
Metamorphic Security Testing for Web Systems
Phu X. Mai⇤, Fabrizio Pastore⇤, Arda Goknil⇤, Lionel Briand⇤†

⇤SnT Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg
†School of Engineering and Computer Science, University of Ottawa, Canada

{xuanphu.mai,fabrizio.pastore,arda.goknil,lionel.briand}@uni.lu

Abstract—Security testing verifies that the data and the re-
sources of software systems are protected from attackers. Unfor-
tunately, it suffers from the oracle problem, which refers to the
challenge, given an input for a system, of distinguishing correct
from incorrect behavior. In many situations where potential
vulnerabilities are tested, a test oracle may not exist, or it might
be impractical due to the many inputs for which specific oracles
have to be defined.

In this paper, we propose a metamorphic testing approach
that alleviates the oracle problem in security testing. It enables
engineers to specify metamorphic relations (MRs) that capture
security properties of the system. Such MRs are then used to
automate testing and detect vulnerabilities.

We provide a catalog of 22 system-agnostic MRs to automate
security testing in Web systems. Our approach targets 39% of
the OWASP security testing activities not automated by state-
of-the-art techniques. It automatically detected 10 out of 12
vulnerabilities affecting two widely used systems, one commercial
and the other open source (Jenkins).

Index Terms—Software Engineering, Software Security

I. INTRODUCTION

Security testing aims to uncover flaws in software mecha-
nisms that protect data and ensure the delivery of the intended
system functionality. It is driven by security requirements
which encompass both security properties of the system and
the prevention of potential security threats [1]–[5]. In contexts
where test case execution is automated, an automated test
oracle (i.e., a mechanism for determining whether a test case
has passed or failed) is needed to check the execution result.
It often consists of comparing expected and observed outputs.

Security test cases seldom rely on automated test oracles,
most often because it is infeasible or impractical to specify
them due to a large number of test inputs. In other words,
security testing suffers from the oracle problem [6]–[8], which
refers to situations where it is extremely difficult or impractical
to determine the correct output for a given test input. For
instance, a security test case for the bypass authorization
schema vulnerability should verify, for every specific user
role, whether it is possible to access resources that should
be available only to a user who holds a different role [9].
This type of vulnerability can often be discovered by verifying
the access to various resources with different privileges and
roles. However, questions arise when defining oracles. What
are the resources that can only be accessible by a user with
a specific role or privilege? Are the test outputs consistent
with expectations regarding accessibility? In practice, it is
not always feasible to answer such questions when expected
outputs need to be identified for a large set of test inputs

(e.g., for various resources, roles and privileges). Recent
incidents involving corporate Web sites, such as Facebook’s,
indicate that it is particularly difficult to verify, at testing time,
large sets of input sequences including the ones that trigger
vulnerabilities [10], [11].

Although several security testing approaches have been
proposed, they typically do not address the oracle problem
and assume the availability of an implicit test oracle [6].
Furthermore, most approaches focus on a particular vulner-
ability (e.g., buffer overflows [12], [13]) and can only uncover
vulnerabilities that prevent a system from providing results
(e.g., system crashes because of buffer overflows).

Metamorphic Testing (MT) is a testing technique which has
shown, in some contexts, to be very effective to alleviate the
oracle problem [14], [15]. MT is based on the idea that it
may be simpler to reason about relations between outputs of
multiple test executions, called metamorphic relations (MRs),
than it is to specify its input-output behavior [16]. In MT,
system properties are captured as MRs that are used to
automatically transform an initial set of test inputs into follow-
up test inputs. If the outputs of the system under test for the
initial and follow-up test inputs violate the MR, it is concluded
that the system is faulty.

Considerable research has been devoted to developing MT
approaches for application domains such as computer graphics
(e.g., [17]–[20]), Web services (e.g., [21]–[23]), and em-
bedded systems (e.g., [24]–[27]). Unfortunately, only a few
approaches target security aspects [28]; also, their applicability
is limited to the functional testing of security components
(e.g., code obfuscators [28]) or to the verification of specific
security bugs (e.g., heartbleed [29]). They do not support the
specification of general security properties by using MRs.
Although MT is automatable, very few MT approaches provide
proper tool support [16]. This is also a significant obstacle for
tailoring the current approaches for security testing. Our goal
in this paper is to adopt MT to address the test oracle problem
in security testing. Our motivation is to have a systematic
way to specify MRs that capture security properties of Web
systems (i.e., properties that are violated only if the system
is vulnerable) and to automate security testing by relying on
these MRs. An example of MR to spot bypass authorization
schema vulnerabilities is: a Web system should return different
responses to two users when the first user requests a URL
that is provided to her by the GUI (e.g., in HTML links) and
the second user requests the same URL but this URL is not
provided to her by the GUI. In other words, a user should not

Xuan Phu MAI
Accepted for publication in the Proceedings of the IEEE International Conference on Software Testing, Verification and Validation (ICST) 2020

be able to directly access URLs not provided by the GUI.
In this paper, we propose an MT approach that supports

engineers in specifying MRs to capture security properties
of Web systems and that automatically detects vulnerabilities
(i.e., violations of security properties) based on those relations.
Our approach is built on top of the following novel contribu-
tions: (1) a Domain-Specific Language (DSL) for specifying
MRs for software security, (2) a catalog of system-agnostic
MRs targeting well-known security vulnerabilities of Web
systems [9], (3) a framework that automatically collects the
data required to perform MT, and (4) a testing framework
that automatically performs security testing based on the MRs
and the collected data. To facilitate the specification of MRs in
our DSL, we provide an editor which has been implemented
as a plug-in for the Eclipse IDE [30].

We applied our approach to discover vulnerabilities in a
commercial Web system and in Jenkins, a leading open source
automation server [31]. The approach automatically detected
100% and 75% of the targeted vulnerabilities affecting these
two systems, respectively. Based on these results and an as-
sessment of the effort involved, we conclude that our approach
is practical and beneficial to alleviate the oracle problem in
security testing and to automatically detect vulnerabilities in
industrial settings. Our MT toolset and the empirical data are
publicly available [32].

This paper is structured as follows. Section II provides the
background information regarding MT. Section III discusses
the related work. In Section IV, we present an overview of
the approach. Sections V to VIII describe the core technical
solutions. Section IX presents our catalog of MRs. In Sec-
tion X, we present the empirical evaluation of our approach.
We conclude the paper in Section XI.

II. BACKGROUND

In this section, we present the basic concepts of MT. The
core of MT is a set of MRs, which are necessary properties of
the program under test in relation to multiple inputs and their
expected outputs [33].

In MT, a single test case run requires multiple executions of
the system under test with distinct inputs. The test outcome
(pass or fail) results from the verification of the outputs of
different executions against the MR.

As an example, let us consider an algorithm f that computes
the shortest path for an undirected graph G. For any two nodes
a and b in the graph G, it may not be practically feasible
to generate all possible paths from a to b, and then check
whether the output path is really the shortest path. However,
a property of the shortest path algorithm is that the length of
the shortest path will remain unchanged if the nodes a and b
are swapped. Using this property, we can derive an MR, i.e.,
|f(G, a, b)| = |f(G, b, a)|, in which we need two executions
of the function under test, one with (G, a, b) and another one
with (G, b, a). The results of the two executions are verified
against the relation. If there is a violation of the relation, then
f is faulty.

We provide below basic definitions underpinning MT.

Definition 1 (Metamorphic Relation - MR). Let f be a
function under test. A function f typically processes a set
of arguments; we use the term input to refer to the set
of arguments processed by the function under test. In our
example, one possible input is (G, a, b). The function f
produces an output. An MR is a condition that holds for any
set of inputs hx1, ..., xni where n � 2, and their corresponding
outputs hf(x1), ..., f(xn)i. MRs are typically expressed as
implications.

In our example, the property of the target algorithm f is
“the length of the shortest path will remain the same if the
start and end nodes are swapped”. The MR of this property is
(x1 = (G, a, b)) ^ (x2 = (G, b, a)) ! |f(x1)| = |f(x2)|.

Definition 2 (Source Input and Follow-up Input). An MR
implicitly defines how to generate a follow-up input from a
source input. A source input is an input in the domain of f . A
follow-up input is a different input that satisfies the properties
expressed by the MR. In our example, (G, a, b) and (G, b, a)
are the source and follow-up inputs, respectively.

Follow-up inputs can be defined by applying transformation
functions to the source inputs. The use of transformation
functions in MRs simplifies the identification of follow-up
inputs. In our example, a transformation function that swaps
the last two arguments of the source input can be used to
define the follow-up input:
x1 = (G, a, b) ^ x2 = swapLastArguments(x1) ! |f(x1)| = |f(x2)|
where swapLastArguments is the transformation function.

Definition 3 (Metamorphic Testing - MT). MT consists of
the following five steps:

1 Generate one source input (or more if required). In our
example, a (random) graph G is generated; two vertices
a and b in G are randomly selected for the source input.

2 Derive follow-up inputs based on the MR. In our ex-
ample, the function swapLastArguments is applied to
(G, a, b).

3 Execute the function under test with the source and
follow-up inputs to obtain their respective outputs. In our
example, the shortest path function is executed two times
with (G, a, b) and (G, b, a).

4 Check whether the results violate the MR. If the MR is
violated, then the function under test is faulty.

5 Restart from (1), up to a predefined number of iterations.

III. RELATED WORK

Security testing approaches can be categorized [3] as fol-
lows: (1) security functional testing validating whether the
specified security properties are implemented correctly, and
(2) security vulnerability testing simulating attacks that target
typical system vulnerabilities.

Many vulnerability testing approaches rely on an implicit
test oracle, i.e., one that relies on implicit knowledge to distin-
guish between correct and incorrect system behavior [1]. This
is the case for approaches targeting buffer overflows, memory
leaks, unhandled exceptions, and denial of service [13], [34],
[35], most of which rely on mutational fuzzing [36], i.e., the

generation of new inputs through the random modification of
existing inputs. Implicit oracles deal with simple abnormal
system behavior such as unexpected system termination and
are not system-agnostic. What is abnormal in one system
might be considered normal in a different context [6].

Vulnerability testing approaches for code injections also
suffer from the oracle problem [37]–[44]. To resolve this
problem, Huang et al. [45] proposed an MT-like technique
which sends multiple HTTP requests, i.e., one request with an
injection, an intentionally invalid request, and a valid request.
They compare the responses to determine if the request with
the injection is filtered. Unfortunately, MT-like approaches that
address a broader set of security vulnerabilities are missing.

Model-based approaches [46], [47] typically target security
vulnerability testing (e.g., [48]–[64]) whereas a few solutions
address security functional testing (e.g., [65]–[68]). Most of
these approaches only generate test sequences from security
models and do not address the oracle problem. Approaches
that generate test cases including oracles [63], [64], [68] rely
on mappings between model-level abstractions (i.e., tokens in
markings of PrT networks) and executable code implementing
the oracle logic (e.g., searching for error messages in system
output). Unfortunately, these approaches do not free engineers
from implementation effort since they require the manual
implementation of the executable oracle code. Furthermore,
the model-based mapping supported by these approaches does
not enable engineers to specify precise test oracles (e.g.,
oracles that verify the exact content of the output of the system
with respect to its inputs [63]).

With MT, we aim to address the limitations of security test-
ing approaches. Indeed, MT supports oracle automation thanks
to MRs that can precisely capture the relations between inputs
and outputs. Considerable research has been devoted to devel-
oping MT approaches for various domains such as computer
graphics (e.g., [17]–[20]), simulation (e.g., [69]–[71]), Web
services (e.g., [21]–[23]), embedded systems (e.g., [24]–[27]),
compilers (e.g., [72], [73]), and machine learning (e.g., [74],
[75]). Preliminary applications of MT to security testing [28]
focus on the functional testing of security components (i.e.,
verifying the output of code obfuscators and the rendering of
login interfaces) and the verification of low level properties
broken by specific security bugs (e.g., heartbleed [29]). Al-
though these works show the feasibility of MT for security,
they focus on a narrow set of vulnerabilities and do not
automate the generation of executable metamorphic test cases,
which are manually implemented based on the identified MRs.

Although MT is highly automatable, very few approaches
provide proper tool support enabling engineers to write
system-level MRs [16]. They require that MRs be defined
either as Java methods [76] or pre-/post-conditions [77], which
limit the adoption of MT to verify system-level, security prop-
erties. Furthermore, since MRs are often specified by capturing
properties using a declarative notation, the use of an imperative
language to implement the relations may force engineers to
invest additional effort to translate abstract, declarative MRs.

To summarize, existing automated security testing ap-

start

Select and Specify
Metamorphic Relations

Execute the Data
Collection Framework

Transform Metamorphic
Relations to Java

•• •• •• •• •• •• •• ••
List of Predefined
Metamorphic Relations

System to
be Tested

List of
Metamorphic
Relations

2

Execute the Metamorphic
Testing Framework

Executable
Metamorphic
Relations

Source
Inputs

4
Test
Results

1 3

S(x, y)

Fig. 1. Overview of the approach.

proaches lack support for the generation of test oracles. The
few approaches addressing the oracle problem either focus on
a limited set of security vulnerabilities, or integrate oracles
with limited capabilities. MT can overcome these limitations.
It can be applied to both security functional testing and
vulnerability testing since MRs can capture both security
properties (e.g., a login screen should always be shown after
a session timeout) and properties of the inputs and outputs
involved in the discovery of a vulnerability (e.g., admin pages
are accessed without authentication). Existing MT solutions
target few, specific security bugs and do not support automated
MT based on MRs capturing general security properties. To
overcome these limitations, we need a DSL for MRs and
algorithms that automate the execution of MT.

IV. OVERVIEW OF THE APPROACH

The process in Fig. 1 presents an overview of our approach.
In Step 1, the engineer selects, from a catalog of predefined
MRs, the relations for the system under test. We have derived
our catalog of MRs from the testing guidelines [9] edited by
OWASP [78]. In addition, the engineer can also specify new
relations by using our DSL. Step 1 is manual. We discuss
this step in Section V. In Step 2, our approach automatically
transforms the MRs into executable Java code (Section VI).

In Step 3, the engineer executes a Web crawler to automat-
ically collect information about the system under test (e.g.,
the URLs that can be visited by an anonymous user). The
crawler determines the structure of the system under test and
the actions that trigger the generation of new content on a page.
The collected information includes the source inputs for MT.
To collect additional information, the engineer can process
manually implemented test scripts, if available. Step 3 does
not depend on other steps. We discuss Step 3 in Section VII.

In Step 4, our approach automatically loads the source
inputs required by the MRs and generates follow-up inputs as
described by the relation. After the source and follow-up inputs
are executed, their execution results are checked according to
the MRs. The details of the step are described in Section VIII.

Fig. 2. An MR for the Bypass Authorization Schema vulnerability.

Our DSL and the data collection framework can be extended
to support new language constructs and data collection meth-
ods. The MT framework can be extended to deal with input
interfaces not supported yet (e.g., Silverlight plug-ins [79])
and to load data collected by new data collection methods.

V. SMRL: A DSL FOR METAMORPHIC RELATIONS

Our approach starts with the activity of selecting and
specifying MRs (Step 1 in Fig. 1). To enable specifying new
MRs, we provide a DSL called Security Metamorphic Relation
Language (SMRL). Engineers can also select MRs for the
system under test from the set of predefined MRs.

SMRL is an extension of Xbase [80], an expression lan-
guage provided by Xtext [81]. Xbase specifications can be
translated to Java programs and compiled into executable Java
bytecode. We rely on Xbase since DSLs extending Xbase
inherit the syntax of a Java-like expression language as well
as language infrastructure components, including a parser, a
linker, a compiler and an interpreter [80]. These features will
facilitate the adoption of SMRL.

SMRL extends Xbase by introducing (1) a set of data
representation functions, (2) a set of boolean operators to
specify security properties, and (3) a set of Web-specific
functions to express data properties and transform data. These
functions can also be extended by defining new Java APIs to
be invoked in MRs.

Fig. 2 presents an MR written in our SMRL editor. The
relation checks whether the URLs dedicated to specific users
can be accessed by other users through a direct request. We
use it as a running example.

In the following, we introduce the SMRL grammar, the
boolean operators, the data representation functions, and the
Web-specific functions.

A. SMRL Grammar
The SMRL grammar extends the Xbase grammar, which

extends the Java grammar. Each SMRL specification can have
an arbitrary number of import declarations which indicate the
APIs to be used in MRs (Line 1 in Fig. 2).

A package declaration resembles the Java package structure
and can contain one or more MRs. Line 4 in Fig. 2 declares
the package owasp, which is is the package for our MRs. Like

TABLE I
EXCERPT OF THE DATA FUNCTIONS IN SMRL.

Data function Description
Input(int i) Returns the ith input sequence.
Action(int i) Returns the ith input action.
Session(int i) Returns the ith Web session.
User(int i) Returns the ith user of the system.
Output(Input i) Returns the sequence of outputs generated by Input i.
Output(Input i, int n) Returns the output generated by the nth action of Input i.
HttpMethod() Returns the name of an HTTP method (e.g., DELETE).
RandomFilePath() Returns a file system path. We select paths of files in the Web

system subfolder, ignoring images, and replacing symbolic
links (e.g., ‘plugins’ is mapped to ‘plugin’ in Jenkins).

RandomValue(Type t) Returns a random value of the given type.

in Java, MRs defined in different SMRL specification files can
belong to the same package.

An MR can contain an arbitrary number of XBlock-
Expressions, which are nonterminal symbols defined in the
Xbase grammar. An XBlockExpression can contain loops,
function calls, operators, and other XBlockExpressions.

B. Data Representation Functions

SMRL provides 18 functions to represent different types of
data (i.e., system inputs and outputs) in MRs. Data is typically
represented by a keyword followed by an index number used
to identify different data items. To keep SMRL simple, we
represent data by using functions (hereafter data functions)
with capitalized names (e.g., Input(1)). Table I presents a
subset of the data functions in SMRL.

Each data function returns a data class instance. Fig. 3
presents the SMRL data model where all classes are subtypes
of either InputType or OutputType. InputType represents
input data that can be defined to trigger a certain system
behavior. InputSequence represents a sequence of inter-
actions between a user and the system under test and is
consequently associated with Action. Action represents an
activity performed by a user (e.g., requesting a URL). It carries
information about actions such as a URL requested by an
action and parameters in the URL query string. Action is
associated with Session, which represents a user session in
a Web application. User represents a system user.

A source input is an instance of InputType returned by
one of the data functions; a follow-up input is an instance
of InputType modified by means of a Web-specific function
(see Section V-D). For example, a source input might be a
sequence of two HTTP requests for user login and user profile
visualization. A follow-up input is the same sequence with
login credentials for a different user. Instances of OutputType
capture outputs generated by the system when processing an
input; each instance of OutputType is associated with an
instance of InputType. The last three functions in Table I
return predefined/random values. They are used to redefine
attributes of follow-up inputs as described in Section VIII.

C. Boolean Operators

SMRL provides seven boolean operators, i.e., IMPLIES,
AND, OR, TRUE, FALSE, NOT and EQUAL. They enable the

Fig. 3. Metamorphic data classes in SMRL.

definition of metamorphic expressions, which are boolean
expressions that should hold for an MR to be true. A meta-
morphic expressions is a specific kind of XBlockExpression.
We use metamorphic expressions to decompose an MR into
simple properties. They are defined in a declarative manner,
which is standard practice in MT.

The MR in Fig. 2 includes a metamorphic expression using
the operator IMPLIES. Since the expression is within a loop
body, the relation holds only if the expression evaluates to true
in all the iterations over the input actions.

The semantics of the operators IMPLIES, AND, OR, TRUE,
FALSE, and NOT is straightforward. The operator EQUAL,
instead, does not simply evaluate the equality of two argu-
ments but defines a follow-up input by assigning the second
parameter to the first parameter. The operator EQUAL acts as
an equality operator only when its first parameter refers to an
input that has already been used in previous expressions of the
MR. Otherwise, it acts as an assignment operator. In Fig. 2,
the operator EQUAL defines the follow-up input Input(2) as a
modified copy of Input(1).

D. Web-Specific Functions

MRs for security testing often capture complex properties
of Web systems that cannot be expressed with simple boolean
or arithmetic operators. Therefore, SMRL provides a set of
functions that capture typical properties of Web systems and
alter Web data. Table II describes a portion of the 30 Web-
specific functions in SMRL [32]. Each function is provided as
a method of the SMRL API. Engineers can specify additional
functions as Java methods. The new functions can be used in
SMRL thanks to the underlying Xtext framework.

The MR in Fig. 2 uses the Web-specific functions
cannotReachThroughGUI, isSupervisorOf, isError and
changeCredentials. The relation indicates that the same
sequence of actions should provide different outputs when
performed by two different users under a certain condition.
The condition is that one of the two users cannot access one
of the requested URLs by simply browsing the GUI of the
system. In other words, if the system does not provide a URL
to a user through its GUI, then the user should not be allowed
to access the URL. Also, to avoid false alarms, the user who
cannot access the URL from the GUI, indicated as User(2)
in Fig. 2, should not be a supervisor with access to all the
resources of the other user, i.e., User(1). Finally, we avoid

TABLE II
EXCERPT OF THE WEB-SPECIFIC FUNCTIONS IN SMRL.

Operator Description
changeCredentials(Input i, User u) Creates a copy of the provided input sequence

where the credentials of the specified user are
used (e.g., within login actions).

copyActionTo(Input i, int from, int
to)

Creates a new input sequence where an action
is duplicated in the specified position and the
remaining actions are shifted by one.

cannotReachThroughGUI(User u,
String URL)

Returns true if a URL cannot be reached by
the given user by exploring the user interface
of the system (e.g., by traversing anchors).

isLogin(Action a) Returns true if the action performs a login.
isSupervisorOf(User a,User b) Returns true if ‘a’ can access the URLs of ‘b’.
afterLogin(Action a) Returns true if the action follows a login.
isSignup(Action a) Returns true if the action registers a new user

on the system.
isError(Output page) Returns true if the page contains an error

message.
userCanRetrieveContent(User u,
Object out)

Returns true if the output data (i.e., the argu-
ment ‘out’) has ever been received in response
to any of the input sequences executed by the
given user during data collection.

source inputs that return an error message to User(1) because,
for these inputs, it is not possible to characterize the output that
should be observed for User(2), who, indeed, may observe the
same error, a different error, or an empty page.

In Fig. 2, the function cannotReachThroughGUI checks if
the URL of the current action cannot be reached from the GUI
(Line 9). The function isSupervisorOf checks if User(2) is
not a supervisor of User(1) (Line 10). The function isError
returns true if an output page contains an error message,
based on a configurable regular expressions (Line 11). The
function changeCredentials creates a copy of a provided
input sequence using different credentials. It is invoked to
define the follow-up input (Line 12). The data function Output
executes the sequence of actions in an input sequence (e.g.,
requests a sequence of URLs) and returns the output of the
i-th action.

VI. SMRL TO JAVA TRANSFORMATION

SMRL specifications are automatically transformed into
Java code (Step 2 in Fig. 1). To this end, we extended the
Xbase compiler (hereafter SMRL compiler). Each MR is
transformed into a Java class with the name of the relation
and its package. The generated classes extend the class MR
and implement its method mr.

The method mr executes the metamorphic expressions in
the MR. It returns true if the relation holds and false
otherwise. To do so, the SMRL compiler transforms each
boolean operator into a set of nested IF conditions. For
example, for the operator IMPLIES, the generated code returns
false when the first parameter is true and the second one is
false. For the case in which the MR holds, the SMRL compiler
generates a statement that returns true at the end of mr.

Fig. 4 shows the Java code generated from the relation in
Fig. 2. A loop control structure is generated from the loop
instruction in the relation (Line 7). The loop body contains the
Java code generated from the metamorphic expression using
the operator IMPLIES (Lines 10-24). The first IF condition

Fig. 4. Java code generated from the MR in Fig. 2.

checks whether the first parameter of the operator IMPLIES
holds (Lines 10-13). The nested IF block checks whether
the second parameter of IMPLIES holds (Line 17). If the
expression does not hold, mr returns false (Line 20). The
relation holds only if all the expressions in the loop hold.
Therefore, the SMRL compiler generates a return true
statement after the loop body (Line 25). Calls to the methods
ifThenBlock and expressionPass are used to erase the
generated follow-up inputs at each iteration.

VII. DATA COLLECTION FRAMEWORK

To automatically derive source inputs (Step 3 in Fig. 1),
we extended the Crawljax Web crawler [82], [83]. Crawljax
explores the user interface of a Web system (e.g., by requesting
URLs in HTML anchors or by entering text in HTML forms).
It generates a graph whose nodes represent the system states
reached through the user interface and edges capture the
action performed to reach a given state (e.g., clicking on a
button). Crawljax detects states based on the content of the
displayed page. Our extension relies on the edit distance to
distinguish system states [84]. We keep a cache of the HTML
page associated to each state detected by Crawljax. When a
new page is loaded, our extension computes the edit distance
between the loaded page and all the pages associated to the
different system states. When the distance is below a given
threshold (5% of the page length), we assume that two pages
belong to the same state. If a page does not belong to any
state, Crawljax adds a new state to the graph. Crawling stops
when no more states are encountered or a timeout is reached.

Our Crawljax extensions enable replicating and modifying
portions of a crawling session. In addition to (i) the Crawljax
actions and (ii) the XPath of the elements targeted by the
actions (e.g., a button being clicked on), our extension records
(iii) the URLs requested by the actions, (iv) the data in the
HTML forms, and (v) the background URL requests. This
enables, for example, replicating modified portions of crawling
sessions that request URLs not appearing in the last Web page
returned by the system. To crawl the system under test, we
require only its URL and a list of credentials.

A1 A2

A3A4

A5 A6

A7

Action
ID

Action
Type

Element URL data

A1 CLICK DIV[1]/BUTTON[1] me.com/login id="tester"; pwd="123"

A2 CLICK DIV[2]/TABLE[1]/A[1] me.com/stats session={...}

A3 CLICK DIV[2]/TABLE[1]/A[2] me.com/startSlave session={...}

A4 CLICK DIV[2]/TABLE[1]/A[3] me.com/profile session={...}

A5 CLICK DIV[1]/BUTTON[1] me.com/login id="devel"; pwd="abc"

A6 CLICK DIV[2]/TABLE[1]/A[1] me.com/stats session={...}

A7 CLICK DIV[2]/TABLE[1]/A[2] me.com/profile session={...}

Step 1: Crawl the system under test

Crawljax graphs

Web System
Under Test

Crawljax

Step 2: Derive source inputs
Input(1) A1,A2

Input(2) A1,A3

Input(3) A1,A4

Input(4) A5,A6

Input(5) A5,A7

User(1) id="tester",pwd="123"

User(2) id="devel",pwd="abc"

exercise

save

derive

Graph edges legend

Fig. 5. Data collection with a simplified example.

Fig. 5 exemplifies the data collection steps. First, Crawljax
generates the graphs of the system under test. Second, source
inputs are automatically derived from the graphs. For example,
an input sequence is a path from the root to a leaf of a
Crawljax graph in depth-first traversal. The source inputs are
later queried by the SMRL functions (see Section VIII). For
example, Input(i) returns the ith input sequence; User(i)
returns the ith unique login credentials in the input sequences.

In addition to Crawljax, our toolset also processes manually
implemented test scripts to generate additional source inputs.
It processes test scripts based on the Selenium framework [85]
and derives a source input from each. We rely on test scripts
to exercise complex interaction sequences not triggered by
Crawljax (see Section X). Crawljax, instead, performs an
almost exhaustive exploration of the Web interface, which is
typically not done by test scripts. Engineers can reuse scripts
developed for functional testing, or define new ones.

VIII. METAMORPHIC TESTING FRAMEWORK

We automatically perform testing based on the executable
MRs in Java and the data collected by the data collection
framework (Step 4 in Fig. 1). Fig. 6 presents our testing
algorithm. The algorithm takes as input a MR and a data
provider exposing the collected data (source inputs). We first
process the bytecode of the MR to identify the types of
source inputs referenced by the relation (e.g., Input and User).
This is achieved by the function extractSourceInputTypes
(Line 2) which identifies the calls to the data representation
functions using the ASM static analysis framework [86]. We
ensure that all possible combinations of available source inputs
are stressed during the execution of the relation (e.g., we would
like to access all available URLs with all configured users).
This is achieved by the function iterateOverInputTypes
(Line 3). The function iterates over all available items for a
given input type (e.g., all available users) and is recursively
invoked for each input type in the MR.

The function iterateOverInputTypes is driven by the
methods exposed by the data provider (Lines 7 and 8). The

Require: MR, the bytecode of the metamorphic relation to be executed
Require: dataProvider, an object that exposes the data collected by the crawlers
Ensure: Failures, a list of failing executions with contextual information

1: function EXECUTEMETAMORPHICTESTING(MR, dataProvider)
2: srcTypes extractSourceInputTypes(MR)
3: iterateOverInputTypes(MR, dataProvider, 0, dataTypes)
4: return Failures
5: end function
6: function ITERATEOVERINPUTTYPES(MR, dataProvider, i, dataTypes)
7: while dataProvider.hasMoreViews(dataTypes[i]) do
8: dataProvider.nextView(dataTypes[i])
9: if (i < dataTypes.lenght) then //need to iterate over other types

10: iterateOverInputTypes(MR,dataProvider, i+1,srcTypes)
11: else //we have set a view for every input type in the relation
12: result = MR.run() //execute the metamorphic relation
13: if (result == false) //the MR does not hold
14: addFailure(Failures,dataProvider) //trace the failure
15: end if
16: end while
17: end function

Fig. 6. Metamorphic testing algorithm.

data provider works as a circular array that provides, in each
iteration of iterateOverInputTypes, a different view on the
collected data. This is achieved through the method nextView
(Line 8), which, for N input items of a given type (e.g., User),
generates N different views, with items shifted by one position.

After the views are generated, the MR is executed (Line 12).
Follow-up inputs are generated within the execution of the MR
by the calls to the operator EQUAL. For example, in Fig. 2, the
operator EQUAL makes Input(2) refer to a copy of the input
sequence returned by the function changeCredentials.

When the relation does not hold (Lines 13 and 14), the
function addFailure stores the failure context information
(i.e., source-inputs, follow-up inputs, and system outputs). To
minimize the time spent by engineers in analyzing failures
triggered by distinct follow-up inputs exercising a same vul-
nerability, we report only failures that perform HTTP requests
(e.g., accessing a URL) not generated by input sequences that
led to previously reported failures.

Function nextView is iteratively invoked until all the items
of a given input type are processed (Line 7). This guarantees
that all input item combinations are used. For the data func-
tions providing random values, nextView returns 100 different
views by default. Since this may lead to combinatorial explo-
sion, we test each MR for a maximum of 24 hours.

Fig. 7 exemplifies the execution of the relation in Fig. 2. The
table on the left represents the sequence of functions invoked
by our algorithm. In this example, two views for User are
inspected for each view of Input. The first two invocations of
MR.run return true (not shown in Fig. 7) because the login and
stats pages have been accessed by both users devel and tester
and thus the implication holds. The third invocation of MR.run
returns false because the output page for the startSlave URL
is the same for the two input sequences and thus the relation
does not hold. To determine if Web pages are equal, we rely on
edit distance. Our framework relies on JUnit [87] to integrate
MT into traditional testing environments (see Fig. 8).

IX. CATALOG OF METAMORPHIC RELATIONS

We derived a catalog of MRs from the activities described
in the OWASP book on security testing [9]. The book provides

iterateOverInputTypes(..,1,..)

nextView("Input")
iterateOverInputTypes(..,2,..)

nextView("User")

MR.run()

nextView("User")

MR.run()

nextView("Input")

iterateOverInputTypes(..,2,..)

nextView("User")

MR.run()
addFailure()

nextView("User")

...

Call # Input Type i-th item
[1] Input <A1,A2> <A1,A3> <A1,A4>

[2] User <"devel"> <"tester">

[3] User <"tester"> <"devel">

[4] Input <A1,A3> <A1,A4> <A1,A2>

[5] User <"devel"> <"tester">

Input(1) → <A1,A2>
User(2) → <"devel">
cannotReachThroughGUI(<"devel">,"../login")→false
cannotReachThroughGUI(<"devel">,"../startSlave")→true
changeCredentials(..)→<{"../login";user="devel";pwd=... >
Input(2) →<{"../login";user="devel";pwd="abc"},...>
Output(Input(1),2) → <HTMLofStartSlave>
Output(Input(2),2) → <HTMLofStartSlave>
return false

Sequence of functions
invoked by the metamorphic

testing algorithm

Legend: → val : f(..) : function returned value/object < .. > : complex data type with nested fields

Content of the views generated by the different
calls to method 'nextView'

Method calls and data generated within 'MR.run()'

[1]

[2]

[3]

[4]

[5]

Fig. 7. Data processing for the relation in Fig. 2.

Fig. 8. Example metamorphic test case. Engineers need only to configure the
data provider and select the MR (s) to be tested.

detailed descriptions of 90 testing activities (hereafter OWASP
testing activities) for Web systems; each OWASP testing
activity targets a specific vulnerability. For example, for the
bypass authorization schema vulnerability, OWASP suggests to
collect links in administrative interfaces and to directly access
the corresponding URLs by using credentials of other users.
Based on this suggestion, we defined the MR in Fig. 2.

Some OWASP testing activities can be performed in mul-
tiple ways. Therefore, we have multiple relations for those
activities. Also, not all the OWASP testing activities benefit
from MT. The capabilities of MT are discussed in Section X.
We defined 22 MRs which automate 16 OWASP activities.

The MRs in our catalog rely on the observation that security
testing might be performed using follow-up inputs that cannot
be generated by interacting with the GUI of the system but
conform with the input format of the system and match its con-
figuration (e.g., the URLs requested by the unauthorized user
refer to existing system resources). We inherit from mutational
fuzzing the idea of generating follow-up inputs by altering
valid source inputs. However, to generate inputs that are both
valid and match the system configuration, instead of relying on
random values, we alter source inputs using the data provided
by the SMRL Web-specific functions, which return domain-
specific information (e.g., protocol names) and crawled data.
Finally, by capturing properties of the output generated by
source and follow-up inputs we identify vulnerabilities that
cannot be detected with implicit oracles.

Table III presents an excerpt of our catalog along with a
description of each MR. The full catalog of MRs is available
for download [32]. All the MRs in the catalog are expressed by

TABLE III
EXCERPT OF THE METAMORPHIC RELATION CATALOG FOR SECURITY TESTING.

OTG-AUTHN-001: Testing for credentials transported over an encrypted channel Description: A login operation should not succeed if performed on the
http channel. The 1st parameter of the operator IMPLIES is a boolean
expression with three clauses joined with logical conjunctions. The 1st
clause checks if the current action performs a login. The 2nd clause
defines the follow-up input. The 3rd clause changes the channel of the
login action in the follow-up input. The 2nd parameter of IMPLIES
checks if the output generated by the login operation is different in the
two cases.

OTG-AUTHZ-001: Testing for directory traversal/file include Description: A file path passed in a parameter should never enable a
user to access data that is not provided by the user interface. This
metamorphic relation contains two nested loops; the first iterates over
the actions in the input sequence, the second iterates over the parameters
of the action. The 1st parameter of the operator IMPLIES is a boolean
expression with two clauses joined with a logical conjunction. The 1st
clause defines a follow-up input that is a copy of the source input. The
2nd clause set the value of a parameter to a random file path. The
2nd parameter of IMPLIES verifies the result. It is implemented as an
OR operation where the 1st parameter verifies that the follow-up input
leads to an error page. The 2nd parameter deals with the case in which
the generated request is valid, and verifies that the returned content is
something that the user has the right to access. The framework evaluates
the MR as many times as needed to provide 100 different random file
paths to the parameters of the action in the position pos.

OTG-SESS-003: Testing for session fixation Description: A signup action should always lead to a new session ID,
even when performed by a user who is already logged-in. This metamor-
phic relation contains two nested loops iterating over the actions of two
distinct source input sequences (i.e., Input(1) and Input(2)). The
first loop looks for a signup action (i.e., ‘signup’), the second looks for
an action (i.e., ‘f’) following a login. The 1st parameter of the operator
IMPLIES is a boolean expression with three clauses joined with a
logical conjunction. The 1st clause checks if we are in the presence of
a signup action. The 2nd clause checks if the action ‘f’ follows a login.
The 3rd clause defines a follow-up input by copying the signup action
after the action ‘f’ in the source input Input(2). The 2nd parameter
of IMPLIES verifies the result by checking that the session ID following
the signup action is different than the one of the previous page.

Notes: Our catalog of metamorphic relations covers also the following OWASP activities: testing for HTTP Strict Transport Security (OTG-CONFIG-007), testing for weaker
authentication in alternative channel (OTG-AUTHN-010), testing for privilege escalation (OTG-AUTHZ-003), testing for bypassing authentication schema (OTG-AUTHN-004),
testing for insecure direct object references (OTG-AUTHZ-004), testing for logout functionality (OTG-SESS-006), test session timeout (OTG-SESS-007), testing for Session
puzzling (OTG-SESS-008), testing for HTTP verb tampering (OTG-INPVAL-003), testing for HTTP parameter pollution (OTG-INPVAL-004), testing for weak encryption
(OTG-CRYPST-004), test number of times a function can be used (OTG-BUSLOGIC-005), test for bypass authorization schema (OTG-AUTHZ-002, see Fig. 2).

means of an implication (the operator IMPLIES). The operator
EQUAL is used to define follow-up inputs. It indicates that the
follow-up input (typically Input(2)) is a copy of the source
input (usually Input(1)) except for the differences made by
the function calls following the operator. For example, in
OTG AUTHN 001, the follow-up input is equal to the source
input except for one action of the input sequence which should
be performed on the HTTP channel.

All the MRs include a loop, which enables defining multiple
follow-up inputs by iteratively modifying different actions of
the source input. For example, OTG AUTHN 001 works with
all the login actions observed in the source input sequence.
The function isLogin() returns true only if the current action
performs a login; otherwise, the implication trivially holds and
no follow-up input is generated.

In our catalog, the right-hand side of the implication usually
captures the relation between the outputs of the source and
follow-up inputs. In OTG AUTHN 001, it is implied that the
output for the follow-up input (which performs a login on
the unencrypted HTTP channel) should be different than the
output for the source input because it should not be possible
to login using the HTTP channel.

X. EVALUATION

Our evaluation addresses the following research questions:
RQ1. To what extent can metamorphic testing address the

oracle problem in the context of security testing? We aim
to determine which types of security vulnerabilities can be
addressed by our solution.

RQ2. Is the proposed solution effective? The goal is to
assess whether the proposed solution enables, in a reliable
manner, the automated detection of security vulnerabilities.
RQ1 To answer RQ1, we analyzed the security testing activi-
ties recommended by OWASP [9]. For each activity, we identi-
fied state-of-the-art oracle automation strategies. Table IV lists
the number of activities automated by these strategies.

Implicit oracle. Some activities can be automated by random
test input generation strategies relying on implicit oracles.
For instance, testing for buffer overflow [88] is automated by
looking for system crashes in response to lengthy inputs.

Catalog-based. We can automate some activities based on a
predefined catalog in which we specify inputs and oracles. For
instance, we can use a catalog to perform a dictionary attack
for testing for default credentials [89].

TABLE IV
ORACLE AUTOMATION STRATEGIES

FOR SECURITY TESTING*

Oracle automation
strategy

OWASP
activities
automated

Implicit oracle 2
Catalog-based 6
No oracle needed 19
Manual oracle 25
Vulnerability-specific 22
Metamorphic testing 16

*Details are available online [32].

TABLE V
VULNERABILITY TYPES ADDRESSED

BY SMRL MRS *

Vulnerability type #MRs
Injection 0
Broken Authentication 6
Sensitive Data Exposure 5
XML External Entities(XEE) 0
Broken Access Control 7
Security Misconfiguration 3
Cross-site scripting (XSS) 0
Insecure Deserialization 0
Vulnerable Components 1
Insufficient Logging 0

No oracle needed. Some activities collect data to reverse
engineer the system under test. They do not verify security
properties of the system and thus do not have an oracle
problem. For instance, the activity mapping application ar-
chitecture [90] identifies the components of a Web system.

Manual oracle. Some activities require humans to determine
vulnerabilities based on system specifications. For instance,
when testing for the circumvention of work flows [91] on pay-
per-view systems, only a human can decide if pending trans-
actions should grant service access, based on specifications.

Vulnerability-specific approaches. Some activities can be
automated by state-of-the-art tools such as Burp Suite
(BS) [92] and thus may not necessarily benefit from MT.
These are the OWASP testing activities that detect cross site
scripting and code injection vulnerabilities. Other activities
are either not targeted or partially automated. For example,
BS does not automate oracles for OTG-AUTHZ-002 [93]. BS
enables engineers to compare the content of site maps [94]
recorded in different user sessions (e.g., with and without
certain privileges). Unfortunately, it requires that engineers
manually identify the privileged resources and inspect the
differences in the observed system outputs, which is error
prone (e.g., overlooking privileged resources) and expensive.
Even BS plug-ins using Crawljax to build site maps do not
address the oracle problem but generate JUnit tests that simply
retrieve the mapped resources [95]. With SMRL, engineers, in-
stead, can focus on the specification of system-level properties
without performing manual testing activities. Testing activities,
including oracles, are automated by the MT framework.

Metamorphic testing. All the other OWASP testing activities
not addressed by the approaches above can be automated by
MT. In general, these activities verify if a resource of the
system under test can be accessed under circumstances that
should prevent it (e.g., unauthenticated user or unencrypted
channel). They benefit from MT since such activities entail the
verification of all system resources, which are numerous and
present specific security properties (e.g., each Web page might
be accessed by a different set of users). For these activities,
we provide a set of MRs (see Table III).

Based on our analysis, out of 90 OWASP testing activities,
19 are not affected by the oracle problem, 30 are automated
by state-of-the-art approaches, and 41 cannot be addressed by
existing approaches. MT can automate 16 (39%) of these 41

activities. Therefore, we conclude that MT can play a key role
in addressing the oracle problem in security testing.

To further characterize our catalog of MRs, we report
in Table V the number of MRs targeting the vulnerability
types in the OWASP top ten list [96]. The MRs in our
catalog can discover five of these ten vulnerability types, and
thus have a broad applicability scope. Note that MRs can
discover injection vulnerabilities [45] and, potentially, also
XSS and XEE because they all concern injected code. In this
paper we specifically target vulnerabilities not addressed by
existing oracle automation approaches, which is the reason
why we ignored injections. We leave the investigation of other
vulnerability types to future work.

RQ2 We applied the proposed approach to discover vulnerabil-
ities in two case studies: a commercial Web system developed
in the context of the EDLAH2 project [97] (hereafter, E2) and
Jenkins [31], an open source system. E2 is the entry point of
a healthcare service developed by our industry partner [98].
It relies on mobile and wearable devices to support elderly
people (patients) in their daily life. The E2 Web interface
enables carers (e.g., family and doctors) to monitor patients’
conditions. The second case study, Jenkins, is an open-source
continuous integration server. We chose Jenkins since it is
widely adopted and well tested. Its Web interface includes
advanced features such as Javascript-based login and AJAX
interfaces. The two case studies are therefore very different
and provide complementary perspectives. E2 is developed
in PHP [99] and based on the Drupal content management
system [100]; Jenkins is a Java Web application that can
be executed within any servlet container [101]. We used the
latest E2 version and Jenkins version 2.121.1. We selected the
Jenkins version affected by all the vulnerabilities triggerable
from the Web interface, discovered in 2018, and reported in the
CVE vulnerability database [102] after June 1st, 2018. Jenkins
2.121.1 is affected by 20 such vulnerabilities. E2 is affected
by 12 vulnerabilities discovered by manual testing following
the OWASP guidelines [5].

Our approach addresses 36% (4 out of 11) and 40% (8
out of 20) of the vulnerabilities affecting E2 and Jenkins,
respectively. This is consistent with our analysis in RQ1.

For each system under test, we configured our data collec-
tion framework with multiple users having different roles. We
used two credentials for E2 and four credentials for Jenkins.
For each role, we executed the data collection framework to
crawl the system under test for a maximum of 300 minutes.
In total, the data collection took 1000 minutes for Jenkins
and 40 minutes for E2. For E2 and for the anonymous role
in Jenkins, Crawljax completed in less than 300 minutes
because all states were visited. 73 and 156 input sequences
were identified for E2 and Jenkins, respectively. Also, we
implemented Selenium-based test scripts to exercise use cases
not covered by Crawljax. This led to one and two test scripts
for E2 and Jenkins, respectively. We tested the two systems
against the MRs that target the vulnerabilities affecting them
(4 for E2 and 8 for Jenkins). Our replicability package [32]

TABLE VI
SUMMARY OF RQ2 RESULTS GROUPED BY DATA COLLECTION METHOD.

Case study Vulnerabilities Crawljax Crawljax & Manual
Specificity Sensitivity Specificity Sensitivity

E2 4 [5] 100.00% 75.00% 100.00% 100.00%
Jenkins 2.121.1 8 [103]–[110] 99.34% 50.00% 99.43% 75.00%
Overall 12 99.43% 58.33% 99.50% 83.33%

does not include E2 data because of confidentiality restrictions.
Comparing with state-of-the-art tools is infeasible because
they do not provide automated oracles.

We measured specificity and sensitivity [111]. Specificity
(i.e., the true negative rate) is the ratio of follow-up inputs,
generated by our framework, that do not trigger any vulnera-
bility and (correctly) do not lead to any MT failure. In other
words, 1 - specificity measures the time spent by engineers
on unwarranted MT failures. Sensitivity (i.e., the true positive
rate) is the ratio of vulnerabilities being discovered. Based
on the existing vulnerability reports for the two systems
considered, we identified the inputs that should uncover vul-
nerabilities. MT failures are expected for these inputs to be
true positives. For each MT failure, we manually verified if the
test input actually triggered any vulnerability (true positive).
Table VI summarizes the results obtained with different data
collection methods (i.e., based on Crawljax only or integrating
Crawljax and manual test scripts). Each MR was tested in less
than 12 hours, except one which was stopped after 24 hours.
Performance optimizations are part of our future work.

We observe that the approach has extremely high speci-
ficity (99.50%), which indicates that only a negligible fraction
of follow-up inputs inspected lead to false alarms (32 out of
6401, ⇠0.5%). False alarms are due to limitations in Crawljax,
which, in the case of Jenkins, did not traverse all the URLs
provided by the GUI, for all the users. Consequently, MRs
concerning authorization vulnerabilities fail. However, it is
easy to determine that the URLs causing the false alarms
should be accessible to all the users.

Sensitivity is high when data collection is based on both
Crawljax and manual test scripts (100% for E2 and 75%
for Jenkins). Since sensitivity reflects the fault detection rate
(i.e., the portion of vulnerabilities discovered), we conclude
that our approach is highly effective. Overall, it detects
83.33% of the vulnerabilities targeted in our evaluation. More
precisely, the approach identifies 47 distinct inputs sequences
triggering these vulnerabilities. The approach misses two of
the eight targeted vulnerabilities in Jenkins. One of them can
be detected only if the server configuration is modified during
test execution [105], which is not supported by our toolset.
The other one cannot be reproduced since it concerns the
termination of Jenkins’ reboot [103], which is not interruptible
when Jenkins is not overloaded (our case).

When the data collection relies on Crawljax only, sensitivity
drops below 75% for Jenkins. This occurs since Jenkins
requires quick system interactions to exercise certain features
(e.g., first writing a valid Unix command in a textbox to
enqueue a batch job, and then quickly pressing a button

to delete it from the queue). However, even when the data
collection is based on Crawljax only, the overall fault detection
rate is satisfactory (i.e., 58.33%), with 7 out of 12 vulner-
abilities being detected. Automatically detecting 58.33% of
the vulnerabilities not targeted by state-of-the-art approaches,
without the need for any manual test script, is encouraging.

The benefits of our approach mostly stems from the MRs
in our catalog being reusable to test any Web system. Further-
more, the required manual test scripts are few and inexpensive
to implement. For the Web systems above, we manually wrote
three test scripts which only include 10 actions in total. This
is very limited in comparison to the total of 6401 inputs
sequences (41834 actions) automatically generated by our
approach to test the two systems. A traditional way to verify
the same scenarios would require 6401 manually implemented
test scripts, each providing a distinct input sequence, and a
dedicated oracle (e.g., an assertion statement). Therefore, we
conclude that our approach provides an advantageous cost-
effectiveness trade-off compared to current practice.
Threats to Validity The main threat to validity in our
evaluation concerns the generalizability of the conclusions.
Regarding RQ1, to mitigate this threat and minimize the risk of
considering a set of testing activities that is not representative
of Web application testing, we considered testing activities
proposed by a third party organization (i.e., OWASP). As for
RQ2, to mitigate this threat, we selected systems that are
representative of modern Web systems but are very different
from both a technical and process perspective.

XI. CONCLUSION

In this paper, we presented an approach that enables engi-
neers to specify metamorphic relations (MR) capturing secu-
rity properties of Web systems, and that automatically detects
security vulnerabilities based on those relations. Our approach
aims to alleviate the oracle problem in security testing.

Our contributions include (1) a DSL and supporting tools
for specifying MRs for security testing, (2) a set of MRs in-
spired by OWASP guidelines, (3) a data collection framework
crawling the system under test to automatically derive input
data, and (4) a testing framework automatically performing
security testing based on the MRs and the input data [32].

Our analysis of the OWASP guidelines shows that our
approach can automate 39% of the security testing activities
not currently targeted by state-of-the-art techniques, which in-
dicates that the approach significantly contributes to addressing
the oracle problem in security testing. Our empirical results
with two commercial and open source case studies show that
the approach requires limited manual effort and detects 83%
of the targeted vulnerabilities, thus suggesting it is highly
effective.

ACKNOWLEDGMENT
This work has received funding from the National Research Fund (FNR),

Luxembourg, with grant INTER/AAL/15/11213850, from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 694277), and from the Canada
Research Chair programme.

REFERENCES

[1] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security requirements
engineering: A framework for representation and analysis,” IEEE
Transactions on Software Engineering, vol. 34, no. 1, pp. 133–153,
2008.

[2] H. Mouratidis and P. Giorgini, “Secure tropos: a security-oriented ex-
tension of the tropos methodology,” International Journal of Software
Engineering and Knowledge Engineering, vol. 17, no. 2, pp. 285–309,
2007.

[3] M. Felderer, M. Buchler, M. Johns, A. D. Brucker, R. Breu, and
A. Pretschner, “Security testing: A survey,” Advances in Computers,
vol. 101, pp. 1–51, 2016.

[4] P. X. Mai, A. Goknil, L. K. Shar, F. Pastore, L. C. Briand, and
S. Shaame, “Modeling security and privacy requirements: a use case-
driven approach,” Information and Software Technology, vol. 100, pp.
165–182, 2018.

[5] P. X. Mai, F. Pastore, A. Goknil, and L. C. Briand, “A natural lan-
guage programming approach for requirements-based security testing,”
in Proceedings of 29th IEEE International Symposium on Software
Reliability Engineering (ISSRE’18), 2018, pp. 58–69, note: the pa-
per reports on E2 vulnerabilities targeted in Section X. They con-
cern OTG-AUTHN-001, OTG-AUTHN-004, OTG-AUTHN-010, OTG-
BUSLOGIC-005.

[6] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[7] M. Staats, M. W. Whalen, and M. P. Heimdahl, “Programs, tests, and
oracles: the foundations of testing revisited,” in ICSE’11, 2011, pp.
391–400.

[8] M. Pezze and C. Zhang, “Automated test oracles: A survey,” Advances
in Computers, vol. 95, pp. 1–48, 2014.

[9] M. Meucci and A. Muller, “OWASP Testing Guide v4,”
https://www.owasp.org/images/1/19/OTGv4.pdf.

[10] G. Rosen, “Facebook Security Update on ’View As’ Vulnerability,”
https://newsroom.fb.com/news/2018/09/security-update/.

[11] D. Deahl, “Another Facebook Vulnerability,”
https://www.theverge.com/2018/11/13/18088904/imperva-facebook-
data-vulnerability-user-friends-information-cambridge-analytica.

[12] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for overflows: A guided fuzzer to find buffer boundary violations,” in
USENIX Security’13, 2013, pp. 49–64.

[13] S. Ognawala, M. Ochoa, A. Pretschner, and T. Limmer, “MACKE:
Compositional analysis of low-level vulnerabilities with symbolic ex-
ecution,” in ASE’16, 2016, pp. 780–785.

[14] T. Y. Chen, S.-C. Cheung, and S.-M. Yiu, “Metamorphic testing: a new
approach for generating next test cases,” The Hong Kong University
of Science and Technology, Tech. Rep., 1998.

[15] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How effectively does
metamorphic testing alleviate the oracle problem?” IEEE Transactions
on Software Engineering, vol. 40, no. 1, pp. 4–22, 2014.

[16] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortes, “A survey
on metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[17] J. Mayer and R. Guderlei, “On random testing of image processing
applications,” in QSIC’06, 2006, pp. 85–92.

[18] R. Guderlei and J. Mayer, “Towards automatic testing of imaging
software by means of random and metamorphic testing,” International
Journal of Software Engineering and Knowledge Engineering, vol. 17,
no. 6, pp. 757–781, 2007.

[19] R. Just and F. Schweiggert, “Evaluating testing strategies for imaging
software by means of mutation analysis,” in ICSTW’09, 2009, pp. 205–
209.

[20] F.-C. Kuo, S. Liu, and T. Y. Chen, “Testing a binary space partitioning
algorithm with metamorphic testing,” in SAC’11, 2011, pp. 1482–1489.

[21] W. K. Chan, S. C. Cheung, and K. R. Leung, “A metamorphic testing
approach for online testing of service-oriented software applications,”
International Journal of Web Services Research, vol. 4, no. 2, pp. 61–
81, 2007.

[22] C.-a. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y. Chen,
“Metamorphic testing for web services: Framework and a case study,”
in ICWS’11, 2011, pp. 283–290.

[23] Z. Q. Zhou, S. Zhang, M. Hagenbuchner, T. Tse, F.-C. Kuo, and
T. Y. Chen, “Automated functional testing of online search services,”
Software: Testing, Verification and Reliability, vol. 22, no. 4, pp. 221–
243, 2012.

[24] T. Tse and S. S. Yau, “Testing context-sensitive middleware-based
software applications,” in COMPSAC’04, 2004, pp. 458–466.

[25] W. K. Chan, T. Y. Chen, S. C. Cheung, T. Tse, and Z. Zhang, “Towards
the testing of power-aware software applications for wireless sensor
networks,” in ADA Europe’07, 2007, pp. 84–99.

[26] F.-C. Kuo, T. Y. Chen, and W. K. Tam, “Testing embedded software
by metamorphic testing: A wireless metering system case study,” in
LCN’11, 2011, pp. 291–294.

[27] M. Jiang, T. Y. Chen, F.-C. Kuo, and Z. Ding, “Testing central
processing unit scheduling algorithms using metamorphic testing,” in
ICSESS’13, 2013, pp. 530–536.

[28] T. Y. Chen, F. Kuo, W. Ma, W. Susilo, D. Towey, J. Voas, and Z. Q.
Zhou, “Metamorphic testing for cybersecurity,” Computer, vol. 49,
no. 6, pp. 48–55, June 2016.

[29] Synopsys Inc., “Description of the openssl heartbleed vulnerability.”
http://heartbleed.com/.

[30] “Eclipse IDE, https://www.eclipse.org/ide/.”
[31] Eclipse Foundation, “Jenkins ci/cd server.” https://jenkins.io/.
[32] Authors of this paper, “SMRL editor executable, catalog of MRs, MT

framework, experimental data.” https://sntsvv.github.io/SMRL/.
[33] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse,

and Z. Q. Zhou, “Metamorphic testing: A review of challanges and
opportunities,” ACM Computing Surveys, vol. 51, no. 1, 2018.

[34] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, “Finding software
vulnerabilities by smart fuzzing,” in ICST’11, 2011, pp. 427–430.

[35] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen, Fuzzing for
Software Security Testing and Quality Assurance. Artech House, 2018.

[36] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler,
“The fuzzing book,” in The Fuzzing Book. Saarland University,
2019, retrieved 2019-09-09 16:42:54+02:00. [Online]. Available:
https://www.fuzzingbook.org/

[37] S. Raghavan and H. Garcia-Molina, “Crawling the hidden web,” in
VLDB’01, 2000, pp. 129–138.

[38] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “SecuBat: A web
vulnerability scanner,” in WWW’06, 2006, pp. 247–246.

[39] M. Martin and M. S. Lam, “Automatic generation of XSS and SQL
injection attacks with goal-directed model checking,” in USENIX
Security’08, 2008, pp. 31–43.

[40] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art:
Automated black-box web application vulnerability testing,” in SP’10,
2010, pp. 332–345.

[41] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan, “Automated
testing for sql injection vulnerabilities: An input mutation approach,”
in ISSTA’14, 2014, pp. 259–269.

[42] M. Salas and E. Martins, “Security testing methodology for vulnera-
bilities detection of XSS in web services and WS-security,” ENTCS,
pp. 133–154, 2014.

[43] O. Tripp, O. Weisman, and L. Guy, “Finding your way in the testing
jungle: A learning approach to web security testing,” in ISSTA’13, 2013,
pp. 347–357.

[44] D. Appelt, N. Alshahwan, and L. Briand, “Assessing the impact of
firewalls and database proxies on sql injection testing,” in FITTEST’13,
2013, pp. 32–47.

[45] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai, “Web application
security assessment by fault injection and behavior monitoring,” in
WWW’03, 2003, pp. 148–159.

[46] M. Felderer, P. Zech, R. Breu, M. Büchler, and A. Pretschner, “Model-
based security testing: A taxonomy and systematic classification,”
Software: Testing, Verification and Reliability, vol. 26, no. 2, pp. 119–
148, 2016.

[47] M. Felderer, B. Agreiter, P. Zech, and R. Breu, “A classification for
model-based security testing,” in VALID’11, 2011, pp. 109–114.

[48] A. Bertolino, S. Daoudagh, F. Lonetti, E. Marchetti, F. Martinelli, and
P. Mori, “Testing of PolPA authorization systems,” in AST’12, 2012,
pp. 8–14.

[49] A. Blome, M. Ochoa, K. Li, M. Peroli, and M. T. Dashti, “Vera: A
flexible model-based vulnerability testing tool,” in ICST’13, 2013, pp.
471–478.

[50] K. He, Z. Feng, and X. Li, “An attack scenario based approach for
software security testing at design stage,” in ISCSCT’08, 2008, pp.
782–787.

[51] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, “A threat model-
based approach to security testing,” Software: Practice and Experience,
vol. 43, no. 2, pp. 241–258, 2013.

[52] J. Jürjens, “UMLsec: Extending UML for secure systems develop-
ment,” in UML’02, 2002, pp. 412–425.

[53] ——, “Sound methods and effective tools for model-based security
engineering with UML,” in ICSE’05, 2005, pp. 322–331.

[54] ——, Secure Systems Development with UML. Springer Science &
Business Media, 2005.

[55] ——, “Model-based security testing using UMLsec: A case study,”
Electronic Notes in Theoretical Computer Science, vol. 220, no. 1, pp.
93–104, 2008.

[56] M. Masood, A. Ghafoor, and A. Mathur, “Conformance testing of
temporal role-based access control systems,” IEEE Transactions on
Dependable and Secure Computing, vol. 7, no. 2, pp. 144–158, 2010.

[57] D. Xu and K. E. Nygard, “Threat-driven modeling and verification of
secure software using aspect-oriented petri nets,” IEEE Transactions
on Software Engineering, vol. 32, no. 4, pp. 265–278, 2006.

[58] E. Martin and T. Xie, “A fault model and mutation testing of access
control policies,” in WWW’07, 2007, pp. 667–676.

[59] ——, “Automated test generation for access control policies via
change-impact analysis,” in SESS’07, 2007.

[60] E. Martin, T. Xie, and T. Yu, “Defining and measuring policy coverage
in testing access control policies,” in ICICS’06, 2006, pp. 139–158.

[61] G. Wimmel and J. Jürjens, “Specification-based test generation for
security-critical systems using mutations,” in ICFEM’02, 2002, pp.
471–482.

[62] J. Whittle, D. Wijesekera, and M. Hartong, “Executable misuse cases
for modeling security concerns,” in ICSE’08, 2008, pp. 121–130.

[63] D. Xu, M. Tu, M. Sanford, L. Thomas, D. Woodraska, and W. Xu,
“Automated security test generation with formal threat models,” IEEE
Transactions on Dependable and Secure Computing, vol. 9, no. 4, pp.
526–540, 2012.

[64] D. Xu, W. Xu, M. Kent, L. Thomas, and L. Wang, “An automated test
generation technique for software quality assurance,” IEEE Transac-
tions on Reliability, vol. 64, no. 1, pp. 247–268, 2015.

[65] Y. Le Traon, T. Mouelhi, and B. Baudry, “Testing security policies:
Going beyond functional testing,” in ISSRE’07, 2007, pp. 93–102.

[66] T. Mouelhi, F. Fleurey, B. Baudry, and Y. Le Traon, “A model-based
framework for security policy specification, deployment and testing,”
in MODELS’08, 2008, pp. 537–552.

[67] T. Mouelhi, Y. Le Traon, and B. Baudry, “Transforming and selecting
functional test cases for security policy testing,” in ICST’09, 2009, pp.
171–180.

[68] D. Xu, L. Thomas, M. Kent, T. Mouelhi, and Y. Le Traon, “A model-
based approach to automated testing of access control policies,” in
SACMAT’12, 2012, pp. 209–218.

[69] T. Y. Chen, F.-C. Kuo, H. Liu, and S. Wang, “Conformance testing
of network simulators based on metamorphic testing technique,” in
FORTE’09, 2009, pp. 243–248.

[70] J. Ding, T. Wu, D. Wu, J. Q. Lu, and X.-H. Hu, “Metamorphic testing
of a monte carlo modeling program,” in AST’11, 2011, pp. 1–7.

[71] C. Murphy, M. S. Raunak, A. King, S. Chen, C. Imbriano, G. Kaiser,
I. Lee, O. Sokolsky, L. Clarke, and L. Osterweil, “On effective testing
of health care simulation software,” in SEHC’11, 2011, pp. 40–47.

[72] Q. Tao, W. Wu, C. Zhao, and W. Shen, “An automatic testing approach
for compiler based on metamorphic testing technique,” in APSEC’10,
2010, pp. 270–279.

[73] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 216–226,
2014.

[74] X. Xie, J. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Appli-
cation of metamorphic testing to supervised classifiers,” in QSIC’09,
2009, pp. 135–144.

[75] C. Murphy, G. E. Kaiser, and L. Hu, “Properties of machine learning
applications for use in metamorphic testing,” Columbia University,
Tech. Rep., 2008.

[76] H. Zhu, “Jfuzz: A tool for automated java unit testing based on data
mutation and metamorphic testing methods,” in TSA’15, 2015, pp. 8–
15.

[77] C. Murphy, K. Shen, and G. Kaiser, “Using jml runtime assertion
checking to automate metamorphic testing in applications without test
oracles,” in ICST’09, 2009, pp. 436–445.

[78] “Open Web Application Security Project.” https://www.owasp.org/.
[79] Microsoft Corp., “Silverlight plug-ins and development tools.”

https://www.microsoft.com/silverlight/.
[80] S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, R. von Massow,

W. Hasselbring, and M. Hanus, “Xbase: Implementing domain-specific
languages for java,” ACM SIGPLAN Notices - GPCE ’12, vol. 48, no. 3,
pp. 112–121, 2012.

[81] “Xtext, https://www.eclipse.org/Xtext/.”
[82] A. Mesbah, A. Van Deursen, and S. Lenselink, “Crawling ajax-based

web applications through dynamic analysis of user interface state
changes,” ACM Transactions on the Web, vol. 6, no. 1, p. 3, 2012.

[83] A. Mesbah, E. Bozdag, and A. Van Deursen, “Crawling ajax by
inferring user interface state changes,” in ICWE’08, 2008, pp. 122–
134.

[84] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals,” Soviet Physics Doklady, vol. 10, Feb. 1966.

[85] “Selenium Web Testing Framework, https://www.seleniumhq.org/.”
[86] “ASM bytecode manipulation framework.” https://asm.ow2.io/.
[87] “JUnit, https://junit.org/.”
[88] OWASP, “OTG-INPVAL-014: Testing for Buffer Overflow.”

https://www.owasp.org/index.php/Testing for Buffer Overflow (OTG-
INPVAL-014).

[89] ——, “OTG-AUTHN-002: Testing for default credentials.”
https://www.owasp.org/index.php/Testing for default credentials (OTG-
AUTHN-002).

[90] ——, “OTG-INFO-010: Mapping application architecture.”
https://www.owasp.org/index.php/Map Application Architecture (OTG-
INFO-010).

[91] ——, “OTG-BUSLOGIC-006: Testing for the circumvention of work-
flows.” https://www.owasp.org/index.php/Testing for the Circumven-
tion of Work Flows (OTG-BUSLOGIC-006).

[92] Portswigger, “Burp suite.” https://portswigger.net/burp.
[93] ——, “Using burp suite to test for by-

pass authorization schema using site maps.”
https://support.portswigger.net/customer/portal/articles/1969842-
using-burp-s-%22request-in-browser%22-function-to-test-for-access-
control-issues.

[94] ——, “Burp suite scanning (crawling) feature.”
https://portswigger.net/burp/documentation/desktop/scanning.

[95] R. S. Liverani, “Integration of burp suite and crawljax.”
https://github.com/portswigger/burp-csj.

[96] “OWASP Top 10 Web Security Risks with weak-
nesses descriptions matching the mitre cwe categories.”
https://cwe.mitre.org/data/definitions/1026.html.

[97] “EDLAH2: Active and Assisted Living Programme,”
http://www.edlah2.eu/.

[98] “MiCare,” https://getmicare.co.uk/.
[99] The PHP Group, “Php programming language.” http://php.net/.

[100] Drupal, “Drupal content management system.” https://www.drupal.org/.
[101] Eclipse Foundation, “Jetty application server.”

https://www.eclipse.org/jetty/.
[102] MITRE Corporation, “Common vulnerabilities and exposures.”

https://cve.mitre.org/cve/.
[103] MITRE, “CVE-2018-1999047, concerns OTG-AUTHZ-002,”

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1999047.
[104] ——, “CVE-2018-1999046, concerns OTG-AUTHZ-002,”

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1999046.
[105] ——, “CVE-2018-1999045, concerns OTG-AUTHZ-002,”

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1999045.
[106] ——, “CVE-2018-1999006, concerns OTG-AUTHZ-002,”

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1999006.
[107] ——, “CVE-2018-1999004, concerns OTG-AUTHZ-002,”

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1999004.
[108] ——, “CVE-2018-1999003, concerns OTG-AUTHZ-002,”

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1999003.
[109] ——, “CVE-2018-1000409, concerns OTG-SESS-003,”

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000409.
[110] ——, “CVE-2018-1000406, concerns OTG-AUTHN-001,”

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1000406.
[111] D. Lane, “Online statistics education: A multimedia course of study.”

[Online]. Available: http://onlinestatbook.com/

