
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2016

Dynamic Model and Adaptive Control of

a Transcritical Organic Rankine Cycle

Samiuddin, Jilan

Samiuddin, J. (2016). Dynamic Model and Adaptive Control of a Transcritical Organic Rankine

Cycle (Master's thesis, University of Calgary, Calgary, Canada). Retrieved from

https://prism.ucalgary.ca. doi:10.11575/PRISM/25758

http://hdl.handle.net/11023/3343

Downloaded from PRISM Repository, University of Calgary



UNIVERSITY OF CALGARY

Dynamic Model and Adaptive Control of a Transcritical Organic Rankine Cycle

by

Jilan Samiuddin

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING

CALGARY, ALBERTA

SEPTEMBER, 2016

c, Jilan Samiuddin 2016



Abstract

The Transcritical Organic Rankine Cycle (TORC) is a non-linear time-varying heat recovery

system for small-scale power generation. It is similar to a boiler-turbine system but uses organic

fluid as the primary heat carrier instead of H2O and works in both subcritical and supercritical

regions. The heat source can be either renewable energy or industrial waste-heat. In order for

the TORC to work efficiently, it is essential the control system tracks the set points as closely as

possible while remaining robust to disturbances; the control system design treats the heat source as

a time-varying disturbance. To achieve this goal, this thesis presents a design of an adaptive Cere-

bellar Model Articulation Controller (CMAC) which uses a single-input-single-output strategy by

pairing the controlled variables (CVs) to the manipulated variables (MVs) using Relative Gain Ar-

ray (RGA) analysis of the system. The CMAC improves performance and robustness compared to

a traditional PI control.
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Chapter 1

Introduction

1.1 Background

In recent decades, with technological advancements followed by great demand of energy, global

energy consumption has increased significantly [5][78]. Environmental constraints and pollution

from the use of fossil fuels have brought forward a number of concerns among which global warm-

ing is a major one. Moreover, fossil fuels will eventually be depleted [3]. To try and solve these

problems researchers are looking at both exploiting renewable energy sources and increasing en-

ergy efficiency. Organic Rankine Cycle (ORC) systems transform heat into electricity with much

lower input temperatures than traditional boiler-turbine systems, and thus can be applied to both

these problems. Renewable systems like solar plants, geothermal sources, and biomass produce

heat that is typically not hot enough to drive H2O-based boiler-turbine systems. In industrial plants,

ORCs can be utilized to create electricity from the relatively low-temperature waste heat, increas-

ing the overall efficiency of the plant. Researchers have become interested in ORC technology

in recent decades as this technology opens an alternative door for industry to produce clean and

environmental friendly power. Successful implementations of technologies like ORC can lead the

world to a largely carbon-free economy with its associated benefits.
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1.2 Applications

Among many possible ORC applications, waste heat recovery (WHR) seems to have the most

potential. According to United States Department of Energy, energy losses in industrial processes

can be anywhere between 20-50%, including both waste heat and other means [38]. ORC is an

ideal technology suitable for recovering some of the energy from waste heat or exhaust heat, and

producing clean usable energy. WHR using ORC is growing within industry due to escalating

demands to reduce energy consumption, operational costs and carbon emissions.

Another major application of ORC is heat recovery from geothermal sources. Geothermal

heat sources can range from as low as 50oC to as high as 200oC or even more [46]. Although high

temperature geothermal sources can be integrated with steam generators, however, low temperature

geothermal sources (especially in the range of 50� 100oC) are definitely insufficient for steam

generators. According to the Canadian Geothermal Energy Association, the technical generation

potential for geothermal sources in Alberta varies from 4,200MW to 250,000MW where the lowest

bound corresponds to a 5% recovery at 2500m depth and the highest bound corresponds to a

20% recovery at 5500m depth [1]. Currently very little is being done to extract this potential.

Biomass heat recovery is another application of ORC technology and has become one of the most

commonly used renewable sources of energy. According to Natural Resources Canada, biomass

contributes 1.4% to Canada’s electricity generation with a total installed capacity of 2,043 MW

(at the end of 2014) and ranks 5th highest in the world in terms of world biofuels production

[23]. With its large landmass and active forest and agricultural industries, Canada has access to

large and diversified biomass resources. ORC is also an alternative to typical boiler-turbine system

for solar parabolic-trough plants. According to Natural Resources Canada, since 2007, there are

an estimated 544,000m2 of solar collectors operating in Canada producing about 627,000 GJ of

energy and displacing 38,000 tonnes of CO2 annually [24].

2



1.3 System description

The Rankine Cycle is a model that is used to predict the performance of turbine systems that use

H2O as the working fluid. ORC systems use organic fluids selected for very low boiling points,

high molecular weights, and high vapor pressure [107]. A basic ORC has four main components

to complete its cycle (Figure 1.1), a pump, an evaporator (boiler unit), an expander (turbine), and

a condenser. Adding a recuperator to the typical ORC (Figure 1.2 ) increases the efficiency of the

cycle by extracting some of the heat from the expander outlet to preheat the fluid headed for the

evaporator [80][36].

CONDENSER

Figure 1.1: Typical ORC

The thermodynamic process involved in the cycle is typically portrayed as a temperature-

entropy profile (Figure 1.3) that follows points 1,...,7 sequentially. The liquid working fluid is

first pumped to a higher pressure (1-2), which is ideally an isentropic process. It is then preheated

in the recuperator (2-3). The following evaporation (3-4) is ideally an isobaric process, and in

this thesis will be assumed to occur in the supercritical region rather than the subcritical region

(explained in the next paragraph). The mass flow rate of the vaporized fluid is controlled by a

valve (4-5). The vapour then enters the expander (5-6), ideally undergoing an isentropic expan-

sion, which gives mechanical energy to the shaft. (Note it is very important to ensure that the

working fluid is fully vaporized before it enters the expander, otherwise the liquid-gas mixture of

3



the working fluid will cause erosion inside the expander eventually causing it to fail). A generator

connected to the shaft produces electricity; but the generator is not modelled as part of the ORC

system but rather constitutes a load. During the expansion, the working fluid has a drop in pressure.

The low pressure exhaust gas coming out from the expander passes through the other side of the

recuperator where it is cooled (6-7). The pre-cooled working fluid is then condensed into a liquid

state inside the condenser using a fan (7-1), which is ideally an isobaric process. It is important to

note that the recuperator is reducing the load on the evaporator and the condenser by mutual heat

transfer within the cycle.

VALVE

CONDENSER

5

7

Figure 1.2: ORC with the addition of a recuperator

ORCs can be designed to work in one of two different regions, the subcritical region or the tran-

scritical region which comprises of both subcritical and supercritical regions. A subcritical region

is where the working fluid is always below its critical pressure, whereas, in the supercritical region

it is above its critical pressure on the evaporation side. An ORC that operates in the supercritical

region plus subcritical region is referred to as a transcritical ORC (TORC). Despite the fact that a

higher pressure in the system leads to a safety concern and as well as component availability issues

[28], TORCs are becoming more popular because of higher work output and as well as higher

efficiency due to a higher pressure [82]. The use of organic fluids makes a supercritical design

4



much easier than in a H2O-boiler system, since ORCs have a much lower critical pressure and the

supercritical operation can be achieved with much less cost in the compression work [43]. For a

subcritical ORC (SORC) the upper line during the evaporation process (3-4’) is at a lower level

compared to that of a TORC. It is the difference between the upper line and the lower line during

the condensation process (7-1) that determines how much energy can be extracted by the expander

[97]. Since it is not realistic to substantially lower the condensing line using external influences

such as atmospheric temperature and pressure [97], the only option left is to push the evaporating

line higher - which is achieved using a TORC. However, very few papers in the literatures exam-

ine a TORC. Those that have usually focus on either selecting the working fluid [43][45], or on

choosing set points through optimization [56][88].

5

7

5

Transcritical ORC

Figure 1.3: Temperature vs Entropy for SORC and TORC

1.4 Modelling of ORC systems

There are several challenges involved in the modelling of an ORC system. Modelling of the heat

exchanger introduces the most complexity. Most previous literatures has considered static alge-
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braic equations to model the expander, the pump and the valve [81][84][83][102][108]. A lot

of work has been done over the past few decades developing heat exchanger models using several

techniques, including the moving-boundary (MB) technique, the lumped-parameter (LP) approach,

and the finite volume (FV) method (also known as discretization). The appropriate choice depends

on the purpose of modelling, the performance requirements, and the working condition of the heat

exchangers. (There is one common assumption about all three techniques made in the literature

- momentum balance is ignored to keep the models simple and faster [81][80][50][54][74][86]).

Bendapudi et al. in [16] concludes that the MB models are approximately three times faster than

the FV models, but are less robust to start-up and load-change transients. Desideri et al [35] also

conducted experiments in order to compare the performance between the FV and MB techniques

and concluded that while both of the techniques are suitable for dynamic modelling of two-phase

heat exchangers, the MB technique proved to be much faster compared to the FV technique (they

did not investigate the robustness of the two methods). They also suggested using at least 20 nodes

for the modelling of a heat exchanger in small-scale ORC applications. However, if the fluid in-

side the heat exchanger is in the supercritical region the working fluids are not two-phase and MB

techniques cannot used [86].

One of the earliest studies on heat exchanger modelling for two-phase fluid flows was con-

ducted by Wedekind et al. [101]. They modelled the two-phase evaporating or condensing flow

system as a lumped form by assuming a time-invariant void fraction. They still captured suffi-

cient details of the two-phase region without taking the momentum balance into account. This was

a significant contribution that led to developing MB models. Xiang proposed an MB model for

the condenser in his vapor compression cycle [50] as a highly useful model for designing control

schemes and successfully implemented a model-based state feedback controller (LQG with inte-

grator) for the cycle. Willatzen et al. [104] proposed three-phase MB models and validated their

results with experimental data. Jensen in [54] did an intensive study on the MB modelling method.

He first proposed a general seventh-order model, but then continued to reduce the model down to

a fifth-order, a fourth-order, a third-order and a finally a second-order model. All of these reduced-
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order models can capture the essential dynamics, and based on the application of the model the

appropriate nth order model can be chosen. The reduced order models are very useful for both

designing control strategies and optimization as they reduce the mathematical complexities while

still capturing the essential dynamics. However, Jensen did not carry out control design nor opti-

mization to validate his point. He also studied discretized models; however, chattering has been

identified as a serious numerical issue in the discretized models. MacArthur et al. proposed a very

interesting combination of MB technique and FV technique in order to model the heat exchanger

[66]. The two-phase region is modelled by the MB technique while the superheated region is

modelled by the FV technique. MacArthur et al. stated the differences between the regions inside

the heat exchanger as the primary reasons for the difference in modelling techniques. The liquid

phase and the vapor phase in the two-phase region travel at different velocities which results in a

density that needs to be calculated with proper accuracy using void fraction, which can only be

done in the MB technique. Zhang et al. modelled both the condenser and the evaporator using the

MB technique, while the pump and the expander are functions of static equations [108]. All the

aforementioned works using MB techniques had their own assumptions based on their applications

and goals.

In [81], Quoilin used the FV model for his SORC because of his preference for a robust model.

He discretized the heat exchangers into N number of cells and applied energy and mass conserva-

tion equations for each of the cells. Static models were used for the pump and the expander to keep

the model simple. The heat source, or secondary fluid as he termed it, is considered a single-phase

fluid and thus modelled it by only its mass flow rate, average heat capacity and density. The fluid

properties were calculated using TILMedia library coupled to Refprop and these properties were

assumed to vary only in the flow direction. However, in other works [83][84], Quoilin in coalition

with others, used the e �NTU technique to model the heat exchangers and found a fairly good

agreement between the simulated results and the experimental results. The e �NTU technique di-

vides the heat exchanger into three zones - liquid, two-phase and vapor, each of them characterized

by their corresponding heat exchange coefficient. In [82], Sylvain et al. used the FV technique for

7



the evaporator moeling but uses a much more simplified algebraic equation to model the condenser.

The simplification of the condenser is based on the assumption that the temperature and flow rate

of the heat sink are constants.

Wei et al. modelled an SORC using both the MB technique and FV technique to compare with

experimental data from an ORC pilot plant [102]. While the MB technique remains the same as

the previous literature, they proposed a new FV method for dynamic modelling of heat exchangers

by incorporating the momentum balance equation for certain cells . Pressure drop is not neglected

in this new model since wall friction and gravitational force are taken into account under the

momentum balance equation. The simulation results from both the models match the experimental

results with a highest error of 4%. However, due to much more mathematical complexity involved

in the FV technique, the MB technique is suggested for the purpose of control design applications.

For a centrifugal chiller system [15], Bendapudi et al. modelled shell-and-tube heat exchangers

using the FV technique, and they suggested that the heat exchanger should be discretized into a

minimum of six cells to capture the superheating process while a minimum of fifteen cells are

required to function properly at a system level.

Few references can be found regarding dynamic modelling of heat exchangers dealing with

supercritical parameters of working fluids. Static models have been developed for supercritical

heat exchangers, but that is not sufficient for the purpose of control design. Ruivo et al. formulated

a model of a countercurrent packed column operating at supercritical fluid using a set of partial

differential equations (PDEs) corresponding to the differential material balances [87]. Using the

method of lines, the set of PDEs were then solved by decoupling the spatial and time discretization

into a system of ordinary differential equations (ODEs) with respect to time. Simoes et al. also

decoupled a set of PDEs for a double-pipe heat exchanger using a control volume method into a

set of ODEs and solved it to simulate the model [92]. The simulated results from the dynamic

model were then compared to the experimental results obtained from a lab-scale heat exchanger,

and the developed model was able to predict within ±2.3% of the experimental data. Rasmussen

and Alleyne used Leibniz’s equation to solve an existing set of PDEs for a given heat exchanger in
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order to free the model of spatial dependence [86]. This allowed them to develop a dynamic model

for heat exchangers working in a supercritical environment using the LP approach.

1.5 Working fluid selection and performance analysis

Selection of the working fluid used in an ORC is critical to cycle performance, and constitutes an

ongoing challenge for researchers. The selection should ensure high thermal efficiency allowing

high utilization of the available waste heat. Additionally, the working fluid must satisfy safety

criterion while still resulting in a low cost for the plant. Few common working fluids that are used

in ORC applications are R123 (2,2-Dichloro-1,1,1-trifluoroethane), R113 (1,1,2-trichloro-1,2,2-

trifluoroethane), R245fa (1,1,1,3,3-Pentafluoropropane), R134a(1,1,1,2-tetrafluoroethane), etc. Ta-

ble 1.1 shows thermal efficiencies for few working fluids with various critical temperatures for an

ideal recuperated ORC cycle [19]. In order to ensure environmental safety, the following safety

standards are maintained when selecting the working fluid [98]:

• Not ODS (Ozone Depleting Substances), or zero ODP (Ozone depleting potential)

• GWP (Global Warming Potential) < 5000

• Rank A1, A2, or B1 from ASHRAE safety classification (the ranks are described in Table

1.2)
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Working fluid Critical temperature (oF) Ideal recuperated
thermal efficiency (%)

HFC134a 213.9 15.8

HFC236fa 256.9 19.4

CFC114 294.134 22.4

HFC245fa 309.29 23.3

HCFC123 362.63 26.4

CFC11 388.4 26.8

CFC113 417.38 30.1

Table 1.1: Thermal efficiency of an ideal recuperated ORC for different working fluids

Lower Toxicity Higher Toxicity

Higher Flammability A3 B3

Lower Flammability A2 B2

No flame propagation A1 B1

Table 1.2: ASHRAE safety classification

Numerous studies have been carried out in recent years in order to find the “best match working

fluid” for an ORC. However, a general best match does not exist since the choice varies depending

on heat sources, working regions and conditions, the size of the ORC, etc. Several guidelines have

been provided in the literature by evaluating the performance of the working fluids under different

circumstances and required performance. In [96], Bertrand discusses several criteria and finally

proposes a general methodology for selection of working fluids in ORC systems. He proposes

working fluids with low specific volumes to be used since such fluids increases heat transfers in the

heat exchangers while minimizing the feed pump work. Working fluids with high molecular weight
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are also recommended for single-stage turbines. The working fluid must also be compatible with

the materials and lubricants in contact to ensure thermal stability and minimum flow resistance.

From an economic point of view, the fluid must be readily available and cheap. However, ORC

performance analysis for the selection of working fluids has overshadowed all other factors, at

least in the literatures. There are plenty of potential candidates for the selection process of a

working fluid. Thus, several papers have focused on comparing the performance of the candidates

to determine their choice of the best fit according to their experimental environments. Of these

environments, SORCs are found to be more common in the literatures than TORCs.

Bo-Tau et al. have studied the effect of several working fluids on an SORC and compared their

performances [64]. The team first categorized the working fluids into three categories of wet, dry

and isentropic fluids, and then considered thermal efficiency and total heat recovery efficiency as

measures of performances. Firstly, they observed that wet fluids are unfitting for an ORC because

of a larger enthalpy requirement for vaporization, whereas dry fluids and isentropic fluids do not

have this issue. Also, wet fluids, when expanded, leave liquid droplets in the turbine causing cor-

rosion in the turbine blades. They also conclude that lower critical temperature (Tcrit) working

fluids (somewhat) lower thermal efficiency and substantially decrease the total heat recover effi-

ciency. On the other hand, in [28], Chen et al. state that fluids with lower Tcrit and lower critical

pressure (Pcrit) are potential candidates for a TORC. Several factors have been considered in this

study by Chen et al. - including the influence of latent heat, density and specific heat, effectiveness

of superheating, the critical points of the working fluids, stability of the fluid and compatibility

with materials in contact, environmental aspects, safety, availability and cost. They introduced a

new chart for classifying the fluids into five distinct groups. The chart is basically a x versus Tc

diagram, where x is the inverse of the slope of a temperature-entropy diagram, and the value of

x determines how much dry or wet the fluid is, i.e., x > 0 ) dry fluid, x < 0 ) wet fluid, and

x ⇡ 0 ) isentropic fluid. Each of the five groups are discussed with their merits and drawbacks,

and since there is no best fluid which can fulfill all the criteria mentioned earlier, the authors suggest

to compromise when selecting the working fluid based on needs and conditions of the application
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itself.

In [36], Drescher et al. studied fluid selection for a subcritical biomass power and heat plant.

Thermal stability, compatibility, environmental issues and economical issues are discussed only in

qualitative respects. However, they suggested that evaluating thermal efficiency for biomass appli-

cations is sufficient for the choice of a proper working fluid. From their simulation results, they

could achieve the highest thermal efficiency when the working fluid was refrained from superheat-

ing and was expanded directly from the dew line. The results also showed that there is an optimal

evaporating pressure at which the maximum thermal efficiency can be achieved. Along with that,

the results also confirm that the thermal efficiency is highest when the process temperature is at a

maximum and the upper bound for the process temperature is determined by the thermal stability

and compatibility of the fluid with its contact materials. On the other hand, for a geothermal power

generation system in Turkey, Etemoglu discusses the importance of the Second Law of Thermody-

namics for the purpose of selection of working fluids (over the First Law which is more commonly

used for the evaluation of performances), since the Second Law takes into account the useful work

[40]. Mago et al. in [69] uses both First Law and Second Law to evaluate the performance of

different dry working fluids. Aghahosseini and Dincer also investigated several working fluids for

a SORC using both First Law and Second Law criteria.

Maizza and Maizza investigated pure fluids and blended fluids for waste heat recovery SORCs

using Carnot efficiency and Rankine cycle efficiency as the means of measure [70]. They state that

for their particular environmental setup and application, the difference in the two efficiency values

is an appropriate measure for the selection of working fluids. Using this difference measurement,

they concluded from their results that pure fluids such as R123 and R124 exhibit good system

performance.

Yamamoto et al. experimented with the most conventional working fluids, water and an or-

ganic fluid R123, to show that organic fluids are better choices for low-grade heat sources systems

since they increase the cycle performance drastically [105]. When water is used as the working

fluid, an increased turbine inlet temperature increases turbine power; when organic fluids are used
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the turbine inlet temperature is as close as possible to the boiling temperature giving the best per-

formance of the system. However, in [29], Chen et al. compares another non-organic fluid, CO2

(carbon dioxide), with R123 in order to evaluate the performance of a waste heat recovery system.

The results obtained showed that CO2 gives slightly more output power compared to that of R123.

However, that does not seem to be a fair comparison between the two, since the CO2 as a working

fluid was tested in a transcritical cycle, whereas, R123 was tested in a subcritical cycle. In [28],

Chen et al. raises concern over using CO2 as the working fluid because of the required operat-

ing condition of 60-160 bar which is a definite safety concern. In addition to that, CO2 needs to

be cooled below its critical temperature of 31oC (close to 20oC), which presents a challenge and

creates stress on the condenser itself. Thus they suggest searching for alternative working fluids

which can overcome these issues. Later in [27], Chen et al. studies a zeotropic mixture working

fluid (0.7R134a/ 0.3R32) for a TORC and compares it with a SORC using a pure fluid (R134a).

The results showed that TORC using zeotropic mixture has better thermal efficiency and exergy

efficiencies of the heating and condensation processes compared to the SORC under the same ther-

mal conditions. Radulovic and Castaneda also investigated six different zeotropic mixtures for a

TORC powered by geothermal energy source by varying the high pressure and temperature at the

turbine inlet in order to identify the best thermal and exergetic performance [85]. They concluded

that pure fluids have lower thermal efficiency and exergy efficiency, and the zeotropic mixture of

R- 143a(0.2)/R-124a(0.8) exhibited the best performance of all the candidates.

Chao et al. went one step further by not only evaluating net power output and total heat transfer

capacity, but also accounted for how different working fluids affect the sizing parameters of the

expander [49]. In [12], Bao and Zhao discussed the working fluid selection process as well as

expander selection. As the choice of working fluids impact the operation of the expander, the

study suggests that the working fluid should be determined by taking into account the limitations

of the expander (types of expanders are inherently limited). Wang et al. in [99] considered one

more aspect for the choice of working fluids (beside thermal efficiency, heat absorption rate, and

exergy destruction rate), the pump power consumption. This study, prior to installation, will give
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an idea of how much influence the working fluid will have on the net power through-pump power

consumption. Dai et al. also did parametric optimization of an SORC with 10 different working

fluids with net power as the objective function [32]. The study showed that a higher turbine inlet

temperature does not lead to higher turbine output; for working fluids with non-negative slope of

the saturation vapor curves, the turbine inlet temperature should be as low as possible (just above

the boiling point). The internal heat exchanger could not improve the performance of the ORC.

They concluded that R236EA was the optimal working fluid for their system, and since it has less

turbine inlet specific volume, it allows for smaller dimensions for the turbine design. Torres and

Rodríguez analyzed and optimized a solar ORC with respect to solar collector area required for

12 different working fluids [34]. They concluded that usually dry fluids yield lower values of the

unit aperture area than wet fluids. These sort of studies, where the sizing and influence of the

components are considered, give industry some guidelines for choosing a working fluid prior to

installation of the system.

Most of the aforementioned studies deal with selecting working fluids for SORCs; there are

few studies which involve selection of working fluids for TORCs. In [73], Dariusz and Jaroslaw

used micro combined heat and power units based on ORC to compare several potential candidates

of working fluid for both SORC and TORC . The working fluids selected had to first pass environ-

mental and safety criteria, and were then evaluated based on Carnot efficiency and overall cycle

efficiency for the two different cycles. The results showed a clear advantage for the working fluids

working in supercritical conditions over subcritical conditions. Karellas and Schuster also found

working fluids under supercritical conditions to be more effective in maximizing the efficiency of

the cycle during their study of supercritical fluid parameters in ORC applications [55]. Gao et al.

conducted a study solely on TORC [43], in which (beside the general characteristics like low toxic-

ity, fluid stability, and low flammability) they compared eighteen different working fluids based on

their performance in maximum net power, maximum cycle efficiency, maximum exergy efficiency,

minimum total heat transfer requirement, and minimum expander size. Since it is difficult to find

a fluid that fulfills the requirement of maximum output and minimum investment at the same time,
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they recommended R152a and R143a as the “optimal” working fluids as both these fluids exhibit

a good trade-off.

However, for the purpose of this work, no study was carried out for the selection of working

fluid. Rather, it was assumed that the working fluid most suitable for this particular ORC system

is R134a which has the properties shown in Table 1.3 [9][37][39]. Brasz and Bilbow, for R134a in

an actual recuperated SORC cycle, calculated a thermal efficiency of approximately 10% [19].

Fluid
name

Critical
Temperature

Critical
Pressure ODP GWP Rank in ASHRAE

Handbook

R134a 101.08oC 4060.3 kPa 0 1300 A1

Table 1.3: Properties of R134a

In [100], Wang et al. performed multi-objective optimization solely for R134a as the working

fluid for a SORC. The objectives of the study was to maximize exergy efficiency and minimize the

overall capital cost under the given waste heat conditions, where both these objectives are compet-

ing with each other. To achieve this, they used a thermodynamic model and an economic model to

calculate the exergy efficiency and the overall capital cost respectively by a set of algebraic equa-

tions. The multi-objective optimization was performed using NSGA-II using turbine inlet pressure,

turbine inlet temperature, pinch temperature difference, approach temperature difference and con-

denser temperature difference as the variables since these parameters have significant effects on

both the objectives. Through optimization, a pareto front was obtained and the optimum operating

conditions were chosen by a process of decision-making. The result was a 1.8-2.3 MPa turbine

inlet pressure and about 90oC turbine inlet temperature. Sun and Li also investigated system ther-

mal efficiency and system net power generation for R134a as the working fluid in an ORC heat

recovery power plant [94]. The results obtained show that higher expander inlet pressure results in

more system net power generation and higher system thermal efficiency, and linear relationships

exist among the system thermal efficiency, the system net power generation and expander inlet

pressure. The study also reveals that the condenser fan air mass flow rate has less influence on
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both objectives.

1.6 Control design for ORC

Very few works have been done in the past developing control strategies for an ORC plant. Diffi-

culties include large nonlinearities, uncertainties, and multi-variable coupling present in an ORC

system [106]. Zhang et al. in [106] presents a multi-variable control strategy by incorporating a

Linear Quadratic Regulator (LQR) with a Proportional Integral (PI) controller. A 4-input-4-output

multi-input multi-output (MIMO) strategy was proposed for an SORC system. The manipulated

variables (MVs), i.e. control inputs, are the valve position, the speed of the pump, the velocity of

the exhaust gas, and the velocity of the cooling air. The controlled variables (CVs), i.e. the system

outputs, are the power output, the evaporating pressure, the superheated temperature at the outlet of

the evaporator, and the temperature at the outlet of the condenser. They put the controller into sev-

eral tests including set-point tracking and external disturbance rejection. The controller performs

very well in both types of tests with acceptable changes in the control signals (although a bit sharp

at some instances), with low overshoot and zero steady-state error. However, the proposed control

requires an accurate linear state space model of the ORC system, which is a great challenge in

itself. In [107], Zhang et al. proposes a General Predictive Control (GPC) strategy which does not

require the knowledge of a linear state space model. GPC is a multi-variable control scheme ap-

propriate for systems having strong interactions between the variables, disturbances and operating

constraints. It generates control signals by minimizing a cost function that takes into account the

future output errors and control inputs. They used the same MVs and CVs as [106] for their con-

trol strategy and similar tests were done as well to observe the performance of the GPC. The GPC

was successful in both set-point tracking and disturbance rejection with little overshoot and zero

steady-state error. The control signals are again a little sharp, but still acceptable. Soon afterwards,

Zhang et al. designed a constrained Model Predictive Control (MPC) for a SORC [108] which

also performed well in tracking the set points in the presence of variation of the heat source and
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output power. However, in this study, they used a 3-input-3-output MIMO strategy with expander

speed, pump speed and cooling air mass flow rate as the MVs and superheating temperature, evap-

orating pressure and condenser outlet temperature as the CVs. Sylvain et al. decided to ignore the

multi-variable interactions and designed a SISO PI controller [82]. They used a 2-input-2-output

SISO strategy where the MVs are the expander speed and the pump speed and the CVs are the

evaporating temperature and the superheating temperature. The evaporating temperature being a

more critical condition of the system, it was paired with the expander speed while the superheating

temperature was paired with the pump speed; thus two PI controllers were established with two

different loops.

1.7 Cerebellar Model Articulation Controller (CMAC)

In 1971, James Albus first proposed a computer algorithm that can mimic the motor control func-

tions inside a brain, the first artificial neural network. It modelled the functioning of the cerebel-

lum. The cerebellum’s primary task is to send nerve signals that will ensure correct coordination

of moving body parts. The proposed algorithm can generate commands required for achieving

proper motor activities by comparing or correlating incoming patterns with existing stored pat-

terns [8]. Then in 1975, Albus developed his proposed model into an adaptive controller, the

Cerebellar Model Arithmetic Computer (CMAC), which includes a memory addressing algorithm

(hash coding) that makes it possible to store the necessary data in a practical physical memory

[7][6].

In 1990, Kraft and Campagna studied the CMAC in comparison to two traditional adaptive

controllers, the self-tuning regulator (STR) and model reference adaptive controller (MRAC) [59].

They investigated the three controllers in terms of closed-loop system stability, speed of adapta-

tion, noise rejection, the number of required calculations, system tracking performance, and the

degree of theoretical development, and concluded with pros and cons of the three control schemes.

Although the CMAC performed well in all the aspects of the study, it had the worst performance
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in terms of convergence speed among the three controllers. Afterwards, in 1991, Glanz along

with Miller and Kraft, studied CMAC applications in pattern recognition, robot control and sig-

nal processing [44]. In their study, they came to the conclusion that CMACs are more realizable

in practice compared to the dominant multi-layer perceptron (MLP) neural network. The CMAC

has faster convergence compared to the MLP and thus a better fit for real-time applications, but

no clear indication was provided as to how much faster is “fast enough”. Later in 1992, Parks

and Militzer compared five different learning algorithms, including the original learning algorithm

developed by Albus in 1975, to study the convergence speed of the CMAC under several test con-

ditions including disturbance tests [77]. Out of the five algorithms investigated, the maximum

error (ME) algorithm proved to be the best for all the test problems, exhibiting good convergence

speed and requiring moderate computational effort, thus recommended by the authors. Commuri

and Lewis, in 1995, developed a novel weight-update law for the CMAC that guarantee the closed-

loop stability[30]. In their conclusion, they state that the controller is “model-free” in the sense

that it succeeds achieving the required performance for a general class of nonlinear systems. In

1997, Lin and Chiang used a mathematical formulation for CMAC in order to investigate the con-

vergence properties of the CMAC [63]. They used algebraic equations in matrix form to describe

information retrieval and learning and used these equations to study the convergence properties

and learning characteristics with and without hash coding.

Dr. Chris J.B. Macnab at the University of Calgary has done significant work on neural net-

works for adaptive control schemes, stability being the main core of his investigations. Through

his investigation, he recognized bursting phenomena of weights in the neural networks to be an

area requiring improvements and further study. For a trajectory tracking problem in the presence

of persistent oscillations, he proposed a robust weight update method by generating an alternate set

of weights which produce approximately the same output - avoiding weight drift [67]. Takaghaj

et al., including Dr. Macnab, implemented an adaptive controller using nonlinear optimal control

switching in CMAC for waste-to-energy boilers and achieved better performance when compared

to the traditional PI controller [95]. Dr. Macnab proposed the idea of voting scheme for weight

18



updates in a CMAC for activated sludge bioreactors by taking into account the the effect of weight

updates upon the average error and the result showed that the proposed controller outperforms the

PI controller applied to the plant [68]. Works like [95] and [68] provide motivation for imple-

mentation of adaptive CMAC in plants like ORC that can outperform the traditional PI controllers

while requiring minimal a-priori information about the plant model.

Shannon implemented the CMAC for a switched reluctance machine to estimate rotor position

and compared the performance with a Radial Basis Function (RBF) network and a backpropaga-

tion network; CMAC proved to be more accurate in estimating the rotor position [90]. Using a

Hamilton–Jacobi–Bellman (HJB) equation for optimal control of robot motion, Lewis along with

Young Kim developed an optimal CMAC neural-HJB for controlling robot manipulators [58]. To

ensure system-tracking stability and error convergence in a closed-loop, they used the standard

Lyapunov stability analysis. Despite no knowledge of the nonlinearities in the robotic manipula-

tor and presence of disturbances, the proposed controller exhibited robustness and adaptation to

changing system dynamics. In [71], Maouche and Attari designed a hybrid controller by combin-

ing a nonlinear controller with an adaptive CMAC for a manipulator robot. While the nonlinear

controller used knowledge-based modelling to provide the main control signal, the CMAC en-

sured the actual trajectory matched the desired one by compensating for errors due to structured

and unstructured uncertainties. Larsen et al. studied the CMAC performance for ultra-precision

machining in the presence of large friction [62]. The CMAC was able to ensure extremely low

position errors, in the scale of nanometers, and at the same time tracking extremely low veloci-

ties to avoid sub-surface damage of the machined part (whereas conventional PID controllers are

known to be insufficient for such purposes). Achmad et al. used the CMAC network for sequen-

tial image coding and found that it improved performance of mean square error (MSE) per frame

by a factor of 28.1%, frame rate by a factor of 14% and perceptual quality by a factor of 24.4%,

compared to the block-based coding of MPEG [4]. Bucak and Karlik used the CMAC network to

perform environmental investigation - detection of drinking water quality to be more precise [21].

They compared their results from CMAC with an MLP and realized more accuracy and faster
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learning capability of the CMAC - the success rate of the CMAC detecting the water quality was

almost 100% (achieved near 500 iterations) compared to 98% for the MLP (achieved after 1000

iterations).

Advantage of using any neural network controller is that the controller does not require prior

knowledge of the dynamic model of the system to be controlled [10]. To rely on a model can

eventually result in tracking inaccuracy when there is change in the system dynamics due to dis-

turbances or changes in operating conditions [13]. An adaptive CMAC neural network is advanta-

geous over other neural networks because of its faster convergence [25]. It has the unique property

of training certain areas of the memory without affecting the whole memory, which makes learning

significantly faster compared to other neural networks [33]. However, the adaptive CMAC needs

to be decentralized unlike MIMO controllers.

1.8 Thesis contribution

Throughout the literature, plenty of efforts have been made to model and optimize the SORC

cycles, while the TORC remains notably untapped. As for control design, only a few works have

been done in the past for SORC, while no literature was found regarding TORC. In this thesis

study, all of these aspects have been considered for a TORC. The objectives of this thesis are

to first to produce a model of a recuperated TORC suitable for use in control design, and then

compare performance and robustness of an advanced CMAC adaptive control to traditional PI

control. When applying the adaptive CMAC approach, an accurate nonlinear model of the TORC

is not required since the CMAC can compensate for the nonlinearities in the system. Performance

based on a static model of the TORC is analyzed as well to get an idea of the operating condition.

1.9 Summary

In summary, this chapter illustrates the overall purpose of this work and outlines the processes

involved in obtaining a computer simulation of a TORC plant. Details of modelling the TORC are
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presented in Chapter 2. Chapter 3 describes control strategies that allows one to choose optimal set

points for plant and devises control techniques that will ensure set-point tracking and disturbance

rejection. The results obtained are shown in Chapter 4. Finally, in Chapter 5, summary of the

thesis is discussed along with potential future works.
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Chapter 2

Modelling

2.1 Modelling

Modelling of an ORC is a necessary prerequisite toward designing a well-structured control sys-

tem. Many researchers, including [81] [107] [108], have worked on modelling of an ORC in

subcritical regions, but modelling of an ORC working in the transcritical region is rare in the liter-

atures. Also, the typical ORC models have no recuperator in them, but in this work, a recuperator

has been added which increases the overall model complexity. Thus, the ORC model developed

for this thesis has six components in total: evaporator, condenser, recuperator, pump, expander and

valve.

The modelling of the ORC plant has been divided into two categories - fast and slow dynamic

components. [81]. The fast dynamic components have very small time constants compared to the

slow ones, and are modelled as constant terms. The fast dynamics components include the pump,

the expander, and the valve. Thus, the slow dynamics components are the heat exchangers: the

recuperator, the condenser, and the evaporator. The dynamic modelling for the heat exchangers

provides a platform for transient analysis of the system and control-system development.

In order to model an ORC working in both subcritical and supercritical regions, it is essential

to apply the proper methodology for heat exchanger modelling. Therefore, the rules in Table 2.1

are established:
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Working fluid region Component Technique

Subcritical Condenser Moving Boundary

Supercritical Evaporator Lumped parameter

Subcritical + Supercritical Recuperator Lumped parameter

Table 2.1: Rules for heat exchanger modelling

Table 2.1 suggests that when the working fluid is in the subcritical region, which is the case

inside the condenser, it should be modelled using the moving boundary technique [50][54][86]. In

the second case where the working fluid is in the supercritical region only inside the heat exchanger

(in the evaporator) it should be modelled using the lumped parameter technique [86]. The final

scenario, when the working fluid is in the subcritical region on one side and is in the supercritical

region on the other side, which is the case inside the recuperator, it should be modelled using the

lumped parameter technique as well. Also, as seen in Figure 1.2, the cycle is divided into two parts

based on high pressure and low pressure. The higher pressure is imposed by the dynamics of the

evaporator, while the lower pressure is imposed by the condenser [50][54][81].

2.2 Thermodynamic properties and CoolProp

The thermodynamic properties for the fluids involved in the ORC process are required to create a

computer model. One option to obtain these thermodynamic properties is to perform the tedious

thermodynamic calculations. However, using a precalcluated database for the properties allows

relatively fast computer simulations. Thus the CoolProp [14] C++ library was utilized in this

thesis. CoolProp is a free platform that outputs one thermodynamic property of a fluid given two

other properties as inputs. For example, to get the density value (rval) of a certain fluid (e.g.

R134a), two other properties such as the temperature (Tval) and pressure (Pval) of the fluid must be

fed as input to the CoolProp with proper syntax. An example with the syntax is shown below for

MATLAB:
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rval =CoolProp.PropsSI(0D0,0T 0,Tval,
0P0,Pval,R134a). (2.1)

Details of computing the thermodynamics properties of fluids can be studied in the CoolProp

website. It is important to note that there are restrictions to input combinations.

2.3 Structure of the heat exchangers

Concentric-annular-tube heat exchangers were chosen for the model in this thesis because of their

simplistic design. Due to their robust build, they can tolerate high pressure operations [89]. They

also can induce turbulent conditions at low flow rates, increasing the heat transfer coefficient and

consequentially the heat transfer rate [31]. In Figure2.1, the cross view of a heat exchanger can be

seen, where the inner pipe has an internal radius ri and an external diameter ro, and the external

pipe has an inner radius of Ri. Therefore, the cross sectional area of the wall can be computed as

Aw = p(ro � ri)2. The material of the wall is assumed to be copper in all the heat exchangers.

ri

ro

Ri

inner tube
wall
outer tube

Figure 2.1: Cross-view of a concentric annular tube heat exchanger

In a concentric-annular-tube heat exchanger, both counter-flow and parallel-flow designs are

possible. Counter flow has some distinct advantages over parallel flow. A common analysis to

compare the two designs is the use of the log mean temperature difference (LMTD) [2].

LMTD,4Tm =
4T2 �4T1

ln(4T2
4T1

)
(2.2)
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where 4T1 is the larger temperature difference between the two fluid streams at either the entrance

or the exit to the heat exchanger and 4T2 is the smaller temperature difference between the two

fluid streams at either the entrance or the exit to the heat exchanger.

In order to understand the process of comparison, Fig.2.2 illustrates a better view of the issue.

The efficiency (in terms of heat transfer rate per unit surface area) of a counter flow is higher due

to the fact that the average difference in temperature of the two fluids over the length of the heat

exchanger is higher (see Fig.2.2). This results in a larger LMTD for a counter-flow heat exchanger.

This can be seen in the temperature profile in Fig.2.2. In parallel flow, the cold stream outlet, Tc,out,

is always less than that of the hot stream outlet, Th,out, and thus the heat transfer is restricted by

Tc,out,. In counter flow, the restriction is eased and Tc,out can exceed Th,out. Therefore, larger heat

recovery can be achieved using a counter-flow design. It is important to note that for the condenser,

there is no need for an external tube since it is fan-cooled.
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Figure 2.2: Side-view of concentric annular tube heat exchanger - parallel flow and counter flow
and their temperature profiles

2.4 Some important terminology for ORC modelling

This section introduces some terminology needed to describe modelling of an ORC.

2.4.1 Average Void Fraction (g)

The average void fraction is a lumped parameter which describes the fraction of the total volume

occupied by gas and it is limited to 0  g  1. It is not uncommon to use the constant average

void fraction in moving boundary modelling [51][53][79]. However, to get a more accurate model
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of the system, a new method to calculate the average void fraction is presented in [54] which has

been used in this thesis. The method includes the effect of slip (S), which is the ratio of the average

phasic velocities and for most technical applications limited to 1  S 
q

r

0

r

00 . The slip is calculated

using a simple correlation presented by Zivi in 1964 [103] as shown in equation (2.3).

S =

✓

r

0

r

00

◆

1
3
= µ

� 1
3 . (2.3)

Now, using equation (2.3), [54] has come up with the following equation for the average void

fraction

g =
(xout � xin)

⇣

1�µ

2
3

⌘

�µ

n

xin

⇣

µ

� 1
3 �1

⌘

+1
on

xout

⇣

µ

� 1
3 �1

⌘

+1
o

b

(xout � xin)
⇣

1�µ

2
3

⌘2 , (2.4)

where x is the quality of the fluid and

b = ln

n

xin

⇣

µ

1
3 �1

⌘

+1
o

{xout (1�µ)+µ}
n

xout

⇣

µ

� 1
3 �1

⌘

+1
o

{xin (1�µ)+µ}
. (2.5)

For the two-phase region inside the condenser, xin = 1 and xout = 0, and thereby equation (2.5)

becomes

b = ln
⇣

µ

2
3

⌘

. (2.6)

The quality of the fluid signifies the ratio of the mass of vapor to the total mass of vapor and liquid

present in a saturated mixture of the working fluid, i.e., x = 1 for saturated vapor and x = 0 for

saturated liquid. Also, by substituting equation (2.6) into equation (2.4), the average void fraction

for the two-phase region of a condenser is

g =
1�µ

2
3

n

1+ ln
⇣

µ

� 2
3

⌘o

⇣

1�µ

2
3

⌘2 . (2.7)
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2.4.2 Heat Transfer Coefficient (a)

The heat transfer coefficient is one of the most important calculations when modelling an ORC as

it dictates the heat transfers taking place throughout the cycle. Thus, it is important to identify the

proper methodology to enumerate this value for individual regions and/or components. Variations

around the nominal value of heat transfer coefficient is used in [81] to calculate the heat transfer

coefficient. Using Gnielinski’s correlation [52], the heat transfer coefficient has been calculated

in [54]. Several other techniques can be found in the literature for the calculation of heat transfer

coefficients for different regions.

2.4.2.1 Single-phase flow for the inner tube

For the calculation of heat transfer coefficient in single phase regions, the same technique has been

used as [54]. In order to do that, first the Reynol’s number (Re) is computed as

Re =
ṁD
Ah

, (2.8)

where ṁ is the mass flow rate of the fluid, D is the internal diameter of the tube, A is the cross-

sectional area of the tube and h is the dynamic viscosity of the fluid. Using equation (2.8), the

Moody friction factor (x ) can be computed by the following equation [52]

x = {0.790ln(Re)�1.64}�2 . (2.9)

The Prandtl number (Pr) can be computed using the following relation

Pr =
hc
l

, (2.10)

where c is the specific isobaric heat capacity and l is the thermal conductivity of the fluid. Using

values obtained in equations (2.8), (2.9) and 2.10, the Nusselt number (Nu) is then computed
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Nu =
(x/8)(Re�1000)Pr

1+12.7(x/8)
1
2
⇣

Pr
2
3 �1

⌘ . (2.11)

Therefore, using the value obtained from equation (2.11), the heat transfer coefficient for the single

phase region is

a =
lNu

D
. (2.12)

2.4.2.2 Two-phase flow for the inner tube

The heat transfer coefficient of the fluid in the two-phase region can be expressed in terms of a

single phase heat transfer coefficient (using a

0 and a

00 for the liquid and vapor respectively) by

[54]

a = a

0

"

(1� x)+1.2x0.4
✓

r

0

r

00

◆0.37
#�2.2

+a

0

"

a

00

a

0 x0.01

 

1+8(1� x)0.7
✓

r

0

r

00

◆0.67
!#�2

, (2.13)

where x is the quality of the fluid in the two-phase region in the range 0  x  1 (x = 0 indicating

liquid at saturation temperature and x = 1 indicating vapor at saturation temperature) and, r

0 and

r

00 are density values at x = 0 and x = 1 respectively. The coefficients a

0 and a

00 are calculated

using equation (2.12) at x = 0 and x = 1 respectively. All these values can be obtained using

CoolProp.

2.4.2.3 Single-phase flow for the outer tube

As discussed earlier, the heat exchangers have outer diameters, i.e. an annular passage for the hot

side flow (see Figure 2.1). Fluid flowing through the external tube does not have the same heat

transfer coefficient calculation as that of the the internal tube. A different approach is used as
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suggested in [22].

Firstly, the hydraulic mean diameter (l = Di �do) is calculated from the inner diameter of the

outer tube (Di = 2Ri) and outer diameter of the inner tube (do = 2ro) referring to Figure 2.1. Then

the channel flow area (S) is calculated using the following equation

S =
p

4
�

D2
i �d2

i
�

. (2.14)

Using the value obtained from equation (2.14), the fluid mean velocity (v) is calculated using

u =
ṁ
rS

, (2.15)

where r is the density and ṁ is the mass flow rate of the fluid. Using the value obtained from

equation (2.15), the Reynold’s number is obtained by the following equation

Re =
rvl
h

. (2.16)

Then the Prandtl number is calculated using equation (2.10). Using values obtained from equations

(2.10) and (2.8), the Stanton number (St) number is calculated

St = E (Re)�0.205 (Pr)�0.505 , (2.17)

where E = 0.0225e{�0.0225(lnPr)2}. Finally, using the Stanton number obtained from equation

(2.17), the heat transfer coefficient of the fluid in the outer tube is

a = r ⇥ v⇥ c⇥St. (2.18)

2.4.2.4 Heat-transfer coefficient of air in the condenser

The Prandtl number for air is calculated using equation (2.10). The Reynold’s number is calculated

using the following equation
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Re =
rvdo

h

. (2.19)

The Nusselt number is thus calculated using equation (2.11). Finally, the heat transfer coefficient

is calculated by using equation (2.12). A linear relation between the air mean velocity (v) and the

fan speed (Nfan) is assumed: v = kvelNfan, where kvel = 1 is a constant.

The thermodynamic properties l , h and c are computed using CoolProp.

2.5 Slow dynamics components

As mentioned earlier, all the heat exchangers in the ORC are slow dynamics components. Possible

dynamic models include moving boundaries models and lumped parameter models. The moving

boundary technique divides the heat exchanger into several zones, and the zone boundaries vary

with time in respect to the current condition of the heat exchanger [81][50][54]. In the lumped

parameter technique for supercritical heat exchangers, a single control volume is defined where

the boundaries do not vary with time [86].

2.5.1 Condenser

The condenser contains refrigerant working in the subcritical region, and thus the simpler moving

boundaries technique is appropriate. The aim of the moving boundary technique is to divide the

condenser into three regions: the superheated region, the two-phase region, and the sub-cooled

region (Figure 2.3). The physical behaviors of these individual regions differ a lot from each other

[54], e.g., the heat transfer coefficient may differ by an order of magnitude between the two-phase

region and the sub-cooled region. The moving boundary technique dynamically tracks the lengths

of the three different regions in the condenser.
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L1 L2 L3

min,c
hin,c

mout,c
hout,c

Region
Superheated

Region
Two-phase

Region
Sub-cooled

Figure 2.3: Moving boundary model for condenser

Each of the regions in the condenser is defined by a control volume and for each control vol-

ume, energy conservation and mass conservation equations are formulated in order to represent

the dynamics. Average properties of the refrigerant are used in the control volumes for calculating

average values of enthalpy, temperature, etc [54][50][86]. Furthermore, the mean void fraction is

used in the two-phase region instead of a time-varying void fraction. Since the exit of the refriger-

ant from the condenser is in liquid form and not two-phase, having a time-invariant void fraction is

acceptable [86]. There are other important assumptions made for modelling the condenser, which

are as follows [54][50][86]:

• Gravitational forces and changes kinetic energy are negligible.

• Pressure loss is negligible.

• The two-phase is in thermodynamic equilibrium.

• Axial conduction of refrigerant is negligible.

• The refrigerant flow is modelled as one-dimensional fluid flow.

Figure 2.4 shows the schematic of a control volume studied in this thesis to obtain a mathematical

model for the condenser, where the subscripts A and B represent the boundaries. Using the assump-

tions mentioned earlier, general mass balance and energy balance equations for the refrigerant can

be obtained for each of the three regions [54][50].

Mass Balance:
d
dt

˚
rdV +

¨
r(w�ws)dA = 0 (2.20)
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Energy Balance:

d
dt

˚
(rh� p)dV +

¨
rh(w�ws)dA =

¨
qdA (2.21)

where w is the velocity of the fluid, ws is the velocity of the surface of the control volume, q is the

heat flux per unit area and p is the pressure inside the condenser. Note, p is constant throughout

the condenser but is still time dependent. Now, using equation (2.20) for the control volume shown

in Figure 2.4, the mass balance can be rewritten as follows:

A
d
dt

ˆ zl,B

zl,A

rdz+rAA
dzl,A

dt
�rBA

dzl,B

dt
= ṁA � ṁB, (2.22)

where A d
dt
´ zl,B

zl,A
rdz represents the rate of change of mass and rAAdzl,A

dt and rBAdzl,B
dt represent the

change of mass in control volume due to change in boundaries.

Using equation 2.21, the energy balance can be rewritten as

A
d
dt

ˆ zl,B

zl,A

rhdz�A(zl,B � zl,A)
d p
dt

+ArAhA
dzl,A

dt
�ArBhB

dzl,B

dt

= ṁAhA � ṁBhB +q(zl,B � zl,A), (2.23)

where A d
dt
´ zl,B

zl,A
rhdz represents the rate of change of enthalpy in the control volume, A(zl,B �

zl,A)
d p
dt is a result of using enthalpy in the first term instead of internal energy [54] and ArAhA

dzl,A
dt

and ArBhB
dzl,B

dt represent the change of enthalpy in the control volume due to thechange in bound-

aries.

zl,A zl,B

mA
hA
ȡA

mB
hB
ȡB

Tw

h
ȡ

Figure 2.4: Control volume for each region

Now, the general forms of mass balance and energy balance equations as shown in equations
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(2.22) and (2.23) respectively, need to be evaluated for each of the three regions of the condenser.

2.5.1.1 Superheated region

For the superheated region, zl,A = 0 and zl,B = L1, and putting these relations into equation (2.22),

the following mass balance equation for the superheated region is obtained:

Ac
d
dt

ˆ L1

0
r1dz�rgAc

dL1

dt
= ṁin,c � ṁint1

) AcL1
dr1

dt
+Ac(r1 �rg)

dL1

dt
= ṁin,c � ṁint1. (2.24)

The time derivative of r1 can be written using the chain rule

dr1

dt
=

∂r1

∂h1

dh1

dt
+

∂r1

∂Pc

dPc

dt

) dr1

dt
=

1
2

∂r1

∂h1

✓

dhin,c

dt
+

∂hg

∂P
dPc

dt

◆

+
∂r1

∂Pc

dPc

dt

) dr1

dt
=

1
2

∂r1

∂h1

dhin,c

dt
+

✓

1
2

∂r1

∂h1

∂hg

∂P
+

∂r1

∂Pc

◆

dPc

dt
. (2.25)

Putting equation (2.25) into equation (2.24), the following final mass balance equation for super-

heated region is

AcL1

✓

1
2

∂r1

∂h1

∂hg

∂P
+

∂r1

∂Pc

◆

dPc

dt
+Ac(r1 �rg)

dL1

dt

+
1
2

AcL1
∂r1

∂h1

dhin,c

dt
= ṁin,c � ṁint1, (2.26)

where Pc is the condensing pressure, Ac is the cross-sectional area of the inner tube, rg is the

saturated vapor density, hg is the saturated vapor specific enthalpy, ṁin,c is the inlet mass flow rate

of the condenser, ṁint1 is the exit mass flow rate of superheated region and dhin,c
dt is the boundary

34



condition imposed by the recuperator.

Similarly, using zl,A = 0 and zl,B = L1 in equation (2.23), the energy balance equation for the

superheated region is obtained as follows

Ac
d
dt

ˆ L1

0
r1h1dz�AcL1

dPc

dt
�Arghg

dL1

dt
= ṁin,chin,c � ṁint1hg

+2pri,cL1ai,1(Tw,1 �Twf,1). (2.27)

The first term of equation (2.27) can be written as follows

d
dt

ˆ L1

0
r1h1dz =

1
2

r1
�

hin,c +hg
� dL1

dt
+

1
2

L1(hin,c +hg)
dr1

dt

+
1
2

r1L1

✓

dhin,c

dt
+

∂hg

∂Pc

dPc

dt

◆

. (2.28)

Substituting equation (2.25) into equation (2.28) gives

d
dt

ˆ L1

0
r1h1dz =

1
2

r1
�

hin,c +hg
� dL1

dt
+

1
2

L1



r1 +
�

hin,c +hg
�

∂r1

∂h1

�

dhin,c

dt

+
1
2

L1



(hin,c +hg)

✓

1
2

∂r1

∂h1

∂hg

∂P
+

∂r1

∂Pc

◆

+r

∂hg

∂Pc

�

dPc

dt
. (2.29)

Substituting equation (2.29) into equation (2.27) gives the following final energy balance equation

for the superheated region
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1
2

r1(hin,c +hg)�rghg

�

dL1

dt
+

1
2

AcL1



r1 +
�

hin,c +hg
�

∂r1

∂h1

�

dhin,c

dt

+
1
2

AcL1



(hin,c +hg)

✓

1
2

∂r1

∂h1

∂hg

∂P
+

∂r1

∂Pc

◆

+r

∂hg

∂Pc
�2

�

dPc

dt

= ṁin,chin,c � ṁint1hg +2pri,cL1ai,1(Tw,1 �Twf,1), (2.30)

where Tw,1 is the average temperature of the tube wall in the superheated region, Twf,1 is the tem-

perature of refrigerant in the superheated region and ai,1 is the heat transfer coefficient of the

refrigerant in the superheated region.

The energy balance of the wall of superheated region can be written as follows:

cwrwAw,c
dTw,1

dt
= 2pri,cai,1(Twf,1 �Tw,1)+2pro,cao(Ta �Tw,1), (2.31)

where Ta is the ambient temperature, cw is the specific heat capacity of the wall, rw is the density

of the wall, Aw,c is the cross-sectional area of the wall and ao is the heat transfer coefficient of the

ambient.

2.5.1.2 Two-phase region

For the two-phase region, zl,A = L1 and zl,B = L1 + L2, and putting these relations in equation

(2.22), the following mass balance equation for the two-phase region is obtained:

A
d
dt

L1+L2ˆ

L1

r2dz+Arg
dL1

dt
�Arl

d(L1 +L2)

dt
= ṁint1 � ṁint2 (2.32)

A
⇢

d
dt

(r2L2)+(rg �rl)
dL1

dt
�rl

dL2

dt

�

= ṁint1 � ṁint2, (2.33)

where r2 = rl(1� ḡ)+rgḡ is the average density of the refrigerant in the two-phase region and

the time derivative of r2 is defined as
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dr2

dt
=

✓

g

drg

dP
+(1� g)

drl

dP

◆

dPc

dt
, (2.34)

where g is calculated using equation (2.7). Using equation (2.34) in equation (2.33), the following

final mass balance equation for the two-phase region is

AcL2

✓

g

drg

dP
+(1� g)

drl

dP

◆

dP
dt

+Ac (rg �rl)
dL1

dt
+Acg (rg �rl)

dL2

dt

= ṁint1 � ṁint2, (2.35)

where mint2 is the mass flow rate at the outlet of the two-phase region.

Similarly, using zl,A = L1 and zl,B = L1+L2 in equation (2.23), the energy balance equation for

the two-phase region is:

Ac
d
dt

ˆ L1+L2

L1

r2h2dz+Acrghg
dL1

dt
�AcL1

dPc

dt
�Acrlhl

d(L1 +L2)

dt
�AcL2

dPc

dt

= ṁint1hg � ṁint2hl +2pri,cL2ai,2(Tw,2 �Twf,2). (2.36)

The first term on the left hand side of equation (2.36) can be evaluated as

d
dt

ˆ L1+L2

L1

r2h2dz =
d
dt

ˆ L1+L2

L1

(grghg +(1� g)rlhl)dz

) d
dt

ˆ L1+L2

L1

r2h2dz =
d
dt
�

(grghg +(1� g)rlhl)L2
 

) d
dt

ˆ L1+L2

L1

r2h2dz = L2



g

d(rghg)

dP
+(1� g)

d (rlhl)

dP

�

dPc

dt

+
�

grghg +(1� g)rlhl
 dL2

dt
. (2.37)

Putting equation (2.37) into equation (2.36) gives the following final energy balance equation for
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the two-phase region:

Ac (rghg �rlhl)
dL1

dt
+AcL2



g

d(rghg)

dP
+(1� g)

d (rlhl)

dP
�1

�

dPc

dt

+Acg (rghg �rlhl)
dL2

dt
= ṁint1hg � ṁint2hl +2pri,cL2ai,2(Twf,2 �Tw,2), (2.38)

where Tw,2 is the average temperature of the tube wall in the two-phase region, Twf,2 is the temper-

ature of refrigerant in the two-phase region and ai,2 is the heat transfer coefficient of the refrigerant

in the two-phase region.

The energy balance of the wall of the two-phase region can be written as follows

cwrwAw,c
dTw,2

dt
= 2pri,cai,2(Twf,2 �Tw,2)+2pro,cao(Ta �Tw,2). (2.39)

2.5.1.3 Sub-cooled region

For the sub-cooled region, zl,A = L1 + L2 and zl,B = Lc, and putting these relations in equation

(2.22), the mass balance equation for the sub-cooled region is :

Ac
d
dt

ˆ Lc

L1+L2

r3dz+rlAc
d(L1 +L2)

dt
�rout,cAc

dLc

dt
= ṁint2 � ṁout,c. (2.40)

The time derivative of r3 can be written using the chain rule

dr3

dt
=

∂r3

∂h3

dh3

dt
+

∂r3

∂Pc

dPc

dt

)dr3

dt
=

1
2

∂r3

∂h3

✓

dhout,c

dt
+

∂hl

∂P
dPc

dt

◆

+
∂r3

∂Pc

dPc

dt

)dr3

dt
=

1
2

∂r3

∂h3

dhout,c

dt
+

✓

1
2

∂r3

∂h3

∂hl

∂P
+

∂r3

∂Pc

◆

dPc

dt
. (2.41)

Since L3 = Lc �L1 �L2, the time derivative for L3 can be written as
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dL3

dt
=�dL1

dt
� dL2

dt
. (2.42)

The first term of equation (2.40) can be written as

d
dt

ˆ Lc

L1+L2

r3dz = L3
dr3

dt
+r3

dL3

dt
. (2.43)

Using equation (2.41) and equation (2.42) in equation (2.43) gives

d
dt

ˆ Lc

L1+L2

r3dz = L3

⇢

1
2

∂r3

∂h3

dhout,c

dt
+

✓

1
2

∂r3

∂h3

∂hl

∂P
+

∂r3

∂Pc

◆

dPc

dt

�

�r3

✓

dL1

dt
+

dL2

dt

◆

. (2.44)

Putting equation (2.44) in equation (2.40) gives the mass balance equation for the sub-cooled

region as follows

Ac (rl �r3)
dL1

dt
+Ac (rl �r3)

dL2

dt
+

1
2

AcL3
∂r3

∂h3

dhout,c

dt

+AcL3

✓

1
2

∂r3

∂h3

∂hl

∂P
+

∂r3

∂Pc

◆

dPc

dt
= ṁint2 � ṁout,c. (2.45)

Similarly, using zl,A = L1 +L2 and zl,B = Lc, and putting these relations in equation (2.23), the

following energy balance for the sub-cooled region is obtained:

Ac
d
dt

ˆ Lc

L1+L2

r3h3dz�AcL3
dPc

dt
+Acrlhl

d (L1 +L2)

dt
�Acrout,chout,c

dLc

dt

= ṁint2hl � ṁout,chout,c +2pri,cL3ai,3(Tw,3 �Twf,3). (2.46)

The first term of equation (2.46) can be written as
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d
dt

ˆ Lc

L1+L2

r3h3dz =
1
2

L3(hl +hout,c)
dr3

dt
+

1
2

r3L3

✓

∂hl

∂Pc

dPc

dt
+

dhout,c

dt

◆

+
1
2

r3(hl +hout,c)
dL3

dt
. (2.47)

Using equation (2.41) and equation (2.42) in equation (2.47) gives

d
dt

ˆ Lc

L1+L2

r3h3dz =
1
2

L3(hl +hout,c)

⇢

1
2

∂r3

∂h3

dhout,c

dt
+

✓

1
2

∂r3

∂h3

∂hl

∂P
+

∂r3

∂Pc

◆

dPc

dt

�

+
1
2

r3L3

✓

∂hl

∂Pc

dPc

dt
+

dhout,c

dt

◆

� 1
2

r3 (hl +hout,c)

✓

dL1

dt
+

dL2

dt

◆

. (2.48)

Putting equation (2.48) into equation (2.46) gives the energy balance equation for the sub-cooled

region as

Ac

✓

1
2

L3(hl +hout,c)

✓

1
2

∂r3

∂h3

∂hl

∂P
+

∂r3

∂Pc

◆

�1
◆

dPc

dt
+Ac

✓

rlhl �
1
2

r3 (hl +hout,c)

◆

dL1

dt

+Ac

✓

rlhl �
1
2

r3 (hl +hout,c)

◆

dL2

dt
+Ac

✓

1
2

r3L3 +
1
4

L3(hl +hout,c)
∂r3

∂h3

◆

dhout,c

dt

= ṁint2hl � ṁout,chout,c +2pri,cL3ai,3(Tw,3 �Twf,3), (2.49)

where Tw,3 is the average temperature of the tube wall in the sub-cooled region, Twf,3 is the tempera-

ture of refrigerant in the sub-cooled region and ai,3 is the heat transfer coefficient of the refrigerant

in the sub-cooled region. Note that dLc
dt = 0 since Lc is constant.

In order to have the outlet temperature of the condenser (Tout,c) as a state instead of the outlet

enthalpy hout,c, dhout,c
dt can be replaced by the following equation

dhout,c

dt
= cout,c

dTout,c

dt
, (2.50)
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where cout,c is the specific heat capacity of the refrigerant at the outlet of the condenser. Now

substituting equation (2.50) into equation (2.45), the following final mass balance equation for the

sub-cooled region is obtained

Ac (rl �r3)
dL1

dt
+Ac (rl �r3)

dL2

dt
+

1
2

AcL3cout,c
∂r3

∂h3

dTout,c

dt

+AcL3

✓

1
2

∂r3

∂h3

∂hl

∂P
+

∂r3

∂Pc

◆

dPc

dt
= ṁint2 � ṁout,c. (2.51)

Similarly, by substituting equation (2.50) into equation (2.49), the following final energy balance

equation for sub-cooled region is

Ac



1
2

L3(hl +hout,c)

✓

1
2

∂r3

∂h3

∂hl

∂P
+

∂r3

∂Pc

◆

�1
�

dPc

dt
+Ac



rlhl �
1
2

r3 (hl +hout,c)

�

dL1

dt

+Ac



rlhl �
1
2

r3 (hl +hout,c)

�

dL2

dt
+Ac



1
2

r3L3 +
1
4

L3(hl +hout,c)
∂r3

∂h3

�

cout,c
dTout,c

dt

= ṁint2hl � ṁout,chout,c +2pri,cL3ai,3(Tw,3 �Twf,3). (2.52)

The energy balance of the wall of the sub-cooled region can be written

cwrwAw,c
dTw,3

dt
= 2pri,cai,3(Twf,3 �Tw,3)+2pro,cao(Ta �Tw,3), (2.53)

where ao is the heat transfer coefficient between the wall and the ambient.

Using the mass balance and energy balance equations (2.26), (2.30), (2.31), (2.35), (2.38),

(2.39), (2.51), (2.52) and (2.53) obtained above, a seven-state order model is established for the

condenser. The states are as follows:

• Length of the superheated region (L1)

• Length of the two-phase region (L2)
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• Condensing pressure (Pc)

• Outlet temperature of the refrigerant (Tout,c)

• Temperatures of the wall for the three different regions (Tw,1,Tw,2 and Tw,3)

The thermodynamic properties are derived using CoolProp. Design inputs and design outputs of

the condenser are shown in Figure 2.5. The design parameters are values of physical parameters

of the condenser which can be seen in Table 2.2. The design parameters were not chosen based on

any existing plant, but rather based on assumption and trial and error. More details about designing

a condenser using the moving boundary technique can be found in [50][54][74].

Power consumed by the fan of the condenser is assumed to be proportional to product of the

fan speed and the amount of heat transferred from the working fluid to wall per second.

Ẇfan =
1
2
�

ṁin,c + ṁout,c
��

hin,c �hout,c
�

kfanNf an, (2.54)

where kfan = 1.73⇥10�5 is a constant .

CONDENSER

min,c

mout,c
hin,c

Ta

Tout,c

Pc

Tw,1, Tw,2, Tw,3

L1, L2, L3

mint1, mint2

Figure 2.5: Design inputs and outputs for the condenser
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Design Parameter Value

Lc 40m

ri,c 11mm

ro,c 12mm

cw 384J/kg.K

rw 8960kg/m3

Table 2.2: Design parameters of condenser

2.5.2 Evaporator

The refrigerant is preheated and and is in the supercritical pressure region when it enters the evap-

orator (represented by the subscript ev), i.e., it is in supercritical region inside the evaporator.

Therefore, the fluid is assumed not to be in liquid phase nor vapor phase, rather a supercritical

fluid which behaves differently than both of the subcritical phases [86]. Thus a single fluid region

is assumed for the evaporator and modelled as such in Figure 2.6. This implies, when referring to

the general control volume in Figure 2.4, that the boundaries zA and zB are fixed for the evaporator

design, i.e., zl,A = 0 and zl,B = Lev, where Lev is the length of the evaporator. The red arrow in Fig-

ure 2.6 represents the heat source bulk temperature. Several assumptions were made for modelling

the evaporator (just like the condenser): pressure loss is negligible, the change in kinetic energy

and gravitational force are negligible, etc.
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0 Lev

min,ev
hin,ev
ȡin,ev

mout,ev
hout,ev
ȡout,ev

Tw,ev

hev
ȡev

Heat

Source

Figure 2.6: Schematic of the evaporator

Now, in the general mass balance equation (2.22) and the general energy balance equation

(2.23) for the general control volume, dzl,A
dt = 0 and dzl,B

dt = 0 since zl,A and zl,B are constants.

Therefore, for the evaporator, the following mass balance equation is obtained

Aev
d
dt

ˆ Lev

0
revdz = ṁin,ev � ṁout,ev, (2.55)

and, the energy balance equation becomes

Aev
d
dt

ˆ Lev

0
revhevdz�AevLev

dPev

dt
= ṁin,evhin,ev � ṁout,evhout,ev + Q̇in, (2.56)

where Pev is the evaporating pressure, Aev is the cross-sectional area of the inner tube, rev is the

average density of the refrigerant inside the evaporator, hev is the average enthalpy and is expressed

as hev =
hin,ev+hout,ev

2 , ṁin,ev is the inlet mass flow rate of the evaporator, ṁout,ev is the exit mass flow

rate of evaporator and Q̇in is the amount of heat transferred from the wall to the working fluid per

second and is expressed as

Q̇in = 2pri,evLevawf,ev(Tw,ev �Twf,ev), (2.57)

where awf,ev is the heat transfer coefficient between the working fluid and the tube wall, Tw,ev is

the average temperature of the tube wall and Twf,ev is the temperature of refrigerant. The first term
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of equation (2.55) can be written as

Aev
d
dt

ˆ Lev

0
revdz = AevLev

drev

dt
. (2.58)

The time derivative of rev can be expressed by the chain rule

drev

dt
=

drev

dPev

dPev

dt
+

drev

dhev

dhev

dt
. (2.59)

Since hev =
hin,ev+hout,ev

2 , equation (2.59) can be further expressed as

drev

dt
=

drev

dPev

dPev

dt
+

1
2

drev

dhev

✓

dhin,ev

dt
+

dhout,ev

dt

◆

, (2.60)

where dhin,ev
dt is a boundary condition imposed by the recuperator. Now putting equation (2.60) into

equation (2.58) gives

Aev
d
dt

ˆ Lev

0
revdz = AevLev



drev

dPev

dPev

dt
+

1
2

drev

dhev

✓

dhin,ev

dt
+

dhout,ev

dt

◆�

. (2.61)

Substituting equation (2.61) into equation (2.55) gives the following mass balance equation

AevLev



drev

dPev

dPev

dt
+

1
2

drev

dhev

✓

dhin,ev

dt
+

dhout,ev

dt

◆�

= ṁin,ev � ṁout,ev. (2.62)

Now, the first term of the energy balance equation (2.56) can be expressed as

Aev
d
dt

ˆ Lev

0
revhevdz = AevLevrev

dhev

dt
+AevLevhev

drev

dt
. (2.63)

Putting equation (2.60) into equation (2.63) gives the following

Aev
d
dt

ˆ Lev

0
revhevdz =

1
2

AevLev

✓

rev +hev
drev

dhev

◆✓

dhin,ev

dt
+

dhout,ev

dt

◆

+AevLevhev
drev

dPev

dPev

dt
. (2.64)
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Substituting equation (2.64) into equation (2.56) gives the following energy balance equation

1
2

AevLev

✓

rev +hev
drev

dhev

◆✓

dhin,ev

dt
+

dhout,ev

dt

◆

+AevLev

✓

hev
drev

dPev
�1

◆

dPev

dt

= ṁin,evhin,ev � ṁout,evhout,ev + Q̇in. (2.65)

In order to have the outlet temperature of the evaporator (Tout,ev) as a state instead of the outlet

enthalpy hout,ev, dhout,ev
dt can be replaced by the following equation

dhout,ev

dt
= cout,ev

dTout,ev

dt
, (2.66)

where cout,ev is the specific heat capacity of the refrigerant at the outlet of the evaporator. Now

substituting equation (2.66) into equation (2.62), the following final mass balance equation for the

evaporator is obtained

AevLev



drev

dPev

dPev

dt
+

1
2

drev

dhev

✓

dhin,ev

dt
+ cout,ev

dTout,ev

dt

◆�

= ṁin,ev � ṁout,ev. (2.67)

Similarly, substituting equation (2.66) into equation (2.65), the following final energy balance

equation for the evaporator is obtained

1
2

AevLev

✓

rev +hev
drev

dhev

◆✓

dhin,ev

dt
+ cout,ev

dTout,ev

dt

◆

+AevLev

✓

hev
drev

dPev
�1

◆

dPev

dt

= ṁin,evhin,ev � ṁout,evhout,ev + Q̇in. (2.68)

The energy balance of the wall of the evaporator can be written as follows

cwrwAw,ev
dTw,ev

dt
= 2pri,evawf,ev(Twf,ev �Tw,ev)+2pro,evao,ev(Tsf �Tw,ev), (2.69)
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where ao,ev is the heat transfer coefficient between the heat source and the wall and Tsf is the bulk

temperature of the heat source. It is important to note that the dynamics of the heat source are

not considered for this work. The bulk temperature of the heat source acts as a disturbance to the

system.

Using the mass balance and energy balance equations (2.67), (2.68) and (2.69) obtained above,

a three-state order model is established for the evaporator with the following states:

• Evaporating pressure (Pev)

• Outlet temperature of the refrigerant (Tout,ev)

• Temperature of the wall (Tw,ev)

The thermodynamic properties are derived using CoolProp. Design inputs and design outputs of

the condenser are shown in Figure 2.7. Design parameters are values of physical parameters of the

evaporator which can be seen in Table 2.3. The design parameters were not chosen based on any

existing plant, but rather based on assumption and trial and error.

EVAPORATOR

min,ev
mout,ev
hin,ev
Tsf

Tout,ev
Pev
Tw,ev

Figure 2.7: Design inputs and outputs for the evaporator
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Design Parameter Value

Lev 40m

ri,ev 11mm

ro,ev 12mm

Ri,ev 55mm

cw 384J/kg.K

rw 8960kg/m3

Table 2.3: Design parameters of evaporator

2.5.3 Recuperator

Modelling the recuperator (represented by the subscript r) is slightly different than that of the

evaporator, mainly because the refrigerant flows through both side of the recuperator (i.e. the cold

side refrigerant, denoted by the subscript c, and the hot side refrigerant, denoted by the subscript h)

having mutual heat exchange within the cycle. This is illustrated in the schematic of the recuperator

as shown in Figure 2.8. Similar assumptions are made for the recuperator modelling as were made

for the evaporator, with an additional assumption - the pressure dynamics are ignored on both sides,

i.e., dP
dt = 0. Because of the new assumption, the pressure on the cold side and hot side are imposed

by the evaporating pressure and the condensing pressure respectively. This is illustrated in a clear

manner in Figure 1.2, where it can be seen that the cycle has been divided into a high pressure

side and a low pressure side, where high pressure and low pressure are the result of the evaporator

and the condenser dynamics respectively. Note that in Figure 1.2, (2-3) is the cold side of the

recuperator because of its lower temperature compared to the hot side (6-7) of the recuperator.
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0 Lr

mh,in
hh,in
ȡh,in

mh,out
hh,out
ȡh,out

Tw,r hh
ȡh

mc,out
hc,out
ȡc,out

mc,in
hc,in
ȡc,in

hc
ȡc

Figure 2.8: Schematic of the recuperator

The refrigerant is above the supercritical pressure in the cold side of the recuperator, therefore,

the fluid is assumed not to be neither in liquid phase nor in vapor phase, rather it is a supercritical

fluid. In the hot side of the recuperator, the refrigerant is in vapor phase. Thus a single fluid region

is assumed for the recuperator on both sides of the recuperator and modelled as such as shown

in Figure 2.8. This implies, when referring to the general control volume in Figure 2.4, that the

boundaries zl,A and zl,B are fixed for the recuperator design, i.e., zl,A = 0 and zl,B = Lr, where Lr

is the length of the recuperator. It is also assumed that the cold refrigerant flows through the inner

tube of the recuperator and the hot refrigerant flows through the outer tube of the recuperator.

Now, in the general energy balance equation (2.23) for the general control volume, dzl,A
dt = 0

and dzl,B
dt = 0 since zA and zB are constants. Therefore, for the recuperator, the following general

energy balance equation is obtained

Ar
d
dt

ˆ Lr

0
rrhrdz = ṁin,rhin,r � ṁout,rhout,r + Q̇r, (2.70)

where Ar is the cross-sectional area, rr is the average density of the refrigerant, hr is the average

enthalpy and is expressed as hr =
hin,r+hout,r

2 , ṁin,r is the inlet mass flow rate of the evaporator, ṁout,r

is the exit mass flow rate of evaporator and Q̇r is the amount of heat transferred from or to the wall.

The time derivative for rc can be expressed by the chain rule
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drc

dt
=

drc

dhc

dhc

dt
. (2.71)

Since hc =
hc,in+hc,out

2 , equation (2.71) can be further expressed as

drc

dt
=

1
2

drc

dhc

✓

dhc,in

dt
+

dhc,out

dt

◆

. (2.72)

For the cold side, equation (2.70) can be written as

Ai,rLrhc
drc

dt
+Ai,rLrrc

dhc

dt
= ṁc,inhc,in � ṁc,outhc,out + Q̇in,r, (2.73)

where Q̇in,r is the amount of heat transferred from the wall to the cold side of the working fluid per

second and is expressed as the following:

Q̇in,r = 2pri,rLrawf,c,r(Tw,r �Twf,c,r), (2.74)

where awf,c,r is the heat transfer coefficient between the cold side refrigerant and the tube wall,

Tw,r is the average temperature of the tube wall and Twf,c,r is the temperature of refrigerant in the

cold side. Using the relation hc =
hc,in+hc,out

2 and substituting equation (2.72) into equation (2.73),

the following final energy balance for cold side can be obtained

1
2

Ai,rLr



1
2
�

hc,in +hc,out
� drc

dhc
+rc

�✓

dhc,in

dt
+

dhc,out

dt

◆

= ṁc,inhc,in � ṁc,outhc,out + Q̇in,r. (2.75)

For the hot side of the recuperator, using similar procedure for the cold side, the following final

energy balance equation can be obtained
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1
2

Ao,rLr



1
2
�

hh,in +hh,out
� drh

dhh
+rc

�✓

dhh,in

dt
+

dhh,out

dt

◆

= ṁh,inhh,in � ṁh,outhh,out � Q̇out,r, (2.76)

where Q̇out,r is the amount of heat transferred from the the hot side of the working fluid to the wall

per second and is expressed as:

Q̇out,r = 2pro,rLrawf,h,r(Twf,h,r �Tw,r), (2.77)

where awf,h,r is the heat transfer coefficient between the hot side refrigerant and the tube wall and

Twf,h,r is the temperature of refrigerant in the hot side.

The wall energy balance for the recuperator is as follows:

cwAw,rLrrw
dTw,r

dt
= Q̇out,r � Q̇in,r. (2.78)

Using the energy balance equations (2.75), (2.76) and (2.78) obtained above, a three-state order

model is established for the recuperator with the following states:

• Outlet enthalpy of the cold side (hc,out)

• Outlet enthalpy of the hot side (hh,out)

• Temperature of the wall (Tw,r)

The thermodynamic properties are derived using CoolProp. Design inputs and design outputs of

the condenser are shown in Figure 2.9. Design parameters are values of physical parameters of the

recuperator which can be seen in Table 2.4. The design parameters were not chosen based on any

existing plant, but rather based on assumption and trial and error.
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RECUPERATOR

mc,in, mc,out

hc,in, hh,in

Pev, Pc

hc,out

hh,out

Tw,r

mh,in, mh,out

Figure 2.9: Design inputs and outputs for the recuperator

Design Parameter Value

Lr 10m

ri,r 11mm

ro,r 12mm

Ri,r 40mm

Table 2.4: Design parameters of recuperator

2.6 Fast dynamics components

The pump, expander, and valve constitute the fast dynamics, since their time constants are so much

lower compared to the heat exchangers [81][47]. In order to have the simulation work as fast as

possible while still capturing the essential dynamics, these three components are modelled with

static algebraic relationships. The pump and the valve act as actuators for the ORC.

2.6.1 Pump

The pump has a maximum limit of volume of fluid it can pump out per second, termed as the

maximum volumetric flow rate V̇max. Thus, a term called the capacity fraction of the pump Xpp is

defined as the actuating value for the pump. It is the ratio between the actual volumetric flow rate

V̇ pump to the maximum volumetric flow rate [81], as defined by the following equation

52



Xpp =
V̇ pump

V̇max
. (2.79)

Thus, the actuating value of the pump is limited by 0  Xpp  1, where Xpp = 0 means that the

pump is not working at all and Xpp = 1 means the pump is working at its full capacity. The pump

is electronically controlled, i.e., Xpp is an electronic signal passed as an input to the ORC.

Two algebraic equations are used to model the pump in order to have the required outputs

imposed by the pump in an ORC. Firstly, the mass flow rate imposed by the pump is a function of

its capacity fraction given by the following relation

ṁpump = V̇ pumprpumpXpp, (2.80)

where rpump is the density of refrigerant at the inlet of the pump. The refrigerant is assumed to be

incompressible in its liquid form and thus density is assumed equal at the inlet and the outlet of the

pump. Secondly, the outlet enthalpy of the pump is given by the following relation

hout,pump = hin,pump +

�

Pout,pump �Pin,pump
�

hpumprpump
, (2.81)

where hin,pump and Pin,pump are the inlet enthalpy and pressure of the pump respectively, Pout,pump

is the outlet pressure of the pump and hpump is the pump efficiency coefficient usually provided by

the pump performance curve. It is important to note that the inlet and outlet pressures of the pump

are imposed by the dynamics of the condenser and the evaporator respectively. Power input to the

pump can be calculated using the following relation

Ẇpump = ṁpump(hout,pump �hin,pump). (2.82)

The thermodynamic properties are derived using CoolProp. Design inputs and design outputs

of the pump are shown in Figure 2.10. Design parameters are values of physical parameters of

the pump which can be seen in Table 2.5. The design parameters were not chosen based on any
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existing plant, but rather based on assumption and trial and error.

PUMP
hin,pump
Pev

hout,pump
mpump
Wpump

Xpp

Pc

Figure 2.10: Design inputs and outputs for the pump

Design Parameter Value

V̇max 1.4⇥10�3m3/s

hpump 0.6001

Table 2.5: Design parameters of pump

2.6.2 Expander

The model for the expander is defined by its isentropic effectiveness (e) usually provided by the

expander performance curve. Since outlet enthalpy is the only aspect of the expander that mat-

ters for modelling purposes, a single algebraic equation is sufficient to model the expander. The

following equation gives the output enthalpy for the expander

hout,exp = hin,exp � (hin,exp �hout,is)e, (2.83)

where hin,exp is the inlet enthalpy of the expander and hout,is is the outlet enthalpy of the expander if

the process was isentropic. The power output of the expander can be obtained from the following

equation

Ẇexp = ṁexp(hout,exp �hin,exp), (2.84)

where ṁexp is the mass flow rate of the refrigerant inside the expander imposed by the valve.
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The thermodynamic properties are derived using CoolProp. Design inputs and design outputs

of the expander are shown in Figure 2.11. The only design parameter that was required for the

modelling was the isentropic effectiveness which was chosen to be 0.6163.

EXPANDERhin,exp
hout,exp
Wexp

mexp

Figure 2.11: Design inputs and outputs for the expander

2.6.3 Valve

The valve acts as an actuator to the ORC and modulates the mass flow rate by changing the throttle

valve position electronically [106]. It is assumed that it has negligible effect on the enthalpy or

pressure of the refrigerant. So the only output that is of interest for this work is the mass flow rate

which can be obtained by the following relation

ṁv = bvµ

Pev
p

Tout,ev
, (2.85)

where bv is a constant coefficient and µ is the opening of the valve. The value of µ is limited

between 0 and 1, where µ = 0 indicates that the valve is fully closed and µ = 1 indicates that the

valve is fully open. The design parameter bv is chosen 3⇥ 10�6. Design inputs and outputs of

the expander are shown in Figure 2.12. Note that in a traditional boiler-turbine system, the valve

position is treated as a load on the system and not as an MV (control input). When generating power

using alternative energy sources, however, the task is to provide as much power ‘as possible’ to the

larger grid rather than meeting a specific demand.
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VALVE
Tout,ev

mv
Pev

µ

��ȕ

Figure 2.12: Design inputs and output for the valve

2.7 Model validation

As mentioned earlier, the design parameters for the components were chosen based on assumption

and trial and error. There was no real data to validate the model with an actual plant, nor there

were component specifications available from a real plant. Therefore, an alternate solution is

proposed for model validation for this thesis. The solution is to observe the change in some of the

core dynamics of the ORC with respect to changes in the actuator inputs. The changes are then

compared to changes observed by [81].

In order to validate the model in the proposed way, step changes are made in the actuator inputs.

First, a step change in the opening of the valve (µ) is made from 0.4 to 0.45 at 30s. The changes

in the evaporating pressure and the outlet temperature of the evaporator are shown in Figure 2.13.

It can be noticed that a step up in µ decreases both evaporating pressure and outlet temperature at

the evaporator from a steady state value, i.e. both the outputs have a negative gain relation with µ .

The same can be observed in [81].
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Figure 2.13: Step change in µ from 0.4 to 0.45

Secondly, a step change in the capacity fraction of the pump (Xpp) is made from 0.4 to 0.45

at 30s. The changes in the evaporating pressure and the outlet temperature of the evaporator are

shown in Figure 2.14. It can be seen that a step up in Xpp decreases outlet temperature at the

evaporator from a steady state value i.e. it has a negative gain relation with Xpp. Meanwhile, the

evaporating pressure increases from a steady state value i.e. it has a positive gain relation with Xpp.

The same gain relationships can be observed in [81].
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Figure 2.14: Step change in Xpp from 0.4 to 0.45

Finally, a step change in the fan speed (Nfan) is made from 300rpm to 500rpm at 30s. The

changes in the evaporating pressure and the outlet temperature of the evaporator are negligible.

However, the change in the outlet temperature of the refrigerant of the condenser is significant.

From Figure 2.15, it can be seen that a step up in Nfan decreases outlet temperature at the condenser

from a steady state value i.e. it has a negative gain relation with Nfan. This makes intuitive sense:

we expect the fan to create cooling.
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Figure 2.15: Step change in Nfan from 300rpm to 500rpm

2.8 Summary

In summary, each of the components of the ORC are modelled by classifying the components into

two main categories - fast dynamics components and slow dynamics components. The three heat

exchangers are dynamically dominant over the other three components; therefore only the heat

exchangers’ dynamics were considered. The fast dynamics components were modelled with static

algebraic relations. Overall, a thirteen order state model is established for the ORC, among which

seven states are from the condenser and three states from each of the other two heat exchangers.
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Chapter 3

Control development

After having developed the model for the ORC, the next task is to develop a control system to

track the set point while remaining robust to disturbances (note that large steady-state changes to

the input heat source will require a change in set point if optimal operation is to be maintained,

but the control system should remain robust to small heat variations that occur without a set point

change). The objective is to develop a control system that does not need an accurate model of

the system. Not only do multi-input, multi-ouput (MIMO) control systems generally require an

accurate model of the system, they are also based on linearizations that have questionable accuracy

for such a highly nonlinear system such as ORC. Thus, first the system is shown to be approximated

by three independent single-input single-output (SISO) systems. This makes decentralized PID (or

PI) control possible. It also makes possible the application of approximate adaptive controls such

as CMAC, that can adapt to an unknown model, remain robust to time-varying disturbances, and

compensate for nonlinearities.

3.1 Control Strategy for determining set-points

In [108], Zhang et al. suggests two general strategies for ORC based waste heat recovery systems -

FEL (following the electric load) and FWH (following the waste heat). In FEL mode, the objective

is like those of conventional waste heat power plants, where the task for the ORC is to generate

power by meeting the demand in variation of electric load demand while keeping ORC process
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variables within safe operating limits. The second strategy, FWH mode, targets in utilizing the

waste heat efficiently by following the variations of the waste heat so as to guarantee maximum

power generation while keeping ORC process variables within safe operating limits. Zhang et

al. uses FEL mode for their work [108] while Sylvain et al. uses FWH mode as their operation

strategy for designing control for ORC cycle [82]. For this thesis, FWH mode is chosen since

waste heat recovery units in industries are usually used as auxiliary power units and are desired to

have maximum net power in the output. The net power is

Ẇnet = Ẇexp �Ẇpump �Ẇfan. (3.1)

The process variables (i.e. the CVs) chosen for this thesis which have effect on the objective

function (the net work, Ẇnet) and are safety concerns, are the outlet temperature of the working

fluid at the evaporator (Tout,ev), the evaporating pressure (Pev), and the outlet temperature of the

working fluid at the condenser (Tout,c). For an SORC in [82], Sylvain et al. uses an algebraic

relation to update the optimal evaporating temperature (Tev,opt) with respect to changes in the

waste heat source temperature (Tsf) and its mass flow rate (ṁsf) and condensing temperature (Tc).

Using the algebraic relation provided, changes in Tev is observed with respect to changes in Tsf,

keeping ṁsf = 0.15kg/s and Tc = 300C as constants and is shown in Figure 3.1, which shows that

with increasing Tsf, Tev,opt also increases. However, it is important to understand the complexity

involved in evaluating the performance of a TORC compared to that of a SORC. In an SORC,

as shown in the temperature-entropy profile in Figure 1.3, the heat exchange process inside the

evaporator (3-4’) involves a phase change (a-b) where the evaporating temperature (Tev) is constant

for a particular evaporating pressure (Pev). Whereas, in a TORC, as shown in the temperature-

entropy profile in Figure 1.3, the heat exchange process inside the evaporator (3-4) does not have

a phase change; rather the refrigerant is in supercritical phase. Hence no constant Tev is involved

in the process for a particular Pev. For a SORC, [36] and [81] showed that higher efficiency is

achieved when superheating of the refrigerant is avoided and expanded directly from the dew line

(b-6’), and thus the objective was to optimize the cycle using the variable Tev. But such a point
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does not exist in a TORC and thus it becomes complex.
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Figure 3.1: Changes in Tev,opt with respect to changes in Tsf for a SORC

For a TORC, Tout,ev is rather chosen instead of Tev,opt as a replacement. Using a static model,

which is basically the dynamic model described in Chapter 2 with all its time derivatives set to

zero, changes in Ẇnet, Pev, Tout,ev and Tout,c with respect to changes in Tsf (1750C  Tsf  2350C) is

obtained. The change in Tsf and its effect on Ẇnet is shown in Figure 3.2 which suggests increase in

Ẇnet with increasing Tsf and vice versa. The changes in the process variables Pev, Tout,ev and Tout,c

can also be seen in Figure 3.3, Figure 3.4 and Figure 3.5 respectively. The graphs suggests that

with increasing Tsf, Pev and Tout,ev must increase while Tout,c must decrease in order for increase in

Ẇnet. However, there are safety limits for process variables in a TORC which must be maintained

for proper functioning of TORC and thus must have bounds on the process variables. For this

thesis, the upper bounds for Pev and Tout,ev are arbitrarily chosen to be 5MPa and 245oC, and the

lower bound for Tout,c is chosen to be 30oC, and these are the set-points (sp) the controller must be

able to track while utilizing the heat source temperature to its maximum capability. Note that the

changes in Tout,ev in a TORC is similar to changes in Tev,opt in a SORC with respect to changes in
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Tsf (see Figure 3.4 and Figure 3.1).
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Figure 3.2: Ẇnet against changes in Tsf for TORC
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Figure 3.3: Pev against changes in Tsf for TORC
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Figure 3.4: Tout,ev against changes in Tsf for TORC
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Figure 3.5: Tout,c against changes in Tsf for TORC
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3.2 Relative Gain Array (RGA) analysis

The majority of plants in the real world can be described as MIMO systems, but SISO control

strategies are much easier to implement [76]. In the SISO strategy, only one manipulated variable

(MV) is used to control one controlled variable (CV). There is always some degree of interaction

between the SISO loops, and an approximate measure of the interactions between the loops is

desired. The Relative Gain Array (RGA) analysis, first introduced by Bristol [20], provides such a

measure. It identifies the control structure by identifying the degree of process interactions between

the CVs and the MVs [20][26], thus providing a method for obtaining a decoupled system.

There are few basic rules which need to be followed in order to establish the correct pairings

between the CVs and the MVs. The rules are as follows [93]:

1. Pairings which have values closest to one should be chosen.

2. Pairings which correspond to negative values should be avoided.

Table 3.1 shows transfer functions obtained using the System Identification toolbox in MATLAB

by using data collected from the simulations of the TORC system. The transfer functions are a

means of observing the interactions between the MVs and the CVs which are used to calculate the

RGA matrix. The System Identification toolbox also provides with the percentage fit to estimation

data which are shown in Table 3.2.

µ Xpp Nfan

Pev
�1.1548⇥107

(1+10.011s)
2.2803⇥107

(1+15.979s)
309.26

(1+79.587s)

Tout,ev
�52.604

1+30.5842s+304.3629s2
�307.94

(1+19.461s)
0.0071763

(1+18.167s)

Tout,c
�17.624

(1+93.441s)
148.88

(1+57.06s)
�0.016544
1+69.323s

Table 3.1: Transfer functions estimated using MATLAB showing relations between the MVs and
CVs
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µ Xpp Nfan

Pev 94.93 92.06 94.31

Tout,ev 66.01 93.84 90.36

Tout,c 91.12 89.56 96.72

Table 3.2: Percentage fit to estimation data between MVs and CVs

The following 3⇥3 RGA matrix (L) is calculated using MATLAB code [93]:

L =

2

6

6

6

6

6

6

6

4

µ Xpp Nfan

Pev 0.63409 0.30998 0.055922

Tout,ev 0.30368 0.82525 �0.12894

Tout,c 0.062223 �0.13524 1.073

3

7

7

7

7

7

7

7

5

. (3.2)

The RGA matrix shows that it is diagonally dominant. It also abides by the summation property

of a RGA matrix, i.e., any row or column sums to one [20]. Using the rules mentioned earlier, it

can be concluded that the opening of the valve (µ) has more interaction with the pressure at the

evaporator (Pev), while the capacity fraction of the pump (Xpp) has more interaction with the outlet

temperature of the refrigerant at the evaporator (Tout,ev). By intuition and educated guess, it was

expected for the speed of the fan (Nfan) to have the highest interaction with the outlet temperature

of the condenser (Tout,c), and that is what the RGA matrix confirms. Therefore, the following pairs

are established for the purpose of designing a SISO controller:

µ ! Pev

Xpp ! Tout,ev

Nfan ! Tout,c

Interested readers can go through [93] to learn in details about RGA analysis.

66



3.3 Proportional, Integral, Derivative (PID) control

It is important to establish the conventional PID controller in order to evaluate the performance of

other control schemes. The PID is broadly applicable as it can be implemented based on measured

process variables only without having any knowledge of the concealed process behavior.

In PID, the proportional term accounts for the present error, the integral term accounts for the

past error, and the derivative term accounts for the future error [11]. The PID control scheme is

represented by the following summation equation of three individual terms:

u(t) = Kpe(t)+Ki

ˆ t

0
e(t)dt +Kd

d
dt

e(t),

where u is the MV, error e is the difference between the set point (sp) and the CV, Kp, Ki, and Kd

are control gains (tuning parameters) known as the proportional gain, integral gain and derivative

gain respectively, t is the present time and t takes on values from time 0 to t. Note that the

above equation for PID is in its parallel form. Figure 3.6 shows a block diagram of a typical PID

controller C(s) implementation for a plant G(s) trying to track a reference signal R(s).

r(t) C(s) G(s) y(t)e(t) u(t)

Kp, Ki, Kd

Figure 3.6: Closed-loop PID control

Several techniques have been established in order to calculate the control gains for a particular

system. The most commonly used techniques are Ziegler-Nichols (ZN) and Internal Model Control

(IMC). For this work IMC technique has been used. Using ZN technique for tuning PI controller

for a heat exchanging processes is a poor choice and can be 18 times slower compared to the IMC
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tuning technique [48]. It is important to note that some processes may require only one or two of

the gains in order to yield a suitable control (setting the other gains to zero). Thus, a PID controller

can be termed as PI, PD, or P controller in the absence of the respective control actions. Derivative

terms are often avoided due to the sensitivity of the derivative term to measurement noise. The

integral term eliminates steady-state error for stable controllers for a constant input. For this work,

PI controllers are used.

From Table 3.1, it can be noted that the pairings Xpp ! Tout,ev, µ !Pev and Nfan ! Tout,c exhibit

first-order processes. Parameter tuning using IMC techniques for a first-order processes is utilized

here [17].

3.3.1 IMC technique for first-order process

A first-order process is defined by the following

G(S) =
kp

tpS+1
. (3.3)

First, find the IMC controller transfer function q(S)

q(s) = G�1(S) f (S) =
tpS+1

kp
f (s), (3.4)

where f (S) is a filter to make q(S) semi proper and is defined by

f (S) =
1

l f S+1
, (3.5)

where l f is a constant chosen to trade-off between performance and robustness.

Substituting equation (3.5) into equation (3.4) gives

q(S) =
tpS+1

kp(l f S+1)
. (3.6)

The following transformation is suggested by [17] in order to find the equivalent standard feedback
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controller

C(S) =
q(S)

1�G(S)q(S)
. (3.7)

Putting equation (3.3) and equation (3.6), equation (3.7) is simplified into

C(S) =
tpS+1
kpl f S

)C(S) =
tp

tp

✓

tpS+1
kpl f S

◆

)C(S) =
tp

kpl f

✓

tpS+1
tpS

◆

. (3.8)

Now, the transfer function for a PI controller in its standard form is

C(S) = Kp

✓

tIS+1
tIS

◆

. (3.9)

Equating equation (3.8) and equation (3.9),

Kp =
tp

kpl f
(3.10)

tI = tp. (3.11)

Therefore,

Ki =
KP

tI
. (3.12)

The derivative gain Kd is set to zero, creating a PI controller. The proportional gain Kp and integral

gain Ki are calculated for each of the established pairings (Table 3.3) using the first-order processes

identified (Table 3.1).
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l f Kp Ki

µ ! Pev 0.5 �1.734⇥10�6 �1.732⇥10�7

Xpp ! Tout,ev 0.5 �0.1215 �0.0062

Nfan ! Tout,c 0.5 �7505 �118.5

Table 3.3: Kp and Ki for control pairings

l f is chosen such that the closed-loop PI step responses have as much low settling-time as

possible. The closed-loop PI step responses can be seen in Figure 3.7. The responses show that

the settling-times for all the three loops are slightly below 3 seconds, however, varying l f lower

settling-times can be obtained, but under such tuning conditions, the manipulated variables (0 6

Xpp 6 1 and 0 6 µ 6 1) go beyond their bounds while trying to track the desired setpoints.
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Figure 3.7: Closed-loop control response for each pairing
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3.4 Cerebellar Model Articulation Controller (CMAC)

Nonlinear adaptive control schemes are effective in controlling nonlinear systems. Since a nonlin-

ear approximator compensates for nonlinearities, these schemes do not require prior knowledge of

the exact model. There are several types of Artificial Neural Networks (ANNs) that can serve as

a nonlinear approximator. Radial Basis Function Networks (RBFN), can be used to approximate

the nonlinearity using a weighted sum of basis functions (usually Gaussians). The RBFN works

when there are few inputs, but suffers from the “curse of dimensionality” where the number of

computations needed grows exponentially with the number of inputs. The Multilayer Perceptron

(MLP) uses layers of sigmoidal basis functions, each of which takes a weighted sum of signals as

an input and outputs a single value. MLP can handle a large number of inputs but takes a much

longer time to train than RBFN. CMAC can train as fast as RBFN but does not suffer from the

curse of dimensionality. (in practice CMAC is preferred over RBFN if number of inputs is greater

than 3 or 4[72]). Thus, CMAC is chosen for the purpose of this work.

3.4.1 CMAC structure and methodology

The CMAC structure is comprised of m offset layers of lookup tables, each equally divided into Q

quantizations with n number of inputs as seen in Figure 3.8.

x1

x2 x2

x1

x1

x1

Top View Side View

Figure 3.8: CMAC structure (Q = 3, m = 3, n = 2)
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An input vector x 2 Rn is received by the CMAC which proceeds towards the offset layers. The

total number of hypercube cells within the network is thus N = mQn. Each of these cells facili-

tates a space for a basis function - commonly these basis functions include binary (rectangular),

triangular, and spline [72]:

Binary : Gi(x) =

8

>

>

<

>

>

:

1 if x is in cell i

0 otherwise
, (3.13)

Triangular : Gi(x) =

8

>

>

<

>

>

:

^ if x is in cell i

0 otherwise
, (3.14)

Spline : Gi(x) =

8

>

>

<

>

>

:

a if x is in cell i

0 otherwise
. (3.15)

On each layer, the inputs received by the CMAC activate a hypercube cell and the basis function

generates a value (Gi). Each of the generated values (Gi) are associated with individual weights

(wi). The weights in the CMAC begin at zero and are updated according to the training scheme.

The output of the CMAC is the sum of the products of the basis functions and their associated

weights:

f̂ (x) =
N

Â
i=1

Gi(x)wi. (3.16)

The output can also be written in the following vector format

f̂ (x) = G(x)w, (3.17)

where G(x) 2 R1⇥m is a row vector of associated basis functions and w 2 Rm⇥1 is a column vector

of activated cell weights. The methodology of CMAC is explained with Figure 3.9, where two

input variables (x1 and x2) are quantized into three discrete regions on three different layers, i.e.
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Q = 3 and m = 3. For this example, total number of hypercubes is N = 27 and the hypercubes are

Aa, Ab, Ac, Ba, Bb, Bc, Ca, Cb, Cc, Da, Db, ... , Hi, Ig, Ih and Ii.. These hypercubes are numbered

as Aa = 1, Ab = 2, ... , Ii = 27. Both the inputs range between 1 and 6. The inputs x1 = 4 and x2 = 3

are mapped in the memory locations of 5, 14 and 23, and they activate the weights associated with

the hypercubes Bb in the first layer, Ee in the second layer and Hh in the third layer as shown in

Figure 3.10.
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Figure 3.9: CMAC methodology with two input variables

Within the hypercubes Bb, Ee and Hh, the chosen basis function generates a single value as

shown in Figure 3.11. A spline basis function is used for this work as shown in equation 3.18.

Gi(x) =
n

’
i=1

h2
i �2h3

i +h4
i , (3.18)

where 0 < hi < 1 is the normalized position in the cell on input i.
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Figure 3.10: Mapping for CMAC with two-inputs
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Figure 3.11: Basis function operating in hypercube for the first layer

For bigger values of n, N becomes too large to calculate in real time as well as to store in

memory. The former problem is solved by keeping track of only m activated cells, i.e.,

f̂ =
m

Â
i=1

Gi,a(x)wi,a (3.19)

where Gi,a and wi,a are activated on layer i.

To tackle the storage problem, it should be noted that the large majority of the cells in the

CMAC are never activated as trajectories move through a high-dimensional space, and hence the

solution is to use random hash coding [7]. The hash coding can result in weights associated with
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different cells mapped to the same physical memory location, which is referred to as a hash colli-

sion. By choosing the physical memory large enough, the errors due to the hash collisions become

negligible with respect to the overall CMAC error.

The weights can be updated using offline training or online training. When trained online using

the state error, the CMAC becomes an adaptive control, which is the case in this thesis.

It is essential that the weight update scheme be robust to disturbances. Standard robust tech-

niques include projection [41], dead-zone [75][42], leakage [18] and e-modification [61][57][60].

All four can be shown to result in uniformly ultimately bounded signals using a standard Lyapunov

analysis.

Projection, as shown in equation (3.20), requires knowledge of the maximum weight (wmax)

and the minimum weight (wmin) of a system prior to implementation, thus prior training on the

model is required.

˙̂w =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 if G

T z > 0and ŵi > wi,max

0 if G

T z < 0and ŵi < wi,max

bG

T z otherwise

, (3.20)

where constant b > 0 is the learning-rate of the CMAC.

Dead-zone, as shown in equation (3.21), requires knowledge of the bounds of the disturbance

(d) and the control gain (G). But an exact idea of the bounds of the disturbance may not be

available under all circumstances.

˙̂w =

8

>

>

<

>

>

:

bG

T z if ||z||> dmax
Gmin

0 otherwise
. (3.21)

Leakage uses

˙̂w = b (G T z�nŵ), (3.22)

where n is a positive constant. The e-modification method is similar to that of leakage, but results
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in slightly better performance

˙̂w = b (G T z�n ||z||ŵ). (3.23)

In [68], Dr. Macnab’s proposed voting scheme for weight updates outperforms the e-modification

weight update technique in a system that is prone to weight drift. However, the voting scheme is

computationally complex and is required only when weight drift can be observed in the system.

Adaptive CMAC control of TORC does not exhibit weight drift when e-modification is used.

3.4.2 CMAC adaptive control

In order to track a set-point, it is assumed that the nominal set-point (yn) and the nominal con-

trol value (un) are known. The nominal operating condition is illustrated in Table 3.4. Using a

decentralized model of the system for the control design, justified by the RGA analysis, gives

ẏi = fi(x)�giui +Di(Tsf,n)+di(t), for i = 1, 2, 3 (3.24)

where each fi(x) represents the nonlinear terms, Di represents a constant disturbance term due to

a nominal value of the heat source, di(t) represents bounded time-varying disturbances, and gi is

a positive constant. In reality, gi = gi(x) but the variations are so small that it can be assumed a

constant for control design purposes. The control required to drive the ORC system towards its

desired working condition is

ui = ui,n +Dui, (3.25)

where 4ui is the adaptive control given by

4ui = G i(q)ŵi +Kizi. (3.26)

where the inputs provided to the CMAC are
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q = [Pev Tout,ev Tout,c Pc]
T (3.27)

The output error is

zi = yi � yi,sp (3.28)

Nominal value

Bulk temperature of heat source, Tsf 202oC

Evaporating pressure, y1 = Pev 4.986MPa

Temperature of R134a at outlet of evaporator, y2 = Tout,ev 242oC

Temperature of R134a at outlet of condenser, y3 = Tout,c 36oC

Opening of valve, u1 = µ 0.45

Capacity fraction of pump, u2 = Xpp 0.42

Condenser fan speed, u3 = Nfan 300rpm

Table 3.4: Nominal operation condition

3.4.3 Stability Proof

To analyze a nonlinear control system, such as the adaptive CMAC used in this work, Lyapunov’s

direct method can used to determine stability [65]. Consider a direct adaptive control Lyapunov

function

Vi =
1

2gi
z2

i +
1

2bi
w̃T w̃, (3.29)

where w̃i = wi� ŵi is the weight estimation error in which wi are the unknown ideal weights in the

CMAC. For the rest of the stability analysis, the subscript 0i0 is dropped without loss of generality.
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For a non-linear system shown by equation (3.24), the error derivative is

ż = ẏ� ẏsp. (3.30)

Assuming ẏsp = 0, substituting equation (3.24) into equation (3.30) gives

ż = f (x)�gu+D+d(t), (3.31)

Now, time derivative of equation (3.29) gives the following

V̇ =
1
g

zT [ f (x)�g(un +Du)+D+d(t)]� 1
b

w̃T ˙̂w. (3.32)

Substituting equation (3.26) into equation (3.32) gives the following

V̇ =
1
g

zT [ f (x)�g(un +Du)+D+d(t)]� 1
b

w̃T ˙̂w

=z
✓

f (x)+D
g

�un �G ŵ�Kz+d(t)
◆

� 1
b

w̃T ˙̂w. (3.33)

The terms can be approximated by the CMAC neural network is

f (x)+D
g

�un = G (q)w+ e(x), (3.34)

with ke(x)k< emax8x 2D where emax is a positive constant bound on the approximation error and

D ⇢ ¬4 is the region of approximation. Now, substituting equation (3.34) into equation (3.33)

gives the following

V̇ =z(G w̃+ e +d �Kz)� 1
b

w̃T ˙̂w

=�Kz2 + z(e +d)+ w̃T
✓

G

T z�
˙̂w
b

◆

(3.35)
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Using the e-modification update law from equation (3.23) gives the following

V̇ =�Kz2 + z(e +d)+n |z| w̃T w�nw̃T w̃ (3.36)

V̇ < |z|
�

�K |z|+ zdmax +n kw̃kkwk�n

�

�w̃2�
�

�

, (3.37)

where dmax is a positive constant that bounds |e +d|. By completing the square in equation (3.37),

it can be shown that V̇ < 0 when either |z|> dz or kw̃k> dw where

dz =
dmax

K
+

n kwk2

4K
(3.38)

dw =
kwk

2
+

s

dmax

n

+
kwk2

4
. (3.39)

Thus, the signals are uniformly ultimately bounded with an ultimate bound given by the Lyapunov

surface V (z,kwk) =V (dz,dw).

It should be noted from equation (3.2) that despite the pairings chosen in Section 3.2, there are

still interconnections between µ and Tout,ev, and Xpp and Pev. If the interconnections are of higher

order, i.e. anything above first order, an adaptive controller might not achieve stability [91]; the

assumption that positive constant dmax exists may be violated. From Table 3.1, one can observe a

second-order interconnection between µ and Tout,ev while a first-order interconnection between Xpp

and Pev can be seen. Decentralized adaptive control can be made robust to interconnections [91],

but the robust terms required may lead to unwanted control signal chatter. Therefore the adaptive

control in equation (3.25) with the weight update law defined in equation (3.23) are used in this

thesis for designing the decentralized adaptive CMAC.
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3.5 Summary

The system was shown to be diagonally dominant using RGA analysis, and thus a decentralized

control can be used with three separate control loops. A nonlinear adaptive control using CMAC

has been designed for the ORC system. In addition to that, a PI controller is also designed using

the IMC technique in order to compare with the performance of the CMAC.
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Chapter 4

Results

To investigate the performance of the adaptive CMAC, a few tests were conducted based on the

TORC process model. The state space system is solved in the MATLAB environment using the

built-in solver ODE23t with a sampling period of 0.1s. The results are compared to a PI controller

for the same tests with no change in control gains. The tests are described below.

4.1 Disturbance rejection

The heat source, for this thesis, industrial waste heat, in practice will not have a constant tem-

perature (Tsf). Small changes (fluctuations) to the system should be followed by the controller to

maximize net output power while keeping the process variables at their desired safety level. Such

a variation in Tsf is shown in Figure 4.1, which is introduced to the TORC as disturbance.
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Figure 4.1: Variation in heat source temperature

The simulation result for the introduced disturbance to the system is shown in Figure 4.2 show-

ing the performance of the adaptive CMAC and the PI controller. The changes in CVs are within an

acceptable region for both the controllers. However, the CMAC has outperformed the PI controller

in terms of tracking performance with much lower deviation from the set-points while converging

faster as well. The variations in the MVs, as shown in Figure 4.3 are also within the allowable

ranges regardless of the variation in Tsf. The adaptive CMAC was also able to achieve higher net

power output with respect to variations in Tsf when compared to the PI as shown in Figure 4.4.
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Figure 4.2: Set-point tracking under the influence of disturbance
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Figure 4.3: Variation in MVs under the influence of disturbance
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Figure 4.4: Net power output for disturbance rejection test

The previous results show the CMAC performance after 151 training trials, which is how long

it takes the CMAC to converge for the disturbance rejection test (Figure 4.11). The weights also

converge after this much training (Figure 4.6). The RMS error is calculated for all the three output

channels together.

RMS error =

s

1
n

n

Â
k=1

(ŷk � yk), (4.1)

where yk is the set-point for kth observation and ŷk is the actual output.
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Figure 4.5: RMS error convergence for disturbance rejection test
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Figure 4.6: Behavior of weights in CMAC for disturbance rejection
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4.2 Set-point tracking

In this section, in order to test the controller’s tracking ability, set-points of evaporating pressure,

outlet temperatures of working fluid at the evaporator and the condenser are changed (keeping

Tsf = 202oC as constant). At 50s, a ramp change of the set-point of the evaporating pressure is

imposed from 5Mpa to 5.02MPa at a rate of 0.004MPa/s, and then the set-point is imposed back

to 5MPa at 95s with the same rate. A ramp change of the set-point of the outlet temperature at

the evaporator is imposed at 140s from 245oC to 250oC at a rate of 1oC/s, and then the set-point

is imposed back to 245oC at 185s with the same rate. Finally, a ramp change of the set-point

of the outlet temperature at the condenser is imposed at 230s from 30oC to 30.15oC at a rate

of 0.03oC/s, and then the set-point is imposed back to 30oC at 275s with the same rate. The

simulation results shown in Figure 4.7 demonstrate that the adaptive CMAC performs well in

tracking for the channels Tout,ev (see Figure 4.8 as well) and Pev, however, for the Tout,c channel,

when the set-point is changed, the PI controller demonstrates better performance in tracking. The

control effort by both the controllers are within an acceptable range (Figure 4.9). In Figure 4.10, it

can be seen that the adaptive CMAC is capable of generating more net power compared to the PI

controller despite changes in set-points.
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Figure 4.7: Change in set-points of the CVs

Time (s)
143 144 145 146 147 148 149

T ou
t,e

v (o C
)

247

248

249

250

251
CMAC Desired PI

Time (s)
189 190 191 192 193 194

T ou
t,e

v (o C
)

244.5

245

245.5

246

246.5

247
CMAC Desired PI

Figure 4.8: Tout,ev channel zoomed
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Figure 4.9: Variation in MVs for set-point tracking
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Figure 4.10: Net power for set-point tracking

The previous results show the CMAC performance after 26 training trials, which is how long

it takes the CMAC to converge for the set-point tracking test (Figure 4.11). The weights also

converge after this much training (Figure 4.12).
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Figure 4.11: RMS error convergence for set-point tracking test
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Figure 4.12: Behavior of weights in CMAC for the set-point tracking
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4.3 Step-disturbance rejection

The heat source temperature(Tsf) may move away from its nominal value, but this shift in value

may not last long and this shift can be simulated in the form of a step-disturbance. In such a

scenario, the controller has to be effective in canceling the step change in Tsf by treating it as

a disturbance, otherwise, this change will lead to a higher magnitude deviation from the set-point

(bringing about safety concerns mainly due to a significant increase in pressure). Also, a significant

decrease in pressure may result in a change in the region of the working fluid inside the evaporator,

i.e. supercritical to subcritical. To test the effectiveness of the adaptive CMAC, a step disturbance

is introduced, as shown in Figure 4.13, to the system and its performance is compared to a PI

controller.
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Figure 4.13: Step changes in Tsf

Figure 4.14 shows the performance of the two controllers trying to track the set-point under

a step disturbance. The proposed CMAC controller has proven to be more effective than the PI

controller in rejecting the step disturbance from the heat source temperature by converging to the

set-point significantly faster while having lower-amplitude overshoots. To achieve this perfor-
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mance, both the controllers generated control signals within acceptable limits and sharpness as

shown in Figure 4.15. Net power, as can be seen from Figure 4.16, during the settling period is

higher for the proposed CMAC compared to the PI controller.
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Figure 4.14: Set-point tracking under the influence of step disturbance

Time (s)
0 50 100 150

X
pp

0.35

0.4

0.45

0.5

0.55
CMAC PI

Time (s)
0 50 100 150

µ

0.4

0.5

0.6

0.7
CMAC PI

Time (s)
0 50 100 150

(rp
m

)
N

fa
n

0

500

1000

1500
CMAC PI

Figure 4.15: Variation in MVs under the influence of step disturbance
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Figure 4.16: Net power for step-disturbance rejection

The previous results show the CMAC performance after 28 training trials, which is how long

it takes the CMAC to converge for the step-disturbance rejection test (Figure 4.11). The weights

also converge after this much training (Figure 4.12).
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Figure 4.17: RMS error convergence for step-disturbance rejection test
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Figure 4.18: Behavior of weights in CMAC for the step-disturbance rejection

4.4 Summary

Except for set-point tracking test in Tout,c channel, the adaptive CMAC has outperformed the PI

controller in all three tests showing its set-point tracking ability despite heat source temperature

variations and set-point changes, summarized in Table 4.1, Table 4.2 and Table 4.3. It can be seen

that the RMS errors for the PI controller, combining all the three channels, is quite high compared

to the CMAC for all the three performed tests. The adaptive CMAC was also able to accumulate

more net energy
⇣

Enet =
´ totaltime

0 Ẇnetdt
⌘

as output over the period of time for all the three tests

(Table 4.4) which was the main objective of the controllers. In order to achieve the desired goals,

the adaptive CMAC exhibited reasonable and feasible variations in MVs while making sure the

CVs are well within proper changes.
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Disturbance
rejection

Set-point
tracking

Step dis-
turbance

CMAC 230.61 640.5 1504.7

PI 8559 5939 17483

Table 4.1: RMS error for Pev (Pa)

Disturbance
rejection

Set-point
tracking

Step dis-
turbance

CMAC 0.0021 0.0088 0.0226

PI 0.0735 0.0653 0.1594

Table 4.2: RMS error for Tout,ev(oC)

Disturbance
rejection

Set-point
tracking

Step dis-
turbance

CMAC 0.0014 0.0131 0.0047

PI 0.0052 0.0113 0.0164

Table 4.3: RMS error for Tout,c (oC)

Disturbance
rejection

Set-point
tracking

Step dis-
turbance

CMAC 1.3502 2.4662 1.1407

PI 1.3312 2.3366 1.1295

Table 4.4: Net energy (MJ) comparison between adaptive CMAC and PI controller
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Chapter 5

Conclusion

The goal of this thesis was two-fold - to first model a TORC and then design an adaptive control

using a CMAC neural network (and compare its performance with traditional PI controller).

5.1 Conclusion

In this thesis, a control-oriented model for TORC is constructed and its primary control tasks are

briefly outlined. The TORC model consists of a subcritical heat exchanger, i.e. the condenser,

as well as a supercritical heat exchanger, i.e. the evaporator, with the addition of a recuperator

(working in both subcritical region and supercritical region). To the best of this author’s knowl-

edge, no previous work has modelled a recuperated TORC (although the techniques used for the

modelling are known). A validation of the modelled TORC was not carried out in this thesis. An

adaptive CMAC is proposed to ensure efficient heat recovery and to maximize net power while

keeping the process variables at their desired levels. Although the idea of an adaptive CMAC is

not novel, the application is novel. The results of the CMAC were compared with a PI controller -

the tuned PI parameters were obtained using the IMC technique based on first-order models which

were identified (using MATLAB System Identification Toolbox) from the pairings of CVs and

MVs suggested by the RGA analysis. Three different tests were performed on the controllers to

evaluate the performance. In all three of the tests, the proposed CMAC controller outperformed the

PI controller, despite variations in the heat source temperature and set-point. The deviations from
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the set-point for the PI controller were especially large in the evaporating pressure (Pev) channel

compared to the adaptive CMAC, which is a safety concern. In all three tests the adaptive CMAC

was able to generate more net power compared to the traditional PI controller while maintaining

process variables within the safety margin.

5.2 Future work

From the modeling perspective, a validation of the model is absolutely necessary against an actual

TORC in operation with actual parameters implemented in the model. Once the validation of the

model is completed, from the control perspective, the next step will be to implement the adaptive

CMAC and observe the feasibility of implementing a neural network in a TORC by comparing

with the traditional PI controller in experiment as well. While weight drift was not observed in

simulations in this thesis, this may not be the case in real-time operation due to several unknown

external factors affecting the plant. In such a scenario, the adaptive CMAC algorithm will need to

undergo further modification(s) in order to prevent weight drift.

In the modeling process, while the focus has been mainly on the dynamic modelling of the heat

exchangers and static models of the other components, the effect of pipes in the system should be

considered in the future since the pipes cause pressure changes in the working fluid due to friction

and difference in heights, and also may affect the temperature in the working fluid due to radiation

and heat transfer. The dynamics of the heat source were ignored, which can be an addition to the

model in the future provided that prior knowledge of the heat source is available.

In terms of control strategy, the flow of the waste heat is a possible MV which has not been

explored in this thesis, but it will be interesting to tap into this area to see if it can actually enhance

the performance of the TORC. However, the cost of introducing an extra actuator should also be

considered during the investigation.

For this thesis, only the heat source temperature was considered to be the disturbance, however,

disturbances may occur in other forms as well - such as the mass flow rate of the heat source
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or changes in the ambient temperature. The proposed controller should be able to reject such

disturbances and should be put into future test to test the efficiency of the proposed controller.
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