
ArtForm: A Tool for Exploring the Codebase of
Form-based Websites

Ben Spencer
Michael Benedikt
Anders Møller

Franck van Breugel

ABSTRACT
We describe ArtForm, a tool for exploration of the codebase of
dynamic data-driven websites where users enter data via forms.
ArtForm extends an instrumented browser, so that it can directly im-
plement user interactions, adding on top of it symbolic and concolic
execution of JavaScript. The tool supports a range of exploration
modes with varying degrees of user intervention. It includes a num-
ber of adaptations of concolic execution to the setting of form-based
web programs.

ACM Reference format:
Ben Spencer, Michael Benedikt, Anders Møller, and Franck van Breugel.
2017. ArtForm: A Tool for Exploring the Codebase of Form-based Websites.
In Proceedings of ACM SIGSOFT International Symposium on Software Testing
and Analysis, Santa Barbara, CA, USA, July 2017 (ISSTA’17), 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A key part of modern e-commerce and information enquiry soft-
ware systems consist of web-based services in which a user enters
and retrieves data via web forms. Understanding, analyzing, and
testing the software behind these sites is challenging. Awebsite may
consist of a number of web forms and related widgets, including
both standard and custom-developed interactive elements. Browser-
based JavaScript uses an event-driven execution model, where user
actions such as filling form fields or button clicks will trigger code
to run which may in turn enable new events or download new
code. The functionality will generally be distributed over a large
number of event handlers and libraries, and often uses third-party
code which may be difficult to understand or even unavailable in
source format to a developer. The relationship of user actions to
code actions is obfuscated by a complex system of event handlers
and function calls.

In this demonstration paper, we introduce ArtForm, a tool for
understanding and analyzing the codebase of modern form-based
websites. ArtForm allows a developer to explore the website via
interacting with forms, linking these interactions with both the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA’17, July 2017, Santa Barbara, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

concrete and symbolic behavior of the underlying code. Since client-
side scripting with JavaScript is used to add much of the interactive
functionality to modern websites, ArtForm focuses on linking user
activity and execution of JavaScript.

ArtForm uses an instrumented browser, based on the Artemis
framework [2]. The browser tracks the low-level JavaScript instruc-
tions executing in response to user interface actions, producing
execution traces. These traces include not only the concrete exe-
cution, but also symbolic information – tracking the relationship
between values used in the code and the original input values. The
execution can be driven by inputs that are manually-provided, or
suggested automatically by ArtForm. The suggestions are either
provided to the user for a semi-automatic exploration or used di-
rectly by the tool to generate further runs in a fully-automatic
analysis. In the fully- and semi-automatic modes, the generation of
input recommendations is done via concolic analysis [5, 17], which
generates inputs that drive the execution to an as-yet unexplored
branch of the code by tracking how those inputs can affect the
control flow of the JavaScript code.

Organization: In the remainder of the document we first ex-
plain how ArtForm can help a developer to understand, analyze,
and detect bugs in form-based websites. We then discuss the infras-
tructure behind the system. We close with a brief overview of the
demonstration plan. A walk-through of the demo can be found in the
screencast available at www.cs.ox.ac.uk/projects/ArtForm/demo/ .

2 USING THE EXPLORATION TOOL
We now present exploration via ArtForm from a user perspective.
ArtForm has three modes: manual, concolic, and advice mode.

The most basic mode of ArtForm is the manual mode, in which
inputs are entered by the user. Manual mode displays a GUI view
via the instrumented WebKit browser on which ArtForm is based.
A developer can interact with a web page as an end-user would,
and can understand the codebase by looking at different reports
produced by the recording of this interaction. There is a trace report
and a linked coverage report, which shows the tree of function calls
made, and the parts of the JavaScript source code that have been
explored thus far. In addition, symbolic execution traces can be
recorded, which show how symbolic values (that is, those which
depend on user inputs) were used during the interaction, and in
particular how they affected the control-flow of the JavaScript code.
These traces can include any events detectable by our instrumented
browser to connect code execution with user interaction, such as
whether a new page was loaded, an alert box was shown. These
hints are used to determine whether the interaction included a
successful form submission. They are also used to detect JavaScript
bugs, by checking for calls to console.error, or failed assertions.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
www.cs.ox.ac.uk/projects/ArtForm/demo/

ISSTA’17, July 2017, Santa Barbara, CA, USA Ben Spencer, Michael Benedikt, Anders Møller, and Franck van Breugel

Figure 1: Manual mode

The manual mode is useful for understanding which JavaScript
code is executed after certain user actions, and how that code de-
pends on user inputs. Figure 1 shows manual mode in action. The
user can see a web page in the main window, and on the right hand
side is given the option to record interactions with the page. If this
option is selected the user can type in values and the corresponding
JavaScript events are recorded in a symbolic form as a symbolic
trace. The user can either inspect an individual trace or look at a
summary of the whole browser session by selecting the appropriate
button on the right pane.

Figure 2 shows a path trace report and a coverage report for the
form validation code of the same airline flight search form shown
in Figure 1. The highlighting in the coverage report shows which
lines were covered during the run; in this example, it is most of the
displayed functions. It also shows which lines make use of symbolic
information. In the example this is only one line (the fourth one
shown), which is fetching the value property of an input field.

Combining information from a large number of runs in order to
find bugs or perform other code analysis tasks is possible via concolic
mode, which automatically generates interactions, driving towards
exploring new code paths. Initially, the page’s default inputs are
selected. After each run, the recorded symbolic trace consists of
a sequence of branch conditions – the tests on input values, and
the result of these tests (whether the concrete execution took the if
or the else branch), that were performed during the run. Thus the
traces frommultiple runs form a tree of execution paths. The system
chooses a branch condition in one of the executions such that one
of the possible outcomes has not yet been realized in any prior
execution. It then uses a constraint solver to derive input values that
should lead the execution to this unexplored outcome. The system is
then re-run with these new values. Concolic execution coupled with
customized classification (e.g. of exceptions, as described earlier)

Figure 2: Reports

can enable quicker discovery of bugs. Concolic execution ties to
the coverage reports to generate a profile of the code; this can also
be customized to show particular code metrics.

Finally, advice mode allows a user to mix suggestions from the
solver with either manual inputs or other heuristics. Inputs are
generated by the user or program, but at any point the input actions
can be symbolically recorded, causing the resulting trace to be added
to the tree of symbolic traces, as in the fully automatic concolic
mode. The user can ask for advice at any point about which inputs
to try next. At this point a solver is called to generate a set of values
that will lead to a new execution path. The user is free to use this
advice or to generate its own values. The default use of advice mode
is when the action sequence (e.g. filling in the form in a certain
order and clicking submit) is fixed; the advice is then only about the
values to enter. But the mode can also advise on the “natural order”
on which to fill in form fields; ArtForm does a dependency analysis
of the code firing in previous traces, and looks for an ordering in
which the code attached to each field does not depend on the values
of fields that have yet to be filled in. The advice is also available as
an API for scripting via applications.

Figure 3 shows a partially explored concolic tree from the advice
mode exploring a simple web form. Nodes are highlighted based
on what kind of code event they represent (e.g. a click event or a
branch). The target of a user event such as a click is specified in
XPath – e.g. near the top of the figure are shaded boxes representing
filling in a form field and clicking on a submit button. The very first
trace set the myinput field to the empty string and took the path
labelled 1, leading to the alert found near the bottom right of the
tree. The user requested advice from ArtForm, which suggested two
options: repeating the trace with myinput set to either 123 or 4568.
This marked the paths labelled 2 and 3 as Queued (i.e. suggested),
but not yet explored. For the second iteration, the user chose 123 as

ArtForm: A Tool for Exploring the Codebase of Form-based Websites ISSTA’17, July 2017, Santa Barbara, CA, USA

Figure 3: Partial exploration

Figure 4: ArtForm architecture

the input value, and took the path labelled 2 (ending in a page load).
This uncovered an extra execution path which had not been seen
before (the leftmost leaf in the example tree), which is therefore
unexplored and not yet marked as queued. The state of the search
after this second iteration is what is shown in the figure. Note that
at this point, only the path labelled 3 is still marked as Queued.

3 ARCHITECTURE
We now briefly describe howArtForm performs symbolic execution.
Figure 4 shows the components of the analysis platform.

A key component of all modes is the instrumented browser. The
analysis platform needs both to know what is happening in the
browser, and to control certain aspects of the browser. We build
on top of Artemis [2], an existing web application testing frame-
work, which itself is built on top of the WebKit browser engine. The
browser engine includes the core functionality of a normal web
browser, including page fetching, HTML and CSS rendering, and
a JavaScript interpreter (called JSC or JavaScriptCore); but exclud-
ing the user-interface. Artemis adds instrumentation and hooks
to WebKit which are useful for our analysis, providing low-level
information about the page (such as the registered event handlers).
Using a production web browser provides several benefits. First,
the browser already provides infrastructure for downloading and

interpreting web pages and their associated content (JavaScript,
CSS, images, and so on). The connections between JavaScript and
HTML/CSS are already dealt with by a browser; this does not need
to be re-modelled explicitly. Tying the symbolic infrastructure to the
existing browser means that it is necessarily accurate in modelling
the real system.

The symbolic interpreter is implemented as an extension to the
existing concrete interpreter JSC. This means that our symbolic
interpreter accurately reflects the concrete traces being executed,
and not every concrete operation must be modelled symbolically.
Some operations can pass through the existing symbolic informa-
tion untouched, which simplifies the interpreter implementation,
but more importantly also simplifies the generated constraints.

No values in the interpreter have any symbolic value initially. As
user inputs are read from the DOM by JavaScript code, those values
are tagged with a fresh symbolic variable name. ArtForm’s goal is to
track how form inputs are used, so the value property of form fields
are symbolically instrumented, as well as the checked property
of checkboxes and radio buttons, the selectedIndex property of
drop-down select boxes, and so on. This “symbolic tagging” is
implemented in our browser by instrumenting the WebKit-internal
getter methods which are used to implement DOM property look-
ups. These getters are modified to return values with a symbolic
tag showing from which input field that value originated.

As the concrete value is used by the JavaScript program, the
symbolic interpreter tracks its corresponding symbolic value. Each
time a branch instruction (for example an if statement or a loop
condition check) is executed we check if it is a symbolic branch,
meaning that its branch condition uses any symbolic value.

Built-inmethods in JavaScriptmust also be instrumented.WebKit
implements JavaScript’s built-in functions with C++ methods in-
ternally: When the WebKit interpreter reaches a call to a built-in,
it calls the corresponding C++ code in WebKit (external to the
main interpreter) and passes the returned value back to the call-
ing JavaScript code. In ArtForm the WebKit-internal methods are
instrumented so they propagate symbolic values correctly.

Concolic engine. In concolic or advice mode, one needs to
track multiple symbolic traces, as well as get new suggestions for
values that will move towards unexplored code. This is the job of the
concolic engine. It includes a search procedure, which is responsible
for choosing an as-yet unexplored branch in the partial exploration
tree as the next exploration target and generating a path constraint,
a logical formula over the input values which, if satisfied, implies
that re-running the same program (or action sequence, in our case)
with those values will lead to exploring the specified execution path.
We currently support both standard depth-first search and a search
that prioritizes nodes which are most likely to lead to execution of
new code.

Once a path constraint is generated, it is translated into the lan-
guage of a target constraint solver. We also add various constraints
that model restrictions on a set of values which are realizable by
a user at the interface. For example, a constraint captures that the
value of a field in a drop-down list must match one of the val-
ues. We make use of the CVC4 constraint solver [3] for the actual
solving of constraints. CVC4 is well-suited to solving the types of
constraint generated in ArtForm. It has strong support for solving

ISSTA’17, July 2017, Santa Barbara, CA, USA Ben Spencer, Michael Benedikt, Anders Møller, and Franck van Breugel

a rich variety of string constraints with useful built-in string func-
tions, including substring extraction, find-and-replace, indexing
within strings, and regular expression tests. Critically, CVC4 also
supports coercions between different types.

Supporting advice mode. Supporting advice mode is achieved
by keeping track of “queued” suggestions which have already been
made but which have not yet been tested. When a target branch
in the tree is chosen by the search procedure, the path constraint
is solved to generate a new set of inputs to test that branch. The
branch is marked as queued, and the new inputs are returned to the
calling code. Now the concolic execution engine is free to operate
as normal, recording new traces and making new suggestions, but
will not need to repeatedly suggest previously suggested execution
paths. When the calling code decides to test a suggestion generated
from the constraint solver, then the queued branch will become
explored in the concolic tree.

4 DEMONSTRATION DETAILS
The demonstration will walk the user through the use of ArtForm
in each of its 3 modes, focusing on how the tool supports explo-
ration of the code in an event-driven manner, automated analysis
and testing of code. We will see both trace reports and coverage
reports. In concolic and advice mode users will see not only the
suggested values, but also some of the internals, including (1) the
automatically-generated browser events that are needed to simu-
late user actions, and (2) the generated constraints whose solution
corresponds to each suggestion.

ArtForm is available to download from GitHub1.

5 RELATEDWORK
Testing of form-based websites can be done using randomized and
feedback-directed testing, importing methods used for other event-
driven systems [1, 7, 8]. CrawlJax [11] tracks JavaScript events to
model a website’s user-interface states. While these techniques can
provide wide coverage of the user action space, symbolic execu-
tion and concolic testing give more coverage at the level of code.
Concolic testing was first introduced for C with the DART [5] and
CUTE [17] tools; later tools include SAGE [6] and KLEE [4]. These
tools provide many features for increasing the accuracy of concolic
analysis; however they cannot be applied directly to JavaScript or
to WebKit bytecode. There are tools for static analysis of JavaScript
[9, 12, 18], however, the dynamic nature of JavaScript makes static
analysis problematic [13, 14].

SymJS [10] also attempts concolic execution on web JavaScript,
based on an instrumented browser. The concolic execution includes
many sophisticated features to reduce the search space. Due to the
unavailability of the tool, we cannot compare the functionality of
ArtForm directly with SymJS. However, SymJS is based on the open
source Rhino JavaScript engine, and only a small fraction of real-
world websites’ JavaScript can be correctly parsed and interpreted
by Rhino. In addition, there is no modelling of form restrictions
(corresponding to the “realizability constraints” of ArtForm).

Jalangi [16] is a framework allowing instrumentation and run-
time monitoring of JavaScript code. Jalangi could be seen as another
way to implement a testing application such as ArtForm, working at
1https://github.com/cs-au-dk/Artemis/blob/master/ArtForm.md

the JavaScript source level rather than via an instrumented browser.
An implementation of concolic execution for stand-alone JavaScript
functions is included in the Jalangi distribution. One main limita-
tion of Jalangi in the web setting is that it requires pre-processing
of the JavaScript source, which can be time-consuming even when
all source is available to the tester.

Kudzu is an automated test-generation tool for JavaScript-based
web applications, based on concolic execution [15]. Although de-
signed to generate tests for web applications, Kudzu does not appear
to include modelling of the DOM, the browser APIs, or user inputs.

ArtForm builds on the instrumented browser of Artemis, a web
application testing framework [2]. Artemis explores form-related
code by generating random input values or taking static strings
from the page’s JavaScript code, not via symbolic execution.

6 CONCLUSION
ArtForm provides a means for a developer or tester to explore, un-
derstand, and debug the event-driven code of a form-based website.
Being based on an instrumented production browser, it faithfully
models the actions of a live user. As ArtForm’s instrumentation
works at the level of bytecode, it does not require pre-processing of
source, and can even work with third-party code. It allows a variety
of interaction modes giving flexibility about the trade-off between
user-guided exploration and fully automated testing. Its automa-
tion support is based on concolic analysis that includes modelling
specific to form-based websites, limiting the automated exploration
to actions that can be realized by a real user filling a form.

REFERENCES
[1] S. Anand, M. Naik, M. Harrold, and H. Yang. Automated concolic testing of

smartphone apps. In FSE, 2012.
[2] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip. A framework for automated

testing of JavaScript web applications. In ICSE, 2011.
[3] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,

A. Reynolds, and C. Tinelli. CVC4. In CAV, 2011.
[4] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and

automatic generation of high-coverage tests for complex systems programs. In
OSDI, 2008.

[5] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.
In PLDI, 2005.

[6] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz testing. In
NDSS, 2008.

[7] G. Hu, X. Yuan, Y. Tang, and J. Yang. Efficiently, effectively detecting mobile app
bugs with AppDoctor. In EuroSys, 2014.

[8] C. S. Jensen, M. R. Prasad, and A. Møller. Automated testing with targeted event
sequence generation. In ISSTA, 2013.

[9] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for JavaScript. In SAS,
2009.

[10] G. Li, E. Andreasen, and I. Ghosh. SymJS: Automatic symbolic testing of
JavaScript web applications. In FSE, 2014.

[11] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling AJAX-based web appli-
cations through dynamic analysis of user interface state changes. ACM Trans.
Web, 6(1), March 2012.

[12] C. Park and S. Ryu. Scalable and precise static analysis of JavaScript applications
via loop-sensitivity. In ECOOP, 2015.

[13] G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that men do: A large-scale
study of the use of eval in JavaScript applications. In ECOOP, 2011.

[14] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the dynamic
behavior of JavaScript programs. In PLDI, 2010.

[15] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A symbolic
execution framework for JavaScript, 2010.

[16] K. Sen, S. Kalasapur, T. G. Brutch, and S. Gibbs. Jalangi: a tool framework for
concolic testing, selective record-replay, and dynamic analysis of JavaScript. In
ESEC/FSE, 2013.

[17] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C. In
ESEC/FSE, 2005.

[18] T.J. Watson Libraries for Analysis. WALA. http://wala.sf.net.

https://github.com/cs-au-dk/Artemis/blob/master/ArtForm.md
http://wala.sf.net

	Abstract
	1 Introduction
	2 Using the exploration tool
	3 Architecture
	4 Demonstration details
	5 Related work
	6 Conclusion
	References

