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a b s t r a c t 

Endoscopy is a routine imaging technique used for both diagnosis and minimally invasive surgical treat- 

ment. Artifacts such as motion blur, bubbles, specular reflections, floating objects and pixel saturation 

impede the visual interpretation and the automated analysis of endoscopy videos. Given the widespread 

use of endoscopy in different clinical applications, robust and reliable identification of such artifacts and 

the automated restoration of corrupted video frames is a fundamental medical imaging problem. Exist- 

ing state-of-the-art methods only deal with the detection and restoration of selected artifacts. However, 

typically endoscopy videos contain numerous artifacts which motivates to establish a comprehensive so- 

lution. 

In this paper, a fully automatic framework is proposed that can: 1) detect and classify six different 

artifacts, 2) segment artifact instances that have indefinable shapes, 3) provide a quality score for each 

frame, and 4) restore partially corrupted frames. To detect and classify different artifacts, the proposed 

framework exploits fast, multi-scale and single stage convolution neural network detector. In addition, we 

use an encoder-decoder model for pixel-wise segmentation of irregular shaped artifacts. A quality score 

is introduced to assess video frame quality and to predict image restoration success. Generative adver- 

sarial networks with carefully chosen regularization and training strategies for discriminator-generator 

networks are finally used to restore corrupted frames. 

The detector yields the highest mean average precision (mAP) of 45.7 and 34.7, respectively for 25% 

and 50% IoU thresholds, and the lowest computational time of 88 ms allowing for near real-time pro- 

cessing. The restoration models for blind deblurring, saturation correction and inpainting demonstrate 

significant improvements over previous methods. On a set of 10 test videos, an average of 68.7% of video 

frames successfully passed the quality score ( ≥ 0 . 9 ) after applying the proposed restoration framework 

thereby retaining 25% more frames compared to the raw videos. The importance of artifacts detection 

and their restoration on improved robustness of image analysis methods is also demonstrated in this 

work. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Originally used to image the esophagus, stomach and colon, 

iniaturization of hardware and improvement of imaging sensors 

ow enable endoscopy of the ear, nose, throat, heart, urinary tract, 
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oints, and abdomen. Despite recent hardware improvements of 

linical endoscopes allowing high definition and high frame rate 

mage capture, the quality of endoscopic videos are still compro- 

ised. This is mostly due to non-optimal reflection of light, un- 

voidable tissue movements, large variabilities in organ shape and 

urface texture, occlusions due to bodily fluids and debris. Most 

ommon imaging artifacts include the over- and under-exposure of 

mage regions due to variability in illumination and organ topol- 

gy (termed as “saturation” and “low contrast”, respectively), blur 
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ue to unsteady hand motion of endoscopists and local organ mo- 

ion, and specularity due to light reflection from smooth organ sur- 

aces. The presence of fluid and bubbles also influence the visual 

nterpretation of the examined mucosal surface. Detection, and lo- 

alization of artifact regions can provide quantitative analysis of 

he actual surveillance of the mucosal surface significant for as- 

essing the quality of the clinical endoscopy procedure. The online 

estoration of endoscopy frames from inevitable artifacts obscur- 

ng the underlying tissue and degrading the video frame quality 

an improve the mucosal surface visualization and hence minimize 

he risk of misdiagnosis or requirement for the repetition of endo- 

copic procedure and can even shorten the relative time of endo- 

copic surveillance required today. 

A systematic approach to identifying bespoken image artifacts 

s required to improve the utility of endoscopy videos. By identify- 

ng artifacts in real-time it will be possible to provide the acquisi- 

ion quality feedback to human operators during training as well as 

outine clinical operation. Additionally, video frames affected with 

rtifacts adversely affects any computer assisted endoscopy meth- 

ds such as video mosaicking ( Ali et al., 2016a; 2016b ), segmenta- 

ion ( Prasath, 2016 ), and automated detection ( Zhang et al., 2018; 

rban et al., 2018 ). Zhang et al. (2018) showed that the detected 

ounding boxes were vulnerable to artifacts consequently affect- 

ng the detector performance for polyp tracking in colonoscopy 

ata. Similarly, Urban et al. (2018) utilized additional training sam- 

les from videos to reduce the false-positive detections due to 

andom artifacts in capsule endoscopy. Also, Prasath (2016) re- 

orted that most published methods had to take additional care 

o avoid the pitfalls of artifacts to make their methods work on 

ndoscopy videos. While, Ali et al. (2016a,b) manually selected the 

ideo frames in bladder endoscopy for effective mosaicking by ig- 

oring frames with evident artifacts such as blur, floating objects 

nd pixel saturation. Thus, to maximize the usability of the ac- 

uired data, the detection of multi-class artifacts should be com- 

ined with context specific image enhancement and restoration 

echniques. To do so, different methods should be used for correct- 

ng motion artifacts, pixel saturation, specularities, and the pres- 

nce of bubbles or debris. 

.1. Related work 

Chikkerur et al. (2011) and Menor et al. (2016) have intro- 

uced global quality metrics but these do not provide any ad- 

itional information about the artefact itself. Such global quality 

cores only allow for the removal of corrupted frames and do not 

upport any context specific image enhancement, i.e., neither in- 

ormation regarding the cause of frame quality degradation nor the 

egraded regions could be identified for frame restoration. Such a 

aïve removal of corrupted frames can severely deplete the infor- 

ation content of videos and affect their overall temporal conti- 

uity. Here, video mosaicking methods that can require an over- 

ap of 60% or more can easily fail ( Ali et al., 2016a; 2016b ). Vari-

us research groups have studied the detection and correction of 

pecific artifacts in endoscopic imaging ( Akbari et al., 2018; Liu 

t al., 2011; Stehle, 2006; Tchoulack et al., 2008 ). For example, 

eblurring of wireless capsule endoscopy images utilizing a total 

ariational (TV) approach was proposed in ( Liu et al., 2011 ). TV- 

ased de-blurring is however parameter sensitive and requires ge- 

metrical features to perform well. Endoscopic images have very 

parse features and lack geometrically prominent structures. Both 

lassical image processing methods ( Stehle, 2006; Tchoulack et al., 

008; Mohammed et al., 2018 ) and machine learning approaches 

ere applied ( Akbari et al., 2018; Rodrguez-Snchez et al., 2017; Is- 

bel et al., 2018 ) for endoscopy frame restoration. A major draw- 

ack of classical methods is that heuristically chosen image in- 

ensities are compared with neighboring (local) image pixels. For 
2 
achine learning approaches, hand-crafted features ( Akbari et al., 

018 ) as well as neural networks ( Rodrguez-Snchez et al., 2017; Is- 

bel et al., 2018 ) have been used to restore specular reflections. 

owever, all these methods select to restore endoscopic images 

ith one single artifact class while they are simultaneously cor- 

upted with multiple artifacts. For example, both ‘specularities’ and 

 water ‘bubble’ can be present in the same frame. Moreover, the 

urrounding pixel appearances of these artifacts can also vary in 

ifferent modalities (see Fig. 1 ) which can influence artifact de- 

ection and restoration methods. Finally, inter-patient variation is 

ignificant even when viewed under the same modality. Existing 

ethods fail to adequately address all of these challenges. In ad- 

ition to addressing one type of imaging artifact, only one imag- 

ng modality and a single patient video sequence are considered 

n most of endoscopy-based image analysis literature mentioned 

bove. 

The use of small size data sets and use of only small image 

atches in these studies also raise concern regarding method gen- 

ralization to image variabilities often present in endoscopic data. 

or example, Akbari et al. (2018) used only 100 randomly selected 

mages to train the Support Vector Machine (SVM) for detecting 

pecular regions. Similarly, Rodrguez-Snchez et al. (2017) proposed 

o train an encoder-decoder network for segmentation of spec- 

larity regions for which 160 endoscopic images were used to 

rain the network and 40 images were used for testing. A post 

rocessing scheme based on Euclidean distance was used to ob- 

ain the restoration and was not trained in an end-to-end fash- 

on. While, Isabel et al. (2018) trained an end-to-end genera- 

ive adversarial CNN for restoration of specularity in endoscopy 

rames utilizing 100 image patches per video from 10 differ- 

nt endoscopic videos. In general, both local and global infor- 

ation is required for realistic frame restoration. No addition 

nformation war provided on how patches were detected and 

xtracted. 

To overcome the limitations of previous methods, a complete 

ramework for multi-class artifact detection, localisation, frame 

uality scoring and frame restoration of partially corrupted frames 

s proposed. Here, multi-modal and large dataset sizes are used to 

rain and validate each module of the proposed framework. Lit- 

rature on current trends in detection and restoration which are 

elevant to the implemented modules in this work have been dis- 

ussed below. 

Today, with the advancement of GPUs, convolutional neural net- 

orks (CNN) show tremendous capability to learn and general- 

ze features for accurate detection compared to hand-crafted fea- 

ures. Current state-of-the-art detection methods includes Faster R- 

NNs ( Ren et al., 2015 ), You Only Look Once (YOLO, ( Redmon et al.,

016 )), and RetinaNet ( Lin et al., 2017b ). Faster R-CNNs ( Ren et al.,

015 ) introduced a fully trainable end-to-end network yielding an 

nitial region proposal network and successive classifications of 

he proposed regions without intermediate processing. Since re- 

ion proposal generation precedes bounding box detection sequen- 

ially, this architecture is known as a two-stage detector. Though 

ery accurate, the major drawback is its slow inference and ex- 

ensive training. YOLO ( Redmon et al., 2016 ) simplifies Faster R- 

NNs to predict simultaneously class and bounding box coordi- 

ates using a single CNN and a single loss function with good per- 

ormance and significantly faster inference time. This simultane- 

us detection is known as a one-stage detector. Compared to two- 

tage detectors, single-stage detectors mainly suffer two issues: 

igh false detection due to 1) presence of varied size objects and 

) high initial number of anchor boxes requirement that necessi- 

ates more accurate positive box mining. The former is corrected 

y predicting bounding boxes at multiple scales using feature pyra- 

ids ( He et al., 2014; Lin et al., 2017a ). To address the latter, Reti-

aNet ( Lin et al., 2017b ) introduced a new focal loss which ad- 
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Fig. 1. Multitude of artifacts present in gastroesophageal endoscopy images. (i-ii) represent BF modality and (iii-iv) represents NBI. Annotations of both detection (a) and seg- 

mentation (b) are shown. Detection boxes are labelled for all six classes while segmentation labels are used only for four indefinable artifact classes that include specularity, 

misc. artifacts, bubbles and saturation. 
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usts the propagated loss to focus more on hard, misclassified sam- 

les. Recently, YOLOv3 ( Redmon and Farhadi, 2018 ) simplified the 

etinaNet architecture with further speed improvements. Bound- 

ng boxes are predicted only at three different scales (unlike five 

n RetinaNet) utilizing objectness score and an independent logis- 

ic regression to enable the detection of objects belonging to mul- 

iple classes unlike focal loss in RetinaNet. Collectively, Faster R- 

NN, RetinaNet and YOLOv3 define the current state-of-the-art de- 

ection envelope of accuracy vs speed on the popular natural im- 

ges benchmark COCO data set ( Lin et al., 2014 ). Faster R-CNN has

een widely used for polyp detection in colonoscopy videos ( Mo 

t al., 2018; Shin et al., 2018 ). 

Most deep learning-based biomedical image segmentation 

ethods ( Zhou et al., 2019 ) employ U-Net-based encoder-decoder 

rchitecture ( Ronneberger et al., 2015 ). Fully convolutional net- 

ork (FCN) has also proven to perform well especially when train- 

ng datasets are small. Ben-Cohen et al. (2016) used FCN with a 

GG16 backbone to perform liver segmentation on dataset with 

nly 20 patients. Adding a mask head on top of existing bound- 

ng box regression layer, Faster R-CNN network has been used to 

erform object segmentation, commonly referred to as “Mask R- 

NN’ ( He et al., 2017 ). However, a major disadvantage of such net-

ork is the heavy reliability on the region proposal network that 

ay miss small objects. Similarly, U-Net-based architectures have 

hown promise in the medical imaging field in most cases, but 

uch network can perform poorly to identify small and variable 

ize objects. To tackle varied shapes including small size objects as 

n case of artifacts, feature pyramids or dilated convolutions or a 

ombination of both can boost algorithm performances ( Ali et al., 

020 ). Considering the variable spatial size, texture and locations 

f artifacts, and requirement of faster inference for clinical use; 
3 
eepLabv3+ ( Chen et al., 2018 ) is the current state-of-the-art seg- 

entation architecture. 

Image restoration is the process of generating realistic and 

oise free image pixels from corrupted image pixels. In endoscopic 

rame restoration, depending upon the artifact type, the goal is 

ither the generation of an entire noise-free image or pixel in- 

ainting of undesirable pixels using surrounding pixel informa- 

ion ( Barcelos and Batista, 2007 ). Convolutional neural networks 

ave also been used as the backbones in designing generative 

dversarial networks (GANs, ( Goodfellow et al., 2014 )) for image 

econstruction and restoration. GANs have been successfully ap- 

lied to image-to-image translation problems using limited train- 

ng data. Various modifications have been made in past to enable 

ANs to produce realistic images ( Bang and Shim, 2018; Isola et al., 

017; Mirza and Osindero, 2014 ). For restoration of blur images of 

atural scenes, deblurGAN ( Kupyn et al., 2017 ) and SRN deblur- 

et ( Tao et al., 2018 ) have been proposed for blind deconvolu- 

ion. It has been shown that adversarial networks ( Kupyn et al., 

017; Tao et al., 2018 ) surpass computational speed and restoration 

uality of classical methods ( Getreuer, 2012; Tong et al., 2004; Xu 

t al., 2013 ). For restoration of missing pixels and corrupted pixels, 

npainting methods have been used in literature. Classical meth- 

ds such as TV-inpainting methods are popular for restoring im- 

ges with geometrical structures ( Shen and Chan, 2002 ) and patch- 

ased methods ( Efros and Freeman, 2001 ) for texture synthesis. 

owever, these methods are computationally expensive. Deep neu- 

al networks have proven to recover visually plausible image struc- 

ures and textures ( Köhler et al., 2014 ) with near real-time per- 

ormance. However, they are limited to the size of the mask or 

he number of unknown pixels in an image. Similar to deblur- 

ng, GANs ( Iizuka et al., 2017; Pathak et al., 2016; Yu et al., 2018 )
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Fig. 2. t-SNE plot for train-test data distribution. The numbered dotted rectangles correspond to the test-train samples shown in the corresponding numbered image matrix. 

It can be observed that there is a good overlap between train and test samples. 

Table 1 

Artifact classes identified for detection and restoration of endoscopy frames. 

Artefact type Description 

blur fast camera motion (cyan box in Fig. 1 (a)) 

bubbles bubbles that distorts tissue appearance (purple box in Fig. 1 (b)) 

specularity mirror-like reflection (red box in Fig. 1 (b-d)) 

saturation overexposed bright pixel areas (yellow box in Fig. 1 (b, d)) 

contrast low contrast areas from underexposure (blue box in Fig. 1 (c-d)) 

misc. artifact chromatic aberration, debris etc. (green box in Fig. 1 (a, b, d)) 

h

m

f

2

b

t

a

h

c

s

1

d

t

p

a

a

f

c

ave been shown to be more successful in providing faster and 

ore coherent reconstructions even with larger masks. However, 

or over-exposure correction, i.e., saturation , recently ( Abebe et al., 

018 ) proposed an approach based on exploitation of correlation 

etween RGB channels. Several other strategies such as inverse 

one mapping and reshaping of brightness were also employed to 

djust the variability in the natural scene data. To model such an 

euristic correction of over-exposure in endoscopy data is however 

omplex and tedious due to their large variability and presence of 

parse texture. 
4 
.2. Contributions 

A fully automatic, systematic and comprehensive approach for 

etection of multi-class artifacts, segmentation of indefinable ar- 

ifact instances, quality assessment and subsequent restoration of 

artially corrupted frames is presented. The presented framework 

ddresses the detection and localization of six different artifacts 

nd introduces artifact type specific restoration. To avoid the need 

or parameter adjustment and to overcome the limitations of hand- 

rafted features only suitable for specific artifacts, multiple class 
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Fig. 3. Top row: artifact type distribution in the training and testing of endoscopy image dataset in terms of number of bounding boxes (left) and percentage of the total 

number of bounding boxes (right). Bottom row: the first plot on left represents normalised width vs height relative to source image width and height of annotated ground- 

truth bounding boxes (per small dot) colored by class for the training data while the second plot on the left corresponds to their mean width and mean height pair of each 

class for the training set. Similarly, the right plots represent that for the test set. 

Fig. 4. Sequential processes for endoscopic image restoration from detected region- 

of-interests (ROI) of 6 different artifacts. Alternatively, masked regions from seg- 

mentation areas of indefinable shapes can be used for restoration. First, masks of 

generarted ROIs are dilated and then only these regions are used for restoration. 

Unlike, in case of blur, the entire image is used. 
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rtifact are detected and localized and restoration methods are de- 

igned utilizing data taken from multi-patient and multi-modality. 

A multi-scale single-stage deep convolutional neural network- 

ased object detection is trained on cross patients and cross 

odality endoscopic data for multi-class artifact detection and lo- 

alization. Multi-scale YOLOv3 architecture utilizing 4 scales and 

n additional spatial pyramid pooling layer (SPP) is proposed. Simi- 

arly, pixel-wise segmentation of artifact instances whose area can- 

ot be approximated with a bounding boxes is also presented. 

or this, we have exploited an encoder-decoder model with atrous 
5 
onvolution and SPP layer to handle varied sized artifacts. To quan- 

ify the presence of multi-class artifacts in endoscopy image (loca- 

ion, size), and the complication associated with each artifact class 

or image restoration, a quality metric is proposed which scores 

ach individual frame. Realistic frame restoration is then achieved 

or partially corrupted images using GANs ( Goodfellow et al., 2014 ). 

ubstantial work has been necessary to adopt these existing tech- 

iques to this specific setting and to avoid the introduction of 

dditional artifacts and disruptions to the overall visual coher- 

nce. A novel contextual loss on both image and edge profile is 

sed as regularization along with a dual discriminator-generator 

etwork for deblurring. Restoration of large saturated pixel areas 

sing bidirectional training of GAN for achieving cycle-consistent 

earning is used. The saturation correction using deep learning 

ave never been addressed in the literature. Novel discriminator- 

enerator paired training strategies are introduced for both deblur- 

ing and saturation removal networks. In addition, a novel color- 

ransfer technique is introduced to handle shifts in color profiles 

uring saturation correction. Complete restoration based on global 

ontextual regularization scheme is used to restore pixels associ- 

ted to debris, bubbles, and other miscellaneous clutter. 

.3. Outline 

The remainder of this article is organized as follows. 

ection 2 introduces the endoscopy dataset for artifact detec- 

ion, segmentation, frame restoration, and quality assessment. In 

ection 3 , the details of the proposed approaches for artifact 

etection and endoscopic video frame restoration are presented. 

ection 4 provides the experiments and results for each step of the 

ramework showing the efficacy of individual method. This section 

lso illustrates the importance of endoscopy frame restoration for 

obustness of image analysis methods. Finally, Section 5 concludes 

he paper and outline directions for future work. 
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Fig. 5. Examples of detected bounding boxes for some artifact class labels using YOLOv3-spp. 

Fig. 6. Quality assessment based on class weight, area and location. Images with detection boxes and their corresponding area fraction are shown. On left: shows image 

with mostly contrast problem and on right: shows that with multiple misc. artifacts and specularities. Below are their calculated quality scores. 
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. Materials 

.1. Artifact detection 

Table 1 defines the multi-class artifacts in gastroesophageal en- 

oscopy images and Fig. 1 (a) show the samples corresponding to 

ach artifact class that has been annotated. Both normal bright 

eld (BF) and narrow-band imaging (NBI) modalities in the arti- 

act detection dataset are shown. It can observed that even though 

rtifacts appear similar in both modalities the tissue appearance 

aries drastically. 

The artifact detection data set consists of a total of 1290 en- 

oscopy images (resized to 512 × 512 pixels) from two operating 

odalities; normal bright field (BF, 1229 images), and narrow-band 

maging (NBI, 61 images) from 7 unique patient videos sampled 

anually from 200 videos (based on artifact types, modality, and 

exture variability) for training data. The selection was based on 

umber of representative artifacts present in these videos and tex- 

ure variability of the underlying esophagus. Two experts anno- 

ated a total of 6504 artifacts using bounding boxes where each an- 

otation is classified as in Table 1 and corresponding artifact class 

ample is provided in Fig. 1 . A 90%-10% random split was used to

onstruct the train-test set for object detection resulting in 1161 

nd 129 images (see Fig. 2 ) and 5860 and 644 bounding boxes, 

espectively. In general, the training and testing data exhibits the 

ame class distribution (see Fig. 3 (top row)) and similar bounding 

oxes (roughly square) but either small with average widths less 

han 0.2 or large with widths greater than 0.5 (see Fig. 3 (bottom 

ow)). Multiple annotations are used in case a given region con- 

ains multiple artifacts. 

We have also included 184 out-of-sample test data from 3 dif- 

erent HD endoscopy videos (sequence of 74, 50 and 60 frames) 

cquired from different patients. Two endoscopy video sequences 

onsisted of oesophagus while the third consisted of the pyloric 
t

6 
egion in the stomach. Due to the least number of bounding boxes 

n for blur class in our previous test data split, algorithm evalu- 

tion could have been affected. To mitigate this issue and to test 

he reliability of the detection methods for blur classes effectively, 

e chose the first sequence where the majority of samples con- 

isted of blur (65/74). The dataset consisted of in total 1479 boxes 

or specularity class, 74 saturation labels, 111 blur, 178 contrast and 

18 bubble labels. It is to be noted that large size artifacts (e.g., sat- 

ration, blur, contrast) have lower number of samples as they can 

e labeled by a single large bounding box (see Fig. 1 (a)). 

.2. Artifact segmentation 

From Fig. 1 (b) it is evident that some artifact classes such as 

pecularity, saturation and misc. artifacts appear as an indefinable 

rregular shapes that might not be sufficiently described by bound- 

ng boxes. Similarly, bubbles can accumulate together to form simi- 

ar irregular shapes. In these circumstances, segmentation of these 

rtifacts are more desirable. We curated 431 training images cu- 

ated from more than 20 different patient videos and 110 frames 

ere annotated for test dataset from another 10 different patient 

ideos. All frames used in this work were mostly acquired from 

D Olympus endoscopes and some included that from capsule en- 

oscopy. The number of annotated artifact class regions for spec- 

larity, misc. artifact, bubbles and saturation are 311, 315, 210 and 

47, respectively, for training, and 78, 85, 44 and 67 respectively 

or the test data. It is to be noted that for segmentation task, usu- 

lly a large region is segmented for small locally scattered specu- 

arities or misc. artifacts (see Fig. 1 (b)). 

.3. Frame restoration 

For frame restoration task, the same 7 patient videos used in 

he artifact detection task was used to create training datasets 



S. Ali, F. Zhou, A. Bailey et al. Medical Image Analysis 68 (2021) 101900 

Fig. 7. Blind deblurring using CGAN with added contexual high-frequency feature loss. Dual discriminators D1, D2 and generators G1, G2 are used to leverage the information 

content for improved accuracy. Here, maximum loss of discriminator obtained from either D1 or D2 is used while an average of the contextual loss which minimises the 

sharp image ( x real 1 ) and sharp edge ( x real 2 ) w.r.t. generated deblur outputs. 
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1 https://engineering.purdue.edu/RVL/Database/specularity _ database/index.html . 
2 The cycleGAN network was trained separately using a training data with 200 
or each frame restoration tasks. Due to difference in the nature 

f each restoration task the number of samples created for each 

odule varied, for e.g., for deblurring task 15 simulated sequences 

ere created to mimic the hand motion of endoscopists from se- 

ected set of images. To make the evaluation consistent, each task 

as however evaluated on an additional set of 100 high quality 

ampled images ( QS > 0 . 95 , see Section 3.4 ). Blind deblurring A

aired blur-sharp dataset consisting of 10,710 (715 unique sharp 

mages) multi-patient and multi-modal images with 15 different 

imulated motion trajectories for blur ( Kupyn et al., 2017 ) were 

sed for training and 5 different motion simulations were used to 

reate a test dataset with 100 samples. Saturation removal Due to 

ack of any ground truth data for two different illumination con- 

itions, a fused dataset was created that included: 200 natural 

cene image pairs containing diffuse (scattered light) and ambient 

additional illumination to natural light giving regions with pixel 
s

7 
aturation) illuminations 1 ; and 200 endoscopic image pairs were 

enerated using cycleGAN-based style transfer ( Zhu et al., 2017 ) 2 . 

aturated frames were generated using the same trained cycleGAN 

odel for 100 samples in the evaluation set. Specularity and other 

isc. artifacts removal 10 0 0 high quality endoscopy video frames 

 QS > 0 . 95 ) were used as the ‘clean’ images (see Section 3.4 ) for

hich randomly selected regions were cropped to train the in- 

ainting network. Nearly, 20% of these images were also used as 

alidation set during the training. All 100 images in the evaluation 

et were randomly cropped for 26 × 26 and 62 × 62 size patches 

unknown pixels) to measure the efficacy of the inpainting mod- 

le. 
aturated image samples and 600 normal endoscopy images. 

https://www.engineering.purdue.edu/RVL/Database/specularity_database/index.html
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Fig. 8. Cycle-consistent saturation removal is proposed with additional CRT color correction. The generator G1 is trained to generate diffused light image from ambient 

light image z 1 ( that is usually the cause of saturation of image pixels ) while generator G2 is used to predict ambient light image for the generated diffused light conditioned 

image G 1(z 1 ) . This is done to avoid large deviations ((see (b) right, middle-row) from the natural pixel color in contrast to one-directional generator (see (b) right top-row). 

Saturation corrected frames generation by the color transfer (bottom right) provides visually comparable result w.r.t. ground truth (bottom left). Heavily saturated frames 

(see top-left) are used to illustrate the efficacy of the saturation reduction method. 
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.4. Video recovery, clinical relevance test and impact on algorithm 

obustness 

The complete pipeline was evaluated with both artifact detec- 

ion and restoration frameworks on another set of 10 gastroe- 

ophageal videos each comprising of more than 10,0 0 0 frames for 

nalysis of video recovery. This allowed to quantify the efficacy of 

ideo recovery by the proposed framework. 

In order to quantify addition of distortion or loss of clinically 

ignificant information, restored images of 20 partially corrupted 

rames were rated independently by two clinical experts. A short 

ideo sequence ( ≈ 50 frames) corresponding to each frame was 

rovided to the clinical experts to assist them with the informa- 

ion regarding of the underlying mucosal surface. 

Robustness test of classical image analysis methods such as fea- 

ure matching and optical flow estimation, before (presence of ar- 

ifact) and after restoration (removal of artifact) was conducted on 

00 paired frames. 
8 
. Method 

.1. Proposed framework 

The main aim of this work is to recognize a range of different 

rtifacts and tailor the image restoration accordingly. It is possi- 

le that that a single frame can be corrupted by multiple artifacts. 

ig. 4 provides an overview of the process and illustrates how de- 

ection links with the artifact specific restoration methods. More 

mportantly, in case of corruption of frames with multiple classes 

f artifact types, a sequential process identified in this work is re- 

uired for realistic restoration and to avoid further corruption of 

rames. 

Multiple instance object detection is used to discriminate be- 

ween the six different types of artifacts (see Section 2.1 ) and 

ormal appearance. For each frame a quality score (QS, refer 

ection 3.4 ) is computed based on the type, area and location of 

he identified artifacts to reflect the feasibility of complete image 
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Fig. 9. Class specific precision-recall curves for artifact detection. 
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estoration via the sequential restoration process depicted in Fig. 4 . 

he scaling of the proposed QS score is set such that it differentiate 

etween severely corrupted frames ( QS < 0 . 5 ), partially corrupted 

rames ( 0 . 5 ≤ QS ≤ 0 . 95 ), and frames of high quality ( QS > 0 . 95 ).

everely corrupted frames are discarded without any further pro- 

essing. The proposed image restoration methods are applied to 

artially corrupted frames only. In order to guarantee a faithful 

estoration, partially corrupted frames go through the proposed 

equential framework. All remaining frames are directly concate- 

ated into the final list without any processing. 

.2. Artifact region detection 

Recent research in computer vision provides object detectors 

hat are both robust and suitable for real-time applications. Here, 

his paper proposes to use a multi-scale deep object detection and 

ocalisation model for identifying the different artifacts in near 

eal-time. 

Faster R-CNN ( Ren et al., 2015 ), RetinaNet ( Lin et al., 2017b ) and

OLOv3 ( Redmon and Farhadi, 2018 ) architectures for artifact de- 

ection are investigated. Validated open source codes are available 

or all of these architectures. Experimentally, YOLOv3 with spatial 

yramid pooling (YOLOv3-spp) is chosen for robust detection and 

mproved inference time for endoscopic multi-class artifact detec- 

ion. Spatial pyramid pooling allowed to pool features from sub- 

mage regions utilizing computed single-stage CNN features at four 

cales from YOLOv3 architecture. In addition to the boost in the 

nference speed, incorporating spatial pyramid pooling decreased 

alse positive detections compared to classical YOLOv3 method 

see Section 4.2 ). YOLOv3-spp provided an excellent feature for 

ccuracy-speed trade-off compared to Faster R-CNN and RetinaNet. 

his is critical for usage in clinical settings. However, Faster R-CNN 
9 
nd RetinaNet were also trained for comparison without any archi- 

ecture changes. Examples of the detected boxes using YOLOv3-spp 

re shown in Fig. 5 . 

.3. Artifact region segmentation 

Experimentally, we found that encoder-decoder architecture to- 

ether with atrous spatial pyramid pooling of DeepLabv3+ can ef- 

ectively learn to distinguish the varied shapes of artifacts better 

han the other state-of-the-art methods. In addition, the 1D sep- 

rable convolutions of the network improves the inference time 

hat is vital in our video processing pipeline. To obtain a trade- 

ff between speed and accuracy we have used a shallow ResNet50 

ackbone architecture. We also used widely used U-Net based ar- 

hitecture with ResNet34 and PSPNet with ResNet50 backbone to 

ompare the chosen DeepLabv3+ architecture. Here, choice of back- 

ones are based on our experimental results. 

.4. Quality score 

A frame quality score (QS) is proposed based on: a) type, b) 

rea and c) location of the detected artifacts. Weights are assigned 

o each of these categories and a mean weight is computed as 

he quality score. Weights are assigned to each type based on the 

ase of restoration and visual disruption, e.g., an entire blurred 

mage can still be restored but the same would not apply with 

isc. artifacts, similarly artifacts located centrally are much visu- 

lly unpleasant to the endoscopists. Thus, misc. artifacts are as- 

igned a higher weight than blur. Similarly, the area and location 

f detected artifacts in each frame are important. A centrally lo- 

ated imaging artifact with large area detrimentally degrades im- 

ge information beyond restoration. Below weighting scheme is 
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Fig. 10. Artifact detection on video sequence data. a) Overlayed bounding boxes for two different video sequences (each frame taken approximately after 10 frames). b) 

Confusion matrix showing the true positive detections and confused classes in all 184 sequence frames. 
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escribed which is based on three main factors: 1) impact of loca- 

ion on hindrance to visual information, 2) computational difficulty 

n removal of each artifact class type, and 3) % of area covered. 

• Class weight ( W C ): misc. artifact (0.50), specularity (0.20), satu- 

ration (0.10), blur (0.05), contrast (0.05), bubbles (0.10) 
• Area weight ( W A ): percentage of the total image area occupied 

by all detected artifact areas and normal areas 
• Location weight ( W L ): center (0.5), left (0.25), right (0.25), top 

(0.25), bottom (0.25), top-left (0.125), top-right (0.125), bottom- 

left (0.125), bottom-right (0.125). 

The presented weights have been heuristically chosen after con- 

ultation with expert endoscopists and generalized from their pro- 

ided quality scores. Such an approach reduces the effort of re- 

raining any machine learning model with new sets of training 

ata and the obtained QS-values will not depend on expert anno- 

ation each time minimizing the risk of faulty scoring. In addition, 

anual scoring do not take into account the physical and compu- 

ational complexities that have been incorporated in the presented 
10 
eighting scheme. The final QS is computed as: 

S = � 1 −
∑ 

B 
(λA W C W A + λL W C W L ) � 0 , (1) 

here B denotes the set of bounding boxes associated to each de- 

ected artifact, λA , λL are constants that weight the relative con- 

ributions of area and location. λA = 0 . 5 , λL = 0 . 5 has been used

n the experiments. However, for frames with few detected arti- 

acts (less than 5) such weighting scheme underscores (especially 

f large area artifacts are present) thus λA = 1 , λL = 1 is used for

hese cases. Note that QS score in Eq. (1) is lower-bounded by 0. 

Examples of the proposed quality score applied to real data 

re shown in Fig. 6 . The video frame in Fig. 6 (left) has mostly

 contrast problem (i.e., low W C ) so despite its central location 

see blue box) and large area the frame intensity can be restored 

 ∴ QS = 0.75). However Fig. 6 (right) has many misc. artifacts (high

 C ) and specular areas located centrally centrally (c.f. green, red 

oxes, ∴ QS = 0.23) which inhibits realistic frame restoration so the 

rame is discarded. Although we have used rectangular bounding 
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Table 2 

Computational models used for individual artifact classes. 

Artifact type Restoration method 

Motion blur CGAN (dual) + l2 -contextual + 

high-frequency losses 

Specularity/Bubbles/ CGAN + 

Misc. artifacts l1 -contextual loss 

Saturation CGAN + l2 -contextual 

loss (bi-direction) + CRT transform 

Low contrast same as saturation (reversed training set) 
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ox detection areas only, pixel-wise segmentation mask areas can 

e directly used for indefinable classes for more precise quality 

core analysis. 

.5. Image restoration 

Formulating the reconstruction of the true signal given the 

oisy and corrupted input image I as an optimization or estima- 

ion problem demands a well-motivated mathematical model. Un- 

ortunately, the various different types of artifacts induce a level 

f complexity that make this endeavor very challenging. Assum- 

ng image noise to be additive and approximating motion blur as 

 linear convolution with an unknown kernel is reasonable and 

n line with previous attempts to the problem. In addition, con- 

rast and pixel saturation problems can be formulated as a non- 

inear gamma correction. Other remaining artifacts (e.g., specular- 

ties, bubbles and imaging artifacts) which are due to combined 

rocesses of these phenomena can be assumed as a function of 

he entire process. The corrupted noisy video frame can thus be 

pproximated as: 

(t) = F [ (h ∗ f (t) + η) γ ] , (2) 

here η denotes the additive noise induced by the imaging sys- 

em, the convolution with h the approximation to the induced mo- 

ion blur, γ captures the over- and under-exposed regions and F 

s a generalized non-linear function that models capturing other 

rtifacts as well (including specularities, bubbles and imaging ar- 

ifacts) or a combination of them. This model motivates why the 

estoration of the video frames is structured into separate process- 

ng steps, which are implemented as deep learning models. 

For multi-class endoscopic artifact restoration, it is required to 

erform 1) frame deblurring when h (. ) is unknown, i.e. a blind de- 

lurring task, 2) minimise the effect of contract imbalance (correc- 

ion for over- and under-exposed regions) in frames, i.e. γ correc- 

ion, 3) replace specular pixels and those with imaging artifacts 

r debris with inpainting, i.e. correction for additive noise η(. ) or 

 combined non-linear function F (. ) . Due to the higher likelihood 

f the presence of multiple artifacts in a single frame, unordered 

estoration of these artifacts can further annihilate frame quality. 

hus, an adaptive sequential restoration process that account for 

he nature of individual artifact types is proposed (see Fig. 4 ). In 

his work, artifact class dependent contextual losses have been em- 

edded in generative models (see Table 2 ) for effective restora- 

ion. The sequential restoration pipeline (see Fig. 4 ) is applied to 

artially corrupted frames. To ensure the stability of the generator 

utput for realistic image restoration, the presented work exploits 

onditional generative adversarial framework (CGAN) and compli- 

ented with artifact specific contextual weighted losses and novel 

iscriminator-generator training strategies. 

.5.1. Motion blur 

Unlike static images, motion blur is often non-uniform with un- 

nown kernels h (. ) (see Eq. (2) ) in video frame data. Let generator

 ‘generates’ a sample G (z) from a prior blurred noise distribu- 

ion ( p (z) with z∼ h (. ) ) while a separate discriminator network 
noise 

11 
ries to distinguish between the real target images ( p data (x ) with 

ssumed x∼ deblurred real image) and the fake image generated 

y the generator and y be the class label, then the objective func- 

ion V cond for CGAN can be written as: 

min 

G 
max 

D 
V cond (D, G ) = E x,y ∼p data (x,y ) [ log D (x | y )] + 

E y ∼p y ,z∼p z [ log (1 − D (G (z| y ) , y ))] (3) 

n this work, CGAN with a l2 -contextual loss with 4th layer of 

GG16 (squared difference between generated and target/sharp 

mage applied on VGG16 inference) and an additional l2 high- 

requency loss as regularization on the same. The high-frequency 

ata are also generated by another complementary generator 

odel (see Fig. 7 )). As discriminator converges rapidly in this de- 

lurring framework, the discriminator loss is constrained by the 

aximum discriminator loss at each step, max { V D 1 
cond 

, V D 2 
cond 

} , where 

 

D 
cond 

= E x,y ∼p data (x,y ) [ log D (x | y )] . In the proposed dual-generator

trategy, both generators G 1 and G 2 are trained independently. 

owever, their contextual losses are averaged. This is motivated by 

he fact that motion blur primarily affects image edges, a few dis- 

riminative image pixels compared to the entire image. The high- 

requency images are first computed both for blurred and sharp 

mages in the training data using iterative low pass-high pass fil- 

ering at 4 different scales ( Buades et al., 2011 ). These images are

hen used to provide additional information to the discriminator 

egarding the generator’s behavior (also see Fig. 7 ). Eq. (3) thus 

ecomes: 

min 

G 1 
max 

D 1 
V 

′ 
cond (D 1 , G 1) = V cond + 

∑ 

i 

λ ‖ V GG 16(x real i 
) −

V GG 16(Gk (z i | y i ) ‖ l , (4) 

here i = [ 0 , 1 ] , refer to an original and high-frequency image 

air respectively, k = [ 1 , 2 ] refer to generator, λ = 0 . 5 is the av- 

raging weight, and l = 2 is the norm used. x real is the ground

ruth image for restoration (i.e. sharp images in this case). Min- 

mization of Eq. (3) using Jensen-Shannon (JS) divergence as 

n ( Goodfellow et al., 2014 ) can lead to problems like mode col- 

apse, vanishing gradients. Consequently, Arjovsky et al. (2017) pro- 

osed to use Wasserstein distance with gradient penalty (WGAN- 

P). Thus, CGAN with a critic network is based on WGAN- 

P ( Kupyn et al., 2017 ) and an added l2 high-frequency regularizer 

s in Eq. (4) . The proposed model was trained for 300 epochs on a

aired blur-sharp dataset (refer Section 2.3 ). 

.5.2. Saturation or low contrast 

The variable distances between the light source and the im- 

ged tissue can lead to large illumination changes which can result 

n saturation or low contrast problems. This motivates the role of 

he variable γ in Eq. (2) . Saturated or low contrast image pixels 

ften occur across large image areas and affect the entire image 

lobally. In addition, these illumination changes are more promi- 

ently observed in normal brightfield (BF) modality compared to 

ther modalities. Compensation of affected image pixels is a diffi- 

ult problem depending on the size of the affected image area. 

The saturation restoration task is posed as an image-to-image 

ranslation problem and the same end-to-end CGAN approach used 

or motion deblur is used but unlike previous technique here the 

enerated output of G 1 is fed to the second generator G 2 (i.e., see

ig. 8 ). Thus, a cycle-consistent approach (”bi-direction”) is taken, 

here the first D 1 G 1 network is trained to predict diffused light 

mage from a domain of ambient light and vice-versa for D 2 G 2 

etwork. The generator output is minimized as the weighted av- 

rage in Eq. (4) . Here also, described l 2 contextual loss is used to 

rain a generator-discriminator network for saturation reduction. l 2 
ontextual loss is more suitable as it allows to capture the devia- 

ion between normal illumination condition w.r.t. saturation and 
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Table 3 

Artifact detection results on test set with different neural network architectures. All run times are reported on a single 6GB 

NVIDIA GTX Titan Black GPU and is the average time for a single 512x512 image (possibly rescaled on input as indicated) 

evaluated over all 129 test images. Total number of ground truth boxes = 644 boxes. IoU scores are averaged for both 

predicted and non-predicted labels. Best scores are in bold. 

Method Backbone Input mAP 25 mAP 50 IoU 25 IoU 50 Overall Overall Predict t 

Size mAP IoU Boxes (ms) 

Faster R-CNN ResNet50 600 2 40.4 29.5 28.33 24.50 27.24 22.75 835 555 a 

RetinaNet ResNet50 608 2 41.2 34.7 38.87 35.61 29.64 32.38 576 103 b 

YOLOv3 darknet53 512 2 44.3 35.1 24.20 22.14 29.75 19.63 1252 95 c 

YOLOv3 darknet53 608 2 45.2 33.2 21.40 18.98 29.65 16.80 1300 116 4 

YOLOv3-spp darknet53 512 2 45.7 34.7 24.43 22.60 30.63 20.01 1120 88 

a Python Keras 2.0, (Tensorflow 1.2 backend) Code. 
b PyTorch 0.4 Code. 
c Python call of Darknet trained network. 

Table 4 

Class-specific average precision (AP) at IoU thresholds 0.25 and 0.5 of different object detection networks (two best scores are 

highlighted in bold). 

Method Specularity Saturation Artifact Blur Contrast Bubbles 

AP 25 AP 50 AP 25 AP 50 AP 25 AP 50 AP 25 AP 50 AP 25 AP 50 AP 25 AP 50 

Faster R-CNN 20.7 8.41 71.00 38.55 35.10 20.93 14.50 9.42 58.70 70.99 42.40 28.84 

RetinaNet 33.10 20.95 42.90 38.21 39.8 27.40 7.20 4.17 73.60 73.56 50.60 43.63 

YOLOv3 40.00 22.38 50.40 45.62 44.30 30.53 11.60 8.25 70.80 64.56 48.90 39.07 

YOLOv3-spp 34.70 21.20 55.70 38.85 48.00 32.97 7.50 5.70 72.10 61.42 55.90 48.13 

Table 5 

Artifact detection results on out-of-sample sequence test set with different neural network architectures. IoU 

scores are averaged for both predicted and non-predicted labels. Total number of ground truth boxes = 2460 

boxes. Best scores are in bold. Overall AP for contrast (64.70), blur (50.42) and saturation (39.84) were highest for 

YOLOv3-spp. 

Method Backbone Input mAP 25 mAP 50 IoU 25 IoU 50 Overall Overall Predict 

Size mAP IoU Boxes 

Faster R-CNN ResNet50 600 2 52.16 30.91 35.19 29.30 31.20 27.82 3617 

RetinaNet ResNet50 608 2 30.02 18.05 37.93 30.48 17.67 28.36 1167 

YOLOv3-spp darknet53 512 2 40.20 28.32 45.50 39.05 26.51 36.51 1872 
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ow contrast conditions. A single direction network (only D 1 G 1 ) 

as also trained to quantify the efficacy of the proposed strategy. 

To correct coloration shift due to the incorporation of natural 

mages in the training set, color transfer (CRT) is applied to the 

enerated frames. Given a source image, I s and a target image, I t 
o recolor, the mean (μs , μt ) and covariance matrix (�s , �t ) of the 

espective pixel values (in RGB channels) can be matched through 

 linear transformation ( Hertzmann, 2001 ): 

 

′ 
t = �1 / 2 

s �−1 / 2 
t (I t − μt ) + μs , (5) 

here I 
′ 
t is the recolored output. To avoid re-transfer of color from 

aturated pixel areas in the source, the mean and covariance ma- 

rix are computed from image intensities < 90% of the maximum 

ntensity value. Fig. 8 shows the generated results using the trained 

AN-based network (on the top right) and after color shift cor- 

ection (bottom right) showing very close to ground-truth (bot- 

om left). It can also be observed that bidirectional approach (with 

ycle-consistency) does not have large shifts in color imbalance 

hile reducing optimally over saturation problem compared to one 

irection approach (no cycle-consistency). 

.5.3. Specularity, and other misc. artifacts removal 

Illumination inconsistencies and view point changes cause 

trong bright spots due to reflections from bubbles and shiny organ 

urfaces. Water-like substances can also create multi-colored chro- 

atic artifacts (referred to as ‘imaging or mixed artifact‘ in this pa- 

er). These inconsistencies appear as a combination of linear (e.g., 

dditive noise η) and non-linear noise (function F (. ) ) in Eq. (2) .

resence of specularities, and other misc. artifacts is posed as miss- 
12 
ng pixel problem and CGAN (see Eq. (4) ) based restoration is ap- 

lied with added l 1 −discounted contextual (reconstruction) loss 

sing a distance-based weight mask as by Yu et al. (2018) along 

ith edge-aware loss. Both contextual and generative losses are 

sed in the implemented model along with discontinuity preserv- 

ng term (edge-aware) required for avoiding over-smoothing during 

issing pixel generation. A bottleneck approach is used to retrain 

he model initialized with the pretrained weights of the places2 

ata set ( Zhou et al., 2018 ). During training and validation masks of 

ifferent patch sizes { (5 × 5) , (7 ×, 7) , (11 × 11) , (13 × 13) , ..., (33 ×
3) } were randomly generated and were used for restoration. A 

ingle image can have one or multiple generated masks for restora- 

ion. 

. Results and discussion 

In this Section, evaluation metrics used for quantitative assess- 

ent of multi-class artifact detection and restoration are first in- 

roduced. Utilizing these metrics artifact detection, quality score 

stimation, and different steps of frame restoration pipeline are 

uantified. Efficacy of the proposed framework is then analyzed on 

0 long endoscopic videos. A clinical relevance test is performed 

o provide a visual quantification from clinical experts on the vi- 

ual quality of the frame restoration. An experimental evidence 

est is finally presented to illustrate the significance of video frame 

uality improvement required for guaranteeing robustness of im- 

ge analysis methods. 
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Fig. 11. Dice coefficient, precision (PPV) and recall for each method for specific artifact class (ordered according to their increasing mean size). Smaller deviations in spec- 

ularity and misc. artifacts in DSC values denote that most methods have similar performances on these two classes. However, for bubbles and saturation DeepLabv3+ and 

pspNet performs relatively better in DSC than FCN8 and ResNet-UNet. PPV and recall plots show similar trend for bubbles and saturation. 

Table 6 

Segmentation of artifact instances with irregular shapes. Mean values across four artifact classes (bubbles, specularity, misc. artifact, and saturation) 

are presented. All methods used imageNet pretrained bacbone network and simple data augmentation (includes flip, rotation, and scaling). Training 

was obtained using 90-10% split for 500 epochs with learning rate of 0.01. Top segmentation metric values are in bold. 

Method Backbone JC DSC F2 PPV Rec Overall Acc 

FCN8 VGG16 0.4058 ± 0.1388 0.4723 ± 0.1377 0.4816 ±0.1294 0.5498 ±0.1531 0.6847 ±0.0714 0.9687 

resnet-Unet ResNet50 0.4527 ±0.1475 0.5088 ±0.1353 0.5065 ±0.1323 0.7096 ±0.1529 0.6254 ±0.1247 0.9703 

pspNet ResNet50 0.419 ±0.1436 0.4761 ±0.1372 0.4781 ±0.1274 0.6334 ±0.1593 0.6375 ±0.0985 0.9653 

Deeplabv3 + ResNet50 0.4649 ±0.1529 0.5265 ±0.1459 0.5262 ±0.139 0.6533 ±0.1236 0.6768 ±0.0953 0.9755 

Table 7 

Correlation coefficients and disagreement scores from paired analysis 100 sample images. Spearman rank and Kendall tau 

are provided as a measure of correlation with their corresponding p-value to measure the significance of these correlations. 

A disagreement mean score is provided which is computed as the mean value of the difference in paired quality score for 

each score. 

Comparison Spearman rank correlation [-1, + 1] Kenadall tau [-1, + 1] Disagreement score 

Corr. value p-value Corr. value p-value Mean score 

Proposed vs Expert #1 0.6369 3.64e-13 0.4741 1.48e-11 2.0452 

Proposed vs Expert #2 0.5923 3.50e-11 0.4507 3.36e-10 2.4419 

Proposed vs Expert #3 0.5449 2.23e-09 0.3887 3.17e-08 2.3560 

Intra Expert QS (mean) 0.6151 - - - 1.4743 
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.1. Evaluation metrics 

To evaluate the artifact detection methods, the standard mean 

verage precision (mAP) and intersection-over-union (IoU) metrics 

re used. The detection results of all architectures are quantified 

sing the mAP at IoU thresholds for a positive match of 25% and 

0% denoted as mAP 25 and mAP 50 , respectively. The mean IoU 

etween positive matches, the number of predicted boxes rela- 

ive to the number of annotated boxes and the average inference 

ime for one image are also used as quantitative measures. We 

lso provide overall mAP computed as an average mAPs for IoU 

rom 0.25 to 0.75 with a step-size of 0.05, i.e., an average over 11

oU levels are used for 6 artifact classes (mAP @[ . 25 : . 05 : . 75] ) 

 Everingham et al., 2012 ). To evaluate the segmentation methods 

e have used standard metrics: Jaccard similarity coefficient (JC), 

ice similarity coefficient (DSC), F2 score, precision or positive pre- 

ictive value (PPV), recall or sensitivity (Rec) and overall accu- 

acy. Quality score estimation is evaluated against three indepen- 
13 
ent expert quality opinions. For the quality assessment of de- 

lurring methods well-known peak signal-to-noise ratio (PSNR), 

multi-scale) structural similarity SSIM ( Wang et al., 2003 ) are 

sed. Unlike mean-squared error (MSE), PSNR scales the MSE ac- 

ording to image range. However, it is not always ideal to reveal 

he improved quality as they entirely depend on intensity range. To 

vercome the limitations of PSNR for quantification of saturation 

nd specularity restoration tasks, more sophisticated visual infor- 

ation fidelity ( Sheikh and Bovik, 2006 ) and relative edge coher- 

nce ( Baroncini et al., 2009 )) quality assessment metrics which are 

eferred as VIF and RECO,respectively in this paper are included. 

tatistical analyses are also presented to validate the significance 

f the proposed methods in the framework. 

.2. Artifact detection 

Artifact detection training data consisted of 1161 endoscopy im- 

ges from 7 unique patient videos which was then split into 70- 
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Fig. 12. Qualitative results for multi-class artifact segmentation for irregular shaped artifact instances. 

Table 8 

Peak signal-to-noise ratio (PSNR) and the structural similarity measure (SSIM) for randomly selected 10 images with different motion 

blur. The mean values for 100 blurred images is also presented μ100 . Corresponding stratistical significance is presented in Fig. 14 . 

Method Metrics Images with varying motion blur 

#80 #99 #102 #113 #116 #510 #652 #10163 #10450 #1135 μ100 

Proposed PSNR 25.22 28.14 27.28 23.41 24.81 25.67 30.30 24.37 27.00 27.21 25.72 

SSIM 0.998 0.997 0.993 0.980 0.992 0.900 0.974 0.904 0.935 0.938 0.913 

deblur GAN PSNR 25.17 27.93 26.96 23.40 24.81 23.91 25.37 22.65 25.04 25.34 24.25 

SSIM 0.998 0.997 0.992 0.979 0.992 0.886 0.962 0.894 0.921 0.915 0.911 

deblurNet PSNR 24.61 27.50 25.02 22.23 22.00 23.05 24.92 21.41 24.97 24.58 23.67 

SSIM 0.995 0.996 0.990 0.970 0.970 0.881 0.964 0.895 0.916 0.911 0.894 

TV-deconv PSNR 24.25 26.72 24.75 21.69 22.20 23.97 25.37 22.65 25.33 25.40 24.01 

SSIM 0.966 0.994 0.988 0.966 0.983 0.890 0.965 0.870 0.896 0.912 0.892 
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0% respectively for as train and validation set during training 

nd 129 images were used for test. Data augmentation with flips 

left, right, up and down), changes in HSV values ( {±20 , ±60 } ), ro-

ation {±5 ·, ±20 ·} changes were applied randomly to each frame 

uring training. A thorough description of dataset is provided in 

ection 2.1 . 

Table 3 shows that YOLOv3 variants outperform both Faster R- 

NN and Retinanet. YOLOv3-spp (proposed) yields the best mAP of 

5.7 at IoU thresholds 0.25 and overall mAP of 30.63 at a detec- 

ion speed ≈ 6 × faster than Faster R-CNN ( Ren et al., 2015 ). Even

hough Retinanet exhibits the best mean IoU of 38.87 at thresh- 

ld of 0.25, it is to be noted that IoU is sensitive to annotator

ariances in bounding box annotation which might not resemble 
14 
he performance of detectors. YOLOv3-spp provides a good bal- 

nce between mAP-IoU tradeoff at threshold of 0.25. For this, it 

an be observed that mAP 25 is 4% higher than RetinaNet and 5% 

igher than Faster R-CNN. It is to be noted that mAP 25 > 45 . 0 with

oU 25 > 63 . 0 (when only detected boxes are considered) obtained 

y the proposed YOLOv3-spp can be considered as acceptable high 

ccuracy for both detection and localization in computer vision. 

onsidering the complexity of endoscopy multi-class artifacts due 

o their huge appearance variability this score is acceptable for 

linical usage. 

In terms of class-specific performance, proposed YOLOv3-spp is 

he best across detecting misc. artifacts and bubbles (both are pre- 

ominantly present in endoscopic videos) with average precision 
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Fig. 13. Quality score evaluation. a) Quality scores corresponding to three experts and an average score between them (top), and quality score determined by the proposed 

scheme for the detected artifact regions and classes from YOLO-v3 spp detector (bottom). b) Quality scores with median (line) and lower- and upper-quartiles represented 

with the box plot (left), and the heat-map showing correlation of quality score between different expert raters and the proposed scheme (right). 

Table 9 

Evaluation (average values) metrics (PSNR, SSIM, VIF and RECO) are used to assess the 

restoration quality for 100 saturated images. Here, l2 -contexual CGAN trained in one- 

direction (onedir., single discriminator and single generator) and bi-direction (bidir., two 

discriminators and two generators), and final proposed method (with color retransfer 

as post-processing applied on bidirection method) are presented. Two best results are 

highlighted in bold. 

Metrics Simulation l2 -contexual CGAN Proposed 

onedir. bidir. 

PSNR 18.18 17.82 20.92 22.34 

SSIM 0.843 0.760 0.854 0.952 

V IF 0.413 0.212 0.294 0.365 

RECO 0.830 0.914 0.988 0.950 

15 
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Fig. 14. Statistical analysis on 100 endoscopy video frames. PSNR, SSIM and VIF are used as evaluation metrics and paired t-test is performed to identify the statistical 

significance of the obtained results. a) Blur removal, and b) saturation removal or correction method. Solid overhead lines join which groups have been compared with stars 

(see legend) to indicate level of statistical significance. 
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f 48.0 and 55.9, respectively (see Table. 4 , Fig. 9 ). Faster R-CNN

ielded the highest average precision for saturation (71.0) and blur 

14.5) while RetinaNet and YOLOv3 outperformed respectively for 

ontrast (73.6) and specularity detection (40.0). It is worth noting 

hat proposed YOLOv3-spp yielded second best average precision 

cores for speculariy (34.7), saturation (55.7) and contrast (72.1). 

lur is missed by most networks which is also under-represented 

n the training dataset (see Fig. 3 ). 

Table 5 presents detection results for the out-of-sample se- 

uence data which consisted of 60% blur samples. On this data, 

aster R-CNN obtained the highest mAP 25 and mAP 50 , while 

OLOv3-spp has the highest IoUs (i.e., better localisation) and sec- 

nd best mAPs. Upon looking at the number of bounding box pre- 

ictions, Faster RCNN yielded 1157 more bounding boxes. YOLOv3- 

pp has only 2% lower mAP but nearly 10% gain in the IoU 
50 50 

16 
han Faster R-CNN. Simiarly, the inference speed is 6 × faster than 

aster R-CNN. Our per class mAP also revealed that YOLOv3-spp 

erformed the best on contrast, blur and saturation while second 

est performance was recorded for specularity, bubbles and misc. 

rtifact. 

Fig. 10 shows the qualitative results of sequence out-of- 

ample test data. For sequence #1 in Fig. 10 (a), it can be ob- 

erved that Faster R-CNN detects more bounding boxes com- 

ared to ground truth for most frames. However, YOLOv3-spp 

s able find optimal number of boxes describing the presence 

f artifact classes compared to other methods. For sequence 

2, most methods exhibit similar results and very close to 

round truth annotations. Fig. 10 (b) presents the confusion ma- 

rix for all three methods for each class. It can be observed 

hat specularity class is confused with bubbles and blur is con- 
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Fig. 15. Qualitative results for different de-blurring methods on WL and NBI frames. Unrealistic reconstrution are marked by red rectangle area while areas with green 

rectangles are zoomed and presented just below each method. It can be observed that image sharpness is highly improved in the proposed method compared to other 

state-of-the-art deep learning based methods. 
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e

used with misc. artifact for both Faster R-CNN and YOLOv3- 

pp while only limited boxes are detected for RetinaNet archi- 

ecture showing these confusion relatively less. In general, un- 

ike nature scene images, there is not much unclear distinction 

etween artifact classes in images. As a result, there can oc- 

ur large variability in bounding box annotations which can ad- 

ersely affect the mAP estimation when taken at different IoU 

hresholds. 

.3. Artifact segmentation 

Table 6 represents mean evaluation metric scores for segmenta- 

ion of four indefinable artifact class instances that included bub- 

les, specularity, misc. artifacts, and saturation. It can be observed 

hat DeepLabv3+ with ResNet50 backbone provided the highest 

SC, F2 and overall accuracy of 0.5265, 0.5262 and 0.9755 re- 

pectively. Similarly, the second best performance was obtained by 

esNet-UNet with ResNet34 backbone. While, FCN8 have the least 

erformance scores for almost all the metrics, the number of rel- 

vant instances retrieved (Rec) is the highest with 0.6847. A good 

rade-off between PPV and Rec is desired based on which it can 

e understood that DeepLabv3+ is competitive in these metrics as 

ell (PPV of 0.6533, Rec of 0.6768). 

Fig. 11 represents DSC, PPV and recall for each class for differ- 

nt implemented methods. It can be observed that for most classes 

eepLabv3+ achieved the highest DSC value for specularity, misc. 
17 
rtifact and saturation classes. FCN8 has the least PPV for almost 

ll the classes but achieved high recall. However, DeepLabv3+ (bub- 

les: 0.64, specularity: 0.58, misc. artifact: 0.53, saturation: 0.86) 

nd ResNet-UNet (bubbles: 0.63, specularity: 0.40, misc. artifact: 

.53, saturation: 0.86) have relatively higher PPV for most artifact 

lasses. The inference time for both ResNet-UNet and DeepLabv3+ 

n RTX 2080 Ti GPU was an average of 0.35 s per image for an

mage size of 512 × 512 . 

Qualitative results for four different video frames in the test 

ataset is shown in Fig. 12 . It can be observed that DeepLabv3+ 

rovided more accurate results than other methods. For ResNet- 

Net and PSPNet, saturation confused with specularity. Similarly, 

ome parts of misc. artifact in the the first and second rows were 

issed by both. 

While segmentation is mostly encouraged for irregular shaped 

rtifacts, a combined approach can benefit in improving the delin- 

ation of area of interest, for instance, detection information can 

e used to correct the class instance of segmented pixels. Simi- 

arly, the area of bounding box predictions can help to determine 

he morphological operations required for the improvement of seg- 

ented area. 

.4. Quality score 

The proposed quality score scheme was evaluated against three 

xpert quality rankings for 100 endoscopy images of the test 
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Fig. 16. Saturation correction. 1st column: Saturation of pixels in the region near to the light source (blue arrows mark the saturation regions, left). 2nd– 4th columns 

represent saturation correction methods one directional, bi.-directional and proposed bi-directional with CRT processing, respectively. For each, corresponding RGB histograms 

are provided in the consequetive rows. 
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ata used in artifact detection evaluation. It can be observed in 

able 7 that the proposed QS scheme has a positive correlation 

 > 0 . 54 for Spearman rank correlation) with all three expert scores 

ith very low p-value << 10 −8 . The Spearman rank correlation co- 

fficient between all three expert ranking is 0.6151 which is very 

lose to that obtained between proposed QS scheme vs the Ex- 

ert #1 and that with the Expert #2. In addition, the mean dis- 

greement score is also very close to that for between the experts. 

ig. 13 (a) shows four example images with expert quality scores 

nd the estimated QS from the proposed scheme. Fig. 13 (b, left) 

hows that median line (center middle line in box plot) and the 

w

18 
pread of the QS values of the proposed scheme shows its capa- 

ility to capture the wider range of quality score aligned with Ex- 

ert #1 and Expert #3. On contrary, Expert #2 quality score suffers 

rom a very narrow range with outlier scores. Also, Fig. 13 (b, right) 

epresents a correlation heat-map showing a positive correlation 

ith that of the proposed QS and the experts. 

.5. Frame restoration 

.5.1. Blind deblurring 

The proposed (dual) conditional generative adversarial net- 

ork with added contextual and high-frequency feature losses 
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Fig. 17. Statistical analysis on 100 endoscopy video frames. PSNR, SSIM and RECO are used as evaluation metrics and paired t-test is performed to identify the statisti- 

cal significance of the obtained results for inpainting. Solid overhead lines join which groups have been compared with stars (see legend) to indicate level of statistical 

significance. 

w

b

b

t

a  

f

d

2  

s

u

t

h

S

m

u

a

o

>

p

2

s

m

a

a

a

a

o

b

p

o

h

c

b

b

i

r

4

t  

t

b

c

c

r

w

p

s

m

m

t

t

h

p

s

t

t

t

n

m

h

4

p

o

i

2

m

p

p

l

o

t

ith deblurGAN ( Kupyn et al., 2017 ), scale-recurrent network- 

ased SRN-DeblurNet ( Tao et al., 2018 ), and traditional TV- 

ased method ( Getreuer, 2012 ). TV regularizion weight λ and 

he blur kernel r affects the quality of recovered deblurred im- 

ges ( Getreuer, 2012 ). λ = 10 3 and r = 2 . 3 are chosen after a

ew iterative parameter setting experiments for the endoscopy 

ata set. Retraining was performed for SRN-DeblurNet ( Tao et al., 

018 ) and deblurGAN ( Kupyn et al., 2017 ) on the same data

et. 

The quantitative evaluation of the frame deblurring methods 

sing 100 test images with visually large blur. Table 8 shows 

hat proposed (dual) CGAN with l2 -contextual loss and added 

igh-frequency (HF) feature losses score the highest PSNR and 

SIM values for all blurred frames while TV-based deconvolution 

ethod ( Getreuer, 2012 ) resulted in the least PSNR and SSIM val- 

es over most frames. Moreover, the mean PSNR and SSIM scores 

re also the highest for 100 test samples compared to all state- 

f-the-art methods (for PSNR > 1 dB compared to deblurGAN and 

 2 dB compared to deblurNet). Importantly, significantly large im- 

rovements are observed for #652 ( ≈ 5 dB), #510 and #10163 ( ≈
 dB) compared to competitive deblurGAN method. Qualitative re- 

ults are presented in Fig. 15 , which shows that the proposed dual 

ethod leveraging edge information is far more sharper than other 

pproaches. This is illustrated by a zoomed areas across green rect- 

ngles. It can be also observed that deblurNet deforms the image 

t upper right locations in both WL and NBI frames (see red rect- 

ngle areas in Fig. 15 ). 

A statistical test is also conducted to show the significance 

f the proposed network over the state-of-the-art deep learning 

ased deblurring models in Fig. 14 (a). It can be observed that the 

roposed method provides a significant PSNR boost compared to 

riginal and other model outputs. The result is consistent for SSIM, 

owever, due to very small change of values the difference is not 

aptured well. The VIF metric also shows an improvement over 

oth state-of-the art methods. In addition, it can be seen that de- 

lurNet achieves worst result which can be due to their hallucinat- 

ng effect (added distortions) observed in Fig. 15 (see red rectangle 

egions). 
o

19 
.5.2. Saturation removal 

Quantitative results are provided in Table 9 for 100 simulated 

est samples from the best selected frames (QS > 0 . 95 ). One direc-

ional (onedir.) model with a single DG network and the proposed 

i-directional with two DG cycle-consistent networks (bidir.) are 

ompared alongside the final proposed method with added CRT 

orrection. It can be observed that the proposed models with bidi- 

ectional network performs better than the one directional net- 

ork. Further, the proposed CRT post-processing significantly im- 

roves the restoration quality. It can be observed that the proposed 

cheme improves the mean PSNR from 18.18 dB to 22.34 which is 

ore than 4dB improvement. Similarly, a significant boost in the 

ean SSIM and mean RECO is observed. On contrary, one direc- 

ional model decreases the image quality which is in line with 

he observation in the statistical analysis Fig. 14 (b). In Fig. 14 (b) 

ighly significant improvements for the proposed method com- 

ared to both one directional and bi-directional models can be ob- 

erved with p-values << 0 . 001 for most cases. Similarly, a qualita- 

ive evaluation presented in Fig. 16 illustrated the visual quality af- 

er restoration of the saturated image regions. It can be noted that 

he bi-directional (proposed) saturation removal technique does 

ot degrade the image (no large color shifts) unlike one directional 

odel. In additional, the proposed CRT post-processing further en- 

ances the saturation restoration. 

.5.3. Specularity and other misc. artifacts removal 

Specularity and other local artifacts are removed based on in- 

ainting ( Section 3.5.3 for details). To validate the inpainting meth- 

ds, 100 test images of image size 512 × 512 were used. Each 

mage was then masked with 10 randomly selected patches of 

6 × 26 and 62 × 62 . CGAN-based model with l1 -contextual loss 

odel is compared with widely used traditional TV-based and 

atch-based inpainting methods. It can observed in Table 10 that 

roposed CGAN-based approach has best score for structure simi- 

arity metric SSIM while very consistent PSNR values to that of rig- 

rous TV- l1 based inpainting method ( Getreuer, 2012 ). The statis- 

ical significance test shows (see Fig. 17 ) a significant improvement 

f PSNR and SSIM values over patch-based non-local inpainting 
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Fig. 18. Image restoration result using inpainting of corrupted areas (specularity, imaging artifacts) detected by the proposed detection method. a) Original corrupted image, 

b) detected bounding boxes, c) inpainting result using recent TV-based method, d) l1-contexual CGAN, e) top, bottom: Restored area marked with blue rectangle in (b) using 

TV-based and generative model using l1-contexual CGAN, respectively. 

Table 10 

Peak signal-to-noise ratio (PSNR) and the structural similarity measure (SSIM) for randomly selected 10 images for inpainting method. The 

mean values for 100 masked images is also presented μ100 . Corresponding stratistical significance is presented in Fig. 17 . 

Method Metrics Image inpainting for combined patches of 26 × 26 and 62 × 62 pixels 

#99 #101 #105 #106 #123 #126 #144 #205 #11439 #11796 μ100 t 

Proposed PSNR 38.78 40.55 39.07 39.26 41.70 38.03 39.79 34.80 33.92 39.98 38.07 2.5 

SSIM 0.993 0.989 0.984 0.985 0.992 0.984 0.991 0.987 0.981 0.987 0.988 

TV- l1 PSNR 38.45 38.65 38.75 38.71 41.85 36.29 39.40 35.12 33.48 40.88 38.12 392.0 

SSIM 0.989 0.979 0.980 0.981 0.988 0.976 0.983 0.977 0.972 0.988 0.980 

Patch NL PSNR 37.23 34.58 35.28 35.07 37.31 32.09 36.32 32.65 30.90 37.65 35.21 35.0 

SSIM 0.984 0.963 0.966 0.964 0.973 0.959 0.966 0.964 0.961 0.979 0.968 

20 
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Fig. 19. Simultaneous application of deblurring and bidirectional saturation removal technique on real patient data. Blue rectangles (bottom row) indicate the enahnced local 

features after deblurring. 

Fig. 20. Frame recovery in clinical endoscopy videos. Top: frames and proportion deemed recoverable over a sequence of and the over a sequence of using a binary deep 

classifer and the proposed QS score. Bottom: the proportion of each artifact type present in each video. 
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ethod ( Newson et al., 2017 ). While no significant improvements 

ere observed in RECO metric. However, it can be observed that 

he standard deviation is relatively smaller for the CGAN-based ap- 

roach. 

Qualitative results for the proposed specularity and local ar- 

ifact removal on real problematic gastro-oesophageal endoscopic 

rames are shown in Fig. 18 . In Fig. 18 (a), both imaging artifacts

first and fourth rows) and specularities (second and third rows) 
21 
ntroduce large deviations in pixel intensities both locally with re- 

pect to neighouring pixels and globally with respect to the uncor- 

upted image appearance. Using inpainting methods (see Fig. 18 (c) 

nd (d)), the images have been restored based on the bounding 

ox detections of the proposed artifact detector. The second best 

V-based method in Fig. 18 (c) produces blurry and non-smooth 

atches during the reconstruction of unknown pixels (refer to 

ig. 18 (b)) compared to CGAN generative model (see Fig. 18 (d)). A 
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Fig. 21. Invariance tests for feature matching: before and after frame restoration. Different geometric and photometric changes were applied and the mean precision, recall 

and percentage of correct matches were estimated. 
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loser look around the unknown regions indicated by blue rectan- 

ular boxes in Fig. 18 (b), (e) shows that local image structures are 

ell preserved and smoother transition from reconstructed pix- 

ls to the surrounding pixels is present. An immediate noticeable 

host effect can be observed in the second row, Fig. 18 (e) top using

he TV-based method. 

.6. Video recovery and quality assessment 

We evaluated the proposed artifact detection and recovery 

ramework on 10 gastroesophageal videos comprising with nearly 

0,0 0 0 frames each. For artifact detection, an objectness thresh- 

ld of 0.25 was used to reduce duplication in detected boxes and 

S value for restoring the frame was set to ≥ 0 . 5 . As a base-
22 
ine, a sequential 6-layer convolution neural network is separately 

rained (layer with 64 filters of sizes 3 , 5 × 5 , ReLU activation func- 

ion and batch normalization) with a fully connected last layer 

or binary classification on a set of 60 0 0 manually labeled pos- 

tive and negative images to decide whether to discard or keep 

 given input video frame. A threshold of 0.75 was set for the 

inary classifier to keep only frames of sufficient quality. Our 

ramework successfully retains the vast majority of frames com- 

ared to a binary decision, Fig. 20 . The quality enhanced video 

as again fed to the CNN-based binary classifier which resulted 

n lower number of frame rejection than on raw videos. Conse- 

uently, the resultant video is more continuous compared to the 

quivalent binary cleaned video utilizing raw videos. For exam- 

le, in video 3, the video after frame removal based on the bi- 
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Fig. 22. Optical flow computation ( Ali et al., 2016a ) between two frames I1 and I2 and I1 and restored I2. Here, frame I2 is corrupted with misc. artifacts (shown with red 

rectangles). 2nd row (on left) shows the optical flow field computed before the restoration and (on right) after the restoration. The target frame I1 used in the flow field 

computation is shown in 1st row, left. Both arrowed and flow field color plots are presented for each computed flow-field. 
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A  
ary classifier directly lead to many distinct abrupt transitions 

hat can be detrimental for post-processing algorithms as only 

0% is kept. Comparatively, the proposed framework retains 70% 

f frames, i.e. a frame restoration of nearly 40%. Quantitatively 

cross all 10 endoscopic videos tested, the framework restored 25% 

ore video frames, retaining on an average of 68.7% of 10 videos 

onsidered. 

.7. Clinical relevance test 

20 high-quality images with artifacts were selected from 10 test 

ideos that included blur, specularity, saturation and misc. arti- 

acts (refer Section 3.5 ). Restoration methods were then applied to 

hese images. Two expert endoscopists independently were asked 

o score these restoration results. Each endoscopist was provided 

ith a partially corrupted frame, restored frame and a correspond- 

ng high-quality sequence data depicting mucosal area without ar- 

ifact. The scores were set-up using the following criteria: 

• < 5 : restoration added unnatural distortions that can affect 

clinical outcome 
• > 5 : restoration succeeded but with clinically insignificant mi- 

nor distortions 

The obtained mean score were blur: 7.87, specularity or misc. 

rtifacts: 7.7, and saturation: 1.5 (one directional plus CRT), 6.5 

bidirectional plus CRT). A remarkable restoration was obtained for 

lur and specularity or misc. artifacts. However, saturation cor- 

ection was not pleasant for one directional method to clinicians 

hich was mostly due to loss of 3D information (according to 

eedback comments) even though visual coherence was improved. 

owever, the bidirectional approach plus CRT was rated much 

igher with no such remark. 

Visual quality improvement on real patient data where sequen- 

ial deblurring and saturation removal methods were applied is 

hown in Fig. 19 . It can be observed that while saturation removal 

iminished the intense local and global effect of saturation in the 

rames, deblurring allowed to improve sharpness in local structures 

see blue rectangle areas). 
23 
.8. Significance of frame restoration for algorithmic robustness 

While it is intuitively clear that the various artifacts impact any 

ownstream processing, this section presents a concrete experi- 

ental evidence on how artifacts impact feature matching as well 

s optical flow based methods. To demonstrate the significance of 

rame restoration, 100 partially corrupted frames (with blur, satu- 

ation and specularity) are used to assess the algorithm robustness 

est. Feature extraction and matching (invariance tests) 

While, most feature based state-of-the-art methods ( Bay et al., 

0 08; Lowe, 20 04 ) are invariant to illumination changes, these 

ethods can be affected in presence of occlusions due to arti- 

acts or extreme saturation conditions in evident in endoscopic 

ideo frames. We computed mean precision, mean recall and per- 

entage of correct feature matching for each pair applying ge- 

metric (36 rotation angles with 10 ◦ spacing)) and photometric 

brightness changes, −127 : 10 : 127 in gray pixel values) transfor- 

ations ( Ali et al., 2018 ). The experiment also includes 8 scal- 

ng ( [0 . 25 , 2] ) and 9 Gaussian blur ( [1 , 9] ). SURF ( Bay et al., 2008 )

eature extraction was used and a brute force feature matching 

echnique was applied. Our experiments (see Fig. 21 ) showed that 

hile there were almost no change in the overall mean precision 

nd recall for restored images after blind deblurring, saturation re- 

oval provided a boost in precision and recall by more than 2- 

% compared to original saturated images. Similarly, a small rise 

n precision and recall were observed after removal of artifacts by 

npainting as well. Even though, deblurring resulted in decreased 

recision and recall for blur invariance test and scaling invariance 

est, it has almost no affect on contrast and rotation changes. 

Optical flow estimation Fig. 22 demonstrates that the artifact re- 

oval is critical for estimating pixel-wise flow field widely used 

or motion estimation. Here, optical flow with an illumination in- 

ariant optical flow (OF, ( Ali et al., 2016a )) is first computed be-

ween a pair of clean image I1 and image with artifact I2 and then 

he same method is used to compute flow field using the restored 

mage of I2 and the clean image I1. It can observed that the flow 

eld computation is affected by the presence of imaging artifacts 

 Fig. 22 , 2nd row) while on contrary an accurate and smooth flow 

eld is estimated using restored image ( Fig. 22 , 2nd row, right). 

n improvement in both divergence ( ∇ · u ) and curl ( ∇ × u ) of the
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ector field was noted with standard deviation drop by 0.160 and 

.017, respectively. 

In order to quantify further the effect of restoration on opti- 

al flow estimation, we used 100 frames on which known (ran- 

omly generated) homographies were applied on both corrupted 

nd restored frames which was used as ground truth flow field. 

e used rotation ( θ = [1 , 5] ), translation ( t x = [0 , 15] , t y = [0 , 15] ),

cale ( s = [0 . 99 , 1 . 0] ), shear ( S x = S y = [0 . 001 , 0 . 010] ). 

TV-l1 primal dual approach ( Zach et al., 2007 ) implementa- 

ion ( Bradski, 20 0 0 ) was applied to compute the optical flow

eld. Average angular error (AAE) and average end-point error 

AEPE) were estimated for quantification. For saturation, we ob- 

ained nearly 2 ◦ improvement in AAE and 0.355 improvement for 

EPE. Similarly, for deblurring and inpainting approaches we ob- 

ained AAE improvement of nearly 1 ◦ and over 0.50 improvement 

n AEPE. 

. Conclusion 

The need to improve the diagnostic quality in endoscopy moti- 

ates the need for a systematic approach to artifact detection, seg- 

entation, and video restoration. The proposed novel end-to-end 

ramework is capable of identifying a range of different artifacts 

nd provides a context-based approach to frame restoration. The 

xperimental results demonstrates that the presented approaches 

eet the challenging demands of the real-world application set- 

ing. Since all of the modules of the proposed framework are for- 

ulated as neural networks, it is possible to achieve near real-time 

erformance when taking full advantage of modern GPU architec- 

ures. 

Critical to the quality of restored frames are the edge-based 

high-frequency) loss for recovering blurred images in a dual 

G network architecture with contextual l2 losses, and a cycle- 

onsistent DG network with a color re-transfer scheme to deal with 

olor shifts in generated frames for saturation correction. The high- 

st mAP 25 with the modulated YOLOv3-spp and the least inference 

ime (88 ms) was achieved for near real time frame quality scor- 

ng. Similarly, a good trade-off between predicted boxes, mAP score 

nd the highest IoU at 0.5 IoU threshold was achieved by YOLOv3- 

pp on out-of-sample patient video sequence data. Pixel-wise seg- 

entation is also investigated for indefinable classes that included 

pecularity, misc. artifacts, bubbles and saturation. A frame quality 

coring based on predicted class, area, and location in image was 

roposed which showed a good correlation with expert ratings. 

The quantitative and qualitative improvements for frame 

estoration tasks showed notable improvements in both PSNR and 

SIM metrics for blur and saturation using the proposed models 

re significant. For specularity and other misc. artifacts removal, 

mprovements on similarity metrics was also achieved compared 

o non-local inpainting technique with notably nearly 20 × faster 

nference time and more than 150 × faster than TV- l1 image in- 

ainting method. Importantly, the proposed complete framework 

as able to restore an average of 25% of the video frames in 10

andomly selected videos from the database. It is worth noting that 

or 3 videos used for illustration of the importance of the pro- 

osed framework, 40% of frames which otherwise would be dis- 

arded for downstream analysis were rescued. The work also il- 

ustrates that the frame restoration in video endoscopy is vital for 

ccuracy and robustness of image analysis methods. A clinical rel- 

vance test has been conducted and results indicate that the pro- 

osed restoration techniques do not introduce or remove clinically 

elevant information. Thus, high quality performance on real clin- 

cal endoscopy videos for both intra- and inter-patient variabili- 

ies and multimodality has been demonstrated in this work. Future 

ork will focus on further improving the artifact detection and im- 
24 
lementing the entire framework as a single end-to-end trainable 

eural network. 
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