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1. INTRODUCTION

As technology for microprocessors enters the nanometer regime, power density
has become one of the major constraints on attainable processor performance.
High temperatures jeopardize the reliability of the chip and significantly im-
pact its performance. The immense spatial and temporal variation of chip tem-
perature also creates great challenges to cooling and packaging, which, for
the sake of cost-effectiveness [Intel 2002], are designed for typical, not worst-
case, thermal conditions. In modern chip architectures, these challenges are
addressed by implementing appropriate dynamic thermal management (DTM)
modules that regulate chip temperature at runtime.

There have been numerous studies on DTMs at the microarchitecture level
[Brooks and Martonosi 2001; Gunther et al. 2001; Heo et al. 2003; Li et al. 2005;
Monferrer et al. 2005; Skadron et al. 2002; Skadron et al. 2003; Srinivasan and
Adve 2003]. Architecture solutions can respond to thermal crises rapidly and
reduce the chip temperature effectively through various performance reduction
mechanisms.

Recently, a number of works have shown great potential in OS-assisted work-
load scheduling in addition to the hardware-level techniques [Choi et al. 2007;
Donald and Martonosi 2006; Hanson et al. 2007; Kumar et al. 2006; Kursun
et al. 2006; Powell et al. 2004]. The main idea is to exploit variations of chip’s
temperature resulting from executing jobs with different CPU usage profiles.
Some “hot” jobs, such as algorithms involving intensive computation, cause
the chip to run at a higher temperature than “cool" jobs, where most work
involves data transfers between memory. By swapping such hot and cool jobs
at an appropriate time, we can control the chip’s temperature. This approach
has been proposed for both CMPs [Choi et al. 2007; Donald and Martonosi
2006; Powell et al. 2004] and single-core processors [Hanson et al. 2007; Ku-
mar et al. 2006; Kursun et al. 2006]. Our work continues this direction of
research.

We develop a heuristic scheduling algorithm to alleviate the thermal pres-
sure of a processor. Our algorithm THrRESHHOT is based on the observation that,
given two jobs, one hot and one cool, executing the hot job before the cool one re-
sults in a lower final temperature than after the reversed order. Thus, as long as
executing the hot job itself does not violate the thermal threshold, the hot—cold
order is better (or, at least, not worse) than the cold—hot order. Consequently,
THrESHHOT selects at each step the hottest job that does not exceed the thermal
threshold.

TrarRESHHOT outperforms other scheduling algorithms such as the one that
changes the priority ranks of the hot and the cool jobs [Kumar et al. 2006]. To
know which job will be hot or cool for the hotspot, we develop a highly efficient
online temperature estimator, leveraging the performance counter-based power
estimation [Isci and Martonosi 2003; Joseph and Martonosi 2001; Kumar et al.
2006], compact thermal modeling [Skadron et al. 2003], and a fast tempera-
ture solver [Han et al. 2006]. We implemented the estimator for a Pentium 4
processor, although our general methodology is applicable to other processors,
such as CMPs. We calibrate and validate the model parameters against real
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measurements on our processor package. We also implemented our schedul-
ing heuristics in the Linux kernel, together with our temperature estimator,
and we tested the entire framework over the complete executions of SPEC
CPU2K benchmarks, mediabench, packetbench, and netbench. THREsHHOT can
remove up to 73.6% (34.5%, on average) hardware DTMs in a medium ther-
mal environment. With all the context switching, temperature estimation, and
the thermal-aware scheduling overheads considered, THRESHHOT consistently
improves the performances of a mix of hot and cool programs by up to 7.2%
(4.7%, on average) compared to a base case with traditional thermal-oblivious
Linux task scheduling. Our scheduling algorithm targets only batch jobs and
thus has unnoticeable impact on interactive jobs and no impact on real-time
applications.

The remainder of the article is organized as follows: Section 2 discusses
previous related works. Section 3 elaborates on our thermal-aware heuristic
algorithm and justifies its fundamental principle through mathematical deriva-
tions. Section 4 explains how to obtain online power and thermal information
for our scheduler to work properly. Section 5 introduces our modifications of the
Linux kernel scheduler. Section 6 compares our proposed scheduler with other
alternatives. Section 7 reports the experimental results comparing THREsHHOT
to three other algorithms. Section 8 concludes this article.

2. PRIOR WORK

Some recent works have developed temperature-control techniques for regu-
lar [Rohou and Smith 1999] and real-time [Bansal et al. 2004; Bansal and
Pruhs 2005; Wang and Bettati 2006b; Wang and Bettati 2006a; Hanumaiah
et al. 2009] workloads. The main approach is to dynamically adjust the CPU
speed to minimize the peak temperature of the CPU, subject to the constraint
that all jobs finish by their deadlines or as early as possible. Similar approaches
can be used to minimize energy consumption in real-time systems [Pillai and
Shin 2001; Yuan and Nahrstedt 2003]. Further, temperature control can be
achieved through adjusting microarchitectural parameters, such as instruc-
tion window size and issue width, which have relatively lower overhead than
DVFS-based algorithms [Jayaseelan and Mitra 2008; Jung et al. 2008; Khan
and Kundu 2008]. Temperature control through job scheduling has also been
utilized to enhance the reliability of a processor [Lu et al. 2005; Coskun et al.
2008; Coskun et al. 2008]. In contrast, our objective is to maximize the per-
formance by scheduling the workloads to keep the temperature below a given
threshold. Note that the threshold can be the manufacturer-defined temper-
ature threshold! for the physical chip, or an OS-defined threshold for a sys-
tem to stay within a thermal envelope. Hence, we always attempt to run
workloads with full speed as long as the temperature stays below the given
threshold.

Thermal management through workload scheduling has been studied in
various scenarios. In CMPs, the “heat-and-run” technique performs thread

IThis threshold is a safe operating temperature beyond which the chip might be damaged due to
overheating and exceeding it triggers DTMs.
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assignment and migration to balance the chip temperature at runtime [Powell
et al. 2004]. In another work [Donald and Martonosi 2006], a suite of DTM
techniques, job migration policies, and control granularity are jointly investi-
gated to achieve the maximum chip throughput. Also, a simple periodic thread
swapping between two cores to balance the chip temperature was studied on a
dual-core processor [Choi et al. 2007]. Recently, an accurate temperature pre-
diction model was developed to make job scheduling more precise [Yeo et al.
2008]. Moreover, due to the increasing on-die parameter variations in deep sub-
micron dimensions, job scheduling is enhanced with variation sensing to assist
the system power/thermal management to effectively manage the existing on-
chip variation [Kursun and Cher 2008]. All these approaches exploit simple
interleaving between hot and cool jobs to improve thermal characteristics of a
schedule.

Our objective is to find the best thread for a core when it becomes hot, and
this thread may not be the coolest available thread. For example, when there
is both a medium hot and a cool thread, our scheduler will pick a medium
hot thread as long as it will not trigger DTM. Our preliminary study [Yang
et al. 2008] showed that such a technique is better than simple hot—cool job
interleaving. In this article, we demonstrate this philosophy using a scheduling
heuristic on a single-core processor and leave its extensions to CMPs as future
work. Compared with Yang et al. [2008], this article adds a fifth Greedy algo-
rithm for comparison. Furthermore, the article analyzes the impact of power
misprediction and gives a quantitative measurement on the performance up-
per bound a thermal-aware scheduler can achieve. Our analyses show that the
gain of any more complex power prediction algorithm is marginal. Finally, we
also conducted analyses and experiments on the scalability of our algorithm to
see the scheduling overhead would grow linearly with the number of jobs. Our
results show that our proposed algorithm is scalable.

In single-core domain, the “HybDTM” [Kumar et al. 2006] controls tempera-
ture by limiting the execution of the hot job once it enters an alarm region. This
is achieved by lowering the priority of the hot job so that the OS allocates it with
fewer time slices to reduce the processor temperature. The same principle can
be seen in Bellosa et al. [2003], where energy dissipation rate is evened among
hot and cool jobs through assigning different CPU time to them. Our technique
does not modify the time allocated to hot and cool jobs, as this would affect the
fairness policy of the system. Instead, we attempt to rearrange their execution
order within each OS epoch to lower the overall temperature. This allows us to
control the temperature while preserving priorities among different jobs.

Thermal control through workload management has also been studied at
the system level. In Moore et al. [2005], a temperature-aware workload place-
ment heuristic was studied for data centers to minimize the cost of cooling. The
“mercury and freon” [Heath et al. 2006] framework uses a software to estimate
temperatures for a server cluster and manages its component temperatures
through a thermal-aware load balancer. The “ThermoStat” [Choi et al. 2007]
tool employs a detailed 3D computational fluid dynamics model for a rack-
mounted server system. This tool can guide the design of better dynamic
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thermal management techniques for server racks. Our work targets at CPU
temperature control, which can be complementary to system-level thermal
management schemes.

3. THERMAL-AWARE SCHEDULING ALGORITHMS

When the processor is overheated and forced to slow down, nearly all vital
measures will be degraded: Throughput and utilization will be reduced, re-
sponse time will increase, jobs are more likely to miss deadlines, and so on.
Thus, independent of the characteristics and focus of a given system, processor
overheating will negatively affect its performance.

The frequency of thermal violations clearly depends on the workload, since
variations in CPU intensity between different jobs result in variations in the
amount of heat generated during their execution. We cannot control the proces-
sor workload, but we can control the order in which the jobs in this workload
are executed. The objective of this research was to show that significant perfor-
mance improvements can be achieved by thermal-aware scheduling, namely
using the information about the thermal behavior of the system to sched-
ule the jobs in a given workload so as to minimize the number of thermal
violations.

To further delineate the difference between our approach and most of the
previous work, we emphasize that we do not attempt to minimize the tem-
perature itself;, we do control the temperature, but not for its own sake.
The philosophy behind our approach is that, since the temperature is con-
trolled by a hardware DTM system, we do not need to be concerned with
the issues of safety and reliability—the DTM ensures that the chip runs at
a safe temperature, and the variations of the temperature below the ther-
mal threshold have only negligible, if any, impact on the reliability and ex-
pected lifespan of a chip. With the DTM in place, the only noticeable impact of
high temperature is on chip’s performance; thus, we focus on minimizing this
impact.

When incorporating new features, such as thermal awareness, into a sched-
uler, it is desirable to make them as transparent to the user as possible, in
particular, to keep the existing scheduler structure and properties. For this
reason, we focus our work on a batch system for which the main objectives are
the minimum turnaround time, maximum throughput, and CPU utilization.
For batch jobs, the OS periodically interrupts the job execution to maintain
its statistics and determines if a different job should be swapped in and, if so,
which one. In our scheduling framework, we incorporate thermal awareness
into this job selection strategy while keeping all other features intact.

3.1 The Principle

To keep the temperature below the threshold, the naive, greedy approach would
be to minimize the current chip temperature by executing at each step the
coolest available job. As a result, the jobs are scheduled in the order of increas-
ing temperature, from coolest to hottest. As it turns out, however, the greedy
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schedule actually increases the chances of exceeding the temperature thresh-
old in the long run. To see this, consider a simple case where at some schedule
interval ¢ only two jobs x and y are available, with power consumption P, and
P,, respectively, where P, < P, (so x is cooler than y). We will show that if
we execute these jobs in order xy (x before y, as in the greedy schedule) then
the temperature at the end of interval ¢ + 1 is higher than for the order yx (y
before x). This means that, as long as the temperatures for both orders stay
below the threshold, the order yx is less likely to cause a DTM in the future.

Consider the simplified thermal model for a processor treated as a single
node. The duality between heat transfer and electrical phenomena [Krum 2000]
provides a convenient basis for modeling the chip temperature using a dynamic
compact thermal model [Skadron et al. 2003]:

1 dT

—=T+C—=P 1
7l tC , (D

where T is the temperature relative to the ambient air, R and C are, respec-
tively, the chip’s effective vertical thermal resistor and capacitor, and P is the
power consumption. Note that when ‘% = 0, the chip reaches its steady temper-
ature RP, which depends on the average power of a job. The time to reach the
steady temperature is determined by the RC constant (R x C) of the thermal
circuit. However, when the chip is switching among different jobs prior to the
steady temperature, it is always in a transient stage (i.e., ‘% #0).

Discretizing the time scale into small time steps A¢ and denoting by 7; the
temperature at time i At, Equation (1) can be approximated by

1 T —-T

-L+C——=P. 2
Rl + AL (2)

Rearranging the terms, we have T, = oT; 1 + 8P, where a = ﬁCRC and 8 =
% are constants dependent on A¢ and, clearly, « < 1. If each scheduling
interval is divided into n steps of length A¢, the temperature at the end of this

interval can be expressed as:
T =o"Ty+ (@' +a" 2+ + 1BP. (3)
For schedule xy, the temperature after completing y (2n steps) will be
LY =™+ @ ' +a" 2+ -+ DB@"P; + P,), 4)
while for schedule yx, this final temperature will be
T = o™ Ty + (@ ' +a" 2+ + DBa"P, + P,). (5)

It is now easy to see that P, < P, implies Ty, < T,”. That is, scheduling
the hotter job first results in a lower final temperature. We emphasize that
this is beneficial only when running the hotter job first does not increase the
temperature above the threshold. Figure 1 gives an intuitive illustration of the
impact of scheduling on temperature. The graph shows temperature variation
for the IntReg unit with two different power inputs, representing two different
jobs. They are scheduled in two different orders as just described. The graph
was obtained using a full-chip thermal model (rather than a single node as a
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Fig. 1. The impact of scheduling a hot and cool program in different orders.

whole) solved by the fourth order Runge-Kutta method. As we can see, running
the hotter job first results in lower final temperature. If the chip’s thermal
threshold is in between the difference of the two ending temperatures, the
greedy schedule would cause a thermal violation.

Suppose now you are given a schedule for some number of job intervals.
Suppose further that in this schedule there are two consecutive job intervals
x, y with x before y, such that P, < P, and that executing y first will not
exceed the threshold. Then, by the reasoning given earlier in the text, we can
exchange x with y, and this swap will not increase the number of thermal
violations in the whole schedule. The reason is that in this new schedule, after
completing yx, the temperature will be lower than in the original schedule after
completing xy, so we cannot cause an increase of the temperature at any given
step later in the schedule. This observation naturally leads to the following
heuristic:

P: At each step choose the hottest job that will not increase the temperature
above the threshold.

The previously mentioned policy P is the basis of our algorithm TarESHHOT.
We emphasize that P does not guarantee to minimize the total number of ther-
mal violations for a given set of job intervals (in fact, in a more rigorous setting,
this problem can be shown to be NP-hard [Chrobak et al. 2008]); nevertheless,
it computes a local minimum and it constitutes a reasonable heuristic for our
application.

We also need to address the case when no job interval satisfies policy P, that
is, all the jobs would increase the temperature above the threshold. In this
case, it is most beneficial to pick the hottest job interval for execution. This is
because the hardware thermal management (e.g., DVFS) will be triggered to
cool the chip regardless of which job we choose, and selecting the hottest job
interval at this time reduces the likelihood of a future thermal violation (this
follows essentially the same argument as the one described previously).
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For example, suppose there are three job intervals available, say x, y, and
z with descending powers. If picking x would increase the temperature above
the threshold while picking y would not, then policy P will first pick y to run.
If all of them would exceed the threshold, P will pick x.

We remark here that the OS fairness policy imposes some restrictions on
how long a job interval can be postponed (this will be discussed in more depth
in Section 5). Thus, in addition to the rules described earlier, the choice of the
next job to run must be consistent with these fairness restrictions.

3.2 In Practice

In the earlier discussion, we assumed a simple case where the CPU is con-
sidered as a single node and the heat is only dissipated through the vertical
thermal resistor and capacitor. In reality, there is a great temperature variation
on-die and only the temperature at the hottest spot should be maintained below
the threshold. This scenario is more complex than for a single node, as the heat
can also be dissipated laterally. Therefore, the thermal model in Equation (1)
will be expanded into a matrix form in which every node is described by:

T Tl+T T2+T T3+T T“+Z+C‘E=P, (6)

Ry Rro Rp3 Rp4 R dt

where the first four extra terms describe the heat transfer from the central
node (with temperature 7)) to its lateral neighbor nodes (with temperatures
Ti — Ty) and Ry; denoting its lateral resistance from the central node to the
i-th neighbor. Equation (6) describes the model where each node has four
neighbors. In general, the number of neighbors per node depends on the
processor floorplan and on how the system is discretized, and Equation (6) can
be easily adapted to those other models.

The temperature T of the hottest spot on-chip, described by Equation (6), is
higher than the T}’s. Also, heat is removed mostly from the vertical path and
less from the surface [Donald and Martonosi 2006; Powell et al. 2004; Skadron
et al. 2003]. In more quantitative terms, our experience with a full-chip model
shows that the Rp;’s are typically 10 to 20 times the R for a hot unit such as
the IntReg. The resulting lateral RC time constants are on the order of 100ms
and vertical RC time constant is less than 10ms. Since the left hand side of
Equation (6) is dominated by the last two terms, we can still treat a hotspot as
a single node, as before.

4. OBTAINING POWER AND TEMPERATURE ONLINE

As discussed previously, our thermal-aware scheduling algorithm needs infor-
mation about the peak temperature of the processor and power usage for the
executed jobs. In this section, we explain how these values can be computed at
runtime.

4.1 Computing the Temperatures

Most current processors are equipped with an on-chip thermal sensor for de-
tecting the chip temperature at runtime. The sensor compares the current

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 5, Publication date: April 2010.



Performance-Aware Thermal Management via Task Scheduling . 5:9

temperature with a preset threshold and signals a violation if the former is
higher. The hardware then responds to such a signal immediately by throttling
the performance so that the chip generates less power and, as a result, the tem-
perature starts to drop. In Pentium 4, for example, the performance is throttled
by dynamic frequency scaling—the frequency is scaled by half until the tem-
perature drops below the safe threshold [Intel 2002].

Thermal sensor readings are insufficient. It seems that the OS could leverage
such on-chip thermal sensors for temperature readings. Unfortunately, this
is insufficient because, in addition to the current temperature, our algorithm
also needs the temperature in the next time interval. Further, for a job not
currently in execution, it is difficult to determine from its temperature history,
what its temperature might be in the future. For example, suppose a job was
swapped out last time at 65°C, and currently the sensor reading is 60°C. The
temperature for this job in the next time interval may be either higher or lower
than 60°C. This is because the future temperature depends on several factors:
the current temperature, the power consumption of this job in the next time
interval, and the length of the next interval.

Temperature model. Formally, T,..; = F(P, T.yrrent, At), where P is the aver-
age power in the next interval, At is the interval length, and function F is
characterized by:

dT

GT+C i P, (7
which is the matrix form of Equation (1) with G being the matrix of the thermal
conductance. Both T and P are now vectors. Each element corresponds to one
modeling node. Therefore, to obtain the temperatures in the next time interval
for a candidate job interval, the scheduler must solve Equation (7) from T, ens
(which can be read from sensors), P of the job (which can be predicted from its
past power consumption), and A¢ (which is a fixed value).

Temperature calculation. It may seem that solving Equation (7) requires a lot
of computation for the scheduler, possibly creating excessive overhead when
performed at runtime. Fortunately, previous work has shown that the com-
plexity of Equation (7) can be greatly reduced if the time interval At is kept
constant [Han et al. 2006], which is the case in our scheduler. Here, we briefly
discuss our temperature estimation method.

The linear system in Equation (7) has a complete solution as:

t
T(6) = e© G4 T(0) + / oC G- C-1p(1) gy ®)
0

For a fixed-length scheduling interval At, we take the average power during
the interval so that P(¢) can be factored out. Equation (8) simplifies now to:

T(At) = AT(0) + BP, 9

where A = ¢€ G2 and B = fOAtecflG(t‘”C‘ldr. Both A and B are constant
matrices with a constant At. Since linear system Equation (9) is time invariant,
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it holds for every interval A¢. Therefore:

T(nAt) = AT((n— 1)At)+ BP(n— 1), or simply

T(n) = AT(n— 1)+ BP(n — 1). (10)

As we can see, once A and B are precalculated and stored, temperature at any
step n can be found through linear combination of the temperature and power
at step n — 1. When used online, T(n — 1) is the current temperature, P(n — 1)
is the power dissipated by a job in the next scheduling interval, and T'(n) is the
temperature at the end of the next interval. Computing the 7(n) now is very
inexpensive. Our thermal model has 82 nodes in total, and computing the 82x 1
temperature vector at runtime takes only ~16.45us. Next, we will discuss how
to obtain the power values P(n — 1) online.

4.2 Computing the Powers

Power estimation. Recent research has proposed to incorporate on-chip power
sensors for power and thermal control [McGowen 2005]. With on-chip power
sensors, the OS can obtain the runtime power consumption of critical compo-
nents easily and quickly. Though such technology is not readily available, some
other alternatives have been proposed before and were demonstrated to be very
fast and effective. We adopt the method that uses the performance counters to
monitor runtime power consumption [Bellosa 2000; Isci and Martonosi 2003;
Joseph and Martonosi 2001]. Counters provided by high-performance proces-
sors such as the Pentium and UltraSPARC can be queried at runtime to derive
the activities of each functional unit (FU). When combined with FU’s per access
power, their dynamic power and the total chip power can be obtained. However,
earlier works either did not consider the leakage power or used a constant as a
proxy, since leakage is dependent on temperature, which was difficult to obtain
at runtime. When the processor runs at a high temperature, its leakage can
contribute significantly to the total power [Huang et al. 2005]. Since we also
calculate the temperature online, we consider the leakage as an integral part
in our power estimation. We adopted a model developed in He et al. [2004] and
Li et al. [2006] using PTM 0.13u technology parameters [NIMC 2007], match-
ing our processor technology size (Pentium 4 Northwood). We determined the
necessary device constants through SPICE simulation.

Power prediction. The last issue we need to resolve now is the prediction of
power consumption of a job in the next scheduling interval, as required by
Equation (10). Here, we face a trade-off between complexity and accuracy, for a
high-quality predictor would typically require large memory to store the history
information and significant computation time for processing this information.
Table-based schemes are likely not appropriate for our framework, for the ker-
nel has a strict limit on the memory space for storing the control information
of each job. For example, a good hash table-based power predictor that we
considered exceeded the kernel space limit, and a small fully associative table
predictor could slow down the program by ~6%. Therefore, we settled for the
simple—but cost-effective and fast—last-value—based predictor, which always
uses the last power values to predict those in the next interval. Its error rates
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Fig. 2. Average error rates for the last power value predictor.

for our experimented benchmarks, including 22 SPEC2K, 4 mediabench, 10
netbench, and 4 packetbench, are shown in Figure 2. As we can see, on most
programs, it has less than 10% error rate. High misprediction rates are seen
in bzip, jpegenc, jpegdec, cre, and md5. Our experiments with those programs
(in Section 7) did not show significant disadvantages in most cases, indicating
that (at least in those cases) mispredictions did not lead to much misscheduling.
This is easy to explain: In order for a major misscheduling to occur, the pre-
diction error would have to be large enough to either change the jobs’ relative
temperature ranking, not only their numerical vales, or to incorrectly predict
a thermal violation. With moderate prediction errors, the relative ranking of
jobs with very different power values will likely remain the same, while for
jobs with similar power values, the negative effects of misscheduling are small.
This is confirmed by our results for crc and md5, both of which tend to alternate
between two different power levels. Here, the last-value predictor often missed
the right value, but since the error does not lead to big temperature changes,
this did not impact the scheduling decision.

4.3 Workflow Summary

To summarize, at the end of each scheduling interval, the OS probes the perfor-
mance counters from the processor. Those counters record the activities of the
current job during the past interval. They are then converted into the power
consumption values at the granularity of functional units. Power prediction is
performed at this time. The past power values are then fed into a full-chip ther-
mal model for computing the current temperature at the current scheduling
interval. For all candidate jobs, their future temperatures are also calculated at
this time using their predicted power values. All those future temperatures are
sent to the scheduler to determine the next job selection. The flow is depicted
in Figure 3(a).

Alternatively, if the processor has available thermal and power sensors,
the OS can directly read information from the sensors to compute the future
temperatures, as illustrated in Figure 3(b). However, this would entail many
sensors as the future temperature calculation needs fine-grained power and
temperature information. If there are very few sensors, probing the counters is
still necessary, but the sensor readings can be used for online self-calibration
to lessen the error due to thermal and power model abstraction.
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Fig. 3. Thermal-aware task scheduling methodologies.

5. LINUX KERNEL IMPLEMENTATION

To evaluate our thermal-aware scheduling policy, we implemented all the mod-
ules in Figure 3(a) into a Linux kernel version 2.4.18 with O(1) scheduler
patch. The major challenge is to insert the new scheduling policy into the ex-
isting scheduler while retaining its features. We will first introduce briefly the
mechanism of the Linux scheduling [Bovet and Cesati 1984] and then describe
our modification.

5.1 The Skeleton of the Linux Scheduler

The Linux OS distinguishes three classes of jobs: interactive jobs, batch jobs,
and real-time jobs. The real-time jobs are given the highest priorities while the
other two are initialized with the same default priorities. Based on different
priorities, the kernel assigns each job a “time quantum.” High-priority jobs
are given larger time quantum than low-priority jobs. At runtime, all jobs are
put into their corresponding “priority queues,” and then selected for execution
in a descending priority order. Each job occupies the CPU for its allocated
time quantum, unless a certain event triggers a swapping, for example, an I/O
request. When a job uses up its time quantum, it is moved into an “expire queue”
and the scheduler selects the next job to run. When all the jobs finished using
their assigned quanta, an “epoch” is completed. All jobs in the expire queue are
now assigned new time quanta determined from their priorities—and a new
epoch starts.

5.2 Our Modification

The execution of a time quantum is periodically interrupted by the kernel’s
interrupt handler, typically once every 1 to 10ms. This is the time when a
context switch may happen. We choose to insert our scheduling in this interrupt
handler to force a context switch on every thermal scheduling interval.

Scheduling interval length. First, we need to decide on the length of scheduling
intervals. Since our objective is to keep the peak temperature below the thresh-
old, our scheduling interval should not be much longer than the RC constant
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of the hottest unit. Previous works assumed 10ms as the RC constant of the
hottest unit on a CMP processor [Donald and Martonosi 2006; Powell et al.
2004]. From our own experience, we found that the vertical RC constant for
the hottest unit is around 7ms, while the lateral RC constant is on the order of
100ms. Due to certain implementation requirement (the counter rotation effect
[Sprunt 2002]), we chose the thermal scheduling interval to be 8ms. Thus, if
the default interrupt frequency is once every 2ms (or 1ms), we might force a
context switch on every four (or eight) interrupts.

Context-switch overhead. In the original scheduler, jobs can occupy the proces-
sor for its entire time quantum. For batch jobs, the default time quantum is
100ms [Bovet and Cesati 1984]. With an 8ms swapping frequency, we could
have increased the number of context switches by 12.5 times. We measured
the absolute time for each context switch to be ~35.35us, on average. Hence,
the context-switch overhead on an 8ms interval is 0.44%. Most importantly,
as we will show in our final experiments, the thermal-aware scheduler does
not necessarily switch to a different job every 8ms—quite often the current job
is run again. This alleviates the potential for increasing the total number of
context switches—without lessening the benefits of our scheduling policy.

Fairness. In the original scheduler, the new epoch does not begin until all
the jobs have finished their assigned quantum. When we enforce the thermal
scheduling every 8ms, every quantum is effectively further divided into smaller
slices and these slices are executed following our scheduling policy. A slice may
be delayed (with respect to its execution time in the standard Linux scheduler),
either because warmer eligible slices are available, or because it is too hot for
execution, but it will never be postponed beyond the current epoch. Essentially,
our policy can be thought of as rearranging job slices within an epoch, while
preserving the epochs themselves. Thus, viewed on the epoch scale, all jobs are
processed at exactly at the same rate as in the standard Linux scheduler.

Impact on nonbatch jobs. Recall that we apply our thermal-aware policy only to
batch jobs, but we still need to consider possible indirect impacts on real-time
and interactive jobs. Batch jobs are given different range of priorities than
real-time jobs. The candidate jobs that are eligible for thermal scheduling fall
within the batch job’s priority range. This ensures that we do not touch any
real-time jobs and they are scheduled in the same way as before. For interactive
jobs, there is no easy way to distinguish between them and batch jobs. Linux
implements a sophisticated heuristic algorithm based on the past behavior of
the job to decide whether a job should be considered as interactive or batch.
We experimented with a GUI application VNCplay developed by Zeldovich and
Chandra [2005], and we observed that the user response time change due to
thermal scheduling is not perceptible.

6. ANATOMY AND COMPARISON OF DIFFERENT
SCHEDULING ALGORITHMS

With proper implementation in the Linux kernel, we are now ready to exam-
ine the effectiveness of our proposed scheduling algorithm, compared against
several alternatives. To show the distinctions among different algorithms, we
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created three programs that are hot (computation intensive), warm (medium
computation and memory accesses), and cool (memory intensive), respectively.
We then tested the following scheduling algorithms on the mix of three jobs:

(1) GreEpY. This algorithm always first selects the coolest job to run in an
epoch, and postpones hot job intervals as late as possible. This is an intu-
itive and simple modification of the default Linux scheduler.

(2) Ranpom. This algorithm randomly selects a job to execute in every schedul-
ing interval (8ms). As a result, it intersperses the slices of the jobs in the
current batch. The produced schedule has the property that, in expectation,
at each time of the scheduling interval the heat generation rate is the same.
We test this scheduler to measure whether the performance improvements
can be attributed simply to frequent context switches and to distributing
the total heat contribution of the batch equally over the scheduling inter-
val. By showing that our proposed algorithm outperforms RanpoMm, we can
argue that a guided job selection is needed for controlling the temperature.

(3) Prioriry. This algorithm lowers the priority of the hot jobs and raises the
priority of the cool jobs for every new epoch [Kumar et al. 2006]. A job is
considered “hot” if it’s overall temperature in an epoch exceeds a predefined
soft threshold, which is lower than, but close to the hardware threshold. The
priority is adjusted proportionally to the proximity of the job’s temperature
to the hardware threshold. Since the time quanta are calculated based on
priorities, this scheduler in effect allocates less CPU time to hot jobs and
more to cool jobs within an epoch.

(4) MINTEMP™. This algorithm selects the coolest job if the current chip tem-
perature is over the threshold and selects the hottest job if the current
temperature is below the threshold. We improved the original design of
MinTEMP [Kursun et al. 2006] in that we select the “hot” or “cool” slices
based on the jobs’ transient temperatures, as opposed to their steady tem-
peratures (the global temperature trends of programs). Using steady tem-
peratures could produce significant errors as: (i) there are often great tem-
perature variations within jobs (Figure 5 shows this property) and (ii) even
thermally stable jobs will be mostly in their transient state when they are
constantly swapped in and out. Our improvement can clearly discern tem-
porarily cool slices in a hot job and temporarily hot slices in a cool job;
hence, it helps the scheduler follow the policy correctly.

(5) TuresHHoT. This is our proposed algorithm. It selects the hottest program
that does not increase the temperature above the threshold. If such job does
not exist, it selects the hottest job to run.

Figure 4 shows the execution details of three different jobs under the de-
fault Linux scheduler (our baseline scheduler) and the above five schedulers.
For clarity, two epochs are shown and all graphs have the same baseline
scheduling results so that the differences among the five thermal-aware al-
gorithms are evident. When executing the mix of the three jobs, the base-
line thermal-oblivious scheduler picks the job in an ad-hoc manner: in this
case cool, hot and warm. The resulting temperature increases above the
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Fig. 4. A close-up of the execution traces for five different algorithms. Each graph compares the
default Linux scheduler (dashed line) with one algorithm (solid line). In all graphs, the top portion
shows the temperature variation with time. The middle portion shows the job switching sequence,
and the bottom portion shows whether a frequency scaling, a reduction from 3GHz to 1.5GHz
(downward arrow) occurred.

threshold three times per epoch. This can been seen from the three down-
ward arrows (drops from 3GHz to 1.5GHz) in the bottom part of the graphs.
The three thermal violations happened after the hot job ran for awhile. We
now compare and contrast how the other five schedulers impact the peak
temperatures.

GREEDY scheduler. The GREEDY scheduler always picks the coolest job interval to
run. As shown in Figure 4(a), the jobs are executed in ascending temperature
order. Thus, GREEDY tends to postpone the execution of hot intervals toward the
end of the epoch. At that time, thermal violations cannot be avoided as only hot
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job intervals are pending for execution. We can see from the figure that the hot
job also triggers three frequency scalings by the end of each epoch.

Ranpowm scheduler. As shown in Figure 4(b), the RanpoMm scheduler switches to a
different job, randomly picked from the job pool, on every scheduling interval.
This can be seen from the beginning of the first epoch—the base scheduler runs
the cool job continuously, while the Ranpom scheduler swaps among all three
different jobs, giving the hot job some opportunities to run at a low temperature.
Such randomness can remove some frequency scalings when the hot slices are
scattered, for example, in the first epoch, but cannot prevent the scalings if
the hot slices happen to run back-to-back, as with the beginning of the second
epoch.

PrioriTY scheduler. This scheduler regulates temperature through adjusting job
priorities to allocate less CPU time to hot jobs and more to cool jobs. The granu-
larity of this scheduler is more coarse than that in those discussed earlier, since
priorities can only be changed between epochs. As a result, the temperature
does not respond immediately to the change of priorities. More importantly,
since hot jobs are executed less frequently than cool jobs, the cool jobs are
likely to finish earlier than the hot jobs. As shown in from Figure 4(c), the
schedule of jobs has similar shape as the baseline except that the hot job slices
are much shorter (and each epoch is shorter as well). This essentially puts
off the execution of hot jobs, which may trigger significant frequency scalings
when the cool jobs are exhausted. As discussed later in the text, this is the
main reason for this scheduler to fall behind the base scheduler.

The original scheduler also employed two additional thresholds for in-
creasing frequency scaling strengths, as shown in the figure. The hardware
control takes two steps to gradually increase the frequency scaling factor
(via programming a hardware register) before the temperature reaches the
absolute emergency point. This is why the peaks in the temperature curve are
smoother than the baseline and also why the downward arrows at the bottom
do not reach 1.5GHz. While this can help to prevent thermal emergencies, it
does not prevent frequency scalings. In fact, the frequency scaling may happen
more often, though at a lower strength, because the temperature may reach
the lower thresholds but not the highest one, as shown in the first frequency
dip in the figure.

MinTemP' scheduler. This scheduler tends to oscillate between the hottest and
the coolest job, as shown in Figure 4(d). As we can see, at the beginning of an
epoch when the temperature is low, the hot job is selected for execution. It runs
for some time until a thermal violation occurs. At this point, frequency scaling
is engaged and the cool job is swapped in. The temperature reduces quickly
below the threshold until the end of the window, at which point the hot job is
immediately swapped in again. We notice that the cool job is swapped in during
frequency scaling, thus being unfairly penalized for thermal violations caused
by the hot job. We shown in Section 7 that the hot job can be sped up while
the cool job can be severely punished. On the other hand, when cool jobs are
swapped in during a frequency scaling, the processor cools down more quickly
than in the base scheduler. This can help to reduce the average temperature
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when it is close to the threshold, as we can see from the figure. As we will
show later, this algorithm can reduce the number of frequency scalings by a
moderate amount.

TurEsHHOT scheduler. In contrast to MINTEmMP', our THRESHHOT algorithm first
estimates the temperatures for all jobs in the next time window and then selects
the hottest job that will not exceed the threshold (according to the estimates).
Hence, at the beginning of an epoch in Figure 4(e), the hot job is selected to run
until the temperature is too close to the threshold. At this point, the scheduler
decides to discontinue the hot job and swap in the warm job because it predicts
that the warm job will not create a thermal violation in the next interval.
The warm job now will run for several intervals until the temperature is low
enough for running another hot job slice. As we can see from the figure, at the
beginning of each epoch, the scheduler toggles between the hot and the warm
job, allocating longer duration for the latter (as opposed to switching between
the hot and cool job in MINTEMPT). Later in the epoch, warm job’s quantum is
used up, so the scheduler toggles between the hot and the cool job with longer
duration allocated to the latter as well. Such a scheme effectively keeps the
temperature right below the threshold achieving the least amount of frequency
scaling. For the two epochs shown in the figures, the THrREsHHoOT scheduling
shows that it is possible to greatly reduce or even avoid frequency scaling if the
jobs are arranged in a good order.

7. EXPERIMENTAL EVALUATION

In our thermal-aware scheduling, the performance is improved through tem-
perature control. Such improvements are possible because fewer thermal viola-
tions reduce the number of frequency scalings (or other DTMs). We performed
quantitative measurements on the performance with and without thermal-
aware scheduling, on a Linux machine using a Pentium 4 Northwood core as
our test processor. The core comes with performance counters that are acces-
sible from the kernel. The thermal model was adapted from the HotSpot3.0
toolset [Huang et al. 2004; Huang et al. 2005; Skadron et al. 2003] with the
Pentium 4 floorplan. The DTM used by Pentium 4 is clock throttling, which is
equivalent to frequency scaling but with less overhead. We remark that our
scheduler will work for any other forms of DTM such as DVS (dynamic voltage
scaling).

7.1 Thermal Model Calibration

In the online temperature calculation described by Equation (10), the most
important part is to determine the entries in the (constant) matrices A and
B. All these values depend on the processor- and package-dependent thermal
RC. From our experience, even a small variation in certain R and C values can
lead to a significant deviation in temperature. Therefore, in order to accurately
approximate the program’s temperature during execution, it is vital to carefully
calibrate our model’s parameters.

We performed four real measurements on the processor package—three
point measures at three different layers, and one measure in ambient air—for
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calibrating the RC values: (i) an on-chip thermal diode reading, (ii) a ther-
mometer reading on the heat spreader, (iii) a thermometer reading on the heat
sink, and (iv) a thermometer reading for the ambient air.

We then proceed to calibrating the RC values in order to match the sim-
ulation outputs with the real measurements. Our objective is to minimize

the squared error summed over all the programs we measured. This is
defined as:

2
error = Z | Treasured — Tsimulated(x1, X2, .. )%,

all programs

where the x;s are our parameters to be adjusted. This is a minimization problem
that can be tackled by the conjugate gradient (CG) method [Stoer and Bulirsch
1991], which is an algorithm for finding the nearest minimum of a function
of n variables. We repeated the CG a number of times. Each time, we add a
random offset to the computed result and start the next round. The final value
is chosen from the lowest local minimums. The calculated temperatures after
calibration match well with the real measurements.

Discussion. We remark here that it is much more difficult to assess the accu-
racy of the calculated on-chip temperatures, since we only have one on-chip
diode readings but not the thermal distribution across the chip. Also, the accu-
racy of the thermal model is subject to the constraints from the environment
such as room temperature changes, fan speed, aging of thermal interface ma-
terial [Samson et al. 2005], and so on. In such a scenario, the scheduler should
rely more on the thermal sensor readings, as shown in Figure 3(b), to prevent
error from accumulating. Nevertheless, our current model at least achieves the
first order approximation to on-chip temperatures and provides our thermal
scheduler with reasonably good inputs.

7.2 Benchmark Classification

After model calibration, we ran 22 SPEC CPU2K benchmarks, mediabench,
packetbench, and netbench, to first collect their temperature profiles and clas-
sify them into different thermal intensity groups.

For all the programs we ran, the IntReg is always among the hottest units.
Since Pentium 4 has only one on-chip sensor to control the DTM, this sen-
sor should be placed at a spot that is most likely to be the hottest. This spot
is determined through extensive testing. To accommodate other hotspots, the
threshold is lowered with enough headroom to account for the discrepancy be-
tween the temperature at the sensor and the real peak temperature at runtime.
Overall, it is reasonable to assume that IntReg correctly represents the peak
temperature at runtime.

Figure 5 shows the IntReg temperature profiles for all benchmarks executed
back-to-back till completion. Here, the starting temperature is ~55°C, while
that of the ambient air is ~45°C, higher than the room temperature. As we can
see, different programs present noticeably different thermal behavior: some
run at a stable temperature, some have large variations, while others have
sharp and spiky raises in temperature.
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Fig. 5. Thermal profiles of the IntReg for all 22 SPEC2K (top) and media, net, and packetbench
(bottom).

Table I. Classifications of Program Thermal Intensity

SPEC 2K

Hot crafty gap gec mesa sixtrack gzip bzip vortex
Warm applu apsi facerec mgrid parser wupwise twolf
Cool ammp equake fma3d lucas swim art mef

Media, Packet bench, Netbench
Hot jpeg mpeg crc dh md>5 ipsec ipv4 Ictrie ipv4 _radix
Warm snort flowclass url ipchains
Cool drr route tl nat

From the obtained thermal profiles, we can broadly classify the programs
into three groups: hot, warm, and cool, according to their relative positions to
each other. For example, gcc and gap produce the peak temperatures in Figure 5
and hence are considered hot in the SPEC benchmarks. Similar principle is
applied to the non-SPEC benchmarks as well. Note that if we combine the two
groups of benchmarks, their relative temperature positions will change and the
classification will be different. Our experiments separate these two groups of
benchmarks due to their input sizes—SPECs have much larger inputs than the
others, and they run significantly longer. The complete classification of these
programs is shown in Table I.
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Table II. Workload Combinations Consisting of Relatively Hot (H),
Warm (W), and Cool (C) Jobs

SPEC2K media, packet, and netbench
HHH mgrid gzip bzip jpegdec ipv4 _lctrie md5
HHW gzip sixtrack vortex jpegenc jpegdec flowclass
HHC gzip bzip art mpeg2enc mpeg2dec tl
HWW gap apsi twolf ipv4_lctrie url ipchains
HWC gee apsi art ipv4_radix ipchains nat
HCC mesa ammp mcf dh drr route

7.3 Thermal Scheduling Results

We evaluate THREsHHOT on different combinations of workloads and compare
the results with four other aforementioned scheduling algorithms. To avoid
test space explosion, we limit the number of jobs executed simultaneously to
three. Every job can be hot, warm, or cool, producing 10 combinations to test.
The combinations where none of the jobs is hot are of little interest, since these
will not involve thermal violations. Excluding those, we are left with the six
combinations shown in Table II.

We also want to consider the environmental conditions, in particular, the
ambient temperature. The ambient temperature varies in response to activities
in memory, disks, or other components. This changes the temperature gradient,
thus affecting the efficiency of the heat removal. As a result, when the ambient
temperature rises, cool programs can become warm, and warm programs can
become hot to the CPU. Similarly, if the ambient temperature falls far below
normal, even the hot programs, at their steady state, may not cause thermal
violations.

To test the sensitivity of different schedulers to different environmental con-
ditions, we varied the frequency scaling threshold from 75°C to 73°C and 71°C
(from Figure 5, most programs’ steady temperatures range between ~60°C
and ~80°C). With a steady test-environment temperature (26°C in our case),
lowering the threshold to, say, 71°C results in relatively more DTMs than for
higher thresholds, quite similar to retaining the threshold while running the
same workload with a higher ambient temperature. Therefore, such tests em-
ulate, indirectly, the effect of varying the ambient condition, from low, through
medium, to high, respectively. These tests have been implemented through pro-
gramming the OS clock modulation register to throttle the clock [Intel 2002]
upon reaching a predefined thermal threshold. Setting the threshold to even
lower or higher values will not produce useful results, for it corresponds either
to the case of all jobs being cool or all jobs being hot (which is the HHH case
already tested in our study.)

7.3.1 DTM Reductions. Figure 6 shows the amount of DTMs for different
workloads when executed under different schedulers. Each graph represents
one thermal environment, as depicted by the labels. The results are normalized
to the baseline DTM amount. Hence, the lower the bars, the better the results.
We do not show the results for the GREEDY scheduler, since it is almost always
worse than the baseline scheduler.
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Fig. 6. Number of thermal emergency triggers, normalized to the baseline scheduler (Linux
default).

As we can see, in all workloads and in all thermal environments, the
TarESHHOT scheduler consistently removes more DTMs than other schedulers,
often by a great amount. The reduction ranges are 8.4 to 81.9% (41.6%, on
average), 10.5 to 73.6% (34.5%, on average), 2.5 to 48.5% (21.2%, on average),
and 4.1 to 70.5% (19.6%) for mild, medium, and harsh thermal environment,
and non-SPEC benchmarks in medium environment, respectively. The effec-
tiveness of the THRESHHOT over other schedulers is also evident. As an exam-
ple, for workload “HCC” in the medium thermal environment (Figure 6(c)),
the MINTEmMP" scheduler reduced DTMs in the baseline schedule by 7.5%, the
Ranpom scheduler reduced 34.7%, while the TurRESHHOT scheduler reduced as
high as 73.6%.

The Ranpom scheduler performs slightly better than the MINTEmMP' scheduler.
The former reduces more DTMs in mild and medium environments. However,
in harsh conditions, the RaNpom scheduler can generate more DTMs than the
base case, as shown in the “HHW” workload in Figures 6(b) and 6(d). This is,
by itself, an interesting phenomenon, and can be explained as follows. What
Ranpom does, is, in essence, to replace the batch by one long job whose tem-
perature (or heat contribution rate) is the “average" of those of the jobs in
the batch. For mild and medium environments, this average value is below
the threshold, and as a result, the Rannom’s schedule stays below the thresh-
old for most of the time, reducing the number of thermal violations. But if
this average is above the threshold, like in the “HHW” workload, the thermal
violations will occur throughout the whole interval. In contrast, in the base
schedule, they occur on the hot jobs but not on the warm job. Therefore, in
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Fig. 7. Percentage of execution time under DTM in the baseline scheduler.

this case, Ranpom will actually create more threshold violations than the base
scheduler.

The PrioriTy scheduler always increases the number of DTMs. For example,
it increased the DTMs by 65% for the HCC workload in the mild thermal
environment (this is not shown in Figure 6(a) due to its scale). This is because
the scheduler gives higher priorities (more CPU time) to the cool jobs than the
hot jobs, so the former always finish sooner than the latter. As a result, the hot
jobs, when cool jobs are exhausted, will trigger more DTMs than the baseline
because the baseline always makes about the same progress for both jobs.

7.3.2 Performance Improvements. The performance improvements of dif-
ferent schedulers are not necessarily proportional to the amount of DTM reduc-
tions. This is because the time due to DTM is only a portion of the total execu-
tion time. Figure 7 plots the percentages of execution time attributed to DTMs.
Figure 8 shows the overall performance improvements. The three subgraphs
represent different thermal environments, similar to Figure 6. As expected, the
THrESHHOT scheduler consistently and significantly outperforms other sched-
ulers. The PrioriTy scheduler brings negative impact to performance unless
there is a constant supply of cool jobs, which was assumed in the original work
[Kumar et al. 2006]. From these graphs, we make the following observations.

—Workloads containing cool jobs incur fewer DTMs than those containing
warm and hot jobs. Harsh thermal environment naturally causes more
DTMs in all workloads.
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Fig. 8. Performance improvements.

—When considering Figures 6 and 7 jointly, we observe that the percentage

DTM reduction rate depends on their contribution to the total execution
time: The more execution time spent on DTMs, the less effective a thermal-
aware scheduler is in removing them. (More precisely: It may remove more
DTMs overall, but a smaller percentage.) For example, when the DTMs
occur only 5.4% of time in HCC (Figure 7(a)), the THrRESHHOT scheduler can
easily remove 81.9% of them (Figure 6(a)). When the DTMs occur 44.4%
of time in HHW (Figure 7(c)), the ThreshHot scheduler can only remove
2.5% of them (Figure 6(c)). Therefore, the amount of DTMs existing in a
workload indicates directly how difficult it is to perform a thermal-aware
scheduling. This is, of course, not surprising, for if the average temperature
of the workload increases, so does the minimum number of DTMs in the
optimal schedule—independently of what scheduler we use.

—Figure 8 shows the overall performance improvement, reflecting both the
reduction of DTMs from Figure 6 and the original number of DTMs pro-
duced by the base scheduler, as seen in Figure 7. We see that a harsh/mild
environment does not necessarily result in less/more performance improve-
ments from a thermal-aware scheduler. Similarly, workloads having more
cool jobs do not always result in most performance improvements. The high-
est performance improvements from the THRESHHOT scheduler are seen in
HHC (6.56% in mild, 7.18% in medium, and 6.45% in harsh environment)
and HCC (6.31% in medium, 7.57% in harsh environment, and 6.25% in
non-SPEC programs). The average improvements are 3.8%, 4.7%, 4.1%,
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Fig. 9. Drastic performance changes to individual jobs by MINTEMP™ scheduler (mild thermal
environment).

and 3.25% for mild, medium, harsh thermal environment, and non-SPEC
programs, respectively.

We also observed that the MINTEMPT scheduler, though far less effective than
the TaresHHoT scheduler, does a more consistent job in improving the total
performance of a workload than the Ranpom scheduler. The Ranpom scheduler
occasionally reduces the performance when it fails to remove DTMs, for exam-
ple, for HHW in a harsh environment. However, when the conditions are mild
or medium, the Ranpom scheduler outperforms MINTEMPT, not only because
it reduces more DTMs and has better performances, but also because it does
not require any online power/temperature calculations; thus, it is much easier
to incorporate in an existing system. However, it tends to worsen the system
performance when the thermal condition is severe.

One important downside of the MINTEMPT scheduler is that it penalizes the
cool slices for the thermal violations caused by hot slices. As we analyzed before,
this is because the hot programs always run at full speed until the temperature
increases above the threshold, then the frequency is scaled and the coolest pro-
gram is swapped in at the reduced frequency. As shown in Figure 9, although
the overall performance is improved in all workloads, each individual job expe-
riences drastic performance changes, from ~—30% to ~+30%. In contrast, the
performance gains from using the THREsHHoOT and the Ranpom scheduler come
mainly from the improvements in hot jobs, which is a more reasonable way of
resolving the thermal emergencies.

7.3.3 Impact of Power Misprediction. Our proposed THRESHHOT scheduler
relies on the projected temperatures to make a selection for the next scheduling
interval. As we discussed in Section 4.2, the temperature in the next interval
will depend on a job’s power consumption in the next interval, which is predicted
from the current interval. Figure 2 shows the percentages of errors in predicted
power values using the last-value prediction. In this section, we quantify the
impact of such errors in performance improvement.

Our goal is to compare the last-value power predictor with an oracle power
predictor and see their contributions on performance improvement under the
TuaresHHoT scheduler. To achieve this, we collected the power traces from the
baseline scheduler and perform the THrRESHHOT scheduling twice offline, one
with the last-value power predictor and another with the oracle predictor. In our
scheduler, the power predictor works with the scheduler in the following way.
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Fig. 10. The distribution of last-value prediction results.

First, the predicted powers are used to calculate the temperature rises in the
next step. Second, the temperatures are sorted from high to low. Third, search
temperatures from high to low and find the first one below the threshold. As we
can see, if the last-value predictor and oracle predictor come up with the same
temperature order and selected the same job to run, then the two predictors are
equally good. Also, even when the temperature orders are different, if the two
predictors happen to select the same job to run, they are still equally good. For
example, the last-value predictor may generate a job temperature order from
high to low as: 2, 1, 3, and the threshold is between 2 and 1, so job 1 should
be selected. The oracle predictor, on the other hand, generates an order as 1, 2,
3, and 1 is below the threshold. Therefore, even when the last-value predictor
made a mistake, as long as the right job is selected, the scheduling decision is
still correct.

Figure 10 shows the percentage distribution of four possibilities of the last-
value power prediction results, from bottom up: correct temperature order and
correct job selection (“+Ord+Sel”), incorrect temperature order but correct job
selection (“-Ord+Sel”), correct temperature order but incorrect job selection
(“+0rd-Sel”), incorrect temperature order and incorrect job selection (“-Ord-
Sel”). On average, the last-value predictor can result in 85.72% of “+Ord+Sel”,
and 4.44% of “-Ord+Sel”, totaling 90.16% of correct scheduling decision. This
is fairly significant considering the simplicity of the predictor. Figure 11 fur-
ther shows the performance speed-ups for the last-value predictor and the
oracle power predictor. As we can see that, on average, the last-value predictor
achieves only 0.6% less speed-up than the oracle power. Therefore, we conclude
that designing complex power prediction schemes may not pay off, since the
additional performance improvement will be marginal.

7.3.4 OQverhead. Finally, the overhead of our THREsHHOT scheduler (and
MiNTEMP'T and PrioriTy) mainly comes from the temperature calculation in-
serted in the kernel and context switches (including cache warm-up). We mea-
sured that the time required to calculate the temperatures is ~16.45us. This
has been estimated by running the program with and without the temperature
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Fig. 11. The offline performance comparison of last-value power predictor and oracle power
predictor.

module in the kernel for a sufficiently long time and computing the temperature
every 8ms. This overhead includes probing the hardware performance coun-
ters, calculating power, and calculating the temperatures using the method
described in Section 4.1. As mentioned in Section 5.2, the average context
switch time in our test system is ~35.35us. This has been determined by forc-
ing periodic context switches among different programs, for different period
lengths, and comparing the differences in execution time. The performance
results presented earlier are based on real machine measurements and thus
include all the overhead incurred at runtime.

The most concern of the scheduling overhead is whether the algorithm can
be scaled up to support more jobs. With more number of jobs, more time is
required to calculate the next step temperatures and make a scheduling deci-
sion. Note that the context switch overhead remains the same because there
is still only one switch no matter how many candidates there are. Therefore,
we only need to limit the time spent in calculating temperatures for all jobs.
This can be achieved using the following optimization. First, sort the next-
step powers for all jobs from high to low. The next-step temperature results
corresponding to those powers will be monotonically decreasing. To avoid cal-
culating temperatures for all powers, we can do a binary search to find the
highest power that generates a temperature below the threshold. This can re-
duce the number of temperature calculations from N to O(log N), where N is
the number of jobs. Such an optimization provides a scalable solution to our
algorithm.

To verify the scalability of our algorithm, we measured the scheduling over-
head when the number of jobs increases. The scheduling overhead includes
time for both temperature calculations and context switches. When we in-
crease the number of jobs, the performance penalty due to DVFS varies due to
the changing relative thermal intensity in the job mix. Therefore, we suppress
the engagement of all DVF'S to remove the noise in the scheduling overhead.
We measured the overhead for both Rannom and THrREsHHOT, and compared
them with the baseline. The results are shown in Figure 12.
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Fig. 12. The overhead from context switch and temperature computation.

The overhead is calculated as the percentage of extra execution time required
by Ranpom and THrREsHHOT, compared to the baseline. The Ranpom scheduler
incurs mainly the context switch overhead, as it does not need to project the
temperature variation of the jobs, and randomly picks one to execute in the next
time window. Hence, its overhead is relatively constant irrespective of the num-
ber of jobs. The results show that the average overhead is 0.93%, with a maxi-
mum of 1.64% for scheduling four jobs and a minimum of 0.25% for seven jobs.
These results confirm that frequent context switches incur insignificant over-
head to the overall performance. The THREsHHOT scheduler shows additional
overhead in temperature calculations for all job mixes. As we explained earlier,
the temperature calculations are necessary for only log N jobs. We conserva-
tively assumed there can be up to 10 active jobs for scheduling on a single core.
In reality, this number is likely to be much smaller. Thus, the temperature
calculation is performed between one and four jobs. The actual time depends
on specific temperature values of different jobs. That is, more number of jobs
does not necessarily incur more temperature calculation time. As we can see
from the results, there is no clear trend in increasing overhead from 2 to 10
jobs. On average, we see a 2.07% performance overhead including both temper-
ature calculation and context switch. The highest overhead of 2.52% is seen in
scheduling 10 jobs, and the lowest of 1.51% is seen for scheduling 5 jobs. Our
early results in Section 7.3 were for scheduling three jobs. As we can see here,
the scheduling overhead for three jobs is around the average. Therefore, we
conclude that our proposed THRESHHOT is a scalable solution.

Looking into future CMPs where number of jobs increases propotionally with
the number of cores, the problem becomes how to assign jobs to balance thermal
behaviors among cores. For example, for CMPs with 64 cores and 300+ jobs,
each core will be assigned around five jobs in its local job queue. The question
is how to select 5 jobs from a pool of 300+ jobs. One possible solution is to sort
the jobs according to their power history and then assign each core with equal
number of hot and cool jobs. Such sorting and subsequent job migration could
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be done once every several seconds, to keep the overhead as small as possible.
After the job assignment is done, each core will still only incur 1.5% overhead
if five jobs are assigned to the core. If using our ThreshHot algorithm, each
core can gain ~5% average performance improvement, still achieving positive
gains while regulating the chip’s thermal behavior.

8. CONCLUSION

We have proposed the THrEsHHOT scheduling algorithm and compared it with
three other thermal-aware schedulers. As we demonstrated, such a job sched-
uler, when carefully designed, not only is feasible but can also remove a signifi-
cant fraction of DTMs and provide great performance benefits. Among the four
schedulers we analyzed (with the experimental results of the GREEDY scheduler
omitted), our proposed THRESHHOT scheduler follows the strategy of keeping
the temperature right below but not exceeding a given threshold, based on the
observation that this approach increases the heat removal rate and thus is
likely to reduce the overall number of thermal violations. As it turns out, such
a scheduling consistently removes most DTMs and improves the performance
of all types of workloads in all thermal environments we tested.

The next scheduler we recommend is the Ranpom scheduler, for it is easy
to incorporate, and does not require any online power/thermal estimations.
However, this scheduler does not achieve the same quality scheduling as the
TurEsHHOT does and tends to decrease the performance when the system is in
a harsh thermal condition and DTMs happen very frequently.

The MINTEMPT scheduler, since it toggles between the hot and cool job, is
probably more suitable to lower the average temperature of a system. We
emphasize that the threshold for toggling should be lower than the hardware
threshold in order not to penalize the cool jobs unfairly. The PrioriTY scheduler
may be helpful in a workload with long and cool jobs and where the hot jobs
are not subject to any timing constraints.
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