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Abstract Background/introduction: In contrast to the

human visual system (HVS) that applies different pro-

cessing schemes to visual information of different tex-

tural categories, most existing deep learning models for

image super-resolution tend to exploit an indiscrimi-

nate scheme for processing one whole image.

Methods: Inspired by the human cognitive mecha-

nism, we propose a multiple convolutional neural net-

work framework trained based on different textural clus-

ters of image local patches. To this end, we commence

by grouping patches intoK clusters viaK-means, which

enables each cluster center to encode image priors of

a certain texture category. We then train K convolu-

tional neural networks for super-resolution based on the

K clusters of patches separately, such that the multi-

ple convolutional neural networks comprehensively cap-

ture the patch textural variability. Furthermore, each

convolutional neural network characterizes one specific

texture category and is used for restoring patches be-

longing to the cluster. In this way, the texture varia-

tion within a whole image is characterized by assigning

local patches to their closest cluster centers, and the

super-resolution of each local patch is conducted via

the convolutional neural network trained by its clus-

ter. Our proposed framework not only exploits the deep
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learning capability of convolutional neural networks but

also adapts them to depict texture diversities for super-

resolution.

Results: Experimental super-resolution evaluations

on benchmark image datasets validate that our frame-

work achieves state-of-the-art performance in terms of

peak signal-to-noise ratio and structural similarity.

Conclusion: Our multiple convolutional neural net-

work framework provides an enhanced image super-

resolution strategy over existing single-mode deep learn-

ing models.

Keywords Clustering · Convolutional Neural Net-

works · Single Image Super-resolution

1 Introduction

In the literature of visual information processing, the

problem of single image super-resolution has been ex-

tensively investigated for the purpose of restoring a

high-resolution (HR) image from one single low-resolution

(LR) image. This problem is ill-posed because it re-

quires improving image resolution by generating details

which are not captured by an LR image. Traditional

techniques for lifting single image resolution is to ap-

ply various interpolation techniques to the LR image

and thus generate new pixels between exiting pixels

in terms of neighborhood averaging etc. Though be-

ing sufficiently efficient and able to increase image res-

olution at arbitrary scales, interpolation schemes ex-

hibit limited capability of restoring image details. The

reason for this shortcoming is that brute-force inter-

polations tend to ignore the prior knowledge regard-

ing intrinsic textural characteristics and variabilities

arising from images. Machine learning strategies, on

the other hand, can provide a solution to single image
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super-resolution in terms of training a model to char-

acterize textural details based on generic images. Var-

ious state-of-the-art machine learning strategies have

been applied to single image super-resolution for learn-

ing prior image details from generic images. For ex-

ample, Yang et al.[1,2] introduced sparse representa-

tions, which learn coupled dictionaries from high and

low resolution image patch pairs, to single image super-

resolution. To overcome the shortcoming of bicubic in-

terpolation in non-smooth region restoration, Yang et

al.[3] divided the image feature space into a large set

of subspaces and used sufficient training samples to fit

linear regression functions for each subspace. However,

linear regression functions exhibit limited representa-

tional power for high frequency priors in image sub-

spaces. To overcome this disadvantage, Timofte et al.[4]

proposed Anchored Neighbor Regression (ANR), which

characterizes exemplar neighborhoods using ridge re-

gression and then utilizes these neighborhoods to com-

pute projections from LR patches to HR patches. In

their subsequent work, Timofte et al.[5] proposed Ad-

justed ANR (A+) based on ANR and simple linear re-

gression functions. All these sparse coding strategies

tend to learn image priors based on patches cropped

from images rather than the whole images themselves,

and thus result in a mapping function which associates

a low-resolution patch with its corresponding high reso-

lution patch. Additionally, different types of image pri-

ors have been comprehensively investigated for training

an effective image restoration model. In this regard,

Yang et al.[6] classified single image super-resolution

strategies into four categories, i.e., a) prediction models,

b) edge based methods[7], c) image statistical methods[8,

9,10] and d) patch based (example based) methods[11,

12,13,14,15]. Furthermore, Yang et al.[6] also observed

that, in most cases, the patch based methods achieved

the best performance over alternative models. One com-

mon feature of these methods is that visual details,

which are key to improving image restoration qual-

ity, are comprehensively learned and characterized in

the training procedure. It is thus in both theoretical

and practical terms that machine learning schemes turn

out to be an effective approach for single image super-

resolution.

Furthermore, deep learning schemes have recently

gained significant success in broad areas such as im-

age classification [16,17,18], object recognition [19,20,

21], and object detection[22], etc. The deep learning

strategies arguably resemble the human brain mech-

anism in terms of hierarchical structures and neural

connections. Key to the effectiveness of deep learning

strategies is their capability to precisely characterize

features with multi-layer representations. Additionally,

most deep learning methods possess an end-to-end ad-

vantage which enables integrated procedures for learn-

ing. The merits of deep learning have enabled its broad

exploitation for solving challenging problems in vari-

ous research areas including image restoration. In the

literature, Jain et al.[23] are among the first to de-

velop convolutional neural networks (CNNs) for im-

proving natural image quality in terms of denoising.

Burger et al.[24] developed a different deep learning

method by utilizing fully-connected multi-layer percep-

tron (MLP) neural networks to remove noises from im-

ages. Eigen et al.[25] proposed a variety of CNNs to

remove dirts or rain patterns. These denoising prob-

lems, though concerned with restoring high-quality im-

ages, and thus highly related to image super-resolution,

are in fact aimed at noise and disturbance elimination

based on deep learning. Cui et al.[26] are among the

pioneering group of researchers who address the spe-

cific image super-resolution problem in terms of deep

learning. They proposed a so-called deep network cas-

cade (DNC), which cascades multiple stacked collabo-

rative local auto-encoders for image super-resolution.

The auto-encoder and self-similarity search process in

each layer of the cascade requires independent opti-

mization, which does not render the DNC as an attrac-

tive end-to-end method. Dong et al.[27,28] proposed

a deep learning algorithm termed super resolution us-

ing convolutional neural networks (SRCNN). They ex-

ploit deep CNNs for learning an end-to-end mapping

function between low and high resolution images. Fur-

ther recently developed super-resolution deep learning

models include the Very Deep Convolutional Networks

(VDSR) [29] and Deeply-Recursive Convolutional Net-

work (DRCN) [30]. By exploiting the representational

power of deep models, SRCNN, VDSR and DRCN achieve

state-of-the-art performance and are considered as the

most effective single image super resolution algorithms

to date. On the other hand, Yang et al.[6] observed

that in most cases, image priors played a more im-

portant role than super resolution algorithms them-

selves, in restoring high quality images. Furthermore,

they demonstrated that high-frequency details are one

key factor contributing to accurate restoration, imply-

ing that patches with different types of textural char-

acteristics make different contributions to restoring im-

ages. However, most deep learning based super reso-

lution methods indiscriminately conduct common pro-

cessing procedures on different categories of patches.

Specifically, they feed various patches indiscriminately

into a deep model for training, and in turn use the

trained deep model indiscriminately in restoring various

test patches for super resolution. Existing deep learn-

ing methods tend to ignore the variability of textural
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characteristics and are thus incapable of exhaustively

exploiting the representational power of deep models.

To address the shortcoming of existing deep learning

methods for disregarding textural variability across dif-

ferent types of patches, we propose and develop a single

image super resolution framework termed clustering-

oriented multiple convolutional neural networks. Our

idea is highly inspired by the cognitive mechanism of

the human visual system (HVS), which applies differ-

ent processing schemes to visual information of different

textural categories[31,32]. For example, the human vi-

sual system tends to pay more attention to the rich tex-

tured parts than smooth parts. The cognitive modes for

processing different categories of visual parts are thus

different in the human brain and this multi-mode mech-

anism proves an effective approach to human visual pro-

cessing. Motivated by this mechanism, we proposed to

train multiple convolutional neural networks based on

image patches from different textural categories, sepa-

rately. We first conduct a clustering analysis of image

local patches and group them into different categories.

We then train multiple CNNs to learn image priors

based on exemplar patches from different categories.

Specifically, we train a convolutional neural network for

super-resolution based on each cluster of patches, and

thus, obtain the same total number of trained CNNs

as the number of clusters. Each CNN captures certain

image priors within a texture category, and multiple

CNNs are potentially discriminative between patches

of different categories. Therefore, our framework gen-

eralizes the capability of CNNs for characterizing the

variability of image priors. Experimental evaluation of

our approach demonstrates its state-of-the-art super-

resolution performance on benchmark image datasets.

The rest of this paper is organized as follows: Section

2 presents a review of the related state-of-the-art Super-

resolution Convolutional Neural Network. This is fol-

lowed by a description of our proposed framework based

on clustering-oriented multiple convolutional neural net-

works in Section 3. Comparative experimental results

are presented in Section 4. Finally, some concluding re-

marks and future work recommendations are given in

Section 5.

2 A Review of Super-resolution Convolutional

Neural Network (SRCNN)

The recently proposed, state-of-the-art Super-resolution

Convolutional Neural Network (SRCNN)[27,28] is most

closely related to our proposed framework, and is thus

briefly reviewed in this section. The SRCNN has a three-

layer structure as illustrated in Figure 1. The first layer
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mapping

Reconstruction

Low-resolution 

image(input)

High-resolution 

image(output)

n
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2
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Fig. 1 The diagram for SRCNN.

convolves one whole low-resolution image with local fil-

ters for generating low-resolution feature maps. The

second convolution layer operates as a nonlinear map-

ping of low-resolution feature maps to high resolution

feature maps. The final convolution layer integrates the

resulting high resolution features, and reconstructs a

high resolution image.

In contrast to the SRCNN, which trains a single con-

volutional neural network over whole images, we train

multiple convolutional neural networks based on local

patches cropped from whole images. Furthermore, we

train each CNN based on patches grouped in a clus-

ter, representing an associated category of texture fea-

tures. As a result, our proposed framework character-

izes both local features and also learns texture variation

for super-resolution. Our framework is described in the

next section.

3 Clustering-oriented Multiple Convolutional

Neural Networks

This section presents our single image super-resolution

framework based on clustering-oriented multiple convo-

lutional neural networks. In the training stage, K con-

volutional neural networks are trained on the basis of

K image patch clustering centers separately. In the in-

ference stage, each patch from a low resolution image

is restored by the convolutional neural network associ-

ated with the clustering center of the patch. All restored

patches thus obtained form one whole high-resolution

image.

3.1 Reforming Training Data

In contrast to the Super-resolution Convolutional Neu-

ral Network [27] which feeds whole images to train one

CNN, we feed image patches into CNNs for training. To

this end, we reform training data through cropping lo-

cal patches from whole high-resolution images, blurring

and downscaling patches, and computing architectural
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residuals. An outline of these procedures for reforming

training data is depicted in Figure 2 and described be-

low.

We crop high resolution (HR) patches from each

high resolution image in the training dataset. The HR

patches are required to be cropped out in an overlap-

ping manner with equal intervals such that the whole

image is fully covered. For one HR patch PH , we first

blur it through a Gaussian convolution and then down-

sample it:

PR = (PH ∗G) ↓ s (1)

where G, ∗ and ↓ s denote the Gaussian kernel, the con-

volution operation and the downsampling operation, re-

spectively. The Gaussian convolution reduces high fre-

quency details and the downsampling operation further

downgrades the patch resolution. The reformed patch

PR thus obtained is used to mimic a patch cropped from

the low resolution image that corresponds to the high

resolution image producing PH . The reformed patches

form the input data for training multiple CNNs.

On the other hand, following most single image su-

per resolution strategies, we exploit the differences be-

tween one HR and its corresponding LR patch as tar-

gets for learning. Specifically, in order to generate the

target PT associated with PR for training a CNN, we

first upsample the reformed patch PR via bicubic in-

terpolation, making it the same size as the HR patch

PH , and then subtract the upscaled patch from PH as

follows:

PT = PH − (PR ↑ s) (2)

where ↑ s denotes the upsampling operation. The target

patch PT characterizes the difference between the HR

patch PH and the reformed (and also LR) patch PR.

As PH is believed to have more high frequency details

than PR, PT tends to capture the architectural high

frequency leftovers in the patch. PT is thus referred to

as architectural residual and also acts as the learning

target.

The tuple {PR, PT } forms an {input, target} train-

ing data pair. All such tuples generated from HR train-

ing images result in a reformed dataset for training

CNNs in our work.

3.2 Clustering Reformed Patches

In Section 3.1, we transform HR images into {reformed
patch, architectural residual} pairs as the reformed

training data. We observe that different patches exhibit

various types of signatures in architectural residuals.

This observation implies that different patches encode

different amounts of high frequency visual details. Fig-

ure 3 illustrates several exemplar patches along with

their architectural residuals extracted from one image.

It is clear that they exhibit totally distinct characteris-

tics in architectural residuals, revealing that they con-

tain different amounts of high frequency ingredients.

As Yang et al. [1] pointed out, images with richer

high-frequency details play an important role in charac-

terizing image priors, leading to our belief that patches

from different texture categories represent various char-

acteristics for super-resolution. In order to capture the

texture variability over different patch texture cate-

gories, we perform clustering analysis on reformed patches

and gain K cluster centers of patches, as illustrated in

Figure 4.

Assume that there are totally Mk patches, i.e. P
(k)
R1
,

· · · , P (k)
R

M(k)
, in the kth cluster, then the cluster center

is

P
(k)
C =

1

M (k)

M(k)∑
m=1

P
(k)
Rm

. (3)

We attach the superscript (k) to the notations (e.g.

P
(k)
C , M (k) and P

(k)
Rm

) which are associated with the

kth cluster. Each cluster (center) characterizes a cer-

tain category of image textural priors which are distinct

from one another. To enable an efficient implementa-

tion, we exploit K-means for clustering the reformed

patches in our framework, but alternative clustering

strategies [33] can be used as a substitute.

Following the resultant K clusters, the reformed

training dataset is divided into K reformed subsets of

patches, which are separately used for training multiple

CNNs, as described in the next subsection.

3.3 Training Multiple Convolutional Neural Networks

As observed in Section 3.2, a range of textural varia-

tions exist over patches from different categories. In the

context of CNN based learning, this observation further

implies that training one single CNN indiscriminately

for various images (e.g. [27]) potentially limits the capa-

bility of CNN in fully characterizing textural variability

for super-resolution. To address this single CNN limi-

tation, we propose to train multiple CNNs for different

textural characteristics, by training K CNNs based on

the K clusters of reformed patches separately.

Specifically, we employ a three-layer structure to

construct a convolutional neural network for every re-

formed subset of patches (i.e. each cluster of patches).

The flow diagram for training the kth convolutional

neural network is depicted in Figure 5.
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Fig. 4 Clustering the reformed patches.

The kth reformed subset of patches for training the

kth CNN consists of all {reformed patch, architectural

residual} pairs with respect to the kth cluster. One

reformed patch P
(k)
R and its associated architectural

residual P
(k)
T form the input and target for training

the CNN, respectively. The reformed patch P
(k)
R is ob-

tained through blurred and downsampled from a HR

patch and is thus smaller in size than the architectural

residual P
(k)
T . We upscale the P

(k)
R to the same size as

P
(k)
T in terms of bicubic interpolation. This operation is

just a size modification and nevertheless does not pro-

vide any high frequency details to the upscaled patch

P
(k)
U = P

(k)
R ↑ s, since no image priors are employed in

the upsampling.

The first layer operation for training the CNN is

formulated as follows:

F1(P
(k)
U ) = Relu(W

(k)
1 ∗ P (k)

U +B
(k)
1 ) (4)

where W
(k)
1 and B

(k)
1 represent the trainable kernels

and biases respectively. The size of W
(k)
1 is n1 × c ×

k1×k1, where n1 is the number of kernels, c and k1 are

the numbers of image channels and the kernel size, re-

spectively. W
(k)
1 contains n1 kernels which are used for

convolving an input patch, and the size of each kernel is

c×k1×k1. B
(k)
1 is of dimension n1×1 with each element

appending one kernel. Relu(x) = max(0, x) denotes a

rectifier activation function[34] as illustrated in Figure

6.

In terms of the same notational system, the second

layer operation is represented as follows:

F2(P
(k)
U ) = Relu(W

(k)
2 ∗ F1(P

(k)
U ) +B

(k)
2 ) (5)

where F1(P
(k)
U ) is the first layer output, W

(k)
2 and B

(k)
2

represent the trainable kernels and biases in the second

layer, respectively. The dimensions of W
(k)
2 and B

(k)
2

are n1 × k2 × k2 × n2 and n2 × 1, respectively.

In the third layer, we do not operate the Relu func-

tion and have:

F3(P
(k)
U ) = W

(k)
3 ∗ F2(P

(k)
U ) +B

(k)
3 (6)

where F2(P
(k)
U ) is the second layer output, W

(k)
3 and

B
(k)
3 represent the trainable kernels and biases in the

third layer, respectively. The dimensions of W
(k)
3 and

B
(k)
3 are n2×k3×k3×c and c×1, respectively. F3(P

(k)
U )

is third layer yet final output that will be exploited

in comparison against the target P
(k)
T for training the

CNN.

Unlike traditional CNN structures that typically con-

sist of a sequence of convolution and pooling opera-

tion pairs, we do not perform pooling after convolution.
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Most existing CNNs tend to pool the convolution layer

outputs to obtain condensed features for the purpose

of achieving accurate pattern recognition. In contrast

to the feature condensation scenario, super-resolution

tasks require enhanced visual details to be added to

the original low resolution image. Therefore, we do not

apply pooling operation in our CNN construction in

order to avoid reducing visual details.

To optimize the trainable parameters Φ(k) = {W (k)
1 ,

B
(k)
1 ;W

(k)
2 , B

(k)
2 ;W

(k)
3 , B

(k)
3 } for the kth convolutional

neural network, we measure the loss between the CNN

final output F3

(
P

(k)
U ;Φ(k)

)
and the target, i.e. the ar-

chitectural residual PT . We utilize mean squared error

(MSE) over all samples in the kth reformed subset as

the loss function for the kth CNN:

L
(
Φ(k)

)
=

1

M (k)

M(k)∑
m=1

‖F3

(
P

(k)
Um

;Φ(k)
)
− P (k)

Tm
‖2 (7)

where m denotes cardinality of the kth reformed subset

of patches. We employ stochastic gradient descent with

the standard backpropagation algorithm [35] for mini-

mizing the loss function (7). Specifically, we update the

kernel matrices and biases as follows:

∆
(k)
1;j+1 = γ ·∆(k)

1;j + α · ∂L

∂W
(k)
l;j

∆
(k)
2;j+1 = γ ·∆(k)

2;j + α · ∂L

∂B
(k)
l;j

W
(k)
l;j+1 = W

(k)
l;j +∆

(k)
1;j+1

B
(k)
l;j+1 = B

(k)
l;j +∆

(k)
2;j+1

(8)

where α, γ, l ∈ {1, 2, 3}, j are the learning rate, mo-

mentum, layer index and iteration index, respectively.

∆
(k)
1 and ∆

(k)
2 reflect the current velocity for updating

W
(k)
l and B

(k)
l , respectively.

We train all the K CNNs based on K reformed

training subsets separately, according to the procedures

described in this subsection.

3.4 Super-resolution

In this subsection, we describe how to perform super-
resolution on a low resolution image based on K trained

CNNs. Figure 7 illustrates the diagram of the proposed

super-resolution scheme.

Given a low-resolution image, we first divide it into

overlapping patches and then upsample every patch in

terms of bicubic interpolation. The upscaled LR patches

are required to have the same size as the architectural

residuals. For an upscaled LR patch PI , we first assign

it to one of the K clusters obtained in Section 3.2 by

seeking a minimum Euclidean distance between PI and

the K cluster centers:

k∗ =
K

arg min
k=1

‖PI − P (k)
c ‖2. (9)

Based on (9), the patch PI is assigned to the clus-

ter k∗. This implies that PI has textural resemblance

with patches in the cluster k∗. As the k∗th CNN was

trained specifically to capture the image priors reflected

by patches in the cluster k∗, we use the k∗th CNN for

performing super-resolution on PI . We feed PI into the
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Fig. 7 Diagram of proposed super-resolution scheme based on trained multiple CNNs.

k∗th trained CNN with the optimized parameter set

Φ(k∗) and obtain the super-resolution patch PO as fol-

lows:

PO = PI + F3

(
P

(k∗)
I ;Φ(k∗)

)
. (10)

For all upscaled LR patches extracted from the LR

image, we carry out the same super-resolution proce-

dures as described in (9) and (10). We sort all the

restored patches thus obtained in the same order as

their corresponding LR patches in the LR image, and

form the final super-resolution image. The overlapped

regions are computed by averaging the relevant parts

of neighboring patches.

3.5 Discussions

One major goal of our work is to develop a new strat-

egy for increasing the super-resolution power of SR-

CNN. We thus construct the individual CNNs in our

overall framework following the structure of SRCNN

that consists of three layers. The major parameters of

SRCNN are kernels and biases. Let k1, k2 and k3 de-

note the sizes of kernels for the first, second and third

layers, respectively. Let n1 and n2 denote the numbers

of kernels for the first and second layers, respectively.

The number of kernels for the third layer is one. Ad-

ditionally, a scalar bias is associated with each kernel.

Therefore, the total number of parameters for SRCNN

is (k21 + 1)n1 + (k22 + 1)n2 +k23 + 1. Specifically, SRCNN

sets the parameter values as follows k1 = 9, k2 = 5,

k3 = 5, n1 = 128 and n2 = 64 [28]. In this case, the

exact total number of parameters for SRCNN is 12,186.

Our framework contains K SRCNN structures and thus

has [(k21 +1)n1 +(k22 +1)n2 +k23 +1]K parameters. Fol-

lowing the same specific setting as SRCNN, our frame-

work has 36,558 parameters.

It is obvious that the complexity of our model is K

times of that of SRCNN, because it adopts K CNNs

with each having the same architecture with SRCNN.

Though our model complexity is larger than SRCNN,

it is acceptable because its complexity follows a lin-

ear growth with respect to the number of CNNs and

does not incur exponentially increased overheads. On

the other hand, in contrast to the deep super-resolution

models such as Very Deep Convolutional Networks (VDSR)

[29] which has 20 weight layers and Deeply-Recursive

Convolutional Network (DRCN) [30] which has 20 con-

volution layers and 16 recursion layers, our three-layered

model is not very deep. However, we improve the super-

resolution ability of the CNN model by not making it

deeper but expanding it broader, i.e. training multiple

three-layered CNNs based on categorized patch sam-

ples.

We compare the convergence rates of SRCNN and

our framework, in terms of the training loss (7). The

convergence curves with respect to the training epoch

based on the 91-image dataset [2][4] are given in Fig-

ure 8. Though the individual CNNs in our framework

and SRCNN share the common network structure, our

method converges slightly more efficient than SRCNN

especially in the first few training epochs. Unlike SR-

CNN, which indiscriminately learns super-resolution in-

formation from all visual categories, our method en-

courages each individual CNN to learn super-resolution

information from one specific visual category. The coarsely

categorized visual information exhibits less textural vari-

ability than general visual information, and thus en-
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ables efficient training processes for the class-specific

CNNs in our framework.

0 10 20 30 40 50

Number of epochs

0.25
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0.35
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0.5

L
o

s
s

SRCNN

Our method

Fig. 8 Training convergence rate.

The reasons for the effectiveness of our clustering-

oriented multiple-CNN framework are two-fold. First,

the multiple CNNs are trained based on local patches

rather than whole images. This strategy enables our

framework to exhibit a more powerful local representa-

tional capability compared to a single CNN trained on

whole images. Furthermore and more importantly, the

multiple CNNs are separately trained based on different

types of textures. This strategy enables multiple CNNs

to better discriminate between different texture cate-

gories and thus enhances the effectiveness of individual

CNNs for texture-specific super-resolution.

The proposed clustering oriented multiple CNN model

can be considered as a coarse-to-fine strategy. The K-

means clustering procedure coarsely divides all patches

into K general textural groups. Subsequently, fine tex-

tures within each coarsely categorized textural group

are learned by an individual CNN for super-resolution.

The number of texture classes should be carefully set in

order to not only avoid learning trivial or wrong details

from poorly clustered patches leading to similar effects

of over-fitting but also enhance the learning capability

of CNNs. A larger number of clusters do not necessar-

ily increase the overall super-resolution performance.

More specifically, the basic K-means is a straightfor-

ward clustering method for coarse textural categoriza-

tion. If we increase the number of texture classes (i.e.

number of clusters) K and try to use K-means to as-

sign patches into finer textural categories, it may in-

cur certain misclassification in the fine texture scales.

On the other hand, CNNs have strong representational

power and play the role of learning fine textures for

super-resolution in our framework. If we set K to be a

large value and use the less representational K-means

method to characterize fine textures, the functionality

of CNNs for learning fine textures would be neutralized.

Furthermore, the training of CNNs would be misled

by K-means misclassified samples. Therefore, a small

class number K is appropriate for the clustering proce-

dure and enables effective performance for the overall

framework. Our extensive experiments confirm this ob-

servation and reveal that the current method achieves

an optimal trade-off between performance and model

complexity.

4 Experimental Evaluations

We conduct experimental evaluation of our proposed

framework and carry out empirical comparisons with

alternative state-of-the-art methods. We first describe

our experimental parameter settings. We then perform

a systematic analysis of our framework by varying val-

ues of several key factors. We finally carry out empirical

comparisons between our method and alternative meth-

ods, and demonstrate the advantages of our proposed

framework.

4.1 Experimental settings

Based on our observation that the representational power

of a convolutional neural network improves with respect

to increasing diversity of training data, we carry out flip

data augmentation to increase the number and diver-

sity of training samples for each cluster. Specifically,

following the experimental set-up used by state-of-the-

art methods tested on benchmark datasets in [6,28], we

crop training patches from whole images, and employ

the low resolution patch size 33× 33 and the scale fac-

tors 2, 3 and 4. Here the scale factor refers to the times

of size/resolution increased for a low-resolution image.

The downsampled patches are upscaled using bicubic

interpolation.

For constructing individual convolutional neural net-

works, we adapt the SRCNN structure[27,28]. Based

on the fact that human vision is more susceptible to

luminance, we transform all training RGB images into

YCbCr color space and only apply super-resolution to

the channel Y (luminance). The parameters c in the

first and final layer are thus set to 1, and the CNN sim-

ply operates on the channel Y. Further, we utilize bicu-

bic interpolation to enlarge the resolution of chromi-

nance channels. The width of the Gaussian kernel for

blurring patches is empirically set to 3 and the standard

deviation σ is 1.6.

For the comparative experiments, we use a 91 image

dataset[2,4] and the Berkeley Segmentation Dataset and

Benchmark[36] as training datasets. We use datasets
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Set5[37], Set14[38] andBSD100[36] for testing the super-

resolution performance. Finally, we adopt the peak signal-

to-noise ratio (PSNR, dB) and structural similarity(SSIM)

[39] for evaluating the super-resolution accuracy.

4.2 Systematic Empirical Analysis

In this subsection, we empirically evaluate the effec-

tiveness of our framework under a range of settings.

We commence by empirically evaluating it comparative

performance with respect to different training sample

numbers and cluster numbers. We train our framework

using a small training dataset[2,4] comprising 91 im-

ages. In an alternative comparative setup, we also train

our framework using the 91 image dataset along with

additional 200 images from the Berkeley Segmentation

Dataset and Benchmark[36]. In both cases, different

numbers of clusters are identified for evaluation. We

examine the impact of number of clusters by catego-

rizing the patches into {1, 3, 5, 7, 9} clusters in terms of

K-means. The Set5 dataset is used for testing and the

PSNRs obtained are illustrated in Figure 9.

It is clear from Figure 9 that the case with larger

number of training samples achieves better performance.

Specifically, by introducing a larger number of training

samples, our proposed method achieves higher PSNR in

all cases compared to the case when trained by a smaller

number of samples. On the other hand, though CNNs

trained based on multiple clusters outperform those

based on a single cluster, experiments with three clus-

ters offer the best results over alternative numbers of

clusters. This demonstrates that more accurate super-
resolution can result from the use of multiple CNNs

with a small number of K-means clusters.
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Fig. 9 Super-resolution performance subject to different
numbers of training samples and different numbers of clus-
ters.

We then evaluate the effects of convolutional kernel

number and kernel size on super-resolution. Specifically,

we conduct tests with respect to different kernel number

n1×n2 combinations and different kernel size k1×k2×k3
combinations. Here n1 and n2 are numbers of kernels

for the first and second layers, respectively. The number

of kernels for the third layer is one. k1, k2 and k3 are the

kernel sizes for the first, second and third layer, respec-

tively. Table 1 shows the performance of our framework,

trained based on the 91 image dataset [2,4] for a scale

factor 3 and with 3 clusters, and tested on the dataset

Set5. We use the peak signal-to-noise ratio (PSNR, dB)

and structural similarity (SSIM) as evaluation metrics.

It is clear from Table 1 that the alternative settings re-

sult in slightly different performances. Specifically, the

results show that different kernel numbers and sizes can

slightly affect the super-resolution performance, with a

generally larger number and size providing slightly bet-

ter performance.

4.3 Empirical Comparisons with State-of-the-art

Methods

In this subsection, we make quantitative and qualita-

tive empirical comparisons between our framework and

a number of alternative state-of-the-art methods. The

latter include bicubic interpolation, Neighbor Embed-

ding and Local Linear Embedding method (NE+LLE)[40],

Sparse Coding (SC)[2], Jointly Optimized Regressors

(JOR) [41], Adjusted Anchored Neighborhood Regres-

sion (A+) [5], Super-Resolution Convolutional Networks

(SRCNN) [27,28], Fast Super-Resolution Convolutional

Ntworks(FSRCNN) [42], Very Deep Convolutional Net-

works (VDSR) [29] and Deeply-Recursive Convolutional

Network (DRCN) [30].

Table 2 shows the means of PSNR/SSIM values

of alternative methods on datasets Set5, Set14 and

BSD100 for scale factors 2, 3 and 4. Here we use 291

images for training our model. We can see that our

method achieves comparable performance with VDSR

and DRCN and outperforms all the other comparison

methods. Here, it is very interesting to compare our

method with SRCNN (along with its variant FSRCNN),

VDSR and DRCN since they are all deep learning based

models. Our method systematically improves SRCNN

(as described in Section 3), and the experimental results

also validate that our method outperforms SRCNN in

terms of both PSNR and SSIM on all the three datasets

Set5, Set14 and BSD100. FSRCNN structurally im-

proves SRCNN to a compact hourglass-shape CNN,

which exhibits greater representational power than the

original structure. Though our multiple CNN frame-

work is composed of original SRCNNs without the struc-



10 Peng Ren et al.

Table 1 Super-resolution performance subject to different kernel numbers and different kernel size.

k1 × k2 × k3

PSNR(dB)/SSIM n1 × n2
32 × 16 64 × 32 128 × 64

9 × 1 × 5 32.79/0.909 32.87/0.91 32.98/0.912
9 × 3 × 5 32.70/0.908 32.78/0.91 32.86/0.911
9 × 5 × 5 33.03/0.913 33.08/0.914 33.15/0.914

tural improvements, it still outperforms FSRCNN in

all cases except a few SSIM results on the BSD100

dataset. In this scenario, it is anticipated that our mul-

tiple CNN framework composed of FSRCNNs would

result in even better performance. Furthermore, we ob-

serve that though our method is inferior to VDSR and

DRCN for the scale factors 3 and 4 in terms of PSNR

on the datasets Set5 and Set14, its PSNR outperforms

VDSR and DRCN for the scale factor 2. On the other

hand, our method outperforms VDSR and DRCN for all

the three scale factors in terms of SSIM on the datasets

Set5 and Set14. On the bigger dataset BSD100, our

method, VDSR and DRCN achieve comparable per-

formance with slight differences in qualitative experi-

mental results. Specifically, our method is inferior to

VDSR and DRCN for the scale factors 3 and 4 but out-

performs them for the scale factor 2 in terms of both

PSNR and SSIM. It should be noted that VDSR has

20 weight layers and DRCN has 20 convolution lay-

ers and 16 recursion layers while our framework con-

sists of three three-layered CNNs resulting in an overall

nine layered concise structure. This observation reflects

that our method has much lower structure complex-

ity than VDSR and DRCN but still achieves compa-

rable performance with them. One reason for the con-

trastive results is that VDSR or DRCN takes whole im-

ages as inputs for training one overall model, and our

method uses the categorized local patches to train mul-

tiple CNNs. The deep structure of VDSR or DRCNN

trained on a basis of whole images is in favor of achiev-

ing high PSNR which is measured on a whole image

scale. On the other hand, our multiple CNN framework

is trained based on not whole images but categorized

local patches. Our model is thus more effective for lo-

cal feature characterization such that it favors small

scale super-resolution and enables accurate visual struc-

ture preservation. Therefore, our method achieves high

SSIM which characterizes detail similarities on small

scales.

Table 3 illustrates the PSNR/SSIM values of bicu-

bic interpolation, NE+LLE, SC, A+, SRCNN and ours

on Set5 images respectively for scales 2, 3 and 4. Table

4 illustrates the PSNR/SSIM values of bicubic interpo-

lation, NE+LLE, SC, A+, SRCNN and our proposed

approach on Set14 images for scale 3. The slash signs −

in the tables indicate that experimental results are not

available from the referenced papers. It is clear that our

framework outperforms the alternative state-of-the-art

methods listed in Tables 3 and 4.

Finally, we select the images ’butterfly’, ’bird’ from

Set5 and ’pepper’ from Set14 to exhibit super-resolution

results of alternative methods in Figures 10, 11, and 12,

respectively. We can see from the visual results that our

method obtains the clearest restored high resolution im-

ages among alternative comparison methods.

Original / PSNR Bicubic / 24.04dB SC / 26.17dB

A+ / 27.24dB SRCNN / 27.95dB Ours / 29.42dB

Fig. 10 Super-resolution for the ’butterfly’ image from Set5
with scale factor 3.

5 Conclusions and Future Work

Inspired by the cognitive mechanism of the human vi-

sion system (HVS), we have presented a novel clustering-

oriented multiple-CNN framework for single image super-

resolution. Our framework enhances the representational

power of CNN for super-resolution from two perspec-

tives. First, allocating local patches into different clus-

ters captures the textural variability within an image.

Second, each CNN from the multiple CNNs is trained

based on a patch cluster such that it comprehensively

learns image priors for one specific texture category.

The proposed framework resembles the multi-mode mech-

anism of the human brain for processing different tex-

tural visual parts. It empirically provides more robust



Clustering-oriented Multiple Convolutional Neural Networks for Single Image Super-resolution 11

Table 2 The mean PSNR/SSIM of bicubic interpolation, NE+LLE[40], JOR[41], A+[5], SRCNN[27,28], FSRCNN[42],
VDSR[29], DRCN[30], and ours on the datasets Set5, Set14 and BSD100 for scale factors 2, 3 and 4.

Dataset Scale
factor

Bicubic NE+LLE JOR A+ SRCNN FSRCNN VDSR DRCN Ours

Set5
2 33.66/0.9299 35.77/0.9490 - 36.54/0.9544 36.66/0.9542 37.00/0.9558 37.53/0.9587 37.63/0.9588 37.65/0.9662
3 30.39/0.8682 31.84/0.8956 32.55/- 32.59/0.9088 32.75/0.9090 33.16/0.9140 33.66/0.9213 33.82/0.9226 33.29/0.9286
4 28.42/0.8104 29.61/0.8402 30.19/- 30.28/0.8603 30.49/0.8628 30.71/0.8657 31.35/0.8838 31.53/0.8854 30.79/0.8893

Set14
2 30.23/0.8687 31.76/0.8993 - 32.28/0.9056 32.45/0.9067 32.63/0.9088 33.03/0.9124 33.04/0.9118 33.45/0.9257
3 27.54/0.7736 28.6/0.8076 29.09/- 29.13/0.8188 29.3/0.8215 29.43/0.8242 29.77/0.8314 29.76/0.8311 29.70/0.8482
4 26/0.7019 26.81/0.7331 27.26/- 27.32/0.7491 27.5/0.7513 27.59/0.7535 28.01/0.7674 28.02/0.7670 27.73/0.7813

BSD100
2 29.56/0.8431 - - 31.21/0.8863 31.36/0.8879 31.80/0.9074 31.90/0.8960 31.85/0.8942 32.10/0.9020
3 27.21/0.7385 27.85/- 28.17/- 28.29/0.7835 28.41/0.7863 28.60/0.8137 28.82/0.7976 28.80/0.7963 28.66/0.7959
4 25.96/0.6675 26.47/- 26.74/- 26.82/0.7087 26.90/0.7101 26.98/0.7398 27.29/0.7251 27.23/0.7233 27.02/0.7173

Table 3 The PSNR/SSIM values of bicubic interpolation, NE+LLE, SC, A+, SRCNN and ours on the dataset Set5 for scale
factors 2, 3 and 4.

Set5
images

Scale
factor

Bicubic NE+LLE SC A+ SRCNN Ours

baby

2

37.07/0.9525 38.33 − 38.52/0.9655 38.54/0.9659 39/0.9718
bird 36.81/0.9720 40 − 41.12/0.9865 40.91/0.9857 42.48/0.9908

butterfly 27.43/0.9148 30.38 − 32.01/0.9634 32.75/0.9640 34.46/0.9788
head 34.86/0.8626 35.63 − 35.77/0.8866 35.72/0.8861 36.09/0.9116

woman 32.14/0.9478 34.52 − 35.31/0.9697 35.37/0.9689 36.2/0.9780

average 2 33.66/0.9299 35.77 − 36.55/0.9544 36.66/0.9542 37.65/0.9662

baby

3

33.91/0.9050 35.06 35.04 35.21 35.25/0.9249 35.25/0.9336
bird 32.58/0.9246 34.56 34.15 35.54 35.48/0.9539 36.21/0.9660

butterfly 24.04/0.8186 25.75 26.17 27.24 27.95/0.9056 29.42/0.9399
head 32.88/0.8013 33.6 33.58 33.77 33.71/0.8275 33.79/0.8603

woman 28.56/0.8890 30.22 30.25 31.2 31.37/0.9287 31.77/0.9431

average 3 30.39/0.8682 31.84 31.84 32.59 32.75/0.9090 33.29/0.9286

baby

4

31.78/0.8583 32.99 − 33.28 33.13/0.8835 33.13/0.8944
bird 30.18/0.8715 31.72 − 32.54 32.52/0.9095 32.91/0.9300

butterfly 22.1/0.7326 23.38 − 24.42 25.46/0.8503 26.45/0.8979
head 31.59/0.7560 32.24 − 32.52 32.44/0.7817 32.34/0.8155

woman 26.46/0.8310 27.72 − 28.65 28.89/0.8842 29.1/0.9085

average 4 28.42/0.8104 29.61 − 30.28 30.49/0.8628 30.79/0.8893

Table 4 The PSNR/SSIM values of bicubic interplation, NE+LLE, SC, A+, SRCNN and ours on the dataset Set14 for scale
3.

Set14
images

Scale
factor

Bicubic NE+LLE SC A+ SRCNN Ours

baboon

3

23.21/0.5423 23.55 23.33 23.62 23.67/0.6091 23.79/0.6541
barbara 26.25/0.7554 26.74 26.7 26.47 26.55/0.7850 26.61/0.7993
bridge 24.4/0.6452 24.98 24.95 25.17 25.24/0.7117 25.49/0.7511

coastguard 26.55/0.6181 27.07 27.12 27.27 27.36/0.6714 27.41/0.7167
comic 23.12/0.7039 23.98 24.07 24.38 24.55/0.7887 24.84/0.8335
face 32.82/0.7995 33.56 33.53 33.76 33.72/0.8272 33.78/0.8554

flowers 27.23/0.8041 28.38 28.62 29.05 29.26/0.8563 29.66/0.8844
foreman 31.18/0.8995 33.21 31.05 34.3 33.89/0.9304 36.31/0.9534

lenna 31.68/0.8597 33.01 33.06 33.52 33.67/0.8873 33.76/0.9005
man 27.01/0.7500 27.87 27.96 28.28 28.42/0.8030 28.59/0.8298

monarch 29.43/0.9212 30.95 31.35 32.14 32.81/0.9494 33.83/0.9592
pepper 32.390.8675 33.8 31.73 34.74 34.71/0.8901 35.07/0.9057
ppt3 23.71/0.8786 24.94 25.13 26.09 27.04/0.9413 27.24/0.9556
zebra 26.63/0.7931 28.31 28.65 28.98 29.29/0.8527 29.48/0.8769

average 3 27.54/0.7741 28.6 28.38 29.13 29.3/0.8215 29.7/0.8482
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Original / PSNR Bicubic / 32.58dB SC / 34.15dB

A+ / 35.54dB SRCNN / 35.48dB Ours / 36.21dB

Fig. 11 Super-resolution for the ’bird’ image from Set5 with
scale factor 3.

Original / PSNR Bicubic / 32.39dB SC / 31.73dB

A+ / 34.74dB SRCNN / 34.71dB Ours / 35.07dB

Fig. 12 Super-resolution for the ’pepper’ image from Set14
with scale factor 3.

super-resolution results than the single CNN strategy

(e.g. [27,28]) and achieves state-of-the-art performance.

To the best of our knowledge, the proposed frame-

work is a pioneering study of training multiple CNNs

based on different categories of patches for single im-

age super-resolution. It can be further extended in a

number of ways in the future. First, more appropriate

clustering methods with various metric choices could

be exploited for textural categorizations before multi-

ple CNN based learning. Second, a weighting scheme for

different texture categories could be studied since each

category makes a potentially different contribution to

the super-resolution performance. Third, some ensem-

ble learning strategies can be exploited in our frame-

work for integrating multiple CNNs in a more prin-

cipled manner. These possible future work directions

could further generalize our methodology with more so-

phisticated learning schemes and potentially enhance

its effectiveness.
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