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Abstract

The performance of machine learning algorithms depends on the distance metric, in addi-
tion to the model and loss function, etc. The partial label metric learning technique can
improve the accuracy of partial label learning algorithms by using training data to learn
a better distance metric, which has gradually attracted the attention of scholars in recent
years. The essence of partial label learning is mainly to deal with multi-class classification
problems, while class imbalance is a common phenomenon in these problems. The class im-
balanced problem affects the prediction accuracy of minority class samples, but the current
partial label metric learning algorithms rarely consider the problem. In this paper, we pro-
pose two partial label metric learning algorithms (PL-CCML-SFN and PL-CCML-LDD)
that can solve the class imbalanced problem. The basic idea is to add a regularization
term to the objective function of the PL-CCML model, which can induce each class to
be uniformly distributed in the new metric space and thus play the role of balancing each
class. The experimental results show that these two algorithms, compared with the exist-
ing partial label metric learning algorithms, have improved the overall performance on the
class imbalanced data.

Keywords: partial label learning, class imbalanced data, metric learning.

1. Introduction

In recent years, with the rapid development of the Al industry, Al applications promoted by
machine learning have achieved close to or even surpassed human performance in numerous
practical tasks. This is not only due to the progress of research on algorithms and computing
power by technology giants and research institutions, but also benefits from the large-scale
data sets available for training various models. The data in these tasks are often required
to be accurately labeled, but in real life, constrained by the external environment, problem
characteristics, actual cost and physical resources, we often can only access to the data
with weakly supervised label information. Therefore, learning from weakly supervised data
becomes an important aspect of machine learning research.
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Partial label learning is one of the effective framework to solve classification problems
with weakly supervised data, and it is also known as soft label learning (Come et al.,
2009), superset label learning (Liu and Dietterich, 2014), and ambiguous label learning
(Hiillermeier and Beringer, 2006). In the partial label learning framework, each input
object corresponds to a set of candidate labels, of which only one label is the true label of
the input object. The class imbalanced problem refers to the imbalanced distribution of
samples among classes, where the number of samples in some classes is much larger than the
number of samples in other classes, and we call the classes with a less number of samples
as minority class samples and the classes with a larger number of samples as majority class
samples. Class imbalance is a common phenomenon in multi-class classification problems
such as disease detection, criminal behavior analysis, and consumer behavior learning. In
multi-class classification problems, minority class samples often carry important information
and should be focused on (Ye et al., 2009), because their misclassification is often more
costly than majority class samples. As a multi-class classification framework, partial label
learning also faces the class imbalanced problem. However, the existing partial label learning
algorithms, especially the partial label metric learning algorithms, rarely consider the impact
of class imbalance on their performance. Therefore, in this paper, we propose two partial
label metric learning algorithms that can solve the class imbalanced problem. The main
contributions include:

e We proposed two partial label metric learning algorithms (termed as PL-CCML-SFN
and PL-CCML-LDD) that can learn the metric matrix by drawing on the ideas of
the collapsing classes model and the neighborhood component analysis(NCA) model,
and construct objective functions containing regularization terms that can induce a
uniform distribution of each class in the new metric space.

e Experimental results on four real-world data sets widely used in the field of partial la-
bel learning show that our proposed PL-CCML-SFN and PL-CCML-LDD algorithms
can effectively improve the overall performance on the class imbalanced data.

2. Related work

Partial label learning(PLL) plays an important role in solving complex real-world problems
and has gained wide application in computer vision (Zeng et al., 2013), Internet (Luo and
Orabona, 2010), ecological informatics (Zhang et al., 2016) and other fields. In 2002, Jin
and Ghahramani (2002) formalized the partial label learning framework as a new machine
learning framework and proposed a discriminative approach. Propelled by their work, it
began to attract more and more attentions. In (Hiillermeier and Beringer, 2006), three
traditional classification models including nearest neighbor classification, decision tree, and
rule induction were extended to the PLL framework. Come et al. (2009) developed a PLL
algorithm by using maximum likelihood estimation strategy and belief function theory. Luo
and Orabona (2010) introduced a large margin formulation to solve the PLL problem. Cour
et al. (2011) developed a support vector machines based PLL algorithms. Liu and Diet-
terich (2012) presented a conditional multinomial mixture model for PLL problem. Chen
et al. (2014) proposed a PLL algorithm based on dictionary learning. Zhou et al. (2017)
proposed a Gaussian process model based PLL algorithm. Gong et al. (2017) developed a
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regularization approach for instance-based PLL model. Tang and Zhang (2017) proposed a
PLL algorithm based on boosting technique. Wang et al. (2019) proposed an adaptive graph
guided disambiguation model. Feng and An (2019) developed a PLL algorithm by using
semantic difference maximization. Lyu et al. (2020) proposed a self-paced PLL algorithm.
Yao et al. (2020a,b) proposed two PLL algorithms by deep learning technologies. The exist-
ing partial label learning research mainly focuses on how to disambiguate candidate labels
to establish more effective learning algorithms based on various models.

Distance metric learning is a way to automatically learn the distance metric to meet
specific requirements using the information provided by training samples. According to
different learning methods, distance metric learning algorithms can be classified into unsu-
pervised, supervised and semi-supervised. The idea of unsupervised distance metric learning
algorithm is to map the original data set into a low-dimensional subspace by means of di-
mensionality reduction, so as to obtain a low-dimensional representation of the original data
set. For example, the ATM (Xie et al., 2018) algorithm, the PCA (Bar-Hillel et al., 2003)
algorithm, and the LPP (He and Niyogi, 2004) algorithm. The main idea of the supervised
distance metric learning algorithm is to use the sample information of the training set to
obtain a metric matrix that effectively reflects the spatial relationship of the samples by op-
timizing the objective function, such as the LMNN (Weinberger and Saul, 2009) algorithm,
the LDA (Fukunada, 1990) algorithm, the NCA (Goldberger et al., 2004) algorithm, etc.
Semi-supervised distance metric learning algorithms are usually combination of supervised
and unsupervised distance metric learning algorithms to solve the problem with a small
number of known samples, including the LRML (Hoi et al., 2010) algorithm, etc. Inspired
by the excellent performance of distance metric learning technology under the traditional
learning framework, Zhou and Gu (2018) proposed the first partial label metric learning
algorithm (PL-GMML) based on geometric mean model, which really could improve the ac-
curacy of the existing partial label learning algorithms. Drawing on the idea of PL-GMML
method, Xu et al. (2020) proposed a partial label metric learning algorithm (PL-CCML)
based on collapsing classes model. Since it is difficult to precisely determine whether a pair
of samples belong to the same class, at present, there are few studies on partial label metric
learning.

Performing high-accuracy classification using class imbalanced data has been a chal-
lenge for a long time, and there have been considerable number of scholars discussing
novel methods to address the problem. The methods can be roughly categorized into four
branches. The first branch is the cost-sensitive algorithms that address the problem by
using imbalance-sensitive target functions, and assigning special loss functions explicitly or
implicitly. For example, Khan et al. (2017) proposed a cost-sensitive deep neural network
which can automatically learn robust feature representations for both the majority and
minority classes. The second branch is the one-class learning methods that solve the label-
imbalanced problem by learning the representation of the majority or minority data. For
example, Luo et al. (2018) proposed a novel divergence-encouraging autoencoder (DEA)
to explicitly learn features from both of the two classes and have designed an imbalanced
data classification algorithm based on the proposed autoencoder. The third branch is the
ensemble methods that contain the dynamic ensemble of classifiers. For example, Krawczyk
et al. (2018) used the dynamic ensemble of one-class classifiers to train the model with re-
gard to multiple classes; and Brun et al. (2018) proposed adjusting the ensemble based on
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the difficulty of classification. The final branch is the re-sampling methods that generate
balanced data by under-sampling the majority class, or over-sampling the minority class.
For example, Aridas et al. (2019) proposed an under-sampling approach which leverages
the usage of a Naive Bayes classifier, in order to select the most informative instances from
the available training set, based on a random initial selection. Existing class imbalanced
research is mainly conducted for the problem of classifier construction, while the class im-
balanced problem in metric learning is rarely considered. Recently, several works (Xie et al.,
2018) investigated orthogonality promoting regularization, which encourages the projection
vectors in metric learning to be close to being orthogonal. They found that this can make
the algorithm perform equally well on samples belonging to minority and majority classes.
Therefore, this provides a new strategy for us to solve the class imbalanced problem in
metric learning.

The above works show that it is important to explore algorithms to effectively solve the
class imbalanced problem in partial label metric learning.

3. Proposed method

The basic idea of the collapsing classes model based partial label metric learning algorithm
PL-CCML (Xu et al., 2020) is first to take each training sample and its neighbor with shared
candidate labels as a similar pair, while each training sample and its neighbor without shared
candidate labels as a dissimilar pair, then two probability distributions are defined based
on the distance and label similarity of these pairs respectively, finally, the metric matrix
is obtained via minimizing the KL divergence of these two probability distributions. The
PL-CCML algorithm can achieve good results on the class balanced partial label learning
problem, but the results on the class imbalanced problem are not good. In view of this, based
on the PL-CCML algorithm, this paper proposes two partial label metric learning algorithms
that can deal with class imbalanced problem. The basic idea is to add a regularization item
to the objective function of the PL-CCML model that can promote the uniform distribution
of classes in the new metric space, thereby balancing each class. Specifically, referring to the
idea of literature (Xie et al., 2018), we achieve this goal by making the projection vectors
in the new metric space be close to orthogonal. Since two regularization terms named SFN
(Squared Frobenius Norm) and LDD (Log Determinant Divergence), two partial label metric
learning algorithms named PL-CCML-SFN and PL-CCML-LDD are proposed, respectively.
The framework of the proposed algorithms is shown in Fig 1.

3.1. Objective function

Suppose S = {(x;,Y;) |i=1,2,--- ,n} is the training set, where x; denotes the feature
vector of the i-th training sample, and Y; is the set of candidate class labels of x;. Similar
to traditional metric learning, partial label metric learning also uses the training set to
obtain a metric matrix M so that the distance (1) meets certain requirements.

d(z,a" | M) :\/(:L‘—x’)TM(x—w’), (1)

where z,2' € R? denotes the feature vector of the two samples and M is a symmetric
positive definite matrix.
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Figure 1: The Framework of PL-CCML-SFN and PL-CCML-LDD algorithms.

Usually, it is required that the distance between samples of the same class in the new
metric space is as small as possible, and the distance between samples of different classes
is as large as possible. Therefore, the main strategy of existing metric learning algorithms
is to learn the metric matrix by constructing a set of similar pairs and a set of dissimilar
pairs. However, in partial label learning framework, since each training sample corresponds
to a set of candidate labels, it is difficult to determine whether two samples belong to the
same class. To address this problem, PL-CCML algorithm proposed a following proce-
dure to obtain similar pairs and dissimilar pairs: for each training sample x;, X (x;) =
{z;17=1,2,--- ,n,j #14,Y;NY; # &} denotes the set of training samples whose candidate
labels intersects with that of z;, X~ (z;) = {z; | j=1,2,--- ,n,Y;NY; = &} denotes the
set of training samples whose candidate labels does not intersect with that of z;, N~ (z;) =
{j |z € X7 (25), ||z — 4] < MAX; N+ () | z:, — x,||} denotes the index set of samples in
X~ (x;) whose distance to x; is smaller than the distance between x; and the k-th nearest
neighbor of z; in Xt (2;), and N, (z;) = {j | z; is the k-nearest neighbor of z; in X (z;)}
denotes the index set of k samples with the smallest distance to x; in set X+ (x;). The illus-
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trations of the index sets N, (z;) and N~ (z;) are shown in Fig 2. According to the above
definitions, the set of similar pairs DT and the set of dissimilar pairs D~ can be defined as:

{ D* = {(zs,2)) |Zi=

D~ ={(zinay) i =12, mj N (z:)}. @)

Ny (%)

+ Samples € X (X;)
- Samples € X ()
K=5

Figure 2: Explanation of the index sets N, (z;) and N~ (z;).

Inspired by the idea of the NCA model (Goldberger et al., 2004), for each training sample
xj, in the metric space determined by the metric matrix M, the probability PM (xj | z;)
that samples z; (j € N, (z;) UN™ (z;)) and ; are of the same class can be defined as:

1 e_dl'\f
—aM :
pM (‘TJ | xZ) = 76 d” = —gM > (3)
v EmEN:(wi)UN*(a:i) e i

where dﬁ\]/-[ = d? (x,xj | M) = (2; — x;)" M (z; — x;), it can be seen that the smaller the
distance between z; and x;, the higher the probability that they are of the same class, and
the larger the distance between x; and x;, the lower the probability that they are of the
same class. The ideal form of the probability that samples x; and x; are of the same class

is as follows: ( ) N
M| o 1,(zi,xj) € D
(oL o { o) €00 ()

In order to find a metric matrix M so that similar paris are as close as possible and
dissimilar paris are as far as possible, the PL-CCML algorithm proposed the following
objective function:

min f(M) = mA}HZKL [po" (j | i) [ 0™ (2 | @4)] ()

where K L[- | -] denotes the KL divergence between two probability distributions.
The above objective function can better deal with the training data with class balanced
problem, but the performance will be significantly reduced on the class imbalanced training
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set. Moreover, the ambiguity of training samples makes traditional class imbalanced learn-
ing techniques such as cost-sensitive and re-sampling methods no longer practical here. Re-
cently, several works (Xie et al., 2018) investigated orthogonality promoting regularization,
which encourages the projection vectors in metric learning to be close to being orthogonal.
They found that this can make the algorithm perform equally well on samples belonging
to minority and majority classes. Therefore, this provides a new strategy for us to solve
the class imbalanced problem in metric learning. Inspired by Xie et al. (2018), we use the
regularizer SFN and the regularizer LDD as regularization terms to make the projection
vectors orthogonal to each other and indirectly make the uniform distribution of classes in
the new metric space, thus effectively reducing the impact of class imbalance.

According to Xie et al. (2018), the regularizer SFN and the regularizer LDD on the
metric matrix M can be defined as

Qs (M) = || M — I||F + tx(M), (6)

and
Oaa (M) = —logdet(M + ¢I) + (log i) tr(M). (7)

Therefore, the objective functions of the proposed PL-CCML-SFN and PL-CCML-LDD
algorithms are defined as

mj\}nZKL [po" ([ i) [ 0™ (2 [ 20)] + A{IM = T|[F + tr(M)} £ min fspn (M), ()
and

min Z KL [pA (x| ) | p™ (x5 | 2)] + A {— log det(M + cI) + <log i) tr(M)} o)

N
= min frpp(M).

In the case of discrete random variables, the KL divergence can be defined as:

KLIP() | Q) = X Pla)log . (10)

zeX

where P(z), Q(z) are the two probability distributions on the random variable X. Based
on formula (10), the objective function (5) can be written as:
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min f(M)
=min 3 KL [’ (@ | @) | 9 (2 | @)

M
. M| po (| i)
=min E E Py (zj | z;)log P (2| 2

tGENT (2)UN(2)

_mlnz Z pO (x| z4) log : —I-Z Z po (zj | i) IOg E: ;

i ]EN+(I1) i JENT(xi)
—mlnz Z po (x| x;)log ME : ;

¢ ]€N+(zm)
_mmz Z log @ ‘ )

i jEN;(z:) !

_aM

im

Zm€N+(:L"')UN*(x') €
_ . k 1 k2
=min Z Z log i

e

:mA/i[n kJZlog Z ¢~ @i—am) " M(zi—on) + Z Z - x] M (z; — xj)
? mGN,j'(a:i)UN*(ml) i jEN (z;)

(11)

According to (8), (9) and (11), the objective functions of the PL-CCML-SFN and PL-
CCML-LDD algorithms can be written as:

. i —(2i—Tm) T M (zi—2m)
min fsrn (M) in kZlog Z e +
mEN:(xi)uN—(xi)

Yoo D @it M —ay) + MM~ I)F (M)} o,

i JEN] (x)

and

. . —(zi—2m) T M (xi—zm)
mj\}[nfLDD(M) = min kZlog Z e +
mGN,:r(xi)UN—(:ci)

SN (i) M (- ) +)\{—10gdet(M+cI) + (log i) tr(M)}

¢ ]€N+(1‘z)
(13)
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3.2. Model solving

In this paper, the gradient descent method is used to solve the objective functions, and the
iteration rules are as follows:

M1 = My —lre(Vf (M), (14)

where t is the number of iterations, Vf (M;) is the gradient of f(M) at point My, Iry4q is
the step length of the t+1th step, and lr; 1 updated by the following formula:

1

P — 15
1 + decay xt’ (15)

Irevr = p X

where p is the learning rate, decay is the attenuation rate. By deriving the objective function
(12) and (13), Vf(M) can be obtained as follows:

meN (0)UN -~ (2) e —(@i—2m) T M (25 —%m) (xz _ -Tm) (xl . xm)T

Vfsrn(M —k Z —(2i—m) T M (zi—zm) +
Zmemxi)ufvf(xi) ¢ (16)
S S e e @),
i j€N+( z)
and

i—2m) T M (z;—x
vf kZ mEN Jh UN (Z‘l) (xz m) M( [ m) (.%' _ ':Um) (xz _ xm)T_l_
LDD - —(zi—xm) T M(z;—2
ZmeN,;"(:vi)UN*(zi) e~ (@imam)" M(@i—em)

Z Z T — x5) $z_.’I}j)T—|—)\{IIOgi—(M_l’_cl)—l}'

i JENT ()

(17)

3.3. Algorithm implementation

The detailed flowchart of the proposed algorithms is shown in Algorithm 1. In the flowchart,
we first initialize the parameters, and construct similar pairs D' and dissimilar pairs D,
then, for each iteration, we need to calculate the gradients V fspn (M) and V frpp(M),
update the step length lry4; and the metric matrix M,;,1, finally, calculate the eigenvalues
{\} and eigenvectors {u;} of the metric matrix M1, and update the metric matrix M
again. After the iteration, we get the new metric matrix M;,,. It can be seen from the
flowchart that the computational cost of the proposed algorithm is mainly dominated by
step 2, 3 and 6 of the fowchart, it takes about O (ndQ) operations in step 3 and O (d3)
operations in step 6, thus, the total computational cost is O (n2d) when n > d, otherwise
it is O (d3), where n is the number of samples and d is the dimension of feature vector.
Because it mainly needs to store the training set S, sample pairs DT and D™, gradients
Vfspn (M) and V frpp(M) and metric matrix M;,1, the store requirement is O (nd) when
n > d, otherwise it is O (d2).
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Algorithm 1: PL-CCML-SFN and PL-CCML-LDD
Input: Training sets S = {(x;,Y;) | i = 1,2, -+ ,n}, regularization parameter \, c,
learning rate p, attenuation rate decay, k-nearest neighbor parameter k

1. Initialization: t <— 0, M; < I.

2. According to (2), construct D and D~.

3. According to (16) or (17) , calculate the gradients of fsrpn(M) or frLpp(M) at M.
4. Updating the step length lry;1 according to (15).

5. Updating M1 according to (14);

6. Calculating the eigenvalues {\;} and the eigenvectors {u;} of M4, replacing the
negative values in {\;} with 0, updating My < > ;maz(N, 0)uul .

7. If t does not reach the maximum iterations, t < t + 1, return step 3.

Output: M;

4. Experiments

4.1. Experimental settings

In this paper, four real-world data sets, FG-NET, Lost, MSRCv2, and BirdSong, which
are widely used in the field of partial label learning, are selected for experiments. The
FG-NET (Weinberger and Saul, 2009) data set comes from the face age estimation problem
containing 1002 images of 78 people, in which the set of candidate labels for each face
image consists of the set of labeled ages and true ages. The Lost (Come et al., 2008) data
set is composed of 1122 face images of 16 people cutting from TV series, in which the set
of candidate labels for each face image consists of the names in the associated captions.
The MSRCv2 (Hiillermeier and Beringer, 2006) data set comes from the target detection
problem containing 1758 segmented image regions from 23 classes, in which the set of
candidate labels for each object region consists of the classes of all objects that appear
on the same image. The BirdSong (Fukunada, 1990) data set comes from the bird song
classification task containing 4998 bird song audios from 13 different bird species, in which
the set of candidate labels for each audio consists of the names of all bird species around the
recording device. Since this paper is oriented to the processing of class imbalanced data,
in order to evaluate the performance of the proposed algorithms, it is necessary to use the
partial label data sets with more significant class imbalanced problems. Therefore, we first
test the class imbalance of these four data sets. We sort the number of samples by class in
the data sets, then take the top 20% class samples with the largest number in each data
set as the majority class samples, and the top 20% class samples with the least number as
the minority class samples, and find that the average number of the majority class samples
in the four data sets is much larger than the average number of the minority class samples,
which is consistent with the class imbalanced data characteristics. Some details of these
data sets are shown in Table 1.
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Table 1: Characteristics of the experimental data sets.

Data sets Samples Labels Majority class samples Minority class samples

FG-NET 1002 78 40 2

Lost 1122 16 181 21
MSRCv2 1758 23 191 23
BirdSong 4998 13 897 78

In this paper, we use ten-time five-fold cross validation to make the results more accurate.
In order to better test the performance on class imbalanced data, we use the Average
Precision, Average Recall, and Average Fl-measure as the evaluation metrics.

From the implementation details of the proposed algorithms, it can be seen that the
values of parameters such as A, ¢, p, decay, k need to be specified. Thus, we first conducted
a sensitivity analysis on these parameters, and we found that the algorithms can achieve
better results on all the data sets when A and decay are set to a fixed value, while the
algorithms can also achieve better results when other parameters need to be set to specific
values in each data set. Due to page constraints, these related results are not listed here. So
the values of A and decay will be fixed as 0.000001 and 0.01 in the following experiments,
respectively, and other parameters set different values on different data sets. The detailed
settings of these parameters are shown in Table 2.

Table 2: Experimental parameter setting for PL-CCML-SFN and PL-CCML-LDD algo-

rithms.

k p decay A c

FG-NET 3 0.0001 0.01 1000 —~

Lost 5 0.0001 0.01 100 -

PL-COML-SFN MSRCv2 9 0.0001 0.01 0.0001 —
BirdSong 15 0.0001 0.01 1 -

FG-NET 3 0.0001 0.01 1000 1
Lost 5 0.0001 0.01 100 0.1

PL-CCML-LDD MSRCv2 9 0.0001 0.01 0.1 1000000

BirdSong 15 0.0001 0.01 100000 1

4.2. Experimental results and analysis

In this section, the PL-CCML-SFN and PL-CCML-LDD algorithms are compared with
PL-CCML algorithm when they are used as the front-end of PL-kNN algorithm on the four
real-world data sets. Table 3 presents the detailed experimental results, where the best
result (the larger the better) on each data set is shown in bold face. It can be seen that the
algorithms proposed in this paper have greatly improved over the PL-kNN algorithm, and
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also outperform the PL-CCML algorithm in almost all evaluation metrics, which is in line
with the expected experimental results.

In order to have a deeper understanding, Tables 4 and 5 respectively list the experimental
results of each algorithm on the majority class samples and the minority class samples. It
can be seen that the proposed algorithms can not only improve the prediction performance
on the minority class samples, but also can improve the prediction performance on the
majority class samples.

Table 3: Experimental results of each compared algorithm on the whole data set.

FG-NET Lost MSRCv2 BirdSong
PL-kKNN 2.76+1.36 41.26+5.85 35.214+4.75 59.224+0.87
PL-CCML 3.30+£1.06 40.06£6.32 37.14+3.41 59.641+1.46

Average Precision (%) b1 oMT SFN 4.1641.04  46.8146.32 39.14+4.49  50.84-1.64

PL-CCML-LDD  4.424+1.59  45.76+£7.09 38.50+5.18  60.45+1.45

PL-kNN 3.10+1.06 26.93+4.23  27.02+2.43  52.52+1.63
PL-CCML 3.94+1.51 36.17£2.63  28.39+2.41 52.09£1.34
PL-CCML-SFN  4.584+1.56 36.44+£3.58  29.31£2.15  52.66+2.24
PL-CCML-LDD  4.61+1.39 38.63+£3.44 29.98+2.28 53.99+1.39

PL-kNN 5.65+2.26 28.53+4.58 28.27£3.50 53.65+1.74
PL-CCML 8.17+2.44 38.53+4.24 30.12+2.84 53.54+1.48
PL-CCML-SFN 9.00£2.27 38.54+4.52  30.98+3.01 53.73£1.48
PL-CCML-LDD 10.20+2.78 40.18+5.30 30.77+2.35 55.13+1.58

Average Recall (%)

Average Fl-measure (%)

Table 4: Experimental results of each compared algorithm on the minority class samples of
each data set.

FG-NET Lost MSRCv2 BirdSong

PL-kKNN 2.4 14.6 120 52.8
N PL-CCML 1.6 16,7 12.0 54.3

Average Precision (%) b1 i, gFN 2.3 190  14.9 54.3
PL-CCML-LDD 1.9 27.5 135 55.1

PL-kNN 2.6 5.1 75 30.4

PL-CCML 2.8 5.4 8.6 30.1

Average Recall (%) PL-CCML-SFN 3.4 6.9 9.0 31.0
PL-CCML-LDD 18 14.1 8.6 33.6

PL-kNN 1.8 7.8 75 37.9

PL-CCML 1.4 8.0 8.4 39.0

Average Fl-measure (%) p; ~onvr gpN 2.3 8.6 9.3 39.0

PL-CCML-LDD 1.7 17.7 8.6 40.5
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Table 5: Experimental results of each compared algorithm on the majority class samples of
each data set.

FG-NET Lost MSRCv2 BirdSong

PL-kNN 4.8 39.8  39.2 65.6

. PL-CCML 7.4 446 407 65.6

Average Precision (%) p1 o opn 9.8 45.2  40.7 65.6
PL-CCML-LDD 9.8 452  40.8 66.7

PL-kNN 4.4 452 543 69.8

PL-CCML 6.5 56.9  54.9 70.0

Average Recall (%) PL-CCML-SFN 8.2 57.6 553 70.2
PL-CCML-LDD 7.9 57.6  55.5 70.3

PL-kNN 4.0 40.0  43.2 65.3

PL-CCML 6.3 49.5  44.6 65.3

Average Fl-measure (%) b1 onir, gFN 8.1 50.7 448 65.3
PL-CCML-LDD 7.8 50.7  44.9 65.9

5. Conclusion

In this paper, we propose two partial label metric learning algorithm termed PL-CCML-
SFN and PL-CCML-LDD for class imbalanced data. Experimental results on real-world
data sets show that the accuracy of the proposed algorithms outperforms existing partial
label metric learning algorithms. In future work, we will explore the use of deep learning
techniques in the model and try to evaluate the performance of the algorithms by conducting
experiments on wider class imbalanced data sets.
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