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ABSTRACT
Global routing is an important link in very large scale integration (VLSI) design.
As the best model of global routing, X-architecture Steiner minimal tree (XSMT) has
a good performance in wire length optimization. XSMT belongs to non-Manhattan
structural model, and its construction process cannot be completed in polynomial
time, so the generation of XSMT is an NP hard problem. In this paper, an
X-architecture Steiner minimal tree algorithm based on multi-strategy optimization
discrete differential evolution (XSMT-MoDDE) is proposed. Firstly, an effective
encoding strategy, a fitness function of XSMT, and an initialization strategy of
population are proposed to record the structure of XSMT, evaluate the cost of XSMT
and obtain better initial particles, respectively. Secondly, elite selection and cloning
strategy, multiple mutation strategies, and adaptive learning factor strategy are
presented to improve the search process of discrete differential evolution algorithm.
Thirdly, an effective refining strategy is proposed to further improve the quality of
the final Steiner tree. Finally, the results of the comparative experiments prove that
XSMT-MoDDE can get the shortest wire length so far, and achieve a better
optimization degree in the larger-scale problem.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Discrete differential evolution, Steiner minimal tree, Non-Manhattan architecture,
Global routing, Multi-strategy optimization

INTRODUCTION
At present, very large scale integration (VLSI) technology is developing at a high speed.
Initially, the model to solve global routing problem was based on Manhattan structure
(Held et al., 2017; Siddiqi & Sait, 2017; Chu &Wong, 2007). There are two ways to connect
each pin in this structure, which are horizontal direction and vertical direction. In the
development of this structure, limitation of the interconnect wire length optimization
appeared, and in the actual situation, there is still a lot of optimization space for wire length
of the Steiner minimum tree (SMT). Wire length has a decisive influence on the chip
performance. Based on this situation, non-Manhattan structure, which can make full use
of the routing resources and shorten the wire length, has become the mainstream model of
global routing (Zhu et al., 2020; Zhuang et al., 2020; Zhang et al., 2020b).
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X-architecture Steiner minimal tree (XSMT) is a representative model of non-
Manhattan structure (Coulston, 2003; Chiang & Chiang, 2002). The SMT problem is to
find a minimum connection tree under a given set of pins by introducing additional
Steiner points (Liu et al., 2015c). Because SMT cannot be constructed in polynomial time,
how to quickly and effectively construct an SMT is a key issue to be solved in VLSI
manufacturing process (Liu et al., 2015b, 2019). A heuristic search algorithm has a strong
ability to solve NP-hard problem (Liu et al., 2018, 2020a). As a typical heuristic search
algorithm, the differential evolution (DE) algorithm has shown good optimization effect in
many practical engineering problems. Therefore, based on the DE algorithm, this paper
designs relevant strengthening strategies to construct XSMT.

DE is a global optimization algorithm proposed by Storn & Price (1997). Each particle in
DE corresponds to a solution vector, and the main process is composed of three steps:
mutation, crossover, and selection. DE algorithm has many advantages, such as robustness,
reliability, simple algorithm structure and few control parameters, etc., and it has been
widely applied in global optimization (Zhao et al., 2020; Ge et al., 2017), artificial
intelligence (Zhao et al., 2021; Tang, Zhang & Hu, 2020), bioinformatics (Zhang et al.,
2020a), signal processing (Yin et al., 2020; Zhang et al., 2017), machine design (Zhou et al.,
2018), and other fields (Ren et al., 2019; Tang et al., 2020b). Generation strategy of trial
vector and setting method of control parameters will greatly affect the performance of DE
algorithm. Many scholars have improved DE algorithm in these directions, and it has
made great progress in recent years. DE was originally proposed for continuous problems
and can not be directly used to solve discrete problems such as XSMT; therefore, this paper
explores and formulates a discrete differential evolution (DDE) algorithm for solving
XSMT problems.

For this reason, this paper proposes a X-architecture Steiner minimal tree algorithm
based on multi-strategy optimization discrete differential evolution (XSMT-MoDDE).
Firstly, we design an encoding strategy, a fitness function of XSMT, and a population
initialization strategy based on Prim algorithm for DDE algorithm to record the structure
of XSMT, evaluate XSMT and obtain high quality initial solution, respectively. Secondly,
we design an elite selection and cloning strategy, a multiple mutation strategy, and an
adaptive learning factor strategy to optimize the search process. At the end of the
algorithm, an effective refining strategy is proposed to improve the quality of the final
XSMT.

RELATED WORK
Research status of RSMT and XSMT
Optimizing the wire length of SMT is a popular research direction, and there are many
important research achievements. In Tang et al. (2020a), three kinds of sub problems and
three kinds of general routing methods in Steiner tree construction were analyzed, and
the research progress in two new technology modes was analyzed (Tang et al., 2020a).
Chen et al. (2020a) introduced five commonly used swarm intelligence technologies and
related models, as well as three classic routing problems: Steiner tree construction, global
routing, and detailed routing. On this basis, the research status of Steiner minimum tree
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construction, wire length driven routing, obstacle avoidance routing, timing driven
routing, and power driven routing were summarized (Chen et al., 2020a). In Liu et al.
(2011), Rectilinear Steiner Minimal Tree (RSMT) based on Discrete Particle Swarm
Optimization (DPSO) algorithm was proposed to effectively optimize the average wire
length (Liu et al., 2011). Liu et al. (2014a) proposed a multi-layer obstacle avoidance RSMT
construction method based on geometric reduction method (Liu et al., 2014a). Zhang,
Ye & Guo (2016) proposed a heuristic for constructing a RSMT with slew constraints to
maximize routing resources over obstacles (Zhang, Ye & Guo, 2016).

Teig (2002) adopted XSMT, which is superior to RSMT in terms of average wire length
optimization (Teig, 2002). In Zhu et al. (2005), an XSMT construction method was
proposed by side substitution and triangle contraction methods (Zhu et al., 2005). Liu et al.
(2020c) constructed a multi-layer global router based on the X-architecture. Compared
with other global routers, it had better performance in overflow and wire length (Liu et al.,
2020c). Liu et al. (2015c) proposed a PSO-based multi-layer obstacle-avoiding XSMT,
which used an effective penalty mechanism to help particles to avoid obstacles (Liu et al.,
2015c). In Liu et al. (2020b), a novel DPSO and multi-stage transformation were used
to construct XSMT and RSMT. The simulation results on industrial circuits showed that
this method could obtain high-quality routing solutions (Liu et al., 2020b). Chen et al.
(2020b) proposed an XSMT construction algorithm based on Social Learning Particle
Swarm Optimization (SLPSO), which can effectively balance the exploration and
exploitation capabilities (Chen et al., 2020b).

The present situation of DE and DDE algorithm
DE algorithm has high efficiency and powerful search ability in solving continuous
optimization problems. In the past 20 years after its emergence, many scholars have
proposed improved versions of DE algorithm. These improvements better balance the
exploitation and exploration ability of DE, and show strong optimization ability on many
problems.

An Self-adaptive DE (SaDE) algorithm was proposed in Qin, Huang & Suganthan
(2008). In different stages of the evolution process, the value of control parameters is
adjusted according to experience, which saves the trial and error cost of developers in
the process of adjusting parameters (Qin, Huang & Suganthan, 2008). Rahnamayan,
Tizhoosh & Salama (2008) proposed an algorithm for accelerating DE, using opposition-
based DE and opposition-based learning methods to initialize population and realize
generation jumping to accelerate convergence of DE. Subsequently, Wang, Wu &
Rahnamayan (2011) proposed an improved version of accelerated DE, which could be
used to solve high-dimensional problems.Wang, Cai & Zhang (2011) proposed Composite
DE (CoDE). The algorithm proposed three generation strategies of trial vector and
three control parameter settings, and randomly combined the generation strategies and
control parameters. The experimental results showed that the algorithm had strong
competitiveness (Wang, Cai & Zhang, 2011). Wang, Zeng & Chen (2015) combined
adaptive DE algorithm with Back Propagation Neural Network (BPNN) to improve its
prediction accuracy.
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DDE algorithm is a derivative of DE, which can solve discrete problems. Many existing
results have applied DDE algorithm to solve practical problems. In Pan, Tasgetiren & Liang
(2008), DDE was used to solve the permutation flow shop scheduling problem with the
total flow time criterion. For the total flow time criterion, its performance is better than the
PSO algorithm proposed by predecessors (Pan, Tasgetiren & Liang, 2008). In Tasgetiren,
Suganthan & Pan (2010), an ensemble of DDE (eDDE) algorithms with parallel populations
was presented. eDDE uses different parameter sets and crossover operators for each
parallel population, and each parallel parent population has to compete with the offspring
populations produced by this population and all other parallel populations (Tasgetiren,
Suganthan & Pan, 2010).Deng & Gu (2012) presented a Hybrid DDE (HDDE) algorithm for
the no-idle permutation flow shop scheduling problem with makespan criterion. A new
acceleration method based on network representation was proposed and applied to HDDE,
and the local search of the inserted neighborhood in HDDE was effectively improved to
balance global search and local development (Deng & Gu, 2012).

PRELIMINARIES
XSMT problem
Unlike the traditional Manhattan structure, which only has horizontal and vertical
connections, two connection methods of 45 and 135 are added to the XSMT problem
(Liu, Chen & Guo, 2012; Liu et al., 2015a). This paper introduces the concept of
Pseudo-Steiner (PS) point (Definition 1). The PS point exists in two interconnected pins.
The fixation of PS point determines the connection method (Definition 2-5) of two pins.

An example of XSMT problem model is as follows. In a given set of pins {p1, p2,…, pn},
pi represents the i − th pin to be connected, and the corresponding coordinate is
(xi, yi). Given 5 pins, the corresponding coordinates are shown in Table 1, and the
corresponding pin layout is shown in Fig. 1.

Definition 1 Pseudo-Steiner point. Except for pin points, other join points are called Pseudo-
Steiner points, denoted as PS points.

Definition 2 Selection 0. As shown in Fig. 2A, draw the vertical edge from A to point PS, and
then draw the X-architecture edge from PS to B.

Definition 3 Selection 1. As shown in Fig. 2B, draw the X-architecture edge from A to point
PS, and then draw the vertical edge from PS to B.

Definition 4 Selection 2. As shown in Fig. 2C, draw the vertical edge from A to PS, and then
draw the horizontal edge from PS to B.

Definition 5 Selection 3. As shown in Fig. 2D, draw the horizontal edge from A to PS, and
then draw the vertical edge from PS to B.

Differential evolution algorithm
DE algorithm is a heuristic search algorithm based on modern intelligence theory.
The particles of population cooperate and compete with each other to determine the search
direction.
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The update process of DE
Initialization of the population: N particles are randomly generated, and the dimension
of each particle is D. For example, X0

i represents the particle i, XL is the lower limit

Figure 1 Distribution of pins. Full-size DOI: 10.7717/peerj-cs.473/fig-1

Table 1 Coordinate information of pins.

Pin p1 p2 p3 p4 p5

Coordinate (01,22) (05,05) (12,10) (18,03) (22,16)

Figure 2 Four selections for connection method. (A) Selection 0; (B) selection 1; (C) selection 2;
(D) selection 3. Full-size DOI: 10.7717/peerj-cs.473/fig-2
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of D-dimensional particles, and XH is the upper limit of D-dimensional particles.
The corresponding initialization method is as follows:

X0
i ¼ XL þ randamð0; 1Þ � ðXH � XLÞ (1)

Mutation operator: In the process of the g-th iteration, mutation operator randomly
select three particles Xg

a , X
g
b , and Xg

c in the population which are different from each other,
and generate particles Vg

i according to the following mutation formula:

Vg
i ¼ Xg

a þ F � ðXg
b � Xg

c Þ (2)

where F is a learning factor, F ∈ [0,2].
Crossover operator: In the process of crossover, the value of each dimension is selected

from Particle Xg
i or Particle V

g
i . The probability of selection is cr. The formula of crossover

is as follows:

uji ¼ vji randð0; 1Þ � cr
xji else

�
(3)

where j represents the dimension, cr is the crossover probability, cr ∈ [0,1].
Selection operator: It adopts greedy strategy in the process of selection, that is, selecting

the particle with the optimal adaptive value. The formula is as follows:

Xðgþ1Þ
i ¼ Vg

i f ðVg
i Þ < f ðXg

i Þ
Xg
i else

�
(4)

where the value of Function f(X) represents the fitness value of Particle X, and the fitness
function definitions for each problem are different.

The flow of DE algorithm
Step 1. Initialize the population according to Eq. (1), and initialize the parameters of DE
algorithm.

Step 2. Calculate the fitness value of each particle in the population according to fitness
function.

Step 3. During each iteration, mutation operation is performed on particles according to
Eq. (2) or other mutation operators to produce mutated particles.

Step 4. Check whether the algorithm reaches the termination condition. If so, the
algorithm is terminated. Otherwise, return to Step 2 and update the related parameters.

XSMT-MODDE ALGORITHM
Encoding strategy
Property 1. The encoding strategy of edge-point pairs is suitable for DDE algorithm, and it
can well record the structure of XSMT.

Suppose there are n pin points in the pin graph, and the corresponding Steiner tree
has n − 1 edges and n − 1 PS points. Number each pin, determine an edge by recording two

Liu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.473 6/28

http://dx.doi.org/10.7717/peerj-cs.473
https://peerj.com/computer-science/


endpoints, and add a bit to record selection method of edge. Finally, a bit is added at the
end to represent the fitness value of the particle, and the final encoding length is
3� n� 1ð Þ þ 1. The Steiner tree corresponding to pins in Table 1 is shown in Fig. 3, and
the corresponding encoding is: 1 3 1 2 3 0 4 5 0 3 4 3 46.284.

Fitness function
Property 2. The wire length of XSMT is a key factor that affects global routing results, and
the fitness value based on the wire length of XSMT can make the algorithm go in the
direction of optimal wire length to the greatest extent.

In an edge set of a XSMT, all edges belong to one of the following four types: horizontal,
vertical, 45° diagonal and 135° diagonal. Rotate a 45° diagonal counterclockwise 45° to
form a vertical line and a 135° diagonal counterclockwise 45° to form a horizontal line,
so that the four types of edges can be replaced by two types. Make the starting point
number of all edges smaller than the ending point number, and then sort all edges
according to the starting point number, and subtract the overlapping part of the edges.
At this time, the total wire length of XSMT can be obtained.

The excellence of XSMT is determined by the total wire length. The smaller the wire
length is, the higher the excellence of XSMT will be. Therefore, fitness value measured by
XSMT-MoDDE is total wire length of particle. The fitness function of XSMT-MoDDE is
shown in Eq. (5).

fitnessðTxÞ ¼
X

ei2Tx
lengthðeiÞ (5)

Initialization
Property 3. Prim algorithm can search an edge subset, which not only includes all the
vertices in a connected graph, but also minimizes the sum of the weights of all the edges
in subset. Selecting different starting points can get the same weight but different edge
subsets. Prim algorithm is used to initialize population, so that particles in population have
diversity and the solution space can be reduced at the same time.

Figure 3 Steiner tree. Full-size DOI: 10.7717/peerj-cs.473/fig-3
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Traditional DE algorithm directly uses Eq. (1) to initialize the population. However, for
XSMT, if the random strategy is used to initialize each particle (i.e., randomly select a point
as root, and use backtracking method to randomly select edges to build a legal tree),
will lead to the problem that the solution space is too large to converge well. Therefore, this
paper uses Prim algorithm to construct Minimum Spanning Tree (MST) to initialize
population. The weight of each edge in MST is determined by Manhattan distance between
each two pins. Each particle randomly selects a starting point s to generate a MST and
randomly select a connection method for each edge of MST.

The relevant pseudo code is shown in Algorithm 1, where T is edge set of MST, s is
starting point, U is point set of MST, V is pin set, P is population, and N is population size.

Algorithm 1 Initialization strategy based on the Prim algorithm.

Require: V, N

Ensure: P

1: function PRIMALGORITHM(V)

2: s ) random()/(maxnum+1)×n+1

3: U ){s}

4: T ) 0

5: while (U! = V) do

6: choose point i ∈ U

7: mincost ) ∞

8: for k ∈ V − U do

9: if cost(i, k) < mincost then

10: mincost )cost(i, k)

11: j ) k

12: end if

13: end for

14: T ∪ {(i, j)}

15: U ∪ {j}

16: end while

17: return T

18: end function

19:

20: function GENERATEPOPULATION(V, N)

21: for i ) 1 to N do

22: T ) PRIMALGORITHM(V)

23: P ∪ {T}

24: end for

25: return P

26: end function
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From Lines 1–18 is the function to generate MST. Lines 2–3 randomly select a starting
point s and add it to the set U. Line 4 initializes the edge set T. Line 6 selects a visited
point i from the set U, and Line 7 sets the minimum cost to infinity. Lines 8–13 select a
unvisited point j from the adjacent points of point i, the edge ij with the least cost will be
selected and added to set T, and the point j is marked as visited and added to set U.
The MST algorithm ends when the set U is the same as the set V, and Line 17 returns a
randomly generated MST. Lines 21–24 construct the population, and the initial particle is
an MST generated by function PRIMALGORITHM.

Elite selection and cloning strategy
Property 4. This strategy proposes two particle mutation strategies based on set, which can
mutate elite particles in a very short time. The elite particles are cloned and mutated, and the
optimal particle is selected based on greedy strategy to construct a elite buffer with high
quality in a short time.

Brief description
The elite selection and cloning strategy consists of four steps: selection, cloning, mutation,
and extinction. Part of particles in the population are selected as elite particles, and
then the elite particles are cloned to form cloned population. Cloned particles randomly
mutate into mutated particles. Mutated particles are selected to enter the elite buffer
according to extinction strategy. The elite buffer has the same size as the population and
participates in the subsequent process of DE.

The elite selection and cloning strategy can effectively expand the search range of DDE,
improve the global search ability of the algorithm, avoid falling into local peaks to a certain
extent, and prevent the algorithm from premature convergence.

Algorithm flow

(1) Selection: Sort population according to fitness value, and select the first n particles to
form an elite population, n = k × N. k is elite ratio, and the best result can be obtained when
k is selected as 0.2 after experimental verification.

(2) Cloning: Clone the particles of the elite population to form a cloned population C.
The number of cloned particles is calculated according to Eq. (6).

Ni ¼ round
N
i

� �
(6)

where i is rank of the particle in original population, and round() is rounding down
function.

(3) Mutation: The mutation strategy adopts connection method mutation or topology
mutation, and two strategies are shown in Fig. 4. Figure 4A shows the mutation process of
connection method. The connection method of Line AB is changed from selection 3 to
selection 0. Figure 4B shows the mutation process of topology. Line AB is selected to be
disconnected and then connected to Line BC. Each cloned particle is assigned to a
mutation strategy to form a mutated particle.
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For particles that adopt connection method, randomly select a edges, and the value of a
is determined according to the number of edges, as shown in Eq. (7), where n is the
number of pins. Then change the connection method of the selected edge.

a ¼ max 1; round
n� 1
10

� �� �
(7)

For particles that adopt topology mutation, one edge is randomly disconnected in
XSMT to form two sub-XSMTs, and then respectively select a point from the two sub-
XSMTs to connect. This process adopts the idea of Disjoint Set Union (DSU) to ensure
that a legal tree is obtained after mutation.

(4) Extinction: Select the trial elite particle mbest with the best fitness value in the
mutated population. If f mbestð Þ is better than f gbestð Þ, then mbest will be added to the
elite buffer, and all other particles will die, otherwise, all particles in the mutation
population will die. If the elite buffer is full, the particle with the worst fitness value will be
popped and new particle will be pushed.

The pseudo code of the elite selection and cloning strategy is shown in Algorithm 2,
where S represents elite population, M represents mutated population, the inputs are
Population P and its size, and the output E represents the elite buffer. Lines 1–9 are
selection function, Line 2 calculates the number n of elite particles, Line 3 initializes the
Set S, Line 4 establishes a minimum heap according to the fitness value of the population
particles, and Lines 5–6 take n elite particles from the top of the minimum heap in turn.

Figure 4 Two ways of mutation. (A) Connection method mutation; (B) topology mutation.
Full-size DOI: 10.7717/peerj-cs.473/fig-4

Liu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.473 10/28

http://dx.doi.org/10.7717/peerj-cs.473/fig-4
http://dx.doi.org/10.7717/peerj-cs.473
https://peerj.com/computer-science/


Lines 11–28 are the processes of cloning, mutation and extinction. Line 12 initializes Set E,
Line 14 initializes Set M, Line 15–20 are cloning and mutation process, Line 15 clones
elite particles, Line 16 selects a mutation strategy randomly, and Line 20 adds mutated elite
particles to Set M. Lines 22–23 construct two minimum heaps through Set P and Set M.
Line 24 compares the tops of the two minimum heaps to determine whether the trial
elite particles are saved or died.

Algorithm 2 Elite selection and cloning strategy.

Require: P, N

Ensure: E

1: function SELECTION(P)

2: n ) k × N

3: S ) 0

4: H ) heap(P)

5: for i )1 to n do

6: S ∪ H.top()

7: end for

8: return S, n

9: end function

10:

11: function CLONEMUTATIONANDEXTINCTION(S, n)

12: E ) 0

13: for i ) 1 to n do

14: M ) 0

15: for j ) 1 to n/i do

16: method )random(0,1)

17: if method == 0 then m ) connection_method_mutation()

18: else m ) topology_mutation()

19: end if

20: M ∪ m

21: end for

22: H1 ) heap(M)

23: H2 ) heap(P)

24: if H1.top() < H2.top() then E ∪ H1.top()

25: end if

26: end for

27: return E

28: end function
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Novel multiple mutation strategy
Property 5. The three novel mutation strategies proposed in this paper introduce the idea
of set operations. Under the premise of reasonable computing time, through adjusting
edge set of current particle and edge set of other particle, some substructures in XSMT are
changed to search for a better combination of substructures.

In DE algorithm, there are six commonly used mutation strategies (Epitropakis et al.,
2011), and each strategy uses different basis vectors and differential vectors. The mutation
formulas are shown below.

Vg
i ¼ Xr1

g þ FðXr2
g � Xr3

gÞ (8)

Vg
i ¼ Xr1

g þ F1ðXr2
g � Xr3

gÞ þ F2ðXr4
g � Xr5

gÞ (9)

Vg
i ¼ Xbest

g þ FðXr1
g � Xr2

gÞ (10)

Vg
i ¼ Xbest

g þ F1ðXr1
g � Xr2

gÞ þ F2ðXr3
g � Xr4

gÞ (11)

Vg
i ¼ Xg

i þ FðXbest
g � Xg

i Þ (12)

Vg
i ¼ Xr0

g þ F1ðXbest
g � Xr0

gÞ þ F2ðXr1
g � Xr2

gÞ (13)

where Xg
r represents a random particle in population, Xg

best represents the global optimal
solution, and F represents learning factor.

Two operating rules

In XSMT-MoDDE algorithm, a particle represents a XSMT. Addition and subtraction
operations in the above mutation formulas cannot be directly used in discrete problems.
This paper defines two new calculation methods (Definition 6–7).

A is the edge set of particle X1, B is the edge set of particle X2, and the full set is A ∪ B.
There are two definitions as follows:

Definition 6 A� B.� is expressed as finding the symmetric difference of A and B, which
is (A ∪ B) − (A ∩ B), as shown in Fig. 5A.

Definition 7 A� B. First calculate Set C, C = A − B, and then add the edges of Set B to Set
C until Set C can form a legal tree, as shown in Fig. 5B.

Three mutation strategies
In Mutation Strategy 1, basis vector is selected as current particle, and there are two
differential vectors. The differential vector of the first stage is generated by the difference
between the current particle and the corresponding local historical optimal particle, and
Particle T is obtained by Eq. (14). The differential vector in the second stage is generated by
the difference between Particle T and the global optimal particle, and target mutated
Particle Vg

i is obtained by Eq. (15).

Liu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.473 12/28

http://dx.doi.org/10.7717/peerj-cs.473
https://peerj.com/computer-science/


T ¼ Xg
i � F Xg

pbest�Xg
i

� �
(14)

Vg
i ¼ T � F Xg

gbest�T
� �

(15)

In Mutation Strategy 2, basis vector is still current particle, and there are two differential
vectors. The differential vector in the first stage is generated by the difference between
random particle and the corresponding local historical optimal particle, and Particle T is
calculated by Eq. (16). The differential vector in the second stage is generated by the
difference between the random particle and global optimal particles, and target mutated
Particle Vg

i is obtained by Eq. (17).

T ¼ Xg
i � F Xg

pbest�Xg
r

� �
(16)

Vg
i ¼ T � F Xg

gbest�Xg
r

� �
(17)

In Mutation Strategy 3, basis vector is current particle, and the differential vector is
generated by the difference between the current particle and random particle in the
population, and the mutated Particle Vg

i is obtained by Eq. (18).

Figure 5 Operation process of two new operators. (A) A⊙B; (B) A4B.
Full-size DOI: 10.7717/peerj-cs.473/fig-5
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Vg
i ¼ Xg

i � F Xg
i �Xg

r

� 	
(18)

Mutation Strategy 1 can make particles obtain the partial structure of global optimal
particle and the historical local optimal particle, and inherit the characteristics of the
two optimal particles, which is a greedy strategy. The implementation of Mutation Strategy
3 can expand the search space and make the mutation direction completely get rid of the
structure of the optimal particles, which is suitable for the early stage of iteration and
increases the exploration ability of the algorithm. The exploratory ability of Mutation
Strategy 2 is between Mutation Strategy 1 and Mutation Strategy 3.

In multiple mutation strategy, the iterative process is divided into two stages by
setting a threshold. Three mutation strategies in the early stage are selected with equal
probability, and the Mutation Strategy 3 is cancelled in the later stage. The pseudo-code of
multiple mutation strategy is shown in Algorithm 3, where P represents population, N
represents the size of the population, m represents the number of iterations, t represents
threshold, and V represents mutated population. Line 5 judges whether the current
iteration is in the early stage of the iteration. If it is in the early stage of the iteration,
Mutation Strategy 1, Mutation Strategy 2, and Mutation Strategy 3 are adopted. Line 6
determines whether the current iteration is in the later stage of the iteration. If it is in the
latter stage, Mutation Strategy 1 and Mutation Strategy 2 are adopted.

Algorithm 3 Multiple mutation strategy.

Require: P, N, m, e

Ensure: V

1: function MUTIMUTATION(P, N, m, t)

2: V ) 0

3: for i ) 1 to m do

4: for j ) 1 to N do

5: if i <= t ×N then s ) random(1,2,3)

6: else s ) random(1,2)

7: end if

8: if s == 1 then v ) Mutation1(P[ j])

9: else if s == 2 then v ) Mutation2(P[ j])

10: else if s == 3 then v ) Mutation3(P[ j])

11: end if

12: V[ j] ) v

13: end for

14: end for

15: return V

16: end function
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Adaptive learning factor
Property 6. Learning factor is a key parameter to determine the performance of DDE
algorithm, which has a decisive influence on the exploitation and exploration ability of
algorithm. This paper proposes an adaptive learning factor based on set operation for the
first time to effectively balance the search ability of XSMT-MoDDE algorithm.

Operating rule for learning factors
As shown in Eq. (2), the learning factor F acts on the difference vector and controls the
global search capability of DDE algorithm (Wang et al., 2014; Gong et al., 2010; Brest et al.,
2006). In discrete problems, simple multiplication operation cannot be used. This paper
redefines the * operation in Eq. (2).

Definition 8 F � Xg
best�Xg

r
� 	

F < 1. Randomly eliminate n edges {e1, e2,…, en} from the
edge set of difference particles, where ei 2 Xg

best and ei=2Xg
i , and the value of n is calculated by

Eq. (19).
Definition 9 F � Xg

best�Xg
r

� 	
F > 1. Randomly eliminate n edges {e1, e2,…, en} from the

edge set of difference particles, where ei 2 Xg
i and ei=2Xg

best , and the value of n is calculated by
Eq. (20).

Definition 10 F � Xg
best�Xg

r
� 	

F = 1. No changes are made to the edge set.

n ¼ round 1� Fð Þ � jXg
bestj

� 	
(19)

n ¼ round F � 1ð Þ � jXg
i j

� 	
(20)

where |X| represents the number of edge of Particle X.

Adaptive update process

Each Particle Xi corresponds to the adaptive learning factor Fi, which is initialized to 1.
After each selection operation, the Parameter Fi is updated.

(1) Calculate reference Parameter r, r k× fbest + 1, where k is 0.001 and fbest is the fitness
value of the global optimal particle;

(2) Calculate difference value δ between fitness value fi of X
g
i and fitness value fbest of

Xg
best ;

(3) Update Fi, the update formula is as follows:

Fi ¼ Fi þ 0:05 D > r
Fi � 0:05 D � r

�
(21)

When the fitness value fi is close enough to fbest, reduce Fi to preserve its structure to a
greater extent, otherwise, increase Fi to expand the global search capability.

Refining strategy
Property 7. Refining strategy minimizes wire length of XSMT under the determined
topology within a reasonable time.
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There may still be space for optimization for the optimal particles at the end of iteration.
In order to search for a better result, a refining strategy is proposed. The steps of algorithm
are as follows:

(1) Calculate degree of each Point pi in the optimal particle. The degree is defined as the
number of edges connected to point, denoted as di;

(2) There are 4 kinds of edges in X-architecture. If the degree of Point pi is di, there
are 4di types of substructures corresponding to the point. The set of all substructures
corresponding to Point pi is S, and edge Set E is obtained when the substructures
corresponding to Points p1 − pi − 1 have been determined. Calculate common wire length l
between Substructure si in Set S and Set E, select Substructure si corresponding to the
largest l, and add the edges of si to the Set E. The algorithm ends until all points have been
visited.

The pseudo code of the refining strategy algorithm is shown in Algorithm 4, where
X represents the target particle obtained by the XSMT-MoDDE algorithm, n represents

Algorithm 4 Refining strategy.

Require: X, n

Ensure: R

1: function REFINING(X, n)

2: R ) 0

3: for i ) 1 to n do

4: d ) CalculateDegree(Xi)

5: Length ) 0

6: Substructure ) 0

7: for j)1 to 4d do

8: s ) GetSubstructure()

9: l ) GetCommonWireLength()

10: if l > Length then

11: Substructure ) s

12: Length ) l

13: end if

14: end for

15: for edge in Substructure do

16: if edge not in R then

17: R ∪ edge

18: end if

19: end for

20: end for

21: return R

22: end function
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the point number of XSMT, and R represents the refined particle. Line 2 initializes Set R.
Lines 3-20 search for the optimal substructure corresponding to each point. Line 4
calculates the degree of Point pi, Line 5 initializes maximum common wire length, and Line
6 initializes the optimal substructure set. Lines 7–14 calculate common wire length and
update the largest common wire length. Lines 15–19 store the edges in the optimal
substructure into Set R.

Related parameters
The main parameters of the algorithm in this paper include population size n, iteration
times m, threshold t, learning factor F, and crossover probability cr.

In the proposed algorithm, n is 50, m is 500, and t is 0.4. The adaptive strategy of
learning factor F has been described in detail in Section 3.6. The crossover probability cr
also adopts the adaptive strategy, which is as follows:

cri ¼ crl þ cru � crlð Þ fi � fmin

fmax � fmin
fi > f

crl else

8<
: (22)

where cri = 0.1, cru = 0.6, fi represents the fitness value of the current particle, fmin

represents the minimum historical fitness value, fmax represents the maximum historical
fitness value, and f represents the average historical fitness value.

The algorithm flow of XSMT-MoDDE
The algorithm flow chart of XSMT-MoDDE is shown in Fig. 6, and the detailed flow is as
follows:

1. Initialize threshold, population size, adaptive learning factor F, and adaptive crossover
probability cr.

2. Use Prim algorithm to construct initial particles and generate initial population.

3. Check the current stage: early stage or late stage of iteration.

4. Select a mutation strategy from the corresponding mutation strategy pool according to
the current stage. Obtain the mutated particles according to the mutation strategy.

5. Obtain the trial particles according to the crossover operator.

6. Obtain the next generation of particles according to the selection operator.

7. Adopt elite selection and cloning strategy, and update the elite buffer after four steps of
selection, clone, mutation, and extinction.

8. Update adaptive learning factor and adaptive crossover probability by Eqs. (21) and
(22).

9. Check the number of iterations, and end the iteration if the termination condition is
met, otherwise, return to Step (3).

10. At the end of XSMT-MoDDE algorithm, refining strategy is adopted to obtain the
target solution.
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Complexity analysis of XSMT-MoDDE algorithm
Property 8.When the population size is m and the number of pins is n, the time complexity
of one iteration is O(mnlogn).

Complexity analysis of multiple mutation operator
The mutation process is divided into two stages. First, difference vector is constructed, and
then difference vector and the basis vector are used to construct the trial particles.

Construction of difference vector: Sort the edges of two edge sets according to the
number of edge start point, and use binary search to construct the non-common edges.
The complexity of this process is O(nlog(n)), and the non-common edge set is the
difference vector.

Construction of mutation particle: Construct the difference set of basis vector and
difference vector according to the above-mentioned similar idea. Then the edges in the
difference set are stored in DSU, and edges are randomly selected from difference vector to
be added to DSU until a complete tree is constructed. The time complexity of this process
is O(nlog(n)).

Complexity analysis of elite selection and cloning strategy
Aminimum heap is established according to the fitness value of particles, and the heap top
is selected for cloning each time. The time complexity required for this process is O(n).

The mutation process adopts connection method mutation and topology mutation.
The connection method mutation selects two different edges randomly from the edge set
to modify the connection method of the edges. The time complexity required is O(1).
In topology mutation, one edge is randomly disconnected to form two sub-XSMTs, which
are recorded using the DSU. It takes O(nlog(n)) time to construct two sub-XSMTs with

Figure 6 Algorithm flowchart. Full-size DOI: 10.7717/peerj-cs.473/fig-6
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DSU, and randomly select one point from each of two sub-XSMTs to establish connection,
this process takes O(1) time.

The particles obtained by the elite selection and cloning strategy need to be stored in an
elite buffer with a size of m. The population particles and the particles of elite buffer
participate in mutation, crossover, and selection operations together.

Complexity analysis of refining strategy
The degree of Point i is recorded as di. We always keep di within 4, even if there is a
minimum probability greater than 4, only four connected edges will be considered in
refining strategy. The adjacent edges of a point select a connection method respectively to
form a substructure. An X-architecture edge has four selection methods, so one point
corresponds to 4di substructures, where 4di ≤ 256.

Refining strategy takes out the optimal particle constructed by XSMT-MoDDE
algorithm, enumerates substructures for each point of the particle, and obtain the
substructure with the largest common wire length. So for the case of n points, the required
time is

Pn
i¼1 di � 4di

� 	
.

EXPERIMENTAL RESULTS
The proposed XSMT-MoDDE has been implemented in C++ language on a windows
computer with 3.5 GHz Intel CPU. To compare the experimental results fairly, we run
all programs in the same experimental environment and use the same benchmarks from
GEO and IBM. The population size and iteration size of all heuristic algorithms are set to
50 and 500 respectively. Calculation formula of optimization rate is shown in Eq. (23).

rate ¼ b� a
b

� 100% (23)

where a is the experimental result of the XSMT-MoDDE algorithm, and b is the
experimental result of other algorithms.

Verify the effectiveness of multi-strategy optimization
Experiment 1: In order to verify the effectiveness of the multi-strategy optimization DDE
algorithm in constructing XSMT, this experiment will compare the results of XSMT-
MoDDE algorithm and XSMT-DDE algorithm. Experimental results are shown in
Tables 2 and 3. Table 2 is the optimization results of wire length, and Table 3 is the
optimization results of standard deviation. The results show that multi-strategy
optimization can achieve an average wire length optimization rate of 2.35% and a standard
deviation optimization rate of 95.69%. This experiment proves that multi-strategy
optimization has a powerful effect on wire length reduction, and at the same time
greatly increases the stability of DDE.

Verify the effectiveness of refining strategy
Experiment 2: In order to verify the effectiveness of the refining strategy, this experiment
will compare the results of refined XSMT-MoDDE algorithm and XSMT-MoDDE
algorithm. The experiment result is shown in Tables 4 and 5. Table 4 is the optimization
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results of wire length, and Table 5 is the optimization results of standard deviation.
The results show that refining strategy can achieve an average wire length optimization
rate of 0.50% and a standard deviation optimization rate of 37.30%. From the experimental
results and the above complexity analysis, it can be seen that after XSMT-MoDDE
algorithm is over, refining strategy only takes a short time to obtain a lot of optimization of
wire length and standard deviation. Regardless of whether refining strategy is added or not,
both can always obtain accurate solutions in circuits with less than 10 pins. Refining
strategy has more significant optimization effects in larger circuits.

Table 2 Average wire length optimization results of multi-strategy optimization.

Circuit Pins XSMT-DDE XSMT-MoDDE Reduction (%)

1 8 16,956 16,900 0.33

2 9 18,083 18,023 0.33

3 10 19,430 19,397 0.17

4 15 25,728 25,614 0.44

5 20 32,434 32,171 0.81

6 50 49,103 48,090 2.06

7 70 57,386 56,397 1.72

8 100 70,407 68,917 2.12

9 400 145,183 139,871 3.66

10 410 146,680 141,571 3.48

11 500 160,031 154,406 3.51

12 1,000 232,057 220,577 4.95

Average 1.97

Table 3 Standard deviation optimization results of multi-strategy optimization.

Circuit Pins XSMT-DDE XSMT-MoDDE Reduction (%)

1 8 56 0 100.00

2 9 58 0 100.00

3 10 42 0 100.00

4 15 198 10 94.95

5 20 343 51 85.13

6 50 1,036 147 85.81

7 70 1,082 102 90.57

8 100 1,905 279 85.35

9 400 3,221 120 96.27

10 410 3,222 178 94.48

11 500 3,193 139 95.65

12 1,000 3,977 106 97.33

Average 93.80
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Algorithm comparison experiment
Experiment 3: To compare the performance of XSMT-MoDDE algorithm with other
heuristic algorithms, we compare the results of XSMT constructed by MoDDE algorithm,
DDE algorithm, Artificial Bee Colony (ABC) algorithm, and Genetic Algorithm (GA).
The experimental results are shown in Tables 6, 7, and 8. XSMT-MoDDE compares with
XSMT-DDE, XSMT-ABC, and XSMT-GA, the average wire length is reduced by 2.40%,
1.74%, and 1.77%, the optimal wire length is reduced by 1.26%, 1.55%, and 1.77%, and
the standard deviation is reduced by 95.65%, 33.52%, and 28.61%. Experimental results
show that XSMT-MoDDE is better than XSMT-DE, XSMT-ABC, and XSMT-GA in both

Table 4 Average wire length optimization results of refining strategy.

Circuit Pins XSMT-DDE Refining Reduction (%)

1 8 16,900 16,900 0.00

2 9 18,023 18,023 0.00

3 10 19,397 19,397 0.00

4 15 25,614 25,624 −0.04

5 20 32,171 32,091 0.25

6 50 48,090 48,090 0.00

7 70 56,397 56,105 0.52

8 100 68,917 68,457 0.67

9 400 139,871 138,512 0.97

10 410 141,571 140,359 0.86

11 500 154,406 152,649 1.14

12 1,000 220,577 217,060 1.59

Average 0.50

Table 5 Standard deviation optimization results of refining strategy.

Circuit Pins XSMT-DDE Refining Reduction (%)

1 8 0 0 –

2 9 0 0 –

3 10 0 0 –

4 15 10 8 20.00

5 20 51 22 56.86

6 50 147 119 19.05

7 70 170 136 20.00

8 100 279 187 32.97

9 400 120 57 52.50

10 410 178 56 68.54

11 500 139 50 64.03

12 1,000 115 113 1.74

Average 37.30

Liu et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.473 21/28

http://dx.doi.org/10.7717/peerj-cs.473
https://peerj.com/computer-science/


the wire length and standard deviation indicators. Compared with other algorithms, this
algorithm still has excellent stability on the basis of having better wire length results.

Experiment 4: In the stage of global routing, there are tens of thousands of nets on the
circuit board, and pins inside net need to be interconnected. This paper uses XSMT-
MoDDE algorithm to optimize wire length of global routing. This experiment adopts the
benchmark provided by IBM, and XSMT-MoDDE algorithm, SAT algorithm, and KNN

Table 6 Comparison results of average wire length in the GEO dataset.

Circuit Pins Mean value Reduction (%)

DDE ABC GA MoDDE DDE ABC GA

1 8 16,956 16,918 16,918 16,900 0.33 0.00 0.00

2 9 18,083 18,041 18,041 18,023 0.33 0.10 0.10

3 10 19,430 19,696 19,696 19,397 0.17 1.52 1.52

4 15 25,728 25,919 25,989 25,624 0.40 1.14 1.40

5 20 32,434 32,488 32,767 32,091 1.06 1.22 2.06

6 50 49,103 48,940 48,997 48,090 2.06 1.74 1.85

7 70 57,386 57,620 57,476 56,105 2.23 2.63 2.39

8 100 70,407 70,532 70,277 68,457 2.77 2.94 2.59

9 400 145,183 141,835 141,823 138,512 4.59 2.40 2.40

10 410 146,680 143,642 143,445 140,359 4.31 2.29 2.15

11 500 160,031 156,457 156,394 152,649 4.61 2.43 2.39

12 1,000 232,057 222,547 222,487 217,060 5.90 2.47 2.44

Average 2.40 1.74 1.77

Table 7 Comparison results of best wire length in the GEO dataset.

Circuit Pins Best value Reduction (%)

DDE ABC GA MoDDE DDE ABC GA

1 8 16,918 16,918 16,918 16,900 0.11 0.11 0.11

2 9 18,041 18,041 18,041 18,023 0.10 0.10 0.10

3 10 19,415 19,696 19,696 19,397 0.09 1.52 1.52

4 15 25,627 25,627 25,897 25,605 0.09 0.09 1.13

5 20 32,209 32,344 32,767 32,091 0.37 0.78 2.06

6 50 47,987 48,637 48,783 47,975 0.03 1.36 1.66

7 70 56,408 57,227 57,445 55,919 0.87 2.29 2.66

8 100 68,829 70,382 70,092 68,039 1.15 3.33 2.93

9 400 141,967 141,490 141,467 138,382 2.53 2.20 2.18

10 410 144,033 143,310 143,282 140,179 2.68 2.18 2.17

11 500 156,950 156,034 156,110 152,591 2.78 2.21 2.25

12 1000 226,654 222,262 222,285 216,824 4.34 2.45 2.46

Average 1.26 1.55 1.77
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algorithm are used to construct XSMT. The experimental results are shown in Table 9.
Compared with SAT and KNN, XSMT-MoDDE optimizes wire length by 10.05% and
8.86% respectively. Experimental results show that XSMT-MoDDE can greatly shorten the
wire length in the construction of multi-nets XSMT problem, and provide effective
guidance for global routing.

Finally, for a better understanding the results of XSMT-MoDDE algorithm, we use
Matlab to simulate the final XSMT diagrams. We choose Circuit 11 and Circuit 12 in
Table 7 as representatives, as shown in Figs. 7A and 7B.

Table 8 Comparison results of standard deviation in the GEO dataset.

Circuit Pins Standard deviation Reduction (%)

DDE ABC GA MoDDE DDE ABC GA

1 8 56 0 0 0 100.00 – –

2 9 58 0 0 0 100.00 – –

3 10 42 0 0 0 100.00 – –

4 15 198 148 46 8 95.96 94.59 82.61

5 20 343 118 45 22 93.59 81.36 51.11

6 50 1,036 242 133 119 88.51 50.83 10.53

7 70 1,082 195 140 136 87.43 30.26 2.86

8 100 1,905 69 112 187 90.18 −171.01 −66.96

9 400 3,221 200 170 57 98.23 71.50 66.47

10 410 3,222 146 122 56 98.26 61.64 54.10

11 500 3,193 160 133 50 98.43 68.75 62.41

12 1,000 3,977 131 107 113 97.16 13.74 −5.61

Mean 95.65 33.52 28.61

Table 9 Comparison results of wire length in the IBM dataset.

Circuit Nets Pins Value Reduction (%)

SAT KNN MoDDE SAT KNN

ibm01 11,507 44,266 61,005 61,071 56,080 8.07 8.17

ibm02 18,429 78,171 172,518 167,359 154,868 10.23 7.46

ibm03 21,621 75,710 150,138 147,982 133,999 10.75 9.45

ibm04 26,263 89,591 164,998 164,828 149,727 9.26 9.16

ibm06 33,354 124,299 289,705 280,998 256,674 11.40 8.66

ibm07 44,394 164,369 368,015 368,015 335,556 8.82 8.82

ibm08 47,944 198,180 431,879 413,201 371,948 13.88 9.98

ibm09 53,039 187,872 418,382 417,543 382,282 8.63 8.44

ibm10 64,227 269,000 588,079 589,102 532,644 9.43 9.58

Mean 10.05 8.86
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CONCLUSIONS
This paper designs four optimization strategies. The first three optimization strategies are
used to strengthen DDE algorithm, and the fourth optimization strategy is used to reduce
the wire length of final particle to the greatest extent.

Elite selection and cloning strategy expands the search range and enhances the diversity of
the population particles. The elite particles are cloned and mutated, and the most excellent
particle is selected greedily. This strategy enables the algorithm to quickly converge to a
better state. Novel multi-mutation strategy introduces the idea of set operation. Through the
interaction between edge sets, the corresponding shape of XSMT is changed. Three mutation
strategies have different exploitation and exploration capabilities, and the three strategies
are used alternately to avoid the algorithm from converging to the local peak prematurely.
Adaptive learning factor dynamically adjusts and retains the ratio between the current particle
edge set and the optimal particle edge set. Effectively improve global exploitation and local
exploitation capabilities, and seek a balance between random strategy and greedy strategy.

The XSMT-MoDDE algorithm proposed in this paper uses three indicators to measure
algorithm results which are average wire length, optimal wire length, and standard
deviation as evaluation. The proposed algorithm has achieved better optimization results
compared with other algorithms. Moreover, XSMT-MoDDE has a stronger optimization
ability in circuits with large-scale circuits. It is better than the results of the SAT and
KNN algorithms in the case of multi-nets. Therefore, the XSMT-MoDDE algorithm has
good application prospect in the stage of global routing. In the future, we will study the
construction of obstacle avoidance XSMT by multi-strategy optimization DDE.
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