no de-
fense. Results for other models are in Appendix J.
around 97% of adversarial patches, and the robustness is
2∼3% near the accuracy. For 2-patch attacks, the robustness
is about 5% less than the accuracy. The 5-patch attack is
challenging since missing 1 or 2 of the patches leads to the
failure of this defense. Our defense can achieve around 85%
of the success detecting rate and maintain the robustness to
around 70%.

7.3. Comparison to Related Work

Comparison VS. Attention-Mask: In Figure 5, we com-
pare our work with the attention mask. We implement
the attention-mask defense scheme and evaluate it with
our proposed defense result, and we choose 1-patch Patch-
Fool as the targeted attack. We test 5 different detecting
numbers,Nd = {1, · · · 5}, for both defense. The result for
Nd = 0 is tested on the w/o defense model. The blue bars
plot the adversarial patch detection rate, the percentage of
successfully detected patches out of the total adversarial
samples. The orange bar plots the false positive ratios of
detecting benign tokens. The false positive of the attention-
mask is greater than 90% for two reasons: first, the attention
mask monitors the value matrix, but commonly the value
of adversarial tokens is not the highest one; second, the
attention mask spends equal effort on both inactivate stage
and activate, but the adversarial token is less salient than the
benign patch in the inactivate stage, which vastly increases
the false positive. Attention mask produces low clean accu-
racy on ViT-B/32, where it is dropped from 81.6% to 66.4%
when Nd = 5. Masking too many benign tokens becomes
unacceptable as the area of tokens increases.

Our proposed defense achieves higher correctness, above
90% when Nd = 1, and is 97% ∼ 98% when Nd = 5. The
overall degradation in the clean accuracy is negligible (less
than 3%). Moreover, our proposal achieves 20% higher
robustness than the attention mask and reaches above 80%.

Comparison VS. CNN-Based Patch Defense:

Table 2: Comparison to Patch Defenses from CNN

Defense Model 1-Patch 2-Patch 5-Patch

Salience
Map

ViT-B/16 55% 45% 33%
ViT-B/32 37% 30% 24%
ViT-L/32 40% 30% 21%

Patch
Guard

ViT-B/16 64% 60% 51%
ViT-B/32 62% 57% 49%
ViT-L/32 59% 46% 42%

Ours
ViT-B/16 83% 80% 72%
ViT-B/32 79% 76% 67%
ViT-L/32 80% 79% 73%

At present, there is a dearth of patch-detecting defenses
developed specifically for ViT. To facilitate a more compre-
hensive comparison, we have adapted two established patch
defenses, originally designed for Convolutional Neural Net-
works (CNN), to work with ViT. (a) Saliency-Map
(Hayes, 2018; Smilkov et al., 2017) generates a saliency
map by computing saliency from the gradient of the input
and masks the most salient areas. It has been observed that
adversarial patches tend to be more salient than benign ones.
In our implementation, we calculate the saliency map using
|∇xℓCE(f(x

(0)), y)| and mask the top 5% of the largest area.
(b) Patch-Guard (Xiang et al., 2021) is a method that
creates a robust mask in the feature map of CNN models.
For our comparison with ViT, we adapted this method to
apply the same robust mask within the score matrix.

In Table 2, we present the accuracy of both the Saliency
Map and Patch Guard defenses after 1-patch, 2-patch, and
5-patch iterations of the Patch Fool Attack. It’s evident that
both defenses only provide basic protection. Patch Guard
achieves an accuracy ranging from 50% to 60%, whereas
the Saliency Map ranges from 40% to 50%. Notably, these
results are 30% to 40% less effective than the performance
of our defense.

Comparison Vs. Certified defense:

We present comparative results in Appendix H. Our de-
fense method consistently outperforms others across all
measured metrics, including clean accuracy, inference time,
and robustness. However, it’s crucial to note that comparing
empirical defenses, like our proposed one, with provable
defenses, such as Smooth-ViT, may not be entirely appropri-
ate. These two kinds of defenses serve different application
scenarios. Our defense is rapid, and highly robust, boasting
an adversarial detection rate of over 97%, making it partic-
ularly advantageous in computationally intensive domains
like self-driving technology.

7.4. Detecting Adaptive Attacks

As all existing attention-based patch attacks create a strong
anomaly, our defense is able to efficiently identify and mask
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them at an early stage. However, we also consider whether
attackers could lessen the strength of the adversarial patch
in an attempt to bypass our detection and harm the model.
In this section, we explore three types of adaptive attacks
that could potentially threaten our defense. During these
experiments, we mimic a real-world scenario in which our
defense is unaware of any reduction in the strength of the
attack.

(a) Reduce Patch-Size (b) Reduce Perturbation Radius

Model Robustness
(Adv. Dataset)

Defense
Success Rate

Attack
Success Rate

78.3% 72.4% 77.1% 79.3%

4%
vs.
96%

75.1% 69.2% 72.6% 79.3%

32 × 3224 × 2416 × 168 × 8

7%
vs.
93%

25%
vs.
75%

80%
vs.
20%

Defense
Failure Rate

91%
78%

45%

5%

4%
vs.
96%

91%

15%
vs.
85%

73%

42%
vs.
58%

36%
72%
vs.
28%

11%

0.80.60.40.2

(c) Implicitly Restrict Column Score (d) Strictly Restrict Column Score 

68% 70% 74% 78%

3%
vs.
97%

10%
vs.
90%

18%
vs.
82%

23%
vs.
77%

90%
77%72%66% 69%

45%
vs.
55%

55%

𝛼𝛼 = 2 𝛼𝛼 = 1 𝛼𝛼 = 0.5 𝛼𝛼 = 0.1

Figure 6: Defense Against Adaptive Attack. Tested on
ViT-B/32 against Patch-Fool attack. More Results for other
models are in Appendix I.

Reduced-Strength Attacks: In Figure 6 (a) and (b), we
first try reducing the patch size from 32 pixels to 24, 16,
and 8 pixels. Second, we experiment with the perturbation
radius from 0.8 to 0.6, 0.4, and 0.2. The model is ViT-B/32
(results for other models are in Appendix I). The robust-
ness measures the average accuracy over 1,000 adversarially
patched images. The attack success rate is the percentage
of attacks that successfully alter the output of the benign
model. The defense success rate is the percentage that the
ARMOR defends those successful attacks.

The results show that ARMOR achieves adequate robustness
in defending reduced-strength attacks. For 24-pixel and
0.6-radius attacks, the attack success rate is above 70%,
and our defense maintains above 75% success defending
rate. For the 16-pixel size or 0.4-radius attacks, our defense
becomes weaker (to 58% 75%) since the adversarial tokens
are less salient and harder to detect, but the attack success
rate decreases to less than 50%, and the overall robustness
drop is within 10%.

Column-Score-Restricted Patch: In order for an adaptive
attack to succeed, the column score of the adversarial patch
must not surpass τ times the score of other benign patches.
This constraint must hold true across all 12 layers. To further

probe the potential of this approach, we devise two strategies
for fabricating patches: one with weak restrictions, and the
other with strict restrictions. The loss function used for the
weak restriction strategy is as follows:

ℓ1 = ℓCE(f(x), y)− α · Σl||S̄(l)
p ||22

This loss function aims to maximize the distance between
the model’s output and the target label, while minimizing its
column scores. The regulation term’s coefficient, α, is small
(ranging from 0.5 to 2 in our experiments). Although this
can prevent the column score from increasing indefinitely,
it does not guarantee that the patches will always remain
within the detection boundary. For scenarios that require a
strict restriction, we employ the following loss function:

ℓ2 = ℓCE(f(x), y)− β · Σl∈L||S̄(l)
p − τ ·max(S̄

(l)
benign)||

2
2

where L = {l|S̄(l)
p > τ ·max(S̄

(l)
benign)}

This loss function imposes a strict regulation, ensuring the
column score remains below τ times the largest benign
token, denoted as max(S̄

(l)
benign). The regulatory term accu-

mulates only for the layers, l ∈ L, that surpass the detection
threshold. Here, we employ a substantial coefficient, either
β = 50 or β = 100, which exerts the maximum restriction
to keep the adversarial patch outside the detection range.
Further details can be found in Appendix E.

In Figure 6 (c) and (d), we test the performance of our
defense against patches trained with both weak and strict re-
strictions. We evaluate four coefficients, α = 0.1, 0.5, 1, 2,
for the weak restriction, and our defense maintains a robust-
ness level of over 68%. The strategy with strict restrictions
proves to be the most effective, achieving a high attack suc-
cess rate of 69%. However, only 55% of these attacks are
detected by our defense, resulting in an overall degradation
of robustness to 55%.

Multi-Patch Adaptive Attack: We also conducted exper-
iments on the adaptive attack using two or five adversar-
ial patches. Under weak restriction, the adaptive attack
achieves the highest fool rate, resulting in a reduction of our
defense’s robustness to 35% in ViT-L/32. Despite this, our
defense still outperforms Attention-Mask, maintaining an
accuracy that’s 13% higher. Detailed results can be found
in Appendix G.

8. Conclusion
This work comprehensively studies the attention-based ad-
versarial patch attack. Through two experiments, we find the
adversarial patches are only activated in a few layers. Fur-
ther, we uncover that adversarial patches elevate the score
columns and propagate their pattern. Finally, we propose
ARMOR to generate robust networks.

9



Understanding and Defending Patched-based Adversarial Attacks for Vision Transformer

References
Aldahdooh, A., Hamidouche, W., and Deforges, O. Reveal of

vision transformers robustness against adversarial attacks. arXiv
preprint arXiv:2106.03734, 2021.

Allen-Zhu, Z. and Li, Y. Feature purification: How adversarial
training performs robust deep learning. In 2021 IEEE 62nd An-
nual Symposium on Foundations of Computer Science (FOCS),
pp. 977–988. IEEE, 2022.
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A. Details of Generating Adversarial Patches
The position of the adversarial patch, e.g., p in xp, significantly affects the attack success rate. The existing adversarial
patch attacks have developed some heuristics to find an optimal position. Token-Attack (Joshi et al., 2021) chooses the patch
that has the highest backward gradient on its input:

Token-Attack : p = argmax
1≤p≤n

||∇
x
(0)
p
L0||22 (1)

Patch-Fool (Fu et al., 2022) sums the attention scores between the query of the adversarial token, x(l)
p WQ, and all keys,

x(l)WK , for all L layers, and select the position where the patch, p, which gets the highest summation score:

Patch-Fool : p = argmax
1≤p≤n

L∑
l=1

||x(l)
p WQ(x

(l)WK)T ||22 (2)

The patch position found by Token-Attack has the largest gradient, where altering the patch in such position will maximumly
shift model output. However, since the model output is a high-dimension vector, e.g., 1,000 classes, it is difficult to control
the output shift occurring in the target class. Patch-Fool selects the patch with the strongest connection with other patches.
We experiment with these two position-finding algorithms and uncover that the patch-fool achieves around 5% to 10%
higher attack success rate.

After selecting the patch, the following work is to construct the patch pattern. The Projected Gradient Descend (PGD) can
be formulated as follows:

xt,(0)
p = xt−1,(0)

p + σ · sign(∇x(0)L0) , t ∈ {1, 2, · · ·T} (3)

PGD repeats the gradient descent by T times to train the adversarial patch, x(0)
p , which maximizes the loss of model,

L0 = ℓ(f(x
t,(0)
p ), y).

Patch-Fool (Fu et al., 2022) and Give-Me-Your-Attention (GMYA) (Lovisotto et al., 2022) enhance patch attacks by
redesigning the loss functions. when conducting the PGD:

Patch-Fool : L0 +

l1∑
l=1

∑
h

S(l,h)

GMYA : L0 +

l2∑
l=1

∑
h

Q(l,h)K(l,h)T

(4)

Both schemes integrate the scores into the loss and maximize the sum of the scores between every two tokens. In addition,
based on the observation that the tokens in the rear layers are less affected by the adversarial patch, these schemes only sum
the scores for the first l1 and l2 layers (l1,l2 < L), respectively. The difference between them is that Patch-Fool uses the
post-softmax scores while GMYA uses the pre-softmax ones. Both successfully degrade all ViT/DeiT models to 0% within
five patches.

B. Details of De-Randomized Smoothing
After the adversarial attack was uncovered and received considerable attention, a statistic-based defense was proposed,
which is Randomized Smoothing (RS). RS considers the adversarial perturbation a special outcome under a Gaussian
Distribution. It generates a larger number of random noises under the same distribution and in the same space, which can be
formulated as:

fRS(x) = Eϵ∈N (0,σ2I)[f(x
(0) + ϵ)] (5)

where ϵ is Gaussian Noise under N (0, σ2I), and σ is the perturbation radius equal to the adversarial. RS randomly samples
a large amount, e.g., 1,000, of the same image inputs and selects the majority as the final class.

De-Randomized Smoothing (DS) (Levine & Feizi, 2020) is a variant of Randomized Smoothing specifically targeting
adversarial patch attacks. DS assumes that adversarial patches only appear in a small area of the image. DS randomly
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removes parts of the image, and the parts-ablated images have a large change to exclude the adversarial patches. Thus, the
statistical outputs are expected to produce the correct classification results. DS is formulated as:

fDS(x) = EM[f(M⊙ x(0))] (6)

whereM is the randomly-sampled parts-removing function, and it varies from different implementations.

For defending the adversarial attack toward ViT models, Certifiable-Patch-Defense (Chen et al., 2022) applies DS schemes
and adopts the line segment parts-removing function, which is:

Mp ⊙ x(0) = x
(0)
p:p+D, : (7)

where p is the randomly-sampled position, and D is the length of the line segment. Certifiable-Patch-Defense crops the
image into column-wise or row-wise line segments and uses it in model inference.

They conducted experiments on the classic DS schemes in ViT. They improved both efficiency and robustness by proposing
adaptations. which are progressive-smoothed image modeling and isolated band unit self-attention. They generated 1,024
ablated images from the original image and achieved 30% to 40% of robustness for ViT models, but the clean accuracy
drops from 85% to 66%. Smooth-ViT(Salman et al., 2022) achieved similar robustness (30% to 40%) and batch size (1,024
ablated images), but they improved the clean accuracy to 69%.

C. Layer-Wise Updating of The Adversarial Token During Training
Through our theoretical study, we discovered that the layer-wise local optimum aims to optimally position the adversarial keys
at the center of the query tokens. Achieving this optimum maximizes the column scores. Consequently, we experimented
with monitoring the changes in the mean column score of the adversarial token, S , during the training process to obtain
the adversarial patch. We randomly selected an image from ImageNet and charted the changes in its column score across
various epochs and layers, as shown in the table below.

D. The Detecting Threshold
In our defense, we choose a coefficient τ as the threshold to identify the abnormality of whether a token is adversarial.
Before deploying ViT models, we use 100 samples to compute the optimal setting of τ . In Table 3, we present the statistics
of the abnormality ratio of both benign tokens and adversarial tokens. If the abnormality ratio is greater than τ , it will be
considered adversarial. The abnormality ratio is calculated by the largest mean column score, maxi(S̄i), divided by the
second-largest mean column score, second-maxi(S̄i), where the mean column score use the average of all layers and heads.
µbenign and µadv represent the mean values of the abnormality ratio of benign tokens and adversarial tokens, respectively.
σbenign and σadv denote the standard deviations.

As is shown in Table 3, we observe there is a clear gap between the distribution of benign tokens and adversarial tokens, so
there is a wide range in choosing the threshold, τ . In our defense, we adopt the three-sigma rule, τ = µbenign + 3 · σbenign,
where > 99.7% of benign samples are within the three-sigma range, so our detection can avoid faulty detection and precisely
capture the adversarial patches.

Table 3: Statistic of The Abnormality Ratio

Model µbenign σbenign µbenign σbenign τ

ViT-B/32 1.12 0.11 2.86 1.87 1.61
ViT-B/16 1.09 0.11 2.84 1.55 1.43
ViT-L/32 1.07 0.09 2.66 1.49 1.35

DeiT-B/16 1.10 0.10 2.92 1.73 1.42

E. Adaptive Attack: Strict Column-Score-Restricted Attack
We have experimented with a variety of formulations to create the adversarial patch. The adaptive attack under strict
restriction is the most successful among all our attempts. Under the strict restriction, adversarial patches learns the adversarial
pattern to enlarge CE loss of the output, and their column scores for every layer are bounded to a undetectable range.
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Table 4: Example of an Adversarial Patch Trained by Adaptive Attack (Strict Restriction).

Epoch Abnormality Ratio for Each Layer |S̄(l)
p |/max |S̄(l)

benign| CE Loss
1 2 3 4 5 6 7 8 9 10 11 12

1 0.53 0.27 0.77 0.79 1.05 0.59 0.47 0.50 0.17 0.32 0.31 0.29 0.20
10 0.64 0.34 0.50 0.67 0.78 0.89 0.82 1.18 0.34 0.62 0.71 1.07 1.90
50 0.41 0.32 0.45 0.87 0.79 0.98 1.00 1.11 0.41 0.80 0.86 0.94 2.45
100 0.39 0.29 0.49 0.90 0.85 1.20 1.25 1.08 0.45 1.03 0.89 1.49 3.65
150 0.37 0.28 0.40 0.86 0.87 1.47 1.49 1.10 0.47 1.05 0.73 1.33 4.35
200 0.37 0.28 0.36 0.82 0.85 1.40 1.47 1.12 0.52 1.17 0.88 1.39 4.58

In Table 4, we capture an successful adversarial patch trained by such adaptive attack. We monitor the abnormality ratios,
|S̄(l)

p |/max |S̄(l)
benign|, for all 12 layers during the training. The abnormality ratio is calculated by the largest mean column

score, maxi(S̄i), divided by the second-largest mean column score, second-maxi(S̄i), where the mean column score use
the average of all layers and heads. The detection threshold, τ , is 1.5 where the adversarial patch will be detected if the
abnormality ratios ratio exceeds 1.5. As the adversarial pattern is learned, the CE loss incrementally rises, and the model
successfully produces the wrong output.

During the training, whenever the abnormality ratios of the column scores surpass the detection threshold (1.5), the strict
regulation term will produce a significant gradient term to drag abnormality ratios to the undetectable boundary. For example,
at the 100th epoch, the abnormality ratios in the 12th reach 1.49, which is close to the threshold, and it drops to 1.33 at the
150th epoch. As is shown, none of the abnormality ratios exceed the threshold, and such patch is undetectable to our defense.

F. Token Similarity Test on Various Models

（a) Layer-Wise  Update Ratio of Adversarial Token （b) Layer-Wise Update Ratio of The Average of All Tokens

（c) Layer-Wise Cosine Similarity of Adversarial Token
（d) Layer-Wise Cosine Similarity of The 
Average of All Tokens

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12

1 0.43 0.3 0.17 0.064 0.065 0.2 0.23 0.22 0.22 0.21 0.17

0.43 1 0.75 0.44 0.23 0.11 0.057 0.029 0.023 0.023 0.02 0.022

0.3 0.75 1 0.75 0.49 0.31 0.15 0.099 0.089 0.083 0.084 0.081

0.17 0.44 0.75 1 0.78 0.56 0.25 0.16 0.14 0.13 0.12 0.1

0.064 0.23 0.49 0.78 1 0.8 0.38 0.23 0.2 0.18 0.16 0.13

0.065 0.11 0.31 0.56 0.8 1 0.64 0.49 0.45 0.42 0.4 0.32

0.2 0.057 0.15 0.25 0.38 0.64 1 0.95 0.92 0.89 0.84 0.69

0.23 0.029 0.099 0.16 0.23 0.49 0.95 1 0.98 0.94 0.9 0.74

0.22 0.023 0.089 0.14 0.2 0.45 0.92 0.98 1 0.97 0.92 0.77

0.22 0.023 0.083 0.13 0.18 0.42 0.89 0.94 0.97 1 0.96 0.82

0.21 0.02 0.084 0.12 0.16 0.4 0.84 0.9 0.92 0.96 1 0.89

0.17 0.022 0.081 0.1 0.13 0.32 0.69 0.74 0.77 0.82 0.89 1

1

1 2 3 4 5 6 7 8 9 10 11 12

0.3 0.22 0.25 0.22 0.2 0.19 0.17 0.17 0.17 0.15 0.18 0.25 0.18 0.14 0.16 0.17 0.19 0.16 0.15 0.13 0.12 0.095 0.13 0.241

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9

10
11
12

1 2 3 4 5 6 7 8 9 10 11 12

1 0.69 0.52 0.43 0.38 0.32 0.28 0.24 0.22 0.19 0.18 0.13

0.69 1 0.87 0.7 0.59 0.46 0.39 0.31 0.26 0.23 0.21 0.15

0.52 0.87 1 0.88 0.74 0.58 0.49 0.41 0.34 0.3 0.27 0.2

0.43 0.7 0.88 1 0.9 0.75 0.64 0.54 0.46 0.41 0.38 0.29

0.38 0.59 0.74 0.9 1 0.88 0.77 0.65 0.56 0.49 0.45 0.36

0.32 0.46 0.58 0.75 0.88 1 0.91 0.79 0.7 0.62 0.56 0.44

0.28 0.39 0.49 0.64 0.77 0.91 1 0.9 0.82 0.73 0.66 0.53

0.24 0.31 0.41 0.54 0.65 0.79 0.9 1 0.92 0.84 0.77 0.62

0.22 0.26 0.34 0.46 0.56 0.7 0.82 0.92 1 0.93 0.85 0.69

0.19 0.23 0.3 0.41 0.49 0.62 0.73 0.84 0.93 1 0.93 0.77

0.18 0.21 0.27 0.38 0.45 0.56 0.66 0.77 0.85 0.93 1 0.85

0.13 0.15 0.2 0.29 0.36 0.44 0.53 0.62 0.69 0.77 0.85 1

Figure 7: ViT-B/16: Comparison of Token Similarity between Adversarial Patches and Benign Patches.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0.1 0.091 0.13 0.15 0.16 0.12 0.14 0.16 0.15 0.12 0.13 0.12 0.075 0.069 0.045 0.051 0.051 0.054 0.054 0.048 0.058 0.065 0.068 0.07

(a) Layer-Wise Update Ratio of Adversarial Token

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0.27 0.36 0.33 0.3 0.28 0.280.15 0.25 0.25 0.2 0.23 0.18 0.16 0.12 0.11 0.12 0.13 0.11 0.11 0.11 0.12 0.14 0.16 0.22

(b) Layer-Wise Update Ratio of The Average of All Tokens
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(c) Layer-Wise Cosine Similarity of Adversarial Token
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Figure 8: ViT-L/16: Comparison of Token Similarity between Adversarial Patches and Benign Patches.
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(d) Layer-Wise Cosine Similarity of The Average of All Tokens

Figure 9: ViT-L/32: Comparison of Token Similarity between Adversarial Patches and Benign Patches.
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G. Defense Against The Multi-Patch Adaptive Attack
In this work, we continue the study of adaptive attacks and revise the aforementioned training strategy from single-adversarial
patches to multiple-adversarial patches. This experiment is conducted under both weak and strict restriction.

Adaptive Attack under Weak Restriction: We employ a loss function with weak regulation by setting the coefficient. The
loss function is expressed as follows:

ℓ3 = ℓCE(f(x
(0) +

N∑
i

x(0)
pi

), y)−
N,L∑
i,l

α · ||S̄
(l)−τ ·S̄(l)

benign
pi ||22

We introduce N as the number of patches, and the regulation is the sum of the column score of all patches. The loss function
employs the methodology previously discussed, using a weak restriction coefficient, α = 2, to minimize the distance to the
largest benign token. The results are presented in Table 5.

Table 5: Defense against Multi-Patch Adaptive Attack under Weak Restriction

# of Patches Model
Attack
Suc. Rate

Defense
Suc. Rate

# of Patches
being Detected

Robustness
(Ours)

Robustness
(Attention-Mask)

2
ViT-B/32 89% 80% 1.4 70% 45%
ViT-B/16 16% 43% 1.1 74% 66%
ViT-L/32 77% 75% 1.3 65% 45%

5
ViT-B/32 100% 45% 2.7 37% 21%
ViT-B/16 69% 27% 2.4 43% 35%
ViT-L/32 100% 42% 3.1 35% 22%

By infusing each patch with minimal adversarial features, our detection method faces greater difficulty in identifying
abnormalities. During the experiment, we observe an interesting phenomenon. In defending against these stealthy attacks,
such as the 5-patch attack, it is unnecessary to identify all five patches accurately. In some cases, detecting and masking two
or three of these adversarial patches is sufficient to thwart the entire attack. We document the average number of adversarial
patches detected in the Number of Detected Patch column.

Adaptive Attack under Strict Restriction: Similarly, we revise the loss function of the strictly restricted patch.

ℓ4 = ℓCE(f(x
(0) +

N∑
i

x(0)
pi

), y)− β ·
∑
l,i∈C

||S̄(l)
p − 0.95τ ·max(S̄

(l)
benign)||

2
2

where C := {i ∈ {1, 2, · · · , N} , l ∈ {1, 2, · · · , L} | S̄(l)
pi

> τ ·max(S̄
(l)
benign) }

Here, we adopt a strict coefficient, β = 100, to the regulation term. The regulation is the sum of the distance from the
adversarial token to the largest beinign token, for all N patches and L layers. Moreover, in case the column score of the
adversarial token bounces across the detection boundary, i.e., S̄(l)

pi → τ ·max(S̄
(l)
benign). We introduce another coefficient,

0.95, to further limit the column scores, which removes the chance that the adversarial patch is too close to the detection
boundary.

Table 6: Defense against Multi-Patch Adaptive Attack under Weak Restriction

# of Patches Model
Attack
Suc. Rate

Defense
Suc. Rate

# of Patches
being Detected

Robustness
(Ours)

Robustness
(Attention-Mask)

2
ViT-B/32 75% 67% 1.8 63% 47%
ViT-B/16 35% 55% 1.6 71% 50%
ViT-L/32 77% 75% 1.3 68% 55%

5
ViT-B/32 100% 69% 3.9 58% 25%
ViT-B/16 86% 76% 3.7 67% 41%
ViT-L/32 100% 80% 4.1 68% 28%

17



Understanding and Defending Patched-based Adversarial Attacks for Vision Transformer

In Table 6, we show the result of the multi-patch adaptive attack under strict restriction. Formulating a perfect version of
such an attack is a complex problem. The current results show that this attack has a worse performance compared to the
weak restricted one. The strictly restricted attack can be easily detected by the multi-patch detection method. Since the loss
function is too aggressive, most of the adversarial patches trained by such loss function tend to be overfitted.

Discussion: We maintain that the experimental results presented are consistent with our theoretical analysis. Adversarial
patches must elevate their column scores to propagate their adversarial patterns to the noise tokens. Incorporating regulation
during adversarial training can help distribute this propagation more evenly across layers. However, such stealthy attacks are
inherently less powerful. As we increase the number of adversarial patches and reduce the strength of each patch, the trained
adversarial patches will increasingly resemble benign patches, posing a significant challenge for all adversarial defenses.
Our defense method remains the best empirical defense among all the baselines.

H. Comparison to The Certified Defense
In Section 3, the prior art section, we discussed three baselines, two of which are certified defenses. These certified defenses
offer protection against adversarial patches with various shapes, sizes, and magnitudes. However, they demand substantial
computational resources, and their robustness remains limited. We extracted the results from their papers, scaled our defense
to equivalent settings, and generated the comparison in Table 7 and Table 8.

Table 7: Comparison to Cert-Patch

Defense Model Clean Accuracy Inference time of 512 images 1-Patch 2-Patch 5-Patch

Cert-Patch ViT-S/16 (224) 63.88% 9.66 second 35.6% 30.0% 25.9%
ViT-B/16(224) 66.92% 16.63 second 47.3% 41.7% 37.3%

Ours ViT-S/16 (224) 77.2% 0.334 second 74.3% 71.2% 62.5%
ViT-B/16(224) 83.0% 0.737 second 79.4% 74.1% 67.0%

Table 8: Comparison to Smooth-ViT

Defense Model Clean Accuracy Inference time of 512 images 1-Patch 2-Patch 5-Patch

Cert-Patch ViT-S/16 (224) 67.1% 20.5 second 36.8% 31.6% 28.2%
ViT-B/16(224) 73.2% 58.7 second 44.0% 38.2% 34.1%

Ours ViT-S/16 (224) 77.2% 0.334 second 74.3% 71.2% 62.5%
ViT-B/16(224) 83.0% 1.11 second 79.4% 74.1% 67.0%

Our code runs on a 4090 GPU, while Certified-Patch and Smooth-ViT use a V100 GPU. Therefore, we roughly scale our
inference time by a factor of 3.1x based on the number of CUDA cores (5,120 vs. 16,380).

We convert the pixel area (1% or 2%) equivalently to the number of 16x16 or 32x32 patches: 1. For models using a 16x16
patch size: 1% pixel area corresponds to two 16x16 patches; 2% pixel area corresponds to four patches; 3% pixel area
corresponds to six patches. 2. For models using a 32x32 patch size: 1% pixel area corresponds to one patch; 2% pixel area
corresponds to one patch; 3% pixel area corresponds to two patches.

For the comparison, we implement our defense in the ViT-S/16 model and download the pre-trained ViT-S model from
DINO-pretrained (Caron et al., 2021). We will update more attack/defense results for ViT-S/16 in the revised manuscript.

As demonstrated, our defense achieves superior performance across all metrics, including clean accuracy, inference time, and
robustness. However, comparing empirical defenses (e.g., our proposed defense) with provable defenses (e.g., Smooth-ViT)
might be inappropriate. We believe these two types of defenses have distinct application scenarios. Our defense is fast,
highly robust (with an adversarial detection rate exceeding 97%), and can benefit computation-intensive domains such as
self-driving.
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I. Defense Performance against Reduced-Strength Attack
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Figure 10: ViT-B/16: Defense Performance against Reduced-Strength Attack.
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Figure 11: ViT-L/32: Defense Performance against Reduced-Strength Attack.
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J. Defense Performance Compared to Attention-Mask
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Figure 12: ViT-L/32: Comparison between Attention-Mask and our proposed ARMOR via different numbers of detection.
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Figure 13: ViT-B/16: Comparison between Attention-Mask and our proposed ARMOR via different numbers of detection.
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K. Query/Key Figures

Dish Washer

Layer 1 Layer 2 Layer 3 Layer 4

Layer 5 Layer 6 Layer 7 Layer 8

Layer 9 Layer 10 Layer 11 Layer 12

Figure 14: Query/Key Figures of Dish Washer Example

Layer 1 Layer 2 Layer 3 Layer 4
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Golden Retriever

Figure 15: Query/Key Figures of Golden Retriever Example
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Layer 1 Layer 2 Layer 3 Layer 4

Layer 5 Layer 6 Layer 7 Layer 8

Layer 9 Layer 10 Layer 11 Layer 12

Sloth Bear

Figure 16: Query/Key Figures of Sloth Bear Example
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Boston Bull

Figure 17: Query/Key Figures of Boston Bull Example
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Layer 1 Layer 2 Layer 3 Layer 4

Layer 5 Layer 6 Layer 7 Layer 8

Layer 9 Layer 10 Layer 11 Layer 12

Sarong

Figure 18: Query/Key Figures of Sarong Example
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Red Fox

Figure 19: Query/Key Figures of Red Fox Example
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Layer 1 Layer 2 Layer 3 Layer 4

Layer 5 Layer 6 Layer 7 Layer 8

Layer 9 Layer 10 Layer 11 Layer 12

Wig

Figure 20: Query/Key Figures of Wig Example
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Collie

Figure 21: Query/Key Figures of Collie Example
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Layer 1 Layer 2 Layer 3 Layer 4

Layer 5 Layer 6 Layer 7 Layer 8

Layer 9 Layer 10 Layer 11 Layer 12

Race Car

Figure 22: Query/Key Figures of Race Car Example
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Orangutan

Figure 23: Query/Key Figures of Orangutan Example
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Layer 1 Layer 2 Layer 3 Layer 4

Layer 5 Layer 6 Layer 7 Layer 8

Layer 9 Layer 10 Layer 11 Layer 12

Starfish

Figure 24: Query/Key Figures of Starfish Example
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