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ABSTRACT
Facial Expression Recognition (FER) has gained considerable attention in affective
computing due to its vast area of applications. Diverse approaches and methods have
been considered for a robust FER in the field, but only a few works considered the
intensity of emotion embedded in the expression. Even the available studies on
expression intensity estimation successfully assigned a nominal/regression value or
classified emotion in a range of intervals. Most of the available works on facial
expression intensity estimation successfully present only the emotion intensity
estimation. At the same time, others proposed methods that predict emotion and its
intensity in different channels. These multiclass approaches and extensions do not
conform to man heuristic manner of recognising emotion and its intensity
estimation. This work presents a Multilabel Convolution Neural Network (ML-
CNN)-based model, which could simultaneously recognise emotion and provide
ordinal metrics as the intensity estimation of the emotion. The proposed ML-CNN is
enhanced with the aggregation of Binary Cross-Entropy (BCE) loss and Island
Loss (IL) functions to minimise intraclass and interclass variations. Also, ML-CNN
model is pre-trained with Visual Geometric Group (VGG-16) to control overfitting.
In the experiments conducted on Binghampton University 3D Facial Expression
(BU-3DFE) and Cohn Kanade extension (CK+) datasets, we evaluate ML-CNN’s
performance based on accuracy and loss. We also carried out a comparative study
of our model with some popularly used multilabel algorithms using standard
multilabel metrics. ML-CNN model simultaneously predicts emotion and intensity
estimation using ordinal metrics. The model also shows appreciable and superior
performance over four standard multilabel algorithms: Chain Classifier (CC), distinct
Random K label set (RAKEL), Multilabel K Nearest Neighbour (MLKNN) and
Multilabel ARAM (MLARAM).

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning
Keywords Binary cross-entropy, Facial expression recognition, Island loss, Multilabel, Ordinal
intensity estimation

INTRODUCTION
Recognising human affective state from a facial image is one of the most relevant
challenges in Computer Vision (CV) and Human-Computer Interaction (HCI). This
aspect of Computer Vision has gained much attention; several methods and approaches
have been proposed in the literature. Early methods resolved that FER is a multiclass
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problem and thus proposed multiclass based classifiers or adapted binary classifier to
multiclass problems as appropriate methods for FER classification. For instance, Ekman &
Friesen (1971) categorised facial expression into six basic emotion classes: Anger,
Disgust, Fear, Happy, Sadness and Surprise. This classification automatically restricted
FER into a multiclass task and buried much information that could help achieve
robustness and better accuracy. The concept of arousal and valence model reveals more
information content of FER. While arousal considers the expression intensity, valence
captures the pleasantness and the unpleasantness of the expression (Mollahosseini, Hasani
& Mahoor, 2019; Yang & Sun, 2017).

The expression intensity can be classified as one of the main attributes of emotion in
facial expression. Plutchik (2001) ascertained that expression is a result of combination
of basic emotions in the face. Yannakakis, Cowie & Busso (2017) reiterated that in real life,
the display of pure emotions is rare and described emotion as a relative notion that should
not be classified in terms of absolute values in the standard classification algorithms.
Expression recognition and intensity estimation is a common task executed by human
beings. Human beings find it easy, convenient, and comfortable to predict the emotional
state concurrently and the accompanying intensity (using ordinal metrics) of a person
from expression image. This intrinsic ability in human has not been adequately modeled in
FER system. The classification of facial expression into basic emotion states has been
considered severally in diverse ways in the literature, yet the approach could not account
for the intensity of the recognised emotion. Likewise, few studies on emotion recognition
and intensity estimation from face image succeeded in assigning numeric values as the
estimated intensity. This attempt is far from the perception of man towards emotion
intensity estimation. Man has a hierarchical structure perception about emotion and
therefore estimate it using referenced base value, which allows its semantics preservation.
To the best of our knowledge, none of the works on facial expression recognition and
intensity estimation considered static FER dataset, and the environments explored in the
study are sequence and dynamic environments. The notion that sequence and dynamic
data contain more information of expression intensity and lack of hierarchical annotated
static dataset may be the cause. Our findings show that the only static dataset in the field
with ordinal annotation is BU-3DFE.

In this study, FER is considered a multilabel problem because an instance of a facial
expression image contains information about emotion displays and the corresponding
intensity. The six possible emotion states include Anger, Disgust, Fear, Happy, Sadness and
Surprise. The ordinal metrics for estimating the category of emotion intensity are: low,
normal, high and v_high (very high). The first phase of the FER multilabel approach is
data organisation. We organise the data such that each emotional state is associated with
the corresponding intensity; this is pictorially represented in Fig. 1. We implement a
problem transformation technique using binary relevance (BR). The CNN network
with sigmoid function in the output layer serves as the binary classifier. Because of our
dataset population, we use the pre-trained network (VGG-16) to avoid model overfitting,
which was a challenge in Ekundayo & Viriris (2020). To reduce intraclass variation and
increase interclass variation an aggregation loss (combination of island loss and BCE loss)
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is proposed which is another additional feature to our work in (Ekundayo & Viriris, 2020).
The contributions of this work include:

� Multilabel model of facial expression recognition and intensity estimation. With this
model, both the emotion features and the hierarchical structure embedded in them are
learned concurrently.

� Ordinal metrics are used for the emotion intensity estimation, enabling the model to
present the intensity estimation in a similar way like human beings.

� Use of Binary relevance multilabel transformation technique and CNN classifier, CNN
is used as a binary classifier by implementing sigmoid function at the network’s output
layer. This ensures that the prediction probability of any class is independent of the
other classes. Classifier sensitivity to intraclass and interclass variation is enhanced with
the aggregation of island loss and BCE loss.

The proposed ML-CNN facial expression recognition model is capable of predicting the
emotion and the corresponding ordinal intensity estimation concurrently from facial
expression images. The simultaneous prediction of emotion and its intensity is a
vital information in the application of FER; especially in psychiatry and schizophrenia

Figure 1 Showing multilabel problem formulation of FER. The nodes under emotion represent the six
basic emotion classes Anger, Disgust, Fear, Happy, Sad, Surprise, and the nodes under the degree
represent the ordinal estimation of emotion intensity Low, Normal, High, Very High and the output is
the possible result of the multilabel CNN classification. Full-size DOI: 10.7717/peerj-cs.736/fig-1
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(Behere, 2015; Seo et al., 2020) and also for pain (Chen, Ansari & Wilkie, 2012; Roy et al.,
2016) and depression analysis (Guo et al., 2021). Application of FER intensity estimation
in real- world could mitigate the challenges of recognising emotion in schizophrenia
patients, also since pain and depression are categorised as compound emotions (Du &
Martinez, 2015) FER intensity estimation could appropriately state the degree to which
they are expressed. Quantifying emotion with ordinal metrics makes ML-CNN to be
similar to human prediction of emotion, which agrees with adaptation level theory account
of Russell on emotion (Russell & Lanius, 1984), and ordinal nature of emotion as presented
in Yannakakis, Cowie & Busso (2017).

This work is organised as follows: Section “Related Works” discusses some studies
related to both facial expression recognition and intensity estimation, the discussion also
covers some of CNN network optimisation techniques. Section “Multilabel Convolution
Neural Network Model (ML-CNN) Description” presents the ML-CNN model
description; starting from problem formulation to describing the CNN network and
the enhance loss functions employed. Section “Experiment” contains details of the
experiments, which involve: the preprocessing of the data, and the experiment procedure
details, and brief introduction of the databases. In Section “Experimental Results and
Discussion”, we provide a logical presentation of the experiments’ result and relevant
discussion of the experiments’ outcomes. Section “Conclusions” is the conclusion of the
work.

RELATED WORKS
In quest of a robust FER system, several studies have been conducted using traditionally
handcrafted methods (Li & Deng, 2020; Turan & Lam, 2018), conventional machine
learning techniques (Ekundayo & Viriri, 2019) and the state-of-the-art deep learning
methods (Liu et al., 2017). The named techniques have been thoroughly considered under
the supervised and unsupervised approaches in either a static or dynamic environment.
Most of these approaches only succeeded in classifying an expression image into six or
seven emotion classes.

Deep learning methods continue to evolve in diverse ways to achieve an optimal
result in FER classification, and this is evident in EMOTIW2015, and EMOTIW2016
competition (Fan et al., 2016; Kahou et al., 2015). This section will concentrate more on the
deep learning approach to facial expression recognition and intensity estimation, and some
optimisation techniques adapted to CNN performance improvement.

FER classification is further extended to expression intensity estimation; few works
on emotion intensity estimation are available in the literature; many works concentrate
more on action unit intensity estimation. For example; Gudi et al. (2015) proposed a
single CNN network for simultaneous estimation of Action Unit (AU) activation and
intensity estimation. They claimed that activating the specific neuron of the output layer
could result into a binary and continuous classification of AUs and corresponding
intensity. Likewise, Batista et al. (2017) proposed AUMP Network (AUMP-NET), this
network is a single network with multi-output regression capacity to learn AUs
relationship and their respective intensity. The network is capable of learning the available
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AU and its corresponding intensity, simultaneously. Also, the network could learn to pose
feature variations using multitask loss. These methods only determined the occurrence of
AUs; the intensity is computed by regression means. The intensity of the AUs is not
modelled in the training of the network. Similar studies on AU detection and intensity
estimation could be found in Zhao et al. (2016) and Zhou, Pi & Shi (2017).

The few works on emotion recognition and intensity estimation are categorised in
Kamarol et al. (2017) as: the distance-based (Verma et al., 2005), the cluster-based
(Quan, Qian & Ren, 2014), the graphical-based (Valstar & Pantic, 2012) and the
regression-based (Nomiya, Sakaue & Hochin, 2016) methods. As stated earlier, our focus is
on recent deep learning approaches to emotion recognition and intensity estimation.
Aamir et al. (2020) proposed a multilevel convolution neural network for expression
classification and intensity estimation. The proposed deep network has two net phases: the
expression-network phase, which handles the classification of facial expression image into
the basic classes of emotion, and the intensity-network phase that takes the output of
expression-network, which is one of the basic emotion and focus on the determination
of the degree at which the recognised emotion is expressed. Summary of the existing
method are presented in Table 1.

Xu et al. (2020) proposed a multitasking learning system using a cascaded CNN, and the
objectives tend towards incorporating students attentiveness and students emotion
recognition and intensity estimation into an intelligent class system. The first module of
the cascaded network handled the preprocessing stages that involve face detection, face
alignment and head pose estimation through which attentiveness is determined.

Table 1 Summary of various models for emotion and intensity recognition.

Method Model DB &
performance

Limitation

Verma et al. (2005) Distance based Primary
source: NA

Only few emotions are considered, method not generalise, emotion intensity before
emotion recognition, computationally expensive.

Lee & Xu (2003) Optical flow tracking
algorithm (Distance)

Real-time
data

Need for each subject to be trained differently, not generalise, predicting intensity
before emotion

Kim & Pavlovic
(2010)

HCORF (Prob) CMU Intrinsic topology of FER data is linearly model.

Quan, Qian & Ren
(2014)

K-Means (Cluster) CK+ Predict intensity before emotion, intensity estimation based on graphical difference
is not logical

Chang, Chen &
Hung (2013)

Scatering transform +
SVM (Cluster)

CK+ Emotion recognition task is omitted.

Zhao et al. (2016) SVOR (Regression) Pain Correlations between emotion classes are not modelled.

Rudovic, Pavlovic &
Pantic (2012)

LSM-CORF (Prob) BU-4DFE,
CK+

Latent states are not considered in the modeling of sequences across and within the
classes

Walecki et al. (2015) VSL-CRF (Prob) CK+ AFEW Result of emotion intensity is not accounted for.

Kamarol et al. (2017) weighted vote CK+ Emotion and emotion intensity not concurrently predicted.

Proposed model ML-CNN (Multi-Label) BU-3DFE Assume temporal information among sequence data as ordinal metrics.

Note:
NA: Not Applicable, MAE: Mean Absolute Error, PCC: Pearson Correlation Coefficient, ICC: Intraclass Correlation, MAL: MeanAbsolute Loss, HL: Hamming Loss, RL:
Ranking Loss; AP: Average Precision, CE: Coverage Error.
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The second module implements an unsupervised raking CNN network to recognise the
emotion and intensity estimation using ordinal evolution in the sequence data.

All of the stated approaches fail to adequately model the human mental capacity of
predicting emotion with their respective intensity. The methods either estimate emotion
intensity without emotion recognition or recognise emotion and its intensity separately.
None of the methods carries out both tasks simultaneously. Multilabel learning is the
recent trending approach to FER. This approach emerges from the public opinion that
facial expression image contains a mixture of emotion, and only in a rare occasion is pure
emotion displayed in face (Plutchik, 2001; Yannakakis, Cowie & Busso, 2017).

Facial expression challenges influenced FER system’s performance, and the efforts in the
field tend towards how the challenges could be reduced to bearable minimal. In the
FER research community, diverse approaches have been implemented to enhance or
optimise CNN networks to mitigate FER challenges. Some of the CNN optimisation
approaches focus on improving the network’s discriminating power through modification
of loss function to reduce intraclass variance and increase interclass variance. Loss
function guides the optimisation function in the direction to follow, and it states how close
or far is the model prediction to the ground truth. The traditional loss function for
multiclass tasks is softmax loss (Liu et al., 2016;Wang et al., 2018). The challenge identified
with softmax loss is that while penalising the misclassified samples, it repels different
classes to cluster apart, which is a challenge in FER, the introduction of center loss function
aid to alleviate softmax loss challenge in the sense that it was able to cater for intraclass
variation but fails to consider interclass variation appropriately. As discussed in Cai
et al. (2018), island loss is capable of increasing network discriminating power by
increasing interclass variation and reducing intraclass variation, which is the main
challenge in FER tasks. The experiment conducted in Cai et al. (2018) island loss function
shows a better performance than either softmax loss or centered loss function. Likewise,
Li & Deng (2019) in their effort to implement a robust FER with high discriminating
power, form a tuplet cluster loss function, which is a hybrid of a tuplet (N+1) loss function
and cluster loss function. The (N+M) tuplet cluster loss described an N-negative and
M-positive sample in the CNN framework’s minibatch. The formed tuplet cluster is
combined with softmax loss as a joint optimisation technique to explore identity label and
expression label information potentials thoroughly.

Other modification of CNN networks is found in Alenazy & Alqahtani (2020), Ozcan &
Basturk (2020), Wu, Wang & Wang (2019) and Zatarain Cabada et al. (2020).
Ozcan & Basturk (2020) improved FER system performance with transfer learning and
hyperparameter tuning. Alenazy & Alqahtani (2020) present a semi-supervised deep belief
network for FER and employed gravitation search algorithm for network parameter
optimisation. Wu, Wang & Wang (2019) optimise CNN network for FER classification
by converting the output layer tensor of the network into a multidimensional matrix-
vector via matrix transformation to enlarge the eigenvalues such that the system might
have lower loss rate. Zatarain Cabada et al. (2020) proposed a genetic algorithm
optimisation technique for CNN hyperparameter tuning for FER. The main goal of the
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genetic algorithm is to achieve the best solution from the hyperparameter population
evolution.

This work is presenting an enhanced ML-CNN model for emotion recognition and
ordinal intensity estimation. The proposed multilabel deep learning model can learn the
hierarchical structure in FER datasets during the training of the network and predicts
the emotion and the ordinal intensity in the expression face concurrently. Transfer
learning optimisation technique is used as a trade-off for the insufficient data population
for the appropriate ML-CNN model learning. The entropy loss function is fortified
with island loss function to minimise the intraclass and interclass challenges. Detail
description of our model is presented in the next section.

MULTILABEL CONVOLUTION NEURAL NETWORK MODEL
(ML-CNN) DESCRIPTION
Deep learning models are traditionally employed in solving either a binary class or
multi-class problems, where an instance of a population is only restricted to a group of
class. In such a multitask challenge a single output is generated. Very few studies
considered deep learning for multilabel tasks. Liu et al. (2016) practically established this
fact that facial expression in the real world is more of mixture or compound of emotion.
Their work verified this while using the Expectation-Maximization (EM) algorithm to
automate the manual annotation of Real-world Affective Faces (RAF) database. Their
approach shows that expression face contains more than one emotional state in different
intensity level.

ML-CNN is a deep learning model we consider for classifying expression images into
the emotional states and the associated degree of intensity. ML-CNN model combines
multilabel problem transformation techniques with CNN algorithm as a deep learning
technique for the multilabel classification task. Details of this model are considered in the
following subsections.

Problem transformation
Here, we formally present facial expression and intensity estimation task as a multilabel
problem. Generally, assume X = Rm represents set of training samples with m dimensional
feature vectors, a sample x ∈ X associated with a label y ∈ Y is given as E = {xi; yi}
such that yi � k where k = {yi: j = ,…p} is the set of p possible labels. In the context of facial
expression recognition and intensity estimation, a special multilabel scenario is
defined. An expression image is associated strictly with emotion information yi∈ Y
and intensity information zi ∈ Z. Formally, given an Expression image E = {xi, yi × zi}
where yi × zi ∈ Y × Z such that k1 = fygPi¼1 for all possible p ∈ Y and k2 ¼ fzgqi¼1 for all
possible q ∈ Z. The challenge in this multilabel task is to generate a supervised classifier C
which is capable of taken an unseen expression image E and simultaneously predict its
correct emotion state and its intensity. That is, given E = (xi,) Then C(E) → Y × Z, which is
the accurate emotion and intensity associated with the image. This transformation is
achieved with binary relevance extension transformation technique as proposed by Luaces
et al. (2012) with a slight modification that limits label independence. Binary relevance also
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aids in adopting deep learning into the multilabel environment. Figure 2 gives the pictorial
description of the proposed ML-CNN model.

Convolution neural network multilabel adaptation
The main components of CNN include the convolution layers, the pooling layers, the
fully connected layers and the output layer. ML-CNN model is designed similarly with
VGG network but with a fewer number of blocks. Figure 3B illustrates the arrangement of
all the components of ML-CNN.

Convolution Layer: Convolution layer deals with the extraction of representative
features from the expression image; it performs convolution operation on the input image
to preserve the spatial relationship between pixels. With convolution operation, local
dependencies of the input image are learned. Convolution operation involves convoluting
input data with a filter to give a corresponding output which size is determined by
some parameters like depth, stride and zero paddings. Convolution layer also employs
activation function, which is continuous and differentiable for learning a non-linear
transformation of the input data and enhances the network to access a rich hypothesis
space from deep representation. This work employs 3 × 3 kernel, ReLu activation function,
zero-padding one stride and batch normalisation at each convolution layer. There are five
convolution blocks in this model, and the first convolution layer convolutes the input
image with the kernel to produce 32 feature maps, a non-linear activation function ReLu is
applied to learn the non-linearity features, sparsity control and also to prevent gradient
vanishing which is likely to occur during back-propagation. For the stability of each layer,

Figure 2 The description of Multilabel CNN model for facial expression recognition and intensity
estimation. Full-size DOI: 10.7717/peerj-cs.736/fig-2
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we also used batch normalisation and 0.5 dropout. All these operations took place at
each of the convolution layers, except that, different filters are generated at other
convolution layers. At the second and third convolution layer, 64 feature maps are
produced, and at the fifth and sixth layers, 128 feature maps are produced.

Pooling Layer: this is a sub-sampling layer of the network where the down-sampling
operation takes place. Its goal is to reduce feature maps’ dimension and ensure the
preservation of the most useful feature. Pooling operation reduces the computation
complexity by reducing the number of training parameters, reducing distortion, and
rotation, translation and scaling sensitivity. This system employs max-pooling methods.
In the max-pooling feature, maps are convoluted with a 2 × 2 kernel to return the
maximum value from each region covered by the kernel. This network contains three
pooling layers, and the first pooling layer is positioned after the first convolution layer, the
second and the third pooling layers are after the third and the fifth convolution layer
respectively as shown in Fig. 3B.

Figure 3 (A) Description of VGG-16 model; (B) the proposed ML-CNNmodeland; (C) the VGGML-
CNN model, which the optimised version of ML-CNN. Full-size DOI: 10.7717/peerj-cs.736/fig-3
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Fully Connected layer: This layer behaves like feed-forward network, the output of the
last pooling layer is flattened, that is the 2-dimensional matrix is unrolled into a vector.
This is because fully connected layer takes a one-dimensional matrix as input, the flattened
function converts the height, the width and the feature maps into a series of feature vectors
(h × w × f). This layer also used ReLu activation function and 0.25 dropout.

Classifier: The last layer of ML-CNN, which is the output layer is a sigmoid classifier,
and the sigmoid activation function can generate an independent probability for each of
the classes and thus suitable for the multilabel classification task.

Loss Function: Loss function guides the optimisation function in the direction to follow,
and it states how close or far is the model prediction to the ground truth. Here, Adaptive
Moment (ADAM) optimisation function is considered with learning rate of 0.001.
ML-CNN is a multilabel model which implements sigmoid activation function at the
output layer, the most appropriate loss function for ML-CNN is Binary Cross-Entropy
(BCE) loss. BCE combines the functionality of sigmoid activation function and cross-
entropy function in the sense that the loss computes for a class has no effect on the
loss computes for other classes, and also form a binary classifier between each of the
classes and background class, which is not a member of the classes in consideration. With
BCE, loss calculated for each class is independent on the other classes, BCE is formally
expressed in (1).

Deep learning networks performance has been enhanced in literature by the
modification or introduction of some loss functions like: triplet loss (Chen et al., 2020;
Dong & Shen, 2018; Vijay Kumar, Carneiro & Reid, 2016; Cheng et al., 2016), center loss
(Wen et al., 2016), and Island loss (Cai et al., 2018). As discussed in Cai et al. (2018), island
loss is capable of increasing network discriminating power by increasing interclass
variation and reducing intraclass variation. This is the main challenge in FER tasks
especially in our model where intraclass variation is large among the representative image
samples because each of the classes contains different subjects, and small interclass
variation is observed between classes because subjects are the same for all classes. An
experiment conducted by Cai et al. (2018) showed that island loss function is better in
performance than softmax loss function or with center loss function.

BCEðsiÞ ¼ �
XC¼2

i¼1

tilogðsiÞ (1)

where si is the model score and ti is the ground truth for each class i ∈ C.
This work is adapting island loss to enhance the choice of discriminating features in the

ML-CNN model. Island loss is an improvement over the center loss with the tendency
to minimise or avoid overlapping of different clusters, thus increasing interclass variations.
Just like the presentation in Cai et al. (2018), We follow similar steps and positioned
island loss function after the fully connected layer. The island loss function is formally
expressed in (2).
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LIL ¼ LC þ �1

X
cj2N

X
ck2N;ck 6¼cj

ck:cj
jjckjj2jjcjjj2

þ 1

� �
(2)

LC is the center loss expressed in (3), expression label set is represented with N, both ck
and cj indicate the two center terms with L2 norm ||ck||2 and ||cj||2 that penalise the
expression of different samples and the similarity of expression samples from the center
respectively. λ1 is to balance ck and cj

Lc ¼ 1
2

Xm
i¼1

jjxi � cyijj2 (3)

ML-CNN model implements BCE loss function at the final layer, then the entire loss
function of ML-CNN is provided in (4).

L ¼ LBCE þ �LIL (4)

where LBCE is Binary Cross Entropy loss, and λ is a hyper-parameter for balancing the two
losses. The implementation procedure of ML-CNN is detail in Algorithm 1.

Transfer learning
Transfer Learning could be thought of as a way of preventing re-inventing the wheels in
computer vision, in the sense that knowledge of a particular deep model could be
transferred or reuse more especially in a similar environment or for a related task. Transfer
learning mechanism improvises for data challenges in computer vision, and it is
considered as one of the deep learning optimisation techniques for addressing overfitting

Algorithm 1 ML-CNN algorithm.

Input: Training Data X = {xi,(yi × zi)}

Output: Network layer parameter W, LIL, LBCD

1 Given: minibatch n, learning rate α, μ and hyperparameter λ and λ1

2 Initialization: {t, W, θ, cj}

3 t = 1

4 while(t != T) {compute the aggregate loss Lagg = LBCE + λLIL

5 update LBCE

6 ctþ1 ¼ ct � lð@LtBCEÞ=ð@ctÞ
7 update LIL

8 cjt + 1 − α Δcjt

9 update backpropagation error

10 @Lt=@xti ¼ @LtBCE=@x
t
i þ �ð@LtIL=@xti Þ

11 Update network layer parameter

12 Wtþ1 ¼ Wt � l@Lt=@Wt ¼ Wt � lð@Lt=@xti Þð@xti=@WtÞ
13 t = t + 1}
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effect in the field. Adapting the knowledge or weight of pre-trained standard deep
network into a related task or challenge is the main concept of transfer learning. Few of the
standard deep pre-trained networks include: VGG Network (VGGNET) (Simonyan &
Zisserman, 2015), Residual Network (ResNet) (He et al., 2016), Inception_w (Szegedy et al.,
2017; Szegedy et al., 2016), Google Network (GoogLENet) (Szegedy et al., 2015) and the
likes.

ML-CNN design is a similitude of VGG; we consider VGG-16 as a pre-trained network
for our model. The pre-trained network is adapted as a feature extractor for our ML-CNN.
The fully connected layers and the ML-CNN classifier control the learning and the
interpretation of the extracted features on the datasets and preserve both the multilabel
learning and independent classification. Figure 3 is the pictorial description of the
VGGML-CNN model. Figure 3A is the description of VGG-16 model, Fig. 3B is the
proposed ML-CNNmodel, and Fig. 3C is the VGGML-CNNmodel, the optimised version
of ML-CNN.

EXPERIMENT
Preprocessing
Deep learning is known for its autonomous feature extraction capability. Despite,
observations show that there is an improvement in networks performance when data is
preprocessed. Data preprocessing advantages to deep learning include minimization of
computational costs (computational time and computational resources) and availability of
proper representative features that is noise-free. In this work, we find it appropriate to
employ some preprocessing techniques to aid our model sensitivity in the automatic
feature extraction phase. This section carried out two essential data preprocessing
techniques: face localization (face detection) and face augmentation.

Face localization
Face detection is about locating the region of a face from an image, sequence of images or
video. Face detection algorithms are often involved in virtually most face related
research in computer vision such as face recognition, Age estimation from face, image-
based gender recognition and facial expression recognition. All these tasks consider face
detection as one of the main steps in their preprocessing stage. In this study, we consider
the face detection algorithm proposed by Viola & Jones (2001). The only modification
to this algorithm is the implementation of an integral graph for eigenvalues computation
as in Zhang, Jolfaei & Alazab (2019) which aid the computation speed, we use the method
to compute Haar-like feature via integral graph as shown in Eq. (5). In the process,
relevant features of Haar-like are carefully selected and later integrated into a robust
classifier with the aid of the AdaBoost algorithm.

Gðx; yÞIðx; yÞ ¼
X
x0�x;y0

iðx0; y0Þ (5)

where I(.) is the integral image and i(.) is the real image.
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Augmentation
Augmentation is one of the policies employed in computer vision to alleviate data
limitation challenge. Data augmentation is mostly used in deep learning where there is a
need for extensive data size for deep learning model to learn the representative feature
appropriately from the data sample when training the network. Data augmentation could
be implemented on the fly or off the fly. This work implements off the fly techniques using
the augmentor module in python3 for data balancing among the classes.

Experimental databases
(1) Binghamton University 3D Facial Expression (BU-3DFE): BU-3DFE (Yin et al., 2006)
is a controlled static dataset that captured real-world challenges. It consists of 2,00 data
collected form 100 subjects. Each of the subjects produced four images for each of the
six basic emotion classes (Anger, Disgust, Fear, Happy, Sadness, Surprise) with their
respective intensity annotated with ordinal metrics. BU-3DFE is the only FER dataset that
considers ordinal intensity annotation in the database to the best of our knowledge.

(2) Cohn Kanade Extention (CK+): CK+ (Lucey et al., 2010) is a sequence dataset and
well-annotated into seven basic expression classes (Anger, Disgust, Contempt, Fear,
Happy, Sadness and Surprise). It is made up of 327 sequence data collected from 118
subjects. A subject produced an emotion sequence for each of the seven basic emotions
starting from the neutral face (offset) to the onset and apex. CK+ is a popular dataset for
facial intensity estimation, and for this study, the data is organised following the flow
of changes in the sequence to have an ordinal label in substitute for the onset, offset and
apex. The sequence of expression for each subject is categorised into four ordinal
intensities {Low, Normal, High, and V High} according to the observed changes. This
implies that each emotion will have four sub-classes tagged with the emotion and each of
the ordinal intensities. For instance, a subject with an anger expression sequence would be
grouped into AngerLow, AngerNormal, AngerHigh and AngerVery High. The
arrangement makes CK conform to the ordinal intensity arrangement in BU-3DFE
datasets.

Experiment procedures
This section evaluates the proposed ML-CNN model and the comparative study of its
performance with the existing multilabel models. BU-3DFE and CK+ data are the set of
databases employed for the experiments. After pre-processing, each of the raw data was
scaled to a uniform size of 96 × 96. The pixel values were divided by 255 to ensure
data scale normalisation. The datasets are partitioned into the training set (70%), the
validation set (20%), and the remaining 10% is the testing set. The experiment was
conducted using OpenCV, Scikit-learn, Keras with TensorFlow 2.0 backend. All the
required software were installed on High-Performance Computing (HPC) hardware
resources at the Center for High-Performance Computing (CHPC).

Evaluation of ML-CNN model begins with training procedure. The model was first
trained on the training data division and evaluated on the validating data severally with
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some modifications to the model parameters to minimise the model’s over-fitting.
Adam optimiser with initial learning rate of 0.001 is used. Initially, we consider the
model’s performance evaluation on the BU-3DFE data with a data size of 2,400. We also
extend the experiment to observed the system performance when the training data is
augmented. The augmentation is implemented offline to ensure data balance among the
classes. Here, we evaluate the system performance on both BU-3DFE and CK+ datasets.
We also observed the transfer learning optimisation technique on the model by fine-tuning
the model with a pre-trained VGG-16 CNN network model. We employ accuracy and
the loss (binary cross entropy and island loss) metrics for the model performance
evaluation on the testing data in each of the described experiment.

The other phase of our experiment is a comparative study of the ML-CNN and four
different other multi-label algorithms: RAKELD (Distinct Random k-Label sets)
(Tsoumakas, Katakis & Vlahavas, 2011), classifier chain (CC) (Read et al., 2009), MLkNN
(Multilabel k Nearest Neighbour) (Zhang & Zhou, 2007) and MLARAM (Benites &
Sapozhnikova, 2015). To avoid bias, the algorithms were implemented in the same
environment and executed on similar datasets with fair consideration by using multilabel
performance evaluation metrics. Gaussian Naive Bayes is the based classifier in
RAKELD, the base classifier for CC is the random forest, while kNN is used as the base
classifier for MLkNN nearest neighbour k is set to 10, and smoothing parameter is 1.
The multilabel metrics used for our models’ comparative studies with other models include
average precision, hamming loss, coverage error, and ranking loss. The following section
contains a brief discussion of each of the listed multilabel metrics.

Evaluation metrics
Hamming Loss: is computed using the XOR operator as the loss between the predicted
and actual labels. The Hamming loss is defined in Eq. (6).

H ¼ 1
jNj:jLj

XjNj

i¼1

XjJj
j¼1

XORðyi;j; ŷi;jÞ (6)

Ranking Loss: computes the average of the incorrectly ordered labels. The smaller the
Ranking loss, the better the performance of the model. The Ranking loss is defined in
Eq. (7).

Ranklossðy; f̂ Þ ¼ 1
N

XN�1

1¼0

jjyijj0
1

k� jjyijj0
jZj (7)

where k is the number of labels and Z is (m,n): f̂ i,m ≥ f̂ i,n, yi,m = 1, yi,n = 0
Average Precision: is the number of higher-ranked labels that are true for each

ground-truth label. The higher the Average precision value, the better the performance of
the model. The ranking average precision is defined in Eq. (8).
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LRAP ¼ 1
N

XN�1

i¼0

1
jjyjj0

X
j:yi;j¼1

jLi;jj
Ri; j

(8)

where Li,j = K: yi,k=1,̂f i,k ≥ f̂ i,j and |.| is the cardinality of the set.
Coverage Error: computes the number of labels required to included all the correct

labels in the final prediction. The smaller the value, the better the model performance of
the model. The Coverage error is defined in Eq. (9).

Coverageðy; f̂ Þ ¼ 1
N

XN�1

i¼0

maxranki;j (9)

where ranki,j is—{k:̂f i,k ≥ fi,k—}
In addition to the comparative studies, we visually observed the model prediction

output and compared the degree of intensity predicted for each expression with the truth
label.

EXPERIMENTAL RESULTS AND DISCUSSION
The experiments’ results are summarised in the figures and the tables below. The
experiments first observe ML-CNN model’s performance and the optimisation technique
adopted on both the BU-3DFE and CK+ datasets. We use accuracy and the loss function
as the model evaluation metrics. Observations showed that ML-CNN based model
provides a training accuracy of 95% and validation accuracy of 88.56%, training loss and
validation loss of 0.142 and 0.3534, respectively. Augmentation of training data improves
ML-CNN performance with about 2% increase in training accuracy and almost 4%
increase in validation accuracy. The result obtained by fine-tuning ML-CNN with VGG
network improves the model performance with validation accuracy close to 8%. The
summary of these results is presented in Table 2. Table 2 shows that our model

Table 2 The tabular presentation of ML-CNN and VGGML-CNN performance evaluation Using
accuracy and aggregate loss on BU-3DFE and CK+ datasets, and their comparison with some
existing methods. In the table, metric with ↑ indicates that the higher the metric value the better the
model performance, and metric with ↓ indicates that the lower or smaller the value of the metric the
better the model performance.

ML-Models Database Accuracy ↑ Aggregate loss ↓

ML-CNN BU-3DFE 88.56 0.3534

AUG_BU-3DFE 92.84 0.1841

CK+ 93.24 0.2513

VGGML-CNN Bu-3DFE 94.18 0.1723

AUG_BU-3DFE 98.01 0.1411

CK+ 97.16 0.1842

Kamarol et al. (2017) CK+ 82.4 NA

Walecki et al. (2015) CK+ 94.5 NA

Quan, Qian & Ren (2014) CK+ 88.3 NA
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outperforms some existing methods on facial expression recognition and intensity
estimation. Although the methods in consideration either recognised expression before the
intensity estimation or model the intensity estimation before expression recognition,
which is quite different from our model that recognises expression and intensity
concurrently.

The outcomes of our comparative studies of ML-CNN models with some other
multilabel algorithms are presented in Tables 3–5. It is evident from the tables that our
proposed multilabel model shows a better performance than the multilabel algorithms
considered. Table 3 indicates that ML-CNN and VGGML-CNN give outstanding
performances over RAKELD, CC, MLkNN and MLARAM when predicting emotion and
the degree of intensity BU-3DFE. Observation from Table 4 clearly showed that RAKELD,
CC, MLkNN and MLARAM degrade in performance on Augmented BU-3DFE data,
unlike ML-CNN VGGML-CNN that showed significant improvement in their
performance under similar conditions. Table 5 also shows that both VGGML-CNN and
ML-CNN outperformed other multilabel algorithms. Furthermore, Tables 6 and 7 contain
the detail predictions of each expression and intensity on the test samples of the datasets.
Figures 4 and 5 presents the multilabel confusion matrix for VGGML-CNN performance

Table 3 The result of the comparative studies of multilabel models’ performances on BU-3DFE
dataset is presented as follows. Metric with ↑ indicates the higher the metric value, the better the
model performance, and metric with ↓ indicates the lower or smaller the value of the metric the better the
model’s performance.

ML-Models Hamming loss ↓ Ranking loss ↓ Average precision ↑ Coverage ↓

RAKELD 0.4126 0.6859 0.2274 4.8137

CC 0.1807 0.8393 0.3107 4.8094

MLkNN 0.1931 0.8917 0.2634 4.9486

MLARAM 0.3045 0.6552 0.3180 3.1970

ML-CNN 0.1273 0.2867 0.5803 2.5620

VGGML-CNN 0.0890 0.1647 0.7093 1.9091

Table 4 The comparative studies of multilabel models’ performances on augmented BU-3DFE
dataset are presented as follows. Metric with ↑ indicates the higher the metric value, the better the
model performance, and metric with ↓ indicates the lower or smaller the value of the metric the better the
model’s performance.

ML-Model Hamming loss ↓ Ranking loss ↓ Average precision ↑ Coverage ↓

RAKELD 0.3858 0.7223 0.2241 4.0453

CC 0.1825 0.8948 0.2812 4.7270

MLkNN 0.1929 0.9025 0.2573 4.9623

MLARAM 0.3169 0.6963 0.3280 2.9315

ML-CNN 0.1124 0.2278 0.7216 2.2397

VGGML-CNN 0.0628 0.1561 0.8637 1.3140
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Table 5 The result of the comparative studies of multilabel models’ performances on CK+ dataset is
presented as follows. Metric with ↑ indicates the higher the metric value, the better the model perfor-
mance, and metric with ↓ indicates the lower or smaller the value of the metric the better the model’s
performance.

ML-Model Hamming loss ↓ Ranking loss ↓ Average precision ↑ Coverage ↓

RAKELD 0.3904 0.6637 0.2370 4.4435

CC 0.1489 0.6842 0.4234 4.7339

MLkNN 0.1839 0.8345 0.2965 4.7930

MLARAM 0.1951 0.4636 0.4144 3.0748

ML-CNN 0.1487 0.4161 0.5926 2.8120

VGGML-CNN 0.1393 0.3897 0.6002 1.4359

Table 6 Emotion and intensity degree predictions on BU-3DFE test samples.

EMotion and ordinal intensity Accuracy %

Anger 97.0

Disgust 98.3

Fear 97.0

Happy 100

Sadness 98.7

Surprise 98.7

Low 98.7

Normal 97.5

High 97.5

Very High 97.0

Table 7 Emotion and intensity degree prediction on CK+ test samples.

Emotion and ordinal intensity Accuracy %

Anger 98.1

Disgust 98.1

Fear 100

Happy 98.1

Sadness 100

Surprise 100

Low 96.2

Normal 83.3

High 87.0

Very High 96.3
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on both the BU-3DFE and CK+ respectively. VGGML-CNN performance is compared
with some of the recent models of FER using CK+ and BU-3DFE datasets. VGGML-CNN
shows outstanding performance on BU-3DFE, and a good result on CK+, detail of the
comparative study is presented in Tables 8 and 9.

Equity and model bias
Although BU-3DFE is static data, also regarded as data-in-the-wild, the data comprises
of subjects of different ages, ethnicity, races, and genders. Other factors that possibly
challenge FER recognition are considered in the collection of the data. The result of
the model on BU-3DFE shows that human variation factors have limited effect on the
model.

Figure 4 Multilabel confusion matrix of the VGGML-CNN on Bu-3DFE. Full-size DOI: 10.7717/peerj-cs.736/fig-4

Figure 5 Multilabel confusion matrix of the VGGML-CNN on CK+. Full-size DOI: 10.7717/peerj-cs.736/fig-5
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CONCLUSIONS
This work proposed a new approach to FER and intensity estimation. The multilabel
convolution neural network (ML-CNN) method employed problem transformation
technique and used CNN as the binary classifier to predict emotion and its
corresponding intensity estimation using ordinal metrics. For system robustness and
accuracy reliability, we used transfer learning optimisation as a trade-off for the small
data population and overfitting prevention. We modified the loss function by
introducing island loss function to enhance the model sensitivity to intraclass variation
minimisation and interclass variation maximisation. Our proposed model accurately
predicts the emotional state with the corresponding degree of intensity concurrently.
From the comparative study of ML-CNN with other multilabel algorithms, ML-CNN
shows significant performance advantage, more especially with both augmented data
and the model optimisation. Despite the excellent performance, the ML-CNN
model still finds it difficult to generalise to unseen data outside the scope of the
databases used. We suspect infiltration of person specificity, that is, personal identity
into the training time model, as the possible reason. The drawback should be considered
in the future work for a robust ML-CNN model that will generalise well with
unseen data. In addition, future work should also consider using some spontaneous
data-in-the-wild that have no hierarchical intensity organization, such as FER2013
and FER+, and dynamic FER data that would support the real-life application of the
model.

Table 9 Comparison result of VGGML-CNN with some recent models on BU-3DFE.

Model Accuracy % No of classes Target

Fernandez et al. (2019) (FERAtt) 85.15 7 Expression only

Shao & Qian (2020)
(MVFE-LightNet + Residual Convolution)

88.70 6 Expression only

Bao, Zhao & Chen (2020) (CNM) 80.63 6 Expression only

VGGML-CNN 98.01 6 Expression and intensity

Table 8 Comparison result of VGGML-CNN with some recent models on CK+.

Model Accuracy % No of classes Target

Cai et al. (2018) (IL-CNN) 94.35 7 Expression only

Li & Deng (2019) (DLP-CNN) 95.78 7 Expression only

Alenazy & Alqahtani (2020) (DBN-GSA) 98 7 Expression only

Xu et al. (2020) (CCNN) 91.50 6 Expression and intensity

Chen et al. (2020) LDL-ALSG 93.08 7 Expression distribution

ML-CNN 93.24 6 Expression and intensity

VGGML-CNN 97.16 6 Expression and intensity
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