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1. Introduction

Semiparametric regression is a fusion between traditional parametric regression
analysis (e.g. Cook and Weisberg [54]; Draper and Smith [77]) and newer non-
parametric regression methods (e.g. Wahba [275]; Hastie and Tibshirani [126];
Green and Silverman [115]). This emerging field synthesizes research across
several branches of Statistics: parametric and nonparametric regression, lon-
gitudinal and spatial data analysis, mixed and hierarchical Bayesian models,
Expectation-Maximization (EM) and Markov Chain Monte Carlo (MCMC) al-
gorithms. Semiparametric regression is a field deeply rooted in applications and
its evolution reflects the increasingly large and complex problems that are aris-
ing in science and industry.

We do not view semiparametric regression as a competitor to parametric
and nonparametric approaches, but rather as a bridge between them. The need
for parsimonious statistical models is well-known and parametric models are
often a convenient method for achieving parsimony. However, nonparametric
models exist because there are many examples where parametric models do
not provide a suitable fit to the data. Semiparametric modeling allows a re-
searcher to have the best of both worlds: the parametric and the nonparamet-
ric. Those features of the data that are suitable for parametric modeling are
modeled that way and nonparametric components are used only where needed.
For example, in the study discussed in Section 4.1, the effect of blood lead con-
centration on a child’s intelligence quotient is modeled with a spline in order
to detect a nonlinear dose response. In that study, the effects of the numerous
confounders are modeled linearly and within-child correlations are modeled by
a parametric mixed model to achieve a parsimonious fit. The extreme cases,
fully parametric or completely nonparametric models, can be used when they
are appropriate.

Two prominent features throughout much of semiparametric regression are:

• keeping the nonparametric regression part relatively simple by using low-
rank penalized splines;

• utilizing the mixed model representation of penalized splines.

These bring several benefits. Firstly, longitudinal and spatial effects are easily
incorporated. Secondly, fitting and inference can be performed within the es-
tablished frameworks of maximum likelihood and best prediction. Established
mixed model software in R and SAS can aid implementation. If a Bayesian
approach is used then the infrastructure of Bayesian inference can be called
upon. This includes the BUGS software project (e.g. Lunn et al. [177]). The
Bayesian/BUGS route is particularly attractive in non-standard situations, such
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as when the data are overdispersed or incomplete. An overarching benefit is ex-
tendability: the modularity of the mixed model-based penalized spline approach
allows ‘twists’, such as missing data, to be incorporated in a straightforward
manner.

Early contributions on the mixed model representations of curve fitting in-
clude Wahba [274], Green [114], Thompson [258], Speed [246], Verbyla [270],
Donnelly, Laird and Ware [76], O’Connell and Wolfinger [204] and Wang [284].
In addition, Parker & Rice [214], O’Sullivan [209] and Eilers & Marx [85] rep-
resent early work on low-rank penalized splines in nonparametric regression.

In 2003 we published the book Semiparametric Regression (Ruppert, Wand
and Carroll [232]). Since it is the first book to make use of both of these
ideas, its publication 6 years ago constitutes some sort of ‘line in the sand’
for this exciting area of research. Although Semiparametric Regression was re-
leased in April 2003, the final drafts were written in late 2002. Hence Semipara-
metric Regression contains a survey of the literature up until the end of 2002
(roughly).

In this review we revisit the field 5 years later and summarize the state of
the field as of the end of 2007. We are pleased to report that semiparametric
regression is a thriving area of research with contributions to its theory, method-
ology and software being continually made by research teams around the world.
Especially pleasing is the rate at which semiparametric regression is being used
in applications. While surveying the area over 2003–2007 we learned about ap-
plications in several fascinating and diverse areas, including on-line auctions,
genomics, air pollution, agricultural soil and cosmology. A great deal of penal-
ized splines (especially smoothing splines) research does not make use of their
mixed model representation. For example, Wood [292] and the accompanying R

package mgcv (Wood [295]) mainly uses generalized cross-validation (GCV) and
a version of Akaike’s Information Criterion (AIC).

There is also an enormous literature on flexible regression analysis that does
not involve penalized splines. Examples include regression splines (e.g. Stone
et al. 1997), local polynomials (e.g. Fan and Gijbels [93]) and wavelets (e.g.
Ogden, [205]). Ruppert et al. [232] discuss each of these choices but promote
the mixed model-based penalized spline approach to semiparametric regression.
Largely because of time and space limitations, we will stay mainly with this
approach throughout the review.

1.1. Summary of mixed model-based penalized spline approach

In this section we provide a summary of the mixed model-based penalized spline
approach to semiparametric regression that is adopted by many of the papers
in this review.
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We begin with some examples of semiparametric regression models:

yi
ind.

∼ Poisson[ exp{β1x1i + f2(x2i) + f34(x3i, x4i)}], 1 ≤ i ≤ n, (1)

yi
ind.
∼ Binomial[ni, logit−1{β0(x1i) + β1(x1i)x2i}], 1 ≤ i ≤ n, (2)

yij |ui,sbj

ind.

∼ N(ui,sbj + f1(x1i) + βββ⊤
2 x2i, σ

2
ε), ui,sbj

ind.

∼ N(0, σ2
sbj

),

1 ≤ j ≤ ni, 1 ≤ i ≤ m. (3)

Here x1i, . . . , x4i are scalar predictors corresponding to the response variable
yi, x2i is a vector of predictors and ui,sbj is a random subject intercept with
variance σ2

sbj
. The term f2(x2i) means a smooth function of x2i. Other functional

notation is defined similarly.Model (1) is an extension of the generalised additive
model paradigm that allows nonparametric bivariate components. If (x3i, x4i)
correspond to geographic position then (1) is sometimes called a geoadditive
model (e.g. Kammann & Wand [140]). In Model (2), β0 and β1 are smooth
functions of the x1 variable. This model is known as a varying coefficient model.
Model (3) is usually called an additive mixed model since it represents the fusion
of an additive model and a linear mixed model.

An example data set that benefits from (3) is shown in Figure 1. It consists
of longitudinal measurements on the spinal bone mineral density of a cohort
of young female subjects (source: Bachrach et al. [7]). A question of interest
is how spinal bone mineral density differs among the four ethnicity groups.
However, the analysis is complicated by (a) the non-linear effect of age, and (b)
correlation arising from repeated measurements on the same subject. Model (3)
with the x1is corresponding to the age measurements and the x2is corresponding
to ethnicity indicators is appropriate.

In the mixed model approach to semiparametric regression, generic nonpara-
metric functional relationships are handled through modelling mechanisms such
as:

f(x) = β0 + β1x +

K∑

k=1

uk,splzk(x), uk,spl i.i.d N(0, σ2
spl

). (4)

Here z1, . . . , zK are a set of spline basis functions. The simplest example is
zk(x) = (x − κk)+ for some knot sequence κ1, . . . , κK. Here u+ equals u for
u ≥ 0 and equals 0 otherwise. However, more sophisticated options now exist
and these are reviewed in Section 2.1. Most of the spline bases described there
are in accordance with the classical nonparametric regression method known as
smoothing splines (e.g. Wahba [275]; Eubank [88]). This approach is extendable
to multivariate functions using either radial basis functions (e.g. Wood [290];
Ruppert et al., [232]) or tensor products (e.g. Wood [294]).

A consequence of (4) is that many frequentist semiparametric regression mod-
els are expressible as

E(y|u) = g(Xβββ + Zu), u ∼ (0, G), (5)
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Fig 1. Data on spinal bone mineral density versus age broken down according to ethnicity of
the female subjects. Points for the same subject are connected by lines. The source of these
data is Bachrach et al. [7]).

where y denotes the vector of responses, X and Z are design matrices and βββ
and u are vectors containing coefficients. Here g is a scalar ‘link’ function, and
evaluated element-wise for vector arguments. For a general random vector v, v ∼
(µµµ, ΣΣΣ) is shorthand for E(v) = µµµ and Cov(v) = ΣΣΣ. The fixed effects term, Xβββ,
handles covariates that enter the model linearly. The random effects component
Zu and corresponding covariance matrix G handles non-linear effects through
spline basis functions, but may also incorporate random subject effects and
spatial correlation structure in longitudinal and spatial contexts. There will
often be other parameters arising, for example, in the variance structure (e.g.
R = Cov(y|u)) but we will ignore this in the current discussion.

Most commonly (5) is embedded in a fully specified probabilistic model. This
allows fitting and inference to be achieved through the paradigms:

Maximum Likelihood (ML) for βββ;
Restricted Maximum Likelihood (REML) for G;
Best Prediction (BP) for u.

(6)
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BP is defined according to minimum mean squared error and has the solution
û = E(u|y) (e.g. McCulloch, Searle & Neuhaus [191]). Depending on the form
of the model (e.g. normal versus Poisson) execution of (6) can range from easy
exact calculation using standard mixed model software (e.g. lme() in the R

language; R Development Core Team [221]) to difficult approximation via com-
putationally intensive algorithms such as MCMC.

The hierarchical Bayesian version of (5) takes the form

[y|βββ,u] = f1(y; Xβββ + Zu); [u|G] = f2(u; G)

[βββ] = f3(βββ; Aβββ); [G] = f4(G; AG)
(7)

where Aβββ and AG are hyper-parameters, f1, . . . , f4 are fixed conditional den-
sity or probability mass functions and [v|w] denotes the conditional density
or probability mass function of v given w. Inference is based on posteriors for
parameters of interest; in particular

[βββ|y], [u|y] and [G|y].

In semiparametric regression it is very rare that analytical solutions for these
posteriors exist and approximation methods need to be employed. MCMC ap-
proximation via the BUGS software (e.g. Lunn et al. [177]) often provides satis-
factory solutions.

In the interests of conciseness, we will not give specific details or examples of
(5) and (7). These can be found in the Ruppert et al. [232], Wand [277], Ngo &
Wand [200]), Gurrin, Scurrah & Hazelton [118], Crainiceanu, Ruppert & Wand
[63] and Zhao, Staudenmayer, Coull & Wand [310], for example.

1.2. Layout of review

The rapidity with which semiparametric regression is growing as a field means
that a concise and informative review of the five years since 2002 is quite chal-
lenging. For instance, we estimate that more than three hundred papers in 2003–
2007 are connected with the area. After surveying the literature we decided on
the following layout for the remainder of the article:

Section 2: Advancement of Primitives

By primitives we mean the ‘nuts and bolts’ of semiparametric re-
gression. Examples include spline basis specification, computing and
asymptotic theory. Much of Ruppert et al. [232] is concerned with the
primitives of semiparametric regression. However, some have under-
gone noticeable refinement in the past five years. Section 2 summa-
rizes these developments.
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Section 3: Advancement of Models and Methods

During 2003-2007 semiparametric regression models have continually
become more sophisticated in response to the complexities of con-
temporary data sets and scientific questions. Section 3 reviews these
advancements.

Section 4: Applications

Semiparametric regression is very much an applications-oriented
branch of Statistics. In Section 4 we highlight several case studies
which have benefited from the semiparametric regression paradigm.

1.3. Overlooked literature

The production of this review article has involved an immense amount of re-
trieval and reading over a relatively short time period. While we have tried
hard to peruse all relevant contributions it is certain that some have been inad-
vertently overlooked. We welcome any omissions being drawn to our attention.
Also, we point out that the end of 2007 cut-off for inclusion in this review is
slightly fuzzy. For example, some relevant papers that we have known about for
some time turned out to be 2008 or 2009 papers. These are still included.

2. Advancement of primitives

In this section we summarize 2003-2007 research on the primitives of semipara-
metric regression with emphasis on important advancement.

2.1. Univariate spline bases

All commonly used penalized spline models for a smooth real-valued function f
spline can be expressed in the form

f(x; p, z) = β0 + · · ·+ βpxp +

K∑

k=1

ukzk(x)

where p is the degree of the polynomial component, with coefficients β0, . . . , βp,
and {z1(·) : k = 1, . . . , K} is a set of spline basis functions for handling depar-
tures from pth degree polynomials. The spline coefficients u = (u1, . . . , uK) are
subject to penalization. In the mixed model representation u is usually taken to
be random according to N(0, G) for some G. Already it is clear that there are
a lot of options for spline bases and the penalization. Without loss of generality,
we can take G = σ2

uI since this just involves a linear transformation of the
zks. There is also a lot to be said for taking the polynomial to be linear – for
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example, if tests for linearity are of interest. So, while p > 1 may sometimes be
desirable, the p = 1 canonical form

f(x; z) = β0 + β1x +

K∑

k=1

ukzk(x), u ∼ N(0, σ2
uI), (8)

is useful for sorting out the various spline basis options. In addition, (8) is
convenient for implementation since it corresponds to the standard mixed model
structure (with x1, . . . , xn being data on the x variable):

Xβββ + Zu, u ∼ N(0, σ2
uI), where X = [1 xi]1≤i≤n and Z = [zk(xi)

1≤k≤K

]1≤i≤n.

Ruppert et al. ([232], Chapter 2) survey options and strategies for K and the
zks up to about 2002. However, there have been some interesting developments
since then. Currie and Durbán [65] show how the Eilers and Marx [85] P-splines
can be expressed in mixed model forms such as (8). Welham, Cullis, Kenward
and Thompson [287] produce a useful exposition on how the various versions
of penalized splines are connected to each other. In a similar vein to (8) they
propose ‘A general model for polynomial splines’ that includes several options
under one umbrella. A large-scale simulation comparison study shows no clear
winner across all settings. Some practical advice about penalty choice and order
of differencing is offered by Welham et al. [287]. The ‘minimum worst possi-
ble change’ approach of Wood [290], described in Section 2.2 for multivariate
smoothing, also yields univariate low-rank spline bases as a special case.

Wand and Ormerod [280] study the O’Sullivan [209] low-rank approximation
of smoothing splines. The name O-splines is suggested for this exact counterpart
of P-splines. Results for exact computation of the zk are derived that allow
implementation in R with only a few lines of code. A simulation study shows
O-splines and P-splines to be quite close in the interior, but the former to have
better extrapolation behavior, and also very close to smoothing splines even for
K ≪ n. Given the well-established good properties of smoothing splines, such
as natural boundary behavior and asymptotic optimality (Nussbaum [202]), the
evidence points towards O-splines as the better option in comparison with P-
splines, and as an excellent default for univariate spline bases in semiparametric
regression analysis.

2.2. Multivariate smoothing

In principle, all smoothing techniques can be extended to the multivariate case.
In practice, though, this extension is a delicate art because of the additional com-
plications that high-dimensional domains bring. Chapter 13 of Ruppert et al.
[232] summarized bivariate smoothing approaches based on kriging and splines,
including low-rank extensions. General multivariate extensions were briefly de-
scribed. We now summarize interesting new work in this direction from the last
few years.
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Wood [290] develops an approach to low-rank thin plate spline smoothing
that circumvents the knot placement issue. His basis reduction is based on a
‘worst possible change’ criterion. For small data sets, implementation involves
standard linear algebra manipulations, while Lanczos iteration (e.g. Demmel
[70]) is suggested for larger sample sizes. In Wood [294] the same author opts
for tensor products as a means of extending penalized splines smoothing to the
multivariate situation. Scale invariance is the main mechanism for achieving
this extension in an attractive way. An advantage is this version of multivariate
smoothing is that each direction has its own smoothing parameter. Particular
attention is also paid to the cogent incorporation of random effect structure for
generalized additive mixed modeling.

Fahrmeir, Kneib & Lang [90]) show that common geostatistical approaches
to bivariate smoothing have a representation in terms of stationary Gaussian
random fields. They then point out that Gaussian random fields can be approx-
imated by Markov random fields and that the latter has computational advan-
tages. Markov random fields are also a common vehicle for Bayesian smoothing
of spatial count data. Hence, the Markov random field approach to bivariate
smoothing has the advantage of being in concert with that used for spatial
count data. Kneib & Fahrmeir [148] also use the Markov random field approach
to bivariate smoothing and relate it to mixed models.

Currie, Durban & Eilers [67] and Eilers, Currie & Durbán [83] treat the special
case of smoothing on multidimensional grids. They develop an arithmetic that
results in higher computation speed and lower storage requirements.

Paciorek [210, 211] investigates the use of the spectral representation of sta-
tionary process structure (Wikle [289]) in semiparametric regression contexts.
He identifies advantages for large sample sizes and MCMC mixing in the gen-
eralized response situation.

The problem of complicated domains in bivariate smoothing is addressed
by Wang & Ranalli [281]. Motivated by a study on mercury concentrations in
estuaries, Euclidean ‘as the crow files’ distance is replaced by a geodesic ‘as
the fish swims’ distance. This distance depends on the intrinsic structure of the
domain and needs to be estimated. A procedure based on shortest path theory
and Floyd’s algorithm (Floyd [98]) is described.

2.3. Bayesian semiparametric regression

Bayesian semiparametric regression is progressively becoming more prevalent,
and could eventually challenge the frequentist version in terms of popularity.
Reasons include (1) the attractiveness of hierarchical Bayesian models for quan-
tifying multiple sources of variability, (2) models becoming more sophisticated
(e.g. dealing with complications such as missing data and measurement error)
to the point that standard (likelihood-based) mixed model software cannot be
used, (3) continual improvement of Monte Carlo methods for Bayesian inference,
and (4) continual improvement of the BUGS computing environment (Lunn et al.
[177]) for MCMC sampling from posterior distributions of interest. We expand
on aspect (4) in Section 2.7.
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Recent Bayesian modeling research has also impacted upon Bayesian semi-
parametric regression since 2002. A prominent example is Gelman [106] which
advises on non-informative prior distribution specification for variance parame-
ters and, in particular, argues against the use of inverse Gamma distributions.

With robustness in mind, Jullion & Lambert [139] study prior specification
for Bayesian P-splines models. The Bayesian hierarchical modeling is quite ad-
vanced and uses, for example, Dirichlet-based mixture priors.

Several other Bayesian semiparametric regression contributions, involving
new models and methodology, are described in Section 3.

Bayesian methodology and software is currently an area of vigorous research
activity – in both Statistics and Computer Science (see Section 2.5). This has led
to the Bayesian brand of semiparametric regression becoming more prominent
in recent years, which is a trend that we expect to continue.

2.4. Monte Carlo methods

Since the early 1990s Markov Chain Monte Carlo (MCMC) methods have been
a mainstay of Bayesian inference. However, in the intervening years, we have
noticed the emergence of new Monte Carlo methods. Some of these are more
elaborate versions of MCMC, while others fall outside of the Markov chain
paradigm.

Staying first within the MCMC family we note that specifically tailored
Metropolis-Hastings schemes are developed by Baladandayuthapani et al. [8].
Paciorek & Schervish [213], Gryparis et al. [117] and Baladandayuthapani
et al. [9]. The BayesX software package makes use of elaborate MCMC schemes.
In each case, the goal is improved mixing for the complex semiparametric re-
gression model at hand. This entails that inference for parameters of interest
can be made with smaller MCMC samples.

The single component adaptive Metropolis algorithm of Haario, Saksman &
Tamminen [120] is a recent modification of the random walk Metropolis-Hastings
algorithm that adapts according to what it has learnt from previous sampled
iterates. The resulting chain is not Markovian, although Haario et al. [120]
prove that it does lead to samples from the correct posterior distributions. The
adaptation aspect means that fiddly tuning runs are not required. Nott [201]
successfully applied Haario et al.’s algorithm to a semiparametric regression
setting.

Quasi-Monte Carlo is a vibrant research area in the general problem of high-
dimensional numerical integration via importance sampling. It differs from ordi-
nary Monte Carlo integral approximation in that random samples are replaced
by cleverly chosen deterministic ones. While much of quasi-Monte Carlo research
is outside of Statistics, Hickernell, Lemieux & Owen [132] provides a recent sur-
vey for a statistical audience. Kuo, Dunsmuir, Sloan, Wand & Womersley [155]
apply state-of-the art quasi-Monte Carlo algorithms to a class of statistical prob-
lems that encompass some important semiparametric regression models.

Sequential Monte Carlo samplers are a generalization of importance sam-
pling that produce weighted samples from the target distribution by sampling
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sequentially from a slowly evolving set of distributions. Del Moral, Doucet &
Jasra [69] is the main reference for this emerging methodology. Fan, Leslie and
Wand [95] represents early work on application of sequential Monte Carlo sam-
plers to Bayesian semiparametric regression.

Other recent developments in Monte Carlo methods that lend themselves
to semiparametric regression applications include slice sampling with ‘stepping
out’ (Neal [199]) and approximate Bayesian computation (e.g. Beaumont et al.
[12]; Marjoram et al. [185]; Sisson et al. [240]).

2.5. Computer science interface

The foreword of a recent special issue of Statistical Science proclaimed the “the
dissolving of the frontier between Statistics and Computer Science” (Casella
and Robert [43]). In 2006 Statistica Sinica had a special issue titled Chal-
lenges in Statistical Machine Learning. Hastie, Tibshirani and Friedman’s cross-
disciplinary book The Elements of Statistical Learning has had colossal impact
since its publication in 2001. In keeping with this zeitgeist, strong connections
between semiparametric regression and contemporary Computer Science are be-
coming apparent.

Most of the connections are concerned with methodology for classification
(or supervised learning in the Computer Science world) and the sub-field of
Computer Science known as Machine Learning. Support vector machines (e.g.
Moguerza & Muñoz [193]) and other kernel machines share many attributes and
issues with nonparametric regression (e.g. Hastie & Zhu [128]). Wahba’s [276]
comment on Moguerza & Muñoz [193] describes recent convergence between
support vector machine and regularization research. Pearce & Wand [215] show
how penalized splines and semiparametric regression structure such as additive
models can be embedded within the kernel machine framework.

Boosting (Schapire [235]), described in Section 3.1, is another innovation from
Machine Learning that is now benefiting semiparametric regression. For exam-
ple, Bühlmann & Yu [32] use smoothing spline theory and simulations to explain
the interplay between the number of boosting iterations and the ‘weakness’ of
the smoother. Tutz & Reithinger [266] apply their lessons to semiparametric
mixed models and derive an alternative fitting algorithm called BoostMixed.

Another area on the Computer Science interface where we see great potential
for benefits to semiparametric regression is graphical models (e.g. Jordan [137]).
Wand [278] provides detailed discussion on this topic. Directed acyclic graphs
have become a common way of representing hierarchical Bayesian models and,
indeed, comprise the architecture on which BUGS is built (Cowell et al. [56]).
Figure 2 is a directed acyclic graph representation of the model:

logit{P (yi = 1|u)} = β0 + β1xi +
∑K

k=1 zk(xi) = (Xβββ + Zu)i;

u|σu ∼ N(0, σ2
uI);

[β0, β1] ∼ N(0, σ2
βI); [σu] = 2A

π(σ2
u
+A2) , σu > 0.

(9)
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Fig 2. Directed acyclic graph representation of model (9). The shaded node corresponds to
the observed data.

where the data are (xi, yi) ∈ R × {0, 1}, 1 ≤ i ≤ n, the zk are a spline basis
as described in Section 1.1, and σβ, A > 0 are hyper-parameters. Nodes of the
graph correspond to the components of the model, while arrows convey ‘parent-
child’ relationships of the hierarchical structure.

Suppose we add the complication that the xi in (9) are subject to measure-
ment error and that we instead observe wi = xi + zi where the xi are now
modeled to be from a N(µx, σ2

x) distribution and the contaminating variable zi

is from a known fixed distribution. Then an appropriate hierarchical Bayesian
model is that represented by Figure 3, a more complex graph with four addi-
tional edges and nodes.

MCMC is currently the most common mechanism for approximation of pos-
teriors in the models depicted in Figures 2 and 3. The graphical models setting
allows for graph-theoretic structure, such as Markov blankets, to be exploited in
the design and implementation of MCMC algorithms (Jordan [137]). An emerg-
ing alternative to MCMC is variational approximation (e.g. Jordan, Ghahra-
mani, Jaakkola and Saul [138]). Joint work between the second author and J.T.
Ormerod is investigating variational approximations that are specific to semi-
parametric regression analysis.

Interplay with Computer Science is one of the most exciting recent devel-
opments in semiparametric regression. We anticipate this to be an increasingly
fruitful area of research.
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Fig 3. Directed acyclic graph representation of model (9), but with the predictor subject to
measurement error. Shaded nodes correspond to the observed data.

2.6. Asymptotic theory

Hall & Opsomer [121] is the first paper to study the asymptotic theory of pe-
nalized splines. They replace the nonparametric regression model yi = m(xi) +
ei, i = 1, . . . , n, where xi is in a compact interval I, by the model y(t) =
m(t) + e(t), t ∈ I, where e(t) = n−1/2v(t)−1/2DW (t) and DW (t) is the
‘derivative’ of standard Brownian motion in the sense that DW (t)dt = dW (t).
This white noise plus drift model is “asymptotically equivalent” to nonparamet-
ric regression meaning that the distribution of y1, . . . , yn converges to that of
y(t), t ∈ I, in a metric due to Le Cam (Brown and Low [30]; Brown, Cai, Low,
and Zhang [29]). Hall and Opsomer [121] use an idealized version of a penalized
spline where there is a continuum of knots. Their spline is

∫
I
β(s)ρ(s)(x−s)p

+ds
where β(s) is the spline coefficient at knot s, ρ(s) is the knot density, and (x−s)p

+

is the spline basis function with knot s. In this framework, they find asymptotic
expressions for the bias and the stochastic part of the penalized spline estimator.
These expressions are infinite series with terms depending on the eigenvalues
and eigenvectors of a certain functional operator. They show that the mean in-
tegrated squared error, which is

∫
I

E{m̂(x) − m(x)}2dx, is O(nλ1/(2p+2) + λ),
where n is the sample size, p is the degree of the spline and λ is the penalty
parameter. Therefore, if λ is a constant multiple of n2(p+1)/(2p+3), then the
mean integrated squared error is O(n2(p+1)/(2p+3)), which is the optimal rate
for functions with p + 1 square-integrable derivatives (Stone [250]).

Penalized spline asymptotics with a finite but increasing number of knots can
be divided into two cases, depending on the rate at which the number of knots
K increases with the sample size n. “Small-K” asymptotics are similar to those
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of ordinary least squares regression splines, that is, splines fit by least squares
without a penalty. “Large-K” asymptotics are similar to that of smoothing
splines. The bias of a penalized spline has two components, the approximation
(or modeling) bias and the shrinkage (or smoothing) bias. Approximation bias
is the bias of an ordinary least squares regression spline and is due solely to
the approximation of the regression function by a spline. Shrinkage bias is the
difference between the bias of the penalized spline and the approximation bias
and so is the additional bias due to the penalty. Under large-K asymptotics,
the approximation bias is negligible compared to the shrinkage bias. Hall and
Opsomer’s [121] framework is an extreme case of large-K asymptotics. Under
small-K asymptotics, the approximation bias converges to zero at the same rate
or more slowly than the smoothing bias. The approximation bias is controlled by
K, and under small-K asymptotics K is a smoothing parameter. Under large-K
asymptotics, the approximation bias is negligible (or exactly zero in Hall & Op-
somer’s case), the exact value of K has no effect on the asymptotic distribution
(provided only that K grows fast enough to be in the large-K case), and the
penalty parameter λ is the only smoothing parameter. We believe that large-K
asymptotics are the most relevant to current practice. The original penalized
spline methodology proposed by Eilers & Marx [85] assume that the number
of knots is sufficiently large that approximation bias is negligible compared to
smoothing bias. Numerical evidence in Ruppert [230] supports this assumption,
as does the current practice of using the data to carefully select the penalty
parameter while using some rule of thumb applied to the sample size to select
the number of knots. Moreover, under small-K asymptotics, one needs to use
a data-based method to select K. One might also need to be careful about the
locations as well as the number of knots. These issues have not been investi-
gated, except in the case of pure regression splines with no roughness penalty
where both the number and locations of the knots are chosen (Smith & Kohn
[244]; Denison, Mallick & Smith [71]; Dimatteo, Genovese & Kass, [73]) and
the hybrid adaptive splines of Luo & Wahba [178] that use both adaptive knot
selection and a roughness penalty.

Li & Ruppert [162] use large-K asymptotics. They study Eilers and Marx’s
[85] P-splines which involve B-splines and difference penalties on the spline co-
efficients. Li & Ruppert [162] obtain simple, explicit expressions for the asymp-
totic bias and variance. This allows asymptotic distributions of P-splines to
be compared with those of kernel regression, local polynomial regression, and
smoothing splines. Their results are restricted to the cases of zero-degree or lin-
ear splines and a first or second order difference penalty. We say that a penalty
is of qth order if the penalty is on the qth derivative (O-splines) or the qth finite
difference (P-splines). O-splines (Wand & Ormerod [280]) use the same penalty
as used by smoothing splines, but are similar to the P-splines of Eilers & Marx
[85] in that a reduced set of knots is used.

In a nutshell, Li & Ruppert [162] found that P-splines with a qth order
penalty are asymptotically equivalent to Nadaraya-Watson kernel regression es-
timators with the equivalent kernel found by Silverman [239] for smoothing
splines with a qth order penalty. The asymptotic distribution of m̂(x) at any
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fixed x does not depend on the degree p, but the minimum rate at which K
must increase does depend on p and the rate is slower if higher degree splines are
used. First consider the case where the xs are equally-spaced on a finite interval.
For first-order penalties, the equivalent kernel for m̂(x) in the interior of I is the
double-exponential kernel, which is second order. This is the equivalent kernel
for smoothing splines with a first-order penalty (Silverman [239]). If the penalty
parameter λ is chosen at the optimal rate, then the equivalent bandwidth h sat-
isfies λ ∼ {Khn−1/5}2. The asymptotic bias of m̂(x) at an interior point x of I is
B(x) = h2m(2)(x), the asymptotic variance is V(x) = 4−1h−1σ2(x) where σ2(x)
is conditional noise variance at x, and n2/5{m̂(x) − m(x)} → N(B(x),V(x))
in distribution as n → ∞. In the boundary regions of I, which consists of the
points within a multiple of n−1/5 of the left or right boundaries, the equivalent
kernel is of first-order. At the boundaries themselves, the equivalent kernel is an
exponential function. If the penalty parameter is chosen to be optimal for the
interior, then in the boundary region of I, bias dominates and the convergence
rate is O(n−1/5); the same as for a Nadaraya-Watson kernel estimator.

For second-order penalties, Li & Ruppert [162] find that the equivalent kernel
in the interior is fourth-order, so takes negative as well a positive values, and is
proportional to exp(−|x|){cos(x)+sin(|x|)},∞ < x < ∞, which is the equivalent
kernel for cubic smoothing splines (Silverman [239]), which also have a second-
order penalty. The rate of convergence in the interior is n−4/9, which is the
same as for a Nadaraya-Watson kernel estimator with fourth-order kernel. In
the boundary region the equivalent kernel is only second-order and the rate of
convergence is slower.

The results so far assume equally-spaced knots. Li & Ruppert [162] also study
unequally-spaced knots. In this case, the asymptotic bias of m̂(x) depends on
derivatives of the design density, which means that penalized splines are not
“design-adaptive” in the sense of Fan [92].

Penalized splines have slower convergence at the boundaries of I than in the
interior, whereas local polynomial regression with odd degree polynomials has
the same rate of convergence at the boundaries as in the interior. This might
seem like an advantage of local polynomial smoothing compared to penalized
splines. However, if we compare the widely-used local linear regression smoother
with penalized splines with the typical second-order penalty, then what we find is
that the local polynomial and penalized spline smoothers have the same bound-
ary rate of convergence. In the interior, the penalized spline has a faster rate of
convergence. Thus, as typically implemented in practice, penalized splines suffer
no disadvantage in rate of convergence relative to local linear estimators and,
in fact, have an advantage in the interior region.

Kauermann, Krivobokova & Fahrmeir [144] study small-K asymptotics for
generalized spline modeling, that is, with possibly non-Gaussian responses and
a link function relating the expected response to the spline. They put an upper
bound on the rate at which the smoothing parameter increases and K is required
to grow at a fixed rate, rather than faster than this rate as in Li & Ruppert [162].
The framework is the generalized linear mixed model, and Laplace approxima-
tion is used to integrate out the random effects. The authors obtain rates of
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convergence for the mean squared error and expressions for the asymptotic bias
and variance.

Kauermann [142] is a comparison of REML and Cp methods of selecting
the amount of smoothing for univariate penalized splines. Both asymptotic and
finite-sample simulation results are presented. The asymptotics assume that K
is fixed. One general conclusion is that REML tends to under-smooth in that
REML leads to less smoothing than optimal for minimizing mean squared error.
In contrast, Cp targets the mean squared error-optimal amount of smoothing.
However, a more detailed look at Kauermann’s results show that REML and
Cp have very different behaviors and which one smooths most depends on the
underlying regression function, the number of knots, the sample size, and the
random sample itself. One advantage of REML can be seen in Kauermann’s
[142] results: the REML choice of the amount of smoothing is less, and often far
less, variable compared to that of Cp.

As described more fully in Section 3.1, Bühlmann & Yu [32] derive asymp-
totics for boosting in a nonparametric regression context.

Our view of asymptotic theory is that, at least at present, it is mainly of
theoretical interest. Penalized spline methodology already had a well-established
place in practice before the recent advances in large-sample theory and we have
not yet seen cases where asymptotic theory has lead to new methodology or
changes in practice. It is well-known that, in nonparametric estimation, it often
takes extremely large sample sizes before the asymptotics “kick in”. So to be
of practical value, asymptotics must be carefully compared with finite-sample
results, either exact or by simulation. Nonetheless, asymptotics are important
because they show that low-rank penalized splines can achieve the same rates
of convergence as full-rank estimators such as smoothing splines.

2.7. Software

Semiparametric regression research is now being conducted at a time of rapid
change in computing technology. In particular, the Internet age now facilitates
fast and convenient dissemination of code. Software for semiparametric regres-
sion is continually being added to the Comprehensive R Archive Network

(CRAN) (http://cran.r-project.org) allowing free widespread use for anyone
who ‘speaks’ R (R Development Core Team [221]). Developments in commercial
packages are also afoot. For example, SAS (SAS Institute, Incorporated [234])
added PROC GAM for generalized additive model analyses in 2000.

Generalized additive model analysis in R is now well-served by the packages
gam (Hastie [125]), mgcv (Wood [295]) and VGAM (Yee [299]). The mgcv package
is accompanied by the book Wood [292]), which contains numerous illustrations
of its use. It also provides for automatic selection of degrees of freedom values
via GCV. The VGAM package distinguishes itself by facilitating the ‘vector’ ex-
tension of generalized additive models (Yee & Wild [302]) and now provides for
quantile regression (Yee [298]). Additive semiparametric quantile regression is
also available in R’s quantreg package (Koenker [150]).

http://cran.r-project.org
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In Ruppert et al. [232] we mentioned SemiPar as a suite of S-PLUS functions
to accompany the book’s mixed model-based methodology. It has evolved into a
package on CRAN (Wand et al. [279]). Other packages with direct links to semi-
parametric regression include AdapFit (Krivobokova [152]) on spatial adaptive
smoothing and polspline (Kooperberg [151]) on regression spline fitting.

BayesX is a public domain software package that supports Bayesian semi-
parametric regression analysis using MCMC. It is housed in the Department of
Statistics, University of Munich, Germany, and its current Internet address is
www.stat.uni-muenchen.de/∼bayesx/. Brezger, Kneib & Lang [26] provides
an overview of the capabilities of BayesX. They also demonstrate superior mix-
ing and speed of their MCMC implementations in comparison to WinBUGS.

Several other software modules indirectly benefit semiparametric regression
analysis through their support of related methodology such as geostatistics,
kernel machines and mixed models. While they exist in a variety of forms, we
will mainly confine discussion to those available on CRAN.

The geostatistical packages fields (Nychka [203]), geoR (Ribeiro & Dig-
gle [227]), geoRglm (Christensen & Ribeiro [50]) and spectralGP (Paciorek
[210, 211]) each support bivariate smoothing. There is also some support for
smoothing in higher dimensions. For example, the Tps() function of fields

allows thin plate spline smoothing of arbitrary dimension.
As we explain later in Section 3.2 kernel machines have fundamental connec-

tions with semiparametric regression. The R packages e1071 (Dimitriadou et al.
[74]) and kernlab (Karatzoglou et al. 2007) provide for kernel machine fitting,
including support vector machines.

As demonstrated by Ngo & Wand [200]), mixed model software can be very
useful for semiparametric regression analysis. A key feature is the support of gen-
eral random effects design matrices (Zhao et al. [310]). The SAS procedure PROC

MIXED and the R package nlme (Pinheiro et al. [218]), each support general de-
sign matrices. The function glmmPQL() in the package MASS (Venables & Ripley,
[269]) has structure similar to that of lme() and lme4() and facilitates general-
ized response semiparametric regression analyses via penalized quasi-likelihood.
In lmeSplines (Ball, [10]) mixed model-based splines are the main focus. Ex-
act likelihood ratio tests for semiparametric regression analysis, as discussed in
Section 3.6, is supported by the R package RLRsim (Scheipl, [236]).

As we discussed in Section 2.3, practical Bayesian inference has benefited
enormously from the BUGS software project (Lunn et al., 2000). The employ-
ment of BUGS is currently the fastest way to get hierarchical Bayesian models
fitted – or at least proto-typed. Ruppert et al. [232] and Crainiceanu, Ruppert &
Wand [63] demonstrate the use of BUGS for Bayesian semiparametric regression
analysis. A brief example, which incorporates the variance component prior
recommendations of Gelman [106], is the Bayesian logistic nonparametric re-
gression model given at (9). Figure 2 provides a graphical representation of this
model. Implementation in BUGS involves the model specification code:

http://www.stat.uni-muenchen.de/~bayesx/
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model

{

for(i in 1:n)

{

logit(mu[i]) <- beta0 + beta1*x[i] + inprod(u[],Z[i,])

y[i] ~ dbern(mu[i])

}

for (k in 1:K)

{

u[k] ~ dnorm(0,tauU)

}

beta0 ~ dnorm(0,tauBeta) ; beta1 ~ dnorm(0,tauBeta)

numerU ~ dnorm(0,1) ; denomU ~ dnorm(0,tauA)

tauU <- pow(numerU/denomU,2)

}

where tauBeta and tauA are the reciprocals of the hyper-parameters σ2
β and A2.

WinBUGS, the most popular version BUGS, can generate samples from posteriors
of interest from the above code via a graphical user interface. However, a major
breakthrough for efficient and well-managed analyses is the R package BRugs

(Thomas, O’Hara, Ligges and Sturtz [257]; Ligges et al. [165]), which was first
released in 2005, and its predecessor R2WinBUGS (Sturtz, Ligges and Gelman
[254]; Sturtz et al. [253]), first released in 2004. These packages allow for a
single R script to (1) set up the data, spline basis functions, and various tweaking
factors; (2) write a BUGS script and call BUGS; and then (3) produce summaries
of interest using the vast graphical capabilities of R. These important facets are
not available if WinBUGS is used alone. Crainiceanu et al. [63] illustrated this
approach with R2WinBUGS. However, our most recent Bayesian semiparametric
regression work (as yet unpublished) has employed BRugs.

3. Advancement of models and methods

After reviewing the semiparametric regression literature from 2003–2007 we then
categorized the various contributions according to broad themes, with regarding
to advancement of models and methods. The following subsections emerged, and
are presented alphabetically.

3.1. Boosting

Boosting uses an ensemble of classification or regression fits as a means of im-
proving their performance. The ensemble elements are obtained iteratively, after
application of standard procedures to weighted versions of the data. Boosting
began within the field of machine learning during the 1990s. Early references are
Schapire [235], Freund [100] and Freund & Schapire [101]. Far-reaching statisti-
cal connections, involving gradient descent methods and additive models, were
discovered by Breiman [24] and Friedman, Hastie & Tibshirani [102]. These
acted as catalysts for a great deal of statistical research on boosting, includ-
ing its interplay with smoothing techniques. Section 2.1 of Tutz & Binder [264]
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describes the evolution from boosting as a means to improve classification proce-
dures to a powerful tool for semiparametric regression analysis. We now describe
some of these developments.

Bühlmann & Yu [32] provides an excellent introduction to the main ideas of
boosting, by working with linear smoothers and the simplest version of boosting,
known as L2 boosting. Let y be the response vector and ŷλ be the vector
of fitted values obtained from a linear smoother (e.g. penalized spline, kernel-
based local linear) with smoothing parameter λ. Then the smoother matrix Sλ

is given by ŷ = Sλy. The L2 boosting fit at iteration m is one with fitted
values ŷλ,m = I − (I − Sλ)m+1. The case m = 1 corresponds to the ‘twicing’
methodology of Tukey [260]. Boosting, in general, involves repeated fitting of
‘weak’ classification or regression procedures. Bühlmann & Yu use asymptotics
to explain a new type of bias-variance trade-off that arises from the interplay
between m and λ. A very interesting result is that, for optimal values of m,
the optimal smoothing parameter is larger than for the ordinary (m = 0) case.
This is consistent with the boosting ‘folklore’ which says that iteration of weak
procedures leads to better performance. For linear smoothers, ‘weakness’ can
also be achieved by replacing Sλ by Sλ,ν = νSλ, 0 < ν ≤ 1. Bühlmann & Yu
[32] provide simulations results that show very small ν and quite large m can
be optimal. One example has (ν, m) = (0.01, 1691) as the optimal configuration,
showing how slow convergence in boosting can be.

Tutz & Reithinger [266] integrated the ideas of boosting with semiparametric
mixed models based on penalized splines. Their BoostMixed algorithm works
with weak versions of the smoothers obtained by inflation of the smoothing
parameters. Versions of AIC and BIC are used as stopping criteria. Leitenstorfer
& Tutz [160] use boosting for knot selection in a regression spline approach to
smoothing.

The fitting of generalized additive models via likelihood-based boosting is
developed by Tutz & Binder [264], resulting in their GAMBoost algorithm. Ad-
vantages are found in the case of very many predictors. Binder & Tutz [16]
use a large-scale simulation study to show that GAMBoost compares favorably
with other methods for fitting generalized additive models where there are many
candidate predictors.

A comprehensive account of the statistical aspects of boosting is provided by
Bühlmann & Hothorn [31] and accompanying discussion. Important contribu-
tions include connections to smoothing splines and the lasso, asymptotic theory,
degrees of freedom and implementation in the R computing environment.

As discussed in Section 3.16, monotone smoothing with boosting is developed
in Tutz & Leitenstorfer [265]. Leitenstorfer & Tutz [161] apply this methodology
to air pollution data.

3.2. Connections with kernel machines

Let X be a general domain. Given data (xi, yi) ∈ X × R, 1 ≤ i ≤ n, and a
convex loss function L, kernel machine estimation of f = argming E{L(y, g(x)}
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(where (x, y) has the same distribution as the (xi, yi)) involves modeling f to
be of the form f(x) = b +

∑n
i=1 ciK(x, xi). The kernel K(s, t) is a symmetric

positive definite bivariate function on X × X , and the coefficients are obtained
according to

min
b,ccc

{L(y, 1b + Kc) + λc
T

Kc}. (10)

Here y and c are the vectors containing the yi and ci, λ > 0 is the regularization
parameter, K = [K(xi, xj)] is the Gram matrix and 1 is a vector of ones of length
n. There are several ways by which (10) can be derived; including reproducing
kernel Hilbert space projection theory (e.g. Kimeldorf & Wahba [146]), best
linear prediction of stationary spatial processes (e.g. Stein, 1999), maximum a
posterior estimation in Gaussian processes (e.g. Rasmussen & Williams [225])
and Tikhonov regularization of ill-posed problems (Tarantola [256]). Support
vector machines (e.g. Cristianini & Shawe-Taylor [64]) are a special type of
kernel machine, in which L(y, g) =

∑n
i=1(1−yigi)+ for vectors y = (y1 . . . , yn)

and g = (g1, . . . , gn) such that yi ∈ {−1, 1}.
Hastie & Zhu [128] show that kernel machine methods, such as support vector

machines for classification, are no different in substance from many statistical
methods involving penalization. Their second section provides some revealing
connections via the use of spectral decomposition of the Gram matrix of kernel
machines.

Pearce & Wand [215] elucidate connections between the penalized spline and
kernel machine literatures. Particular attention is paid to support vector ma-
chines. Computational aspects of the resulting penalized spline support vector
classifiers are studied by Ormerod, Wand and Koch [208].

Takeuchi, Le, Sears & Smola [255] exemplifies research from the machine
learning community on nonparametric regression problems. They tackle the
nonparametric quantile regression problem using kernel machines. Included are
solutions to the quantile crossing problem and incorporation of monotonicity
constraints on quantile functions.

Gianola, Fernando & Stella [111] combine the ideas of linear mixed mod-
els and kernel machines to predict total genetic value for quantitative traits.
Random effects are used for genetic effects, while kernel machines are used for
expression of single-nucleotide polymorphisms. Liu, Lin & Ghosh [174] derived
similar models, with kernel machines used to handle interactions between ex-
pression of several genes. They conclude with some interesting commentary on
further opportunities for the use of kernel machine methodology in biostatistical
research.

3.3. Epidemiological aspects

In our view, epidemiology is an area for which semiparametric regression has a
lot to offer and this is reflected in much of our own research. We now review
recent semiparametric regression research having epidemiological aspects.
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Kim, Carroll & Cohen [145] take a penalized spline/mixed model approach
to generalized additive model analysis in matched case-control studies. They de-
velop an approximate cross-validation scheme to choose the smoothing param-
eters and explored both Monte Carlo EM and Bayesian approaches to fitting.

The methodology of Carroll, Ruppert, Crainiceanu, Tosteson & Karagas [42])
(see Section 3.10) is applied to the OPEN (Observing Protein and ENergy in-
take) nutritional epidemiological study. Doubly labeled water, a biomarker for
nutrient intake, is used as an instrument in a nonparametric regression mea-
surement error model that relates true protein intake with that reported via a
food frequency questionnaire.

Dominici, McDermott & Hastie [75]) work with smoothing spline-based Pois-
son additive models to assess the effect of particulate matter air pollution on
mortality. The data are daily time series with smooth function components to
account for seasonal and meteorological effects. Improved inferential techniques
leads to strong evidence of association between short-term exposure to particu-
late matter less than 10 microns in diameter (PM10) and mortality.

Congdon [53], MacNab [180] and MacNab & Gustafson [181] use semipara-
metric regression techniques in spatial epidemiological analyses. The first applies
the methodology to spatial count data on lip cancer in Scotland and suicide data
in London. The second and third of these apply the methodology to spatial count
data on adverse medical events to hospitalized children, youth and elderly pa-
tients in British Columbia, Canada. Temporal and spatial trends within 84 local
health areas are estimated and assessed.

The papers Figueiras, Roca-Pardinas & Cadarso-Suarez [96], Cadarso-Suarez,
Roca-Pardinas & Figueiras [33] and Roca-Pardinas, Cadarso-Suarez, Nacher &
Acuna [229] are motivated by Spanish epidemiological studies and make use of
semiparametric regression methodology in various ways. For example, Figueiras
et al. [96] uses a Poisson additive model to assess the effect of black smoke on
mortality in Vigo, Spain.

3.4. Functional data analysis

Functional data analysis is concerned with data that are collected at very fine
gradations in time or space. It is sometimes referred to colloquially as ‘curves
as data’ and, from the outset, has had strong connections with nonparametric
regression techniques. Ramsay & Silverman [222, 223] provide a solid foundation
for this relatively new field. Functional data analysis is also a close relative of lon-
gitudinal data analysis. It is not surprising that some recent work in functional
data analysis makes use of modern semiparametric regression methodology.

Cardot, Ferraty & Sarda [38] consider functional linear models, where the
predictor is a random function. They consider approaches involving penalized
B-splines and smooth principal components regression and establish L2 rates of
convergence for each.

Coull & Staudenmayer [55]) take a linear mixed model approach to self-
modeling regression for multiple response curve data. An Expectation-Condi-
tional Maximization algorithm (Meng & Rubin [192]) is developed for fitting
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and inference. Application is made to data on the respiratory effects of residual
oil fly ash inhalation in humans.

Motivated by functional data on particulate matter exposure and heart-rate
variability, Harezlak, Coull, Laird, Magari & Christiani [122] extends historical
functional linear models (Malfait & Ramsay [182]) in the direction of mixed
model-based splines with REML smoothing parameter selection. L1 penalties,
with AIC smoothing parameters selection, are considered as well.

Qin & Guo [219] build periodicity into functional mixed-effects models to
better model the circadian rhythms of cortisol concentrations. They develop
a state space representation of periodic splines and use Kalman filtering for
estimation.

Morris, Vannucci, Brown & Carroll [197] make the initial step of wavelet-
based nonparametric modeling on hierarchical data, using Bayesian fitting meth-
ods. Morris & Carroll [196] introduce the notion of wavelet-based functional
mixed model. Regularization and smoothing are done within the Bayesian para-
digm, with easy-to-use code available at

odin.mdacc.tmc.edu/∼jeffmo/papers files/wfmm supplement.html.
Their methods are applied to functional mixed models data on the O6-methyl-
guanine methyltransferase deoxyribonucleic acid repair enzyme in a colon car-
cinogenesis experiment. Morris et al. [194] extend this method to allow for
missing response data and apply it to an accelerometer profile study. Morris,
Brown, Herrick, Baggerly & Coombes [195] use the wavelet-based functional
mixed model to analyze mass spectronomy data. Antoniadis & Sapatinas [3]
also work with wavelet-based functional mixed models. Recent work on likeli-
hood ratio testing for penalized splines (e.g. Crainiceanu et al. [63]; see Section
3.6) is employed. Risk bounds are established and the methodology is applied
to stepping-cycle data from an orthosis study.

Marx & Eilers [189] extend their earlier work on penalized signal regression
(Marx & Eilers [187]) to two-dimensional signal regressors. Their example of
such a regressor involves digitizations along the emission wavelength axis of
curves arising from a sugar processing experiment. The second dimension arises
from these digitizations being done at several excitation levels. The prediction
of ash content and color is of interest. The regression fitting and modeling in-
volves tensor product extensions of P-splines and cross-validation. These leads
to an estimated coefficient surface, and an image of ‘t-like’ statistics over the
wavelength/excitation plane. In Marx & Eilers [188] and Eilers & Marx [86]
the authors apply their general approach to other chemometrics data sets, with
some tailoring to the problems at hand.

Reiss & Ogden [226] also treat the signal regression problem. They start by
pointing out that there two main approaches to dealing with the multicollinear-
ity problem: smoothing (e.g. Marx & Eilers [187]) and component selection (e.g.
Massy [190]). They develop functional versions of principal component regres-
sion and partial least squares, which combine these two approaches. Selection
of the smoothing parameter is studied in depth. Both GCV and REML are
considered, the latter arising from a linear mixed model representation of their
procedures. Their simulation results show good performance of REML.

http://odin.mdacc.tmc.edu/~jeffmo/papers_files/wfmm_supplement.html
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Yao & Lee [297] treat the functional principal component analysis problem
(e.g. Ramsay & Silverman [222], Chapter 8) using an iterative penalized spline
procedure that addresses within-subject correlation in functional data. Consis-
tency results are established and application is made to yeast cell cycle gene
expression data. Zhou, Huang & Carroll [313] use a novel low-rank principal
components approach to address joint modeling of bivariate functional data
and show that a seemingly unrelated regression phenomenon exists.

Baladandayuthapani, Mallick, Hong, Lupton, Turner & Carroll [9] develop
an elaborate hierarchical functional data analytic model for data arising from
a colon carcinogenesis study. It is tailored to suit the colonic crypt structure
of rats. Bayesian representations of penalized splines are used to model signals
as a function of distance within a crypt, while the Matérn covariance family is
used to model correlation of signals between the crypts.

3.5. Geoadditive models

Geoadditive models combine the ideas of geostatistics and additive models. An
example of a geoadditive model, with variable names as defined in Kammann
& Wand [140], is

E(birthweighti) = f1(number of prenatal visitsi)

+f2(cigarettes per dayi) + f3(longitudei, latitudei).

Kammann & Wand [140] show how linear mixed models could be used for geoad-
ditive model fitting and inference. However, several other papers (e.g. Wood
[290]) have treated the same structure in other ways.

Extensions of geoadditive models in the direction of generalized responses
are contained in Fahrmeir & Echavarŕia [89] and Zhao, Staudenmayer, Coull
& Wand [310]. Zhao et al. [310] deal with exponential family models, whilst
Fahrmeir & Echavarŕia [89] treat over-dispersed and zero-inflated count data.
Each use a Bayesian mixed model framework, with fitting via MCMC, and
provide applications.

The extension of geoadditive models to survival data has seen considerable
research since 2003. Hennerfeind, Brezger & Fahrmeir [130] develop geoadditive
survival models for both geographical point data and count data. They take a
Bayesian P-spline approach and use Gaussian and Markov random fields for the
spatial components. Kneib & Fahrmeir [149] lays out the mathematics under-
pinning geoadditive hazard regression models. Kneib [147] extends these models
to handle interval censored data. Adebayo & Fahrmeir [1] develop a geoadditive
discrete-time survival model and use it to analyze child mortality data. Ganguli
& Wand [105] also deal with geo-referenced survival data, and use the low-rank
radial smoothers of Kammann & Wand [140].

Geoadditive models have also been adapted to model space-time data. Fahr-
meir, Kneib & Lang [90]) and Kneib & Fahrmeir [148] use low-dimensional
smooths involving time and age to model forest health data, in conjunction
with Gaussian and Markov random fields for the spatial effects. Gryparis, Coull,
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Schwartz & Suh [117] also involves space-time data, but their geoadditive model
is an elaborate one that includes latent variable structure for multiple exposures
from mobile particulate matter.

Geoadditive models with missing data covariate data is studied by French
& Wand [99]). Chen & Ibrahim [48] extend that work to geoadditive models
that allow for specification of the covariate distribution and the missing data
mechanism.

Other work that contains extensions of geoadditive models includes Lang,
Adebayo, Fahrmeir & Steiner [157], on seemingly unrelated regression, Lang &
Brezger [158]) on spatial adaptation and Augustin, Lang, Musio & von Wilpert
[5] on ordered categorical responses.

3.6. Inference

In its early years, smoothing techniques were developed with little regard to
related inferential questions such as linearity versus non-linearity of a particular
covariate effect. This is especially noticeable in the early kernel smoothing litera-
ture. In recent years, however, this situation has been redressed and there is now
quite a large literature on inference in smoothing contexts. The mixed model
representation of smoothing splines and penalized splines offers a particularly
attractive framework for this endeavor. This is because the well-established tools
of likelihood-based and Bayesian inference are readily available. While there is
a great deal of research on inference for other approaches to smoothing since
2002, we confine discussion mainly to smoothers based on mixed models.

A significant portion of the 2003–2007 literature involves likelihood ratio tests
for testing departures from linear models. This boils down to tests on variance
components being different from zero. The classical reference for tests of this
type, in which the null value of the parameter is on the boundary of its space,
are Self & Liang [237] and Stram & Lee [252]. However, their theory assumes
independence under the null and alternative hypotheses. This is not the case for
many mixed model scenarios, including penalized splines and several recent pa-
pers by C. Crainiceanu and co-authors are concerned with rectifying this situa-
tion. The main smoothing paper from this body of work is Crainiceanu, Ruppert,
Claeskens & Wand [63]. It builds upon Crainiceanu & Ruppert [58]), where ex-
act distribution theory for the likelihood ratio statistic in Gaussian linear mixed
models is obtained. Crainiceanu et al. [63] also obtain confidence intervals for
the smoothing parameter by inverting likelihood ratio tests. Claeskens [51]) con-
tains asymptotic results for this setting, but with the number of knots increasing
with the sample size and certain restrictions on the design matrices that are not
satisfied by standard penalized spline models. Crainiceanu and Ruppert [59] de-
velop likelihood ratio and restricted likelihood ratio tests of goodness-of-fit of
nonlinear regression models. Liu & Wang [175]) review various versions of lin-
earity tests based on Bayesian representations of smoothing splines and conduct
a simulation study to assess their frequentist properties.

The exact distribution theory used in the papers of the previous paragraph
applies only to the situation where there is a single variance component. Exten-
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sions to models with multiple covariance components is conducted by Crainicea-
nu & Ruppert [60]) and Greven, Crainiceanu, Kuechenhoff & Peters [116].
For testing hypotheses involving variance components being distinct from zero,
remedies to the null distribution problem include use of the parametric bootstrap
and approximation of the likelihood ratio statistic by a product of independent
χ2

1 and Bernoulli random variables. Greven et al. [116] demonstrate good per-
formance of the second approach and also propose an approximation to the null
distribution of the restricted likelihood ratio statistic using an idea similar to
pseudo-likelihood estimation. Crainiceanu, Ruppert, Claeskens and Wand [63]
show via simulation studies that the power properties of the likelihood ratio
tests compare favorably those of competing tests.

In the context of least-squares kernel machines, Liu, Lin & Ghosh [174] de-
velop a score test for non-linearity that relies on a mixed model representation.
Sattherwaite’s approximation is used to obtain approximate p-values.

Extension of likelihood ratio tests in the generalized response setting is chal-
lenging due to the presence of intractable integrals in the likelihoods. Lin [166]
and Lin & Zhang [171] developed score tests for GLMM settings, the latter
reference including generalized additive models through the mixed model repre-
sentation of smoothing splines. This general approach has since been extended
to additive mixed models (Zhang & Lin [308]), varying coefficient models for
longitudinal data (Zhang [307]) and proportional hazards models (Lin, Zhang
& Davidian [172]).

Wood [293] develops approximate Bayesian confidence intervals (see Section
6.4 of Ruppert et al. and references given there) for the estimated functions
in generalized additive models. He takes advantage of the low-rank aspect of
penalized splines so that the distribution theory involves the relatively small
random vector of spline basis coefficients. The generalized case is dealt with
by using a weight matrix approximation in the ridge regression expression. It is
also explained how inference for functionals of the coefficient vector can be made
without time-consuming bootstrap replications. This innovative paper finishes
off with proposals on how to avoid MCMC in the ‘fully Bayesian’ case, in which
variability due to smoothing parameter choice variance components is taken into
account.

The Bayesian mixed model approach to semiparametric regression has im-
mediate benefits regarding inference. For example, non-linearity versus linearity
of covariate effects can be assessed through the posterior distributions of vari-
ance components. They are several new papers on Bayesian on semiparametric
regression, scattered throughout Section 3 of this review article.

Lastly, we mention contribution spline-based approaches to the scale-space
approach to feature significance, sometimes known as ‘SiZer’ (Chaudhuri &
Marron [44], and summarized in Section 6.9 of Ruppert et al. [232]. Ganguli
& Wand [104]) facilitates feature significance for bivariate smoothing, or geo-
statistics, by developing the appropriate theory for low-rank thin plate splines.
Marron & Zhang [186] develop the requisite theory for a (full-rank) smoothing
spline version of SiZer.
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3.7. Latent variable models

The introduction of Skrondal & Rabe-Hesketh [242]) defines a latent variable as
a random variable whose realizations are hidden from the analyst and gives, as
examples of their utility, data measured with error, hypothetical constructs and
latent responses underlying categorical variables. Mixed models play a promi-
nent role in latent variable modeling so, for this reason alone, have common
ground with contemporary smoothing techniques. Latent variable modeling is a
growth area in Statistics in general, and has had some interplay with semipara-
metric regression in the last five years.

Tutz & Scholz [267]) use the principle of maximum random utility to link
multi-category responses to latent utilities. They allow for dependence on co-
variates via additive and varying coefficient structure, aided by penalized splines.
Fahrmeir & Raach [91] develop Bayesian semiparametric latent variable mod-
els, including those that allow spatial effects to be incorporated. They involve
measurement models for mixed continuous, binary and ordinal responses. For
example, the discrete value of ordinal responses are assumed to be generated
through a threshold mechanism.

Elliott [87] uses smoothing splines and their mixed model representation to
build flexibility into latent cluster models. These relate underlying ‘clusters’ of
variability to measures of interest. Application is made to data on depression
levels for patients recovering from myocardial infarction.

Gryparis, Coull, Schwartz & Suh [117], described more fully in Section 3.5,
has a latent variables aspect for handling multiple exposures.

3.8. Longitudinal data analysis

Mixed models have been a staple of longitudinal data analysis for the last 25
years. This partnership has resulted in a high volume of mixed model method-
ology and software development over the same time period. The mixed model
approach to penalized spline smoothing not only allows one to take advantage
of these developments, but means that longitudinal structure is easy to incorpo-
rate. Nowadays, a single linear mixed model can be used to perform an elaborate
longitudinal data analysis that incorporates nonparametric estimation of several
smooth functions (e.g. Zhao et al. [310].

A component of recent semiparametric longitudinal data analytic research
has been concerned with marginally specified models such as (11). We review
this research in Section 3.9. The models covered in this subsection differ in that
that are defined conditionally.

Ghidey, Lesaffre & Eilers [109]) develop the penalized Gaussian mixture linear
mixed model. It involves function estimation via spline basis functions that are
Gaussian densities and random effects modeled as mixtures of normal distribu-
tions. Particular attention is paid to two-dimensional random effects structure.

Durbán, Harezlak, Wand & Carroll [79] describe mixed models models for
fitting subject-specific curves to longitudinal data. Models of this general type
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have been developed by several other authors (e.g. Donnelly, Laird & Ware [76];
Verbyla et al. [271]. The low-rank spline approach of Durbán et al. [79] is partic-
ularly simple and has the ability to handle very large sample sizes with standard
mixed model software (code is included in an appendix). Harezlak, Ryan, Giedd
& Lange [124] fit similar models to data from accelerated longitudinal designs
where subjects enter the study at different points of their growth trajectory and
are observed over a relatively short time period. Application is made to longitu-
dinal magnetic resonance imaging data from an ongoing developmental study.
Smith & Wand [243] focus on the variance calculations required for inference in
semiparametric mixed models. They describe streamlined algorithms that yield
two orders of magnitude improvements over näive variance calculations.

Welham et al. [286] and Zhang et al. [309], as detailed in Section 3.16, deals
with semiparametric longitudinal models under periodicity constraints. Zhao
et al. [310], discussed in Section 3.13, provides quite a general treatment of
Bayesian generalized response models that include longitudinal models as a
special case.

The likelihood ratio methodology of Crainiceanu & Ruppert [58]) and Greven
et al. [116] (Section 3.6), is applied to inference in longitudinal settings. Qu & Li
[220] develop quadratic inference functions for fitting and inference in varying
coefficient models for longitudinal data.

Harezlak, Naumova & Laird [123] devise a bump hunting test for longitudinal
data, based on the subject-specific curves model of Durbán et al. [79].

Finally, we note that more extensive reviews of this subsection’s general topic
are provided by five chapters under the heading Nonparametric and Semipara-
metric Methods for Longitudinal Data in Fitzmaurice, Davidian, Verbeke &
Molenberghs [97]. The chapters are authored by X. Lin & R.J. Carroll, H.-G.
Müller, S.J. Welham and B.A. Brumback, L. Brumback & M.J. Lindstrom.

3.9. Marginal longitudinal models

Research on the marginal longitudinal nonparametric regression model (see (11)
below) continues at a steady rate. Early contributions to this setting include
Zeger & Diggle [306] and Lin & Carroll [167]. While most early research involved
kernel smoothing, more recent approaches involve spline smoothing. Marginal
models differ from the conditionally specified models of Section 3.8 in that they
do not model the within-subject correlation or the error process.

The simplest setup is as follows. For 1 ≤ i ≤ m subjects we observe 1 ≤
j ≤ n (n ≪ m) responses yij and predictors xij. (Somewhat annoyingly, the
m and n notation alternates in the literature between their roles given here
and the reversal; i.e. that where n is the number of subjects and m is the
number of measurements. In this paper we stick with the notation used by
Diggle, Heagarty, Liang & Zeger [72] and Ruppert, Wand & Carroll [232].) Let
yi be the vector of responses for the ith subject and xi be defined similarly. The
marginal longitudinal nonparametric regression model is then

E(yij |xi) = f(xij), Cov(yi|xi) = ΣΣΣ, 1 ≤ i ≤ m, 1 ≤ j ≤ n (11)
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for some smooth function f and n × n covariance matrix ΣΣΣ. A noteworthy,
somewhat paradoxical, result is that ordinary kernel smoothers are more efficient
if so-called working independence is assumed (Lin & Carroll [168]. Wang [282]
develops a more elaborate kernel smoothing strategy that escapes from this
paradox and is uniformly more efficient.

Welsh, Lin & Carroll [288] use equivalent kernel theory to demonstrate that
penalized spline estimators are non-local compared with kernel smoothers. This
means that the ‘legality’ of working independence justified by Lin & Carroll
[167] for ordinary kernel smoothers does not apply to penalized splines. Lin,
Wang, Welsh & Carroll [170]) brings together earlier papers by the authors
on (11). Theoretical results include asymptotic equivalence between the Wang
[282] kernel estimator and a smoothing spline-based estimator, and optimality
of these two approaches.

Other contributions to theory and methodology for (11), but primarily within
the kernel smoothing realm, include Carroll, Hall, Apanasovich & Lin [40]),
Chen & Jin [49], Hu, Wang & Carroll [134]), Wang, Carroll & Lin [283] and
Lin & Carroll [169]. Interestingly, there is little use of low-rank spline modeling
in this context. Linton, Mammen, Lin & Carroll [173] and Carroll, Hall et al.
[40]) discuss a two-stage approach that estimates ΣΣΣ from the residuals of an
unweighted fit and then computes a penalized spline estimator, finding good
efficiency. But to the best of our knowledge the low-rank spline mixed model
approach has not been implemented in this context. Current research on this
approach, led by the second and third authors, is under way.

3.10. Measurement error models and deconvolution

Carroll, Ruppert, Stefanski & Crainiceanu [41] provides a recent and comprehen-
sive review of non-linear measurement error models. In their preface to this sec-
ond edition the authors point out that, in 11 years since the book’s first edition,
semiparametric regression and Bayesian computation via MCMC have grown
enormously. These threads run through much of the contemporary research on
nonlinear measurement error models. Chapters 9, 12 and 13 of Carroll et al. [41]
summarize most of the relevant literature. We now supplement those with some
recent literature that is closest to the Ruppert, Wand & Carroll [232] genre.

Carroll, Ruppert, Crainiceanu, Tosteson & Karagas [42]) study non-linear
and nonparametric regression when there is covariate measurement error and
an instrumental variable is available. They consider several approaches to esti-
mation and, in a simulation study, a Bayesian spline estimator similar to the
one in Berry, Carroll, and Ruppert [15] is the most effective.

Ganguli, Staudenmayer & Wand [103] studied additive model fitting and
inference when measurement error is present in one or more predictors. They
use a maximum likelihood approach and advocate use of the Monte Carlo EM
algorithm for fitting and inference.

The periodicity-constrained functional mixed models of Zhang, Lin & Sow-
ers [309] (see Section 3.16) handle measurement error in the predictor, follicle
stimulating hormone, via a two-stage approach.
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Ma & Carroll [179] show how to estimate nonparametric functions in semi-
parametric models while making no assumptions about the distribution of the
variables measured with error.

Mallick, Hoffman & Carroll [184] use a Bayesian approach to fitting non-
parametric functions when the measurement errors are mixtures of Berkson
and classical types. They use a Direchlet process to estimate the distribution of
the mismeasured covariate essentially nonparametrically. Their method is ap-
plied to the Nevada Test Site radiation study. Carroll, Delaigle & Hall [39] use
a deconvolution approach in the same context.

Liang, Wu & Carroll [164] develop mixed effects varying coefficient measure-
ment error models, applying the methods to AIDS data.

Ruppert, Nettleton & Hwang [231] use penalized B-splines on a deconvolu-
tion problem from multiple testing. Assume the ith hypothesis is H0i : δi =
0, 1 = 1, . . . , n; δi ≥ 0 might be a non-centrality parameter. The problem is
to estimate the distribution of δi, but δi is not observed. To estimate this dis-
tribution, π0, the proportion of true nulls and G, the distribution of δi under
the alternative, are estimated. The estimate π̂0 is useful to estimate the false
discovery rate (Benjamini and Hochberg [13]) and the authors show that Ĝ can
be used to estimate the expected discovery rate, the true negative rate, and the
true positive rate.

Staudenmayer, Ruppert & Buonaccorsi [248] study density estimation un-
der heteroskedastic measurement error. Deconvolution methods that assume
homoskedasticity over (under) correct in regions where the measurement error
variance is smaller (greater) than average. To remedy this problem they intro-
duce a variance function and estimate the density and the variance function as
splines.

It is our belief that penalized splines are proving to be a very effective, perhaps
the most effective, method for deconvolution and correction for measurement
error. The reason is that, when given a Bayesian implementation, they utilize the
likelihood and achieve high efficiency. In contrast, earlier more ad hoc method
extract less of the information available in the data.

3.11. Missing data

Because of space and time limitations, a missing data chapter was missing from
Ruppert et al. [232]. However, many contemporary methods for handling miss-
ing data use likelihood-based or Bayesian inference that is in keeping with our
semiparametric regression methodology. While there has been a modest amount
of work in this direction, which we now summarise, our feeling is that there is
still room for more such research.

French & Wand [99]) develop a likelihood-based model for missing covariate
data in geoadditive model (Kammann & Wand [140]) analyses. Monte Carlo EM
and a version of penalized likelihood is used for fitting and inference. An appli-
cation involving relative cancer mapping, with missingness in smoking status,
is presented.
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Chen & Ibrahim [48] develop likelihood-based semiparametric regression
models, including those with bivariate smoothing, for specifying the covariate
distribution and the missing data mechanism. The EM algorithm is recom-
mended for fitting, and application is made to data from a melanoma clinical
trial.

Bivariate smoothing is also considered by Geraci & Bottai [108]. They treat
the incorporation of auxiliary data when there are non-ignorable missing re-
sponses. Mixed model-based low-rank kriging is used for bivariate smoothing,
and Monte Carlo EM for fitting. Application is made to mapping of phytoplank-
ton data.

Penalized splines are used in a missing data situation with clustering by Yuan
& Little [305]. Several missing data mechanisms are entertained. Hierarchical
Bayesian models are used and Gibbs sampling employed for fitting. Application
is made to a childhood obesity study.

3.12. Model selection

In Ruppert, Wand & Carroll [232] we noted (Section 8.6) that model selection
for semiparametric regression was still in its infancy, and provided a handful
of references – particularly in the special case of additive models with several
candidate predictors. There have been a few developments since 2003 on this
problem.

Wager, Vaida & Kauermann [273] use the mixed model representation of
penalized spline semiparametric regression models and versions of AIC to obtain
a model selection algorithm for the continuous response case. The smoothing
parameters of the fitted models are estimated from the data using (restricted)
maximum likelihood.

Avalos, Grandvalet & Ambroise [6] work with smoothing splines and the
lasso (Tibshirani, 1996) to choose among additive models. The lasso has the
feature of annihilating coefficients rather than shrinking them, resulting in bet-
ter parsimony. An approximation of the generalized cross-validation is used for
smoothing parameter selection. Vandenhende, Eilers, Ledent & Renard [268]
make use of penalized splines, GCV and the lasso to sift through candidate
biomarkers in drug development applications.

Model selection via boosting is studied by Tutz & Binder [264], Tutz & Rei-
thinger [266] and Binder & Tutz [16]. Further details are given in Section 3.1.

Hens, Aerts & Molenberghs [131] is on model selection for incomplete and
design-based samples based on a weighted AIC. While it is mainly concerned
with parametric regression model, the approach is extendable to semiparametric
regression.

3.13. Non-Gaussian response models

Fitting and inference for semiparametric regression models when the response is
non-Gaussian usually entails an extra layer of complexity due to the non-explicit
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forms that arise. Research on this front roughly parallels that of generalized
linear mixed models, where analytic approximations and MCMC are the main
combatants.

Wood’s [292] book is a contemporary account of generalized additive model
fitting and analysis – accompanied by the R package mgcv [295]. Generalized ad-
ditive mixed models are also treated. Smoothing parameter selection is achieved
through generalized cross-validation, AIC and penalized quasi-likelihood. Zhao,
Staudenmayer, Coull & Wand [310] work with a general form of the generalized
linear mixed model that includes most exponential family semiparametric re-
gression models as a special case. They adopt a Bayesian approach and describe
MCMC fitting and inference using BUGS (e.g. Lunn et al. [177]) software. Skaug
& Fournier [241] investigate the use of automatic differentiation in a general
GLMM framework. A semiparametric regression example is included.

The past few years has seen several extensions of semiparametric regression
beyond the one-parameter exponential family situation. Nott [201] works with
the double exponential family (Efron [80]) and shows it to be a good vehicle
for handling both mean and variance functions. He calls upon the Single Com-
ponent Adaptive Metropolis algorithm of Haario, Saksman & Tamminen [120]
to perform fitting. Branscum, Johnson & Thurmond [19] extend the Bayesian
semiparametric regression approach to responses from the Beta family of dis-
tributions. The paper revolves around two applications on household expendi-
ture and foot-and-mouth disease. Houseman, Coull & Shine [133] and Skaug
& Fournier [241] each include models with negative binomial responses. Tutz
[261] and Tutz & Scholz [267]) develop semiparametric regression models for,
respectively, ordinal and multinomial responses.

Another area of recent activity for non-Gaussian semiparametric regression is
modeling of sample extremes. Chavez-Demoulin & Davison [45] develop smooth-
ing spline-based generalized additive models for exceedances-above-threshold
data. The penalized likelihood corresponds to the generalized Pareto distribu-
tion because of its role as a limiting distribution in this context. Yee & Stephen-
son [301] work with sample maxima data and the generalized extreme value
distribution and develop vector generalized additive models in this context.

Several other papers, published since 2003, deal with semiparametric regres-
sion with non-Gaussian response – but are discussed elsewhere in this review
article. Non-Gaussian spatial models are dealt with by Fahrmeir & Echavarŕia
[89], Augustin, Lang, Musio & von Wilpert [5], Paciorek [212] and Crainiceanu,
Diggle & Rowlingson [57], Zhang & Lin [308] and Zhang [307]) describe hy-
pothesis testing for variance components in GLMM smoothing contexts. Tutz
& Binder [264] and Binder & Tutz [16] provide boosting-type procedures for
fitting generalized additive models.

3.14. Quantile regression

There have been a few new approaches to semiparametric regression that target
quantiles, rather than means and variances. None of these use mixed models or
hierarchical Bayesian approaches.
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Yee [298] embeds the LMS (i.e. λ, µ, σ) quantile regression method of Cole &
Green [52] in the vector generalized additive models (VGAM) framework. An
improvement to the LMS method, based on the Yeo-Johnson transformation is
developed. Non-Gaussian responses, such as those from the Gamma family, are
also treated.

Bollaerts, Eilers & Aerts [17] and Takeuchi, Le, Sears & Smola [255] each use
the ideas of constrained smoothing and ‘pinball’ loss functions to impose non-
crossing in quantile regression. Bollaerts et al. [17] uses P-splines, making it more
in keeping with traditional semiparametric regression. Takeuchi et al. [255] use
the kernel machine approach which, as mentioned in Sections 2.5 and 3.2, is
becoming increasingly intertwined with semiparametric regression research.

Choudhary [46] used Bayesian penalized splines to estimate a quantile func-
tion for the problem of assessing agreement between two measurement methods.

3.15. Sample survey aspects

An interesting development in recent survey sampling estimation research, led
by F.J. Breidt and J.D. Opsomer, is the incorporation of nonparametric regres-
sion methodology. An early reference is Breidt & Opsomer [22] on the use of
local polynomial regression. However, some more recent contributions have used
penalized splines. The first of these is Breidt, Claeskens & Opsomer [20] where
it is stated that, unlike for local polynomial regression, the theory for penalized
splines closely follows the established survey linear regression theory. Breidt
et al. [20] is concerned with the incorporation of auxiliary covariate information
in the design-based estimation of finite population totals in complex surveys.
Theorems on design root-n consistency of the penalized spline regression esti-
mator are provided.

The previous article uses the fixed-penalty formulation of the penalized spline
and primarily considers inference with respect to the sampling design, as is most
commonly done in survey estimation. Other work uses the penalized spline’s
mixed-model representation to develop model-based estimators for survey data.
Zheng and Little [311] estimate a finite population total by predicting the un-
observed part of the population based on a model for the relationship between
the variable of interest and the inclusion probabilities. This is extended to the
two-stage sampling context in Zheng and Little [312]), and further incorporates
a random item response model in Yuan and Little [305]. Opsomer, Claeskens,
Ranalli, Kauermann & Breidt [207] consider spline-based small area estimation,
a type of modeling widely used for survey estimation problems but relying al-
most exclusively on linear mean model specifications (Rao [224]). Opsomer et al.
[207] combine univariate and bivariate penalized splines with the commonly used
small area random effects model, and they establish a theorem on the predicted
mean squared error properties of the resulting REML- based predictor of the
small area means.

Opsomer, Breidt, Moisen & Kauermann [206] is at the applied end of the
spectrum. They describe how design-based estimation of quantities, such as
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forested area or total wood volume over large regions, can be enhanced through
the incorporation of geographic auxiliary information such as elevation and slope
and of satellite-derived measurements. Generalized additive models are used to
incorporate the auxiliary variables.

A recent review article (Breidt and Opsomer [23]) on nonparametric and
semiparametric estimation methods in complex surveys discusses these method-
ological developments in more detail, and provides further information on the
design-based and model-based modes of inference for surveys.

3.16. Smoothing under constraints

Another area of semiparametric regression that has seen vigorous activity during
2003-2007 is smoothing subject to constraints on mean and quantile functions.
The predominant types of constraints in this work are monotonicity and peri-
odicity of regression functions and non-crossing of quantile functions.

Bollaerts, Eilers & van Mechelen [18] explain how to build several shape
constraints into univariate and multivariate P-spline quantile regression. Ghosh
[110] focus on monotonicity in the binary response regression problem, making
use of mixed models and the pooled adjacent violators algorithm, geared towards
biomarker evaluation. Tutz & Leitenstorfer [265] take a boosting approach to
enforcing monotonicity. They arrive at two algorithms: MonBoost for continuous
responses and GMonBoost for generalized responses.

Driven by data from longitudinal studies, Welham, Cullis, Kenward &
Thompson [286] and Zhang, Lin & Sowers [309] impose periodicity constraints
on their fitting curves. Welham et al. [286] use the notion of L-splines (e.g. Kimel-
dorf & Wahba [146]; Ansley, Kohn & Wong [2] in the penalized spline/mixed
model set-up, using specifically designed differential operators that annihilate
sine and cosine functions. Zhang et al. [309] work with smoothing splines, and
also account for measurement error, in work motivated by a hormone study.
Eilers, Gampe, Marx & Rau [84] build periodicity-type constraints into models
for data from seasonal incidence tables.

The quantile regression articles of Bollaerts, Eilers, and Aerts [17] and Takeu-
chi et al. [255], outlined in Section 3.14, allow for the imposition of monotonicity.

Other constrained smoothing research includes Eilers [81], in which unimodal-
ity is the focus, and Gluhovsky & Vengerov [113] in which penalized splines are
used to do multivariate constrained extrapolation.

3.17. Spatial adaptivity

Each of the main smoothing techniques (e.g. local polynomials, smoothing
splines, wavelets) have an accompanying literature on methods by which im-
proved spatial adaptivity can be achieved. The idea is to perform differing
amounts of smoothing at different locations and better recover spatially het-
erogeneous signals. Chapter 17 of Ruppert, Wand & Carroll [232] describes spa-
tially adaptive extensions of penalized splines. However, there has been some
further work in this area.
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Lang & Brezger [158]) develop spatially adaptive Bayesian penalized splines
for univariate and bivariate smoothing by allowing smoothing parameters to
be locally adaptive. Baladandayuthapani, Mallick & Carroll [8] take a dif-
ferent approach that involves incorporation of a penalized spline estimate of
the variance function into the penalty. Extension is made to additive models.
Crainiceanu, Ruppert, Carroll, Joshi & Goodner [61] develop a Bayesian ap-
proach to spatially-adaptive penalized splines in the presence of heteroscedastic
errors. They combine three spline models: one for the regression function, a sec-
ond for the logarithm of the locally varying penalty on the regression function,
and a third for the logarithm of the variance function. The authors also gener-
alize their model to multivariate smoothing using low-rank thin-plate splines.
In Baladandayuthapani et al. [8] and Crainiceanu et al. [61], special Metropolis-
Hastings schemes are developed for implementation. Particular attention paid
to improved mixing via innocuous model modifications.

Krivobokova, Crainiceanu & Kauermann [153] use similar models to those
used by Baladandayuthapani et al. [8] and Crainiceanu et al. [61]. However,
they use Laplace approximation rather MCMC and thereby obtain big speed im-
provements. Non-normal response is also treated. An R package named AdaptFit

accompanies the paper.
Leitenstorfer & Tutz [160] also achieve spatial adaptive via model selection

on the knots and a version of boosting.
Paciorek & Schervish [213] introduce a new class of non-stationary covari-

ance functions for spatial smoothing via Gaussian processes. Non-stationarity
essentially equates to spatial adaptivity.

3.18. Spatial and other high-dimensional data

Section 2.2 covers advancement of fundamental principles for multivariate
smoothing. In this section we review new semiparametric regression models
and methodology that have a multivariate smoothing component. Excluded,
however, are geoadditive models, which are treated in Section 3.5.

Wager, Coull & Lange [272]) develop an approach labeled “mixed model
intensity kriging” based on inhomogeneous Poisson spatial processes. A low-
rank version of kriging is achieved through Voronoi tessellation of the plane.
Application is made to spatial data arising from brain imaging studies.

Sain, Jagtap, Mearns & Nychka [233] develop a new multivariate spatial
model, utilizing splines and mixed models, for soil water profiles. A particu-
larly novel aspect is bivariate smoothing of the soil-texture triangle – where the
relative proportions of sand, silt and clay are plotted.

Brezger, Fahrmeir & Hennerfeind [25] use the ideas of Bayesian semipara-
metric regression in the analysis of functional magnetic resonance imaging data.
Space-varying coefficient models are developed, with the goal of improving upon
the voxel-by-voxel approaches of earlier functional magnetic resonance imaging
papers. Heim, Fahrmeir, Eilers & Marx [129] apply the same class of models
to diffusion tensor images, also arising from magnetic resonance techniques. Pe-
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nalized splines are used at all stages of a three-step cascade of data processing:
voxel-wise regression, smoothing and interpolation.

Dean, Nathoo & Nielsen [68] use penalized splines as a component of multi-
state models for longitudinal panel count data, where the processes correspond-
ing to different subjects may be spatially correlated. Application is made to
weevil infestation in white spruce trees.

Crainiceanu, Diggle & Rowlingson [57] use the binary response version of pe-
nalized bivariate splines binary response to model Loa loa prevalence in tropical
Africa. A Bayesian/MCMC approach to fitting and inference is adopted. A fast
method for approximate predictive inference, based on a calibration model, is
developed.

Apanasovich et al. [4] investigate low-rank spline smoothing in a spatial con-
text. They use penalized regression splines and develop a novel method for
smoothing parameter selection that overcomes the well-known biases of cross-
validation with correlated data. Li et al. [163] show how to estimate a correlation
function in longitudinal and spatial data. Both papers give applications to colon
carcinogenesis experiments.

Several other papers involving spatial data appear elsewhere in this review:
Lang & Brezger [158]) and Crainiceanu et al. [61] (Section 3.17), Eilers et al.
[84] (Section 3.16), Geraci & Bottai [108] (Section 3.11), Jank & Shmueli [136]
(Section 3.20) and Currie et al. [66]) (Section 3.19)

3.19. Survival analysis

The extension of parametric survival models for survival data to accommodate
non-linear covariate and geographical effects continues to be a vibrant area of
semiparametric regression research.

Cai, Hyndman & Wand [35] show how Poisson mixed models and penal-
ized splines facilitate natural and convenient hazard function estimators. Cai &
Betensky [34] extended this approach to hazard regression with interval censored
survival data. Time-varying coefficient models of this general type are developed
by Tutz & Binder [263]), Lambert & Eilers [156], Kauermann & Khomski [143]
and Brown, Kauermann & Ford [28].

A variety of methods for fitting, inference and smoothing parameter type are
proposed. For example, Lambert & Eilers [156] call upon the Langevin-Hastings
algorithm, while Brown et al. [28] develop a hybrid smoothing parameter selec-
tor, based on AIC and penalized quasi-likelihood.

Lin, Zhang & Davidian [172] work with mixed model and spline-based ex-
tensions of the proportional hazard model. Score-test tests for the proportional
hazards assumption and covariate effects are developed.

Namata et al. [198] develop GLMM-based methodology for current status
data, geared towards an infectious diseases application.

Another interesting development is the integration of penalized spline smooth-
ing into actuarial science – as exemplified by Currie, Durbán & Eilers [66]). In
this case, the data take the form of mortality tables. The raw mortality ta-
ble data used here, obtained from a United Kingdom insurance and pensions
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database, takes the form of two 53× 90 matrices corresponding to the calendar
years 1947–1999 and males between 11 and 100 years of age. One matrix is
number of deaths; the other is number of years lived. The raw hazards matrix
is the ratio of the first matrix to the second. Univariate and bivariate penalized
spline smoothing is applied to the raw hazards to arrive at forecasts of mortality
rates up to 2050.

As detailed in Section 3.5 geoadditive models for survival data are developed
by Adebayo & Fahrmeir [1], Hennerfeind, Brezger & Fahrmeir [130], Kneib [147],
Kneib & Fahrmeir [149] and Ganguli & Wand [105].

3.20. Temporal data

The use of smoothing techniques in the analysis of temporal (time series) data
has flourished in the past two decades – see, for example, Fan & Yao [94].
However, most of this work has involved local polynomial kernel smoothing.
The permeation of these ideas to spline-based semiparametric regression is still
quite mild.

Houseman, Coull & Shine [133] develop negative binomial time series models
for modeling enterococcus counts in Boston Harbor, utilizing penalized splines
and mixed model representations. Jank & Shmueli [136] use the same general
approach to model concurrency of events in on-line auctions.

General correlation structures for mixed model-based smoothing are consid-
ered by Durbán & Currie [78] and Krivobokova & Kauermann [154]. The latter
reference contains asymptotic theory for the smoothing parameter chosen via
AIC and REML, and application to finance time series data.

As discussed in Section 3.5 Fahrmeir, Kneib & Lang [90]) and Kneib &
Fahrmeir [148] use geoadditive models to handle temporal and spatial effects.

As mentioned in Section 3.3, Dominici et al. [75]) use and modify generalized
additive model technology for air pollution time series data. Gryparis et al.
[117], discussed in Sections 3.5 and 3.7, has a temporal data aspect.

3.21. Miscellanea

A few 2003-2007 papers involving semiparametric regression do not fall into any
of the categories corresponding to the previous subsections.

Yee & Hastie [300] extends reduced-rank regression (e.g. Izenman [135]) to the
class of vector generalized linear models. While this work is mainly parametric,
some non-linear modeling based on regression splines is used.

Yu & Ruppert [304]) build on their earlier work (Yu & Ruppert [303]) on
partially linear single-index models using penalized splines. In particular, they
remove the assumption of compactness and establish root-n consistency of the
regression coefficients.

Wood [291]) is a rare instance of a semiparametric regression contribution
that delves deeply into numerical issues. For example, pivoted QR decomposition
is used to make GCV parameter choice in generalized additive (mixed) models
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more stable and efficient. Later releases of the author’s R package, mgcv (Wood
[295]), make use of this methodology.

Banerjee, Maiti & Mukhopadhyay [11] use penalized splines to build classifi-
cation rules for the pathological state of prostate cancer patients. In Choudhary
& Ng [47], penalized spline estimates of both mean and variance functions are
employed assess agreement between two methods of measurement.

Piepho & Ogutu [217] explains how simple state-space models can be ex-
pressed as linear mixed models. Estimation via REML as an alternative to the
Kalman filter is investigated and some advantages are found. It is also explained
how smoothing is achieved via integration of state-space components and how
the class of covariance structures for modeling serial correlation is broadened
via state-space representations.

Lee & Oh [159] develop robust of semiparametric regression procedures based
on M-type penalized spline smoothers. Extension is made to additive mixed
models, with a robust modification of REML for variance component estimation.

Eilers [82] uses the discrete Whittaker smoother in meta-analysis. His ap-
proach includes nonparametric estimation of the latent distribution of event
probabilities in control and treatment groups, and a smoothed EM algorithm
with improved convergence to maximum likelihood estimates of the parameters
in the latent distribution model.

3.22. Review articles

A few articles have reviewed aspects of semiparametric regression in the last
few years. We briefly mention some of them here.

Tutz [262]) reviews semiparametric mixed models in the case of generalized
responses. Generalized linear mixed models are shown to play a central role.
Maximum likelihood is the main fitting tool. Techniques for dealing with the
intractable integrals, such as Gauss-Hermite quadrature and the EM algorithm,
are described. Similar structures, although within the Bayesian framework and
MCMC are treated by Zhao et al. [310].

Brezger & Lang [27] reviews Bayesian penalized spline approaches to gen-
eralized additive models. Pointers to implementation in the authors’ BayesX

package are included.
In Section 3.8 we mentioned the five-chapter component of Fitzmaurice et al.

[97]. Together, these provide a detailed account of recent semiparametric regres-
sion research involving longitudinal data.

Finally, we mention two books from the last few years that have strong semi-
parametric regression themes. Wood [292] presents a thorough account of gen-
eralized additive models, with emphasis on implementation in R. Wu & Zhang
[296] focuses on semiparametric regression for longitudinal data, with emphasis
on mixed model approaches.
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4. Applications

Ruppert et al. [232] emphasize the modularity of low-rank spline smoothers; a
spline can be embedded as a nonparametric module into a larger model with
parametric components. This type of use of such splines in applications has
become increasingly sophisticated, as the following selection of applied papers
show.

4.1. Blood lead exposure on intellectual impairment

Canfield et al. [36] present an interesting application of semiparametric modeling
to an important health problem. The authors study the intellectual impairment
in children due to blood lead concentrations below 10 µg per deciliter, the “level
of concern” as defined by the Centers for Disease Control and the World Health
Organization. They measured blood lead concentration in 172 children at 6,
12, 18, 24, 36, 48, and 60 months of age and modeled longitudinal effects with
a mixed model. Maternal intelligence quotient (IQ), quality of the home en-
vironment, and other potential confounders are adjusted linearly. Preliminary
data analysis suggest that the dose-response curve for IQ might be steeper,
that is, IQ decreases more rapidly, in the 0–10 µg per deciliter range compared
to blood lead concentrations above 10 µg per deciliter. To model the nonlinear
dose-response, the authors used a penalized spline. This semiparametric analysis
corroborates the preliminary finding that IQ declines more rapidly with blood
lead concentration at low doses compared to dose above 10 µg per deciliter. This
result is in disagreement with the previous belief that 10 µg per deciliter is the
“level of concern,” and the authors suggest that considerably more children are
adversely affected by lead exposure than previously believed.

4.2. Spatial and temporal distribution of particulate air pollution

Gryparis, Coull, Schwartz & Suh [117] model the spatial and temporal distribu-
tion of particulate air pollution in the greater Boston area. Data are available
mostly from three Boston area monitoring studies, and there are two surrogates
of mobile source pollution, black carbon (BC) and elemental carbon. The au-
thors use a semiparametric latent variable model for combining these multiple
surrogates for a common mobile source of pollution. The measurement error
model is yij = g(ΛΛΛi, ηij) + εεεy

ij, where yij is a vector of measurements at lo-
cation i and day j, g is a known function, ΛΛΛi is an unknown matrix of factor
loadings, ηij is a latent variable and εεεy

ij is an error vector. The loadings ma-
trix ΛΛΛi is modeled as having a linear regression on known covariates. Interest
centers on the latent variable ηij, and a geoadditive model is used to express
ηij as the sum of a linear function of certain covariates, univariate functions of
other covariates, a bivariate function of longitude and latitude, and error. As is
typical of factor models, constraints are needed to achieve identifiability. The
model is fit separately to summer and winter data. The authors performed a
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Bayesian analysis and use a Gibbs sampler with Metropolis-Hastings steps. The
geoadditive model facilitates visual presentation of the results. There is an ob-
vious non-linear day of the year effect on particulate pollution. Maps of median
predicted log-BC show the distribution of mobile source pollution in the greater
Boston area during the summer and winter seasons.

4.3. Time series of enterococcus counts in a harbor

Houseman, Coull and Shine [133] use semiparametric regression methods to
develop a new type of model that was particularly suited for their application:
enterococcus counts in Boston Harbor. A noteworthy aspect of their model is
that it handles a non-stationary time series of counts. The aim of their research
was to understand the effects of changes in sewage treatment that were initiated
to improve water quality. The authors assume that counts, yt, are observed on
a finite set of time points in an interval T , and they depend on random effects
Qt and fixed covariate effects µt so that yt|Qt is Poisson(Qtµt). Here the Qt

are independent Gamma with shape and rate parameters both σ−1 and induce
overdispersion, while µt models covariate effects and time effects. Specifically, µt

is equal to exp{xT

t βββ+f(t)} where xT

t βββ is a parametric model for covariate effects,
and f(t) is a nonparametric penalized spline model for possibly non-stationary
time trends. Because the covariates are time dependent, this semiparametric
model is non-identifiable without constraints that are carefully explained by the
authors. The time-varying covariates includes four variables that characterized
sewage flows, temperature, tide height, salinity, and a sinusoidal seasonal effect.
This model is fit separately at each spatial location. Then the authors use a
geoadditive fit (Kammann & Wand [140]) to create a spatial summary of the
effects of major interest, those of flows from the Nut Island and Deer Island
Treatment Plants.

4.4. Concurrency of events in on-line auctions

On-line auctioning is a relatively new and rich source of challenging statistical
problems. Jank & Shmueli [136] investigate concurrency in on-line auctions.
They define concurrency as the effect upon an event of the same or similar events
at or near the same time. The on-line auction web-site eBay conducts hundreds
of simultaneous auctions for similar items. In addition, eBay makes available
information on auctions that have closed in the last 15 days. It is expected that
both types of information will affect the final price of an item being auctioned.
To study these effects, Jank & Shmueli [136] use the model yt = gAC(xt) +
gSC(xt)+gTC(xt:(t−1))+εt, where yt is the log-price of an item sold at time t, xt

is covariate information available at time t, and xt:(t−1) is covariate information
over the time period from t − 1 to t. Time is modeled continuously since a
auction can close at any time. The three components of the model are: gAC, the
“auction component”; gSC, the “spatial component”; and gTC, the “temporal
component”. In their example, they use the prices of laptop computers. The
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auction component is modeled linearly, but the other components are modeling
nonparametrically. “Spatial” refers to a feature space where distance measures
similarly between laptops in terms of their features, e.g., screen size, memory
size, and presence of a DvD drive. Therefore, the authors estimate gSC using a
radial penalized spline in 7-dimensional space. The temporal component requires
a more complex model than the other two components. The covariates are the
prices from time t−1 to t and the features of those laptops. Various functions of
the prices, e.g., mean, median, minimum, maximum, and slope of the time trend,
are computed for laptops most similar, least similar, and of average similarity to
the laptop sold at time t. The result is 18 time-lag variables which are reduced
to three principal components. The temporal component is an additive spline
model in these principal components. Jank & Shmueli [136] test their model on
a hold-out sample of 30% of the laptops sold, with the remaining 70% used to
train the model. They compared the performance of their model with that of
linear parametric models and totally nonparametric models that use regression
trees. They find that the nonparametric models outperform the linear models,
but that their semiparametric model outperforms the nonparametric models.

4.5. Genomic-assisted prediction of genetic value

Gianola, Fernando & Stella [111] use a semiparametric model for the genetic
value of single nucleotide polymorphisms (SNP) and other genetic markers. Let
yi be a measurement, such as height of a plant or milk production of a cow, and
let xi be a vector of dummy genetic marker variables, e.g., the indicators of the
presence of SNP or microsatellite covariates. Gianola et al. [111] use the model

yi = wT

i βββ + zT

i u + g(xi) + εi, (12)

where wi and zi are known incidence vectors, βββ is a vector of nuisance location
effects, u is a q × 1 vector of additive genetic effects of q individuals, which are
modeled as random effects, and g is an unknown function. They present several
estimation methods for this model. One of these methods converts (12) into a
mixed model by using a type of radial basis function model for g(x). Specifically,
they follow Mallick, Ghosh & Ghosh [183] and use a reproducing kernel mixed
model that assumes that

g(x) =

n∑

j=1

αj exp{−‖x − xi‖
2/h}

where the αj are iid N(0, σ2
α) and h is a non-negative smoothing parameter.

Their model has one knot at each xj , but it should be possible to use only a
subset of these knots, say, chosen by a space-filling design. The authors use a
simulation experiment to compare the reproducing kernel mixed model method
with a parametric mixed model approach. They find that the two estimators
have nearly equal performance when the parametric model holds and that the
semiparametric method outperforms the parametric method when the linear
model does not hold.
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4.6. Carbon sequestration in agricultural soils

Sequestration of carbon in soils has the potential to reduce greenhouse gases.
This was the motivation for a study by Breidt, Hsu, and Ogle [21] who use a
semiparametric mixed model to compare carbon sequestering under no-till and
traditional tillage. Their main conclusion is that more carbon is sequestered
under no-tillage than under traditional tillage, especially in wet climates but
also in dry climates. Their data come from soil cores. A core is divided into
increments, e.g., from 0 to 15cm depth, and total carbon is measured in each
increment. They use 63 paired (no-till versus traditional tillage) studies, with
211 increments in total. The boundaries of the increments varied from study to
study, making increment-wise comparisons impossible. Therefore, the authors
used a varying coefficient penalized spline model for the concentration of carbon
as a function of depth, so that the total carbon in any increment is the integral
of this function over the increment. These “instantaneous” carbon sequestra-
tion functions can be estimated from the increment data and then compared
between the two types of tillage. A varying coefficient model of the instanta-
neous function is needed to accommodate the effects of covariates such as soil
type, climate factors, and the number of years since change to no-till. More spe-
cially, the model for difference between no-till and traditional tillage in carbon
concentration at soil depth t in the ith study is

q∑

ℓ=1

αℓ(t)wiℓ (13)

where αℓ(t) is a spline, wℓ,i is the value of the ℓth covariate in the ith study,
and q is the number of covariates. Several choices of covariates are considered
and the final choice was to use the indicator of wet climate and the number
of years since the change in soil management. Two models are considered for
covariance function within a core. The first has i.i.d. random intercepts, which
implies a correlation matrix with compound symmetry. The second, which uses
a non-homogeneous Ornstein-Uhlenbeck model, allowed heteroscedasticity and
a more general type of correlation. The second model fit significantly better
than the first and is used by the authors. By plotting the fitted models given
by (13) for different values of the covariates, the authors show the effects of
no-tillage. Under no-tillage, there is more sequestered carbon in the upper soil
layers and less in the lower layers compared to traditional tillage, but the former
effect is dominant so that overall more carbon is sequestered under no-tillage.
This suggests that a change to no-till, which has a number of other advantages,
also has the beneficial effect of reducing the amount of CO2 in the atmosphere.

4.7. Time series of air pollution and mortality

In studies of the effects of air pollution on mortality, confounders that are un-
measured, and perhaps even unknown, can bias the estimates. To circumvent
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this problem, analysts often include in the model a smooth function f(t) of time
(t) to capture the effects of confounders that vary smoothly in time. An exam-
ple, the Milan study of air pollution and mortality, can be found in Ruppert
et al. [232]. The technique of including f(t) in the model is given careful study
by Peng, Dominici & Louis [216]. An issue of primary concern is selecting the
degrees of freedom for estimation of f(t). Peng et al. [216] find that the esti-
mator of f(t) should be undersmoothed to reduce the bias in the estimate of
the effect of pollution, which is modeled linearly with coefficient β. This finding
agrees with asymptotic theory for partially linear models (Rice [228]; Speckman
[245]). The authors find that the method for selecting the degrees of freedom

for f̂(t) that is most accurate for estimating β is to use GCV to find the de-
grees of freedom that best predicts the pollution series. Then ones estimates
f(t) with the same degrees of freedom. The function f(t) can be estimated by
either an ordinary least squares fit with a natural cubic spline basis or by a
penalized spline. The later requires more degrees of freedom for f̂(t) to achieve

approximate unbiasedness of β̂. Peng et al. [216] include an interesting example
involving a 100-city study of the effect of suspended particulate matter on mor-
tality. Data are available from 1987 to 2000. They use an over-dispersed Poisson
model with a log link for the daily number of deaths. Known confounders are
accounted for explicitly: there are age-specific intercepts, a day of week effect,
and smooth functions of temperature and dewpoint. Particulate matter enters
the model linearly and the estimate of its coefficient β is studied as the degrees
of freedom for f(t) varies. The ordinary least squares natural cubic spline needs

about 9 degrees of freedom per year before β̂ stabilizes. For the penalized spline
about 15 degrees of freedom are needed.

4.8. The cosmic microwave background

Genovese, Miller, Nichol, Arjunwadkar & Wasserman [107]) address an impor-
tant problem in cosmology. They study the peaks in the temperature power
spectrum of the cosmic microwave background radiation. Let yℓ be the esti-
mated spectrum at multipole index ℓ. The model is yℓ = f(xℓ) + ǫℓ where
xℓ = ℓ/ max(ℓ). A parametric model for f has three peaks and the existence
of the third (rightmost) peak would provide the clearest support for the exis-
tence of dark matter. The response yℓ is highly heteroscedastic with its variance
increasing rapidly in ℓ. This complicates inference, especially for higher val-
ues of xℓ which is precisely where the third peak should be located. Genovese
et al. [107]) estimate f by a truncated cosine expansion. To construct a uniform
confidence set, they extend the methodology of Beran and Dümbgen [14] to
accommodate the heteroscedasticity. The result is a 900-dimensional confidence
ball which is, of course, difficult to visualize. To explore the ball, they create
targeted “probes” which are functionals of interest. Using the probes they can,
for example, find 95% confidence intervals for the heights and widths of the first
two peaks. The nonparametric fit is compared with the so-called concordance
model, which maximizes the joint likelihood under the parametric model of five
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independent data sets. The nonparametric fit does not have the third peak al-
though the concordance model does, since the third peak is an intrinsic part
of the parametric model. The lack of the third peak in the nonparametric fit
does not mean that the third peak does not exist. Rather, more precise data
would be needed in order to establish its existence. This paper is noteworthy
both for addressing a very interesting scientific question and for its novel use of
simultaneous inference.

4.9. Needle losses of Norway spruces

Augustin, Lang, Musio & von Wilpert [5] study needle loss which is an indicator
of tree vitality. They work with survey data on Norway spruces (Picea abies)
in the southwestern region of Germany. One novel aspect of the paper is that
the response is ordered categorical. The categories are healthy, intermediate, or
damaged, defined, respectively, as less than 10%, 10–25%, or more than 25%
needle loss. Augustin et al. use a geoadditive model for a latent continuous
variable U such that

U = f1(x1) + · · ·+ fP (xP ) + fspat(c1, c2) + wTγ + ε

where x1, . . . , xP are continuous covariates, (c1, c2) is spatial location, w is a
vector of covariates that enter linearly, and ε is N(0, 1). The categorical response
is a discretized version of U with cutoffs θ1 < θ2. Univariate P-splines are used
to model f1, . . . , fP and a tensor product of B-splines to model fspat. Including
fspat in the model accommodates unknown covariates, but also acts as a partial
surrogate for known covariates and reduces the size of their effects. The analysis
is Bayesian using MCMC. One important problem is prediction of needle loss
at locations not covered by the surveys. The model can be used for prediction,
but a complication is that some covariates are also unknown at these locations.
To circumvent this problem, the authors use a spatial model for these covariates
and draw multiple imputations from their posterior distributions.

4.10. Capture-recapture studies

Mark-recapture studies are a common means of assessing animal abundances
and survival probabilities. Frequently, survival probabilities depend on covari-
ates. For example, Gimenez, Crainiceanu, Barbraud, Jenouvrier & Morgan [112]
describe a case study where the survival probabilities of snow petrels nesting at
Petrels Island, Terre Adélie, Antarctica, depend upon the Southern Oscillation
Index (SOI). SOI is negatively related to temperature and can be used as an
index of overall climate condition. Gimenez et al. [112] assume that there are
I + 1 sampling occasions at times t1, . . . , tI+1. They define φi to be the proba-
bility that an animal survives to time ti+1 given that it is alive at time ti. The
data consist of the number of animals captured, marked, and released at each
sampling occasion and the number marked at time ti and recaptured for the first



D. Ruppert et al./Semiparametric regression 1237

time at tj. The authors begin with the Cormack-Jolly-Seber model, which has
among its parameters φ1, . . . , φI . Then they use a semiparametric model with a
logit link function for the dependence of φi upon covariates. The nonparamet-
ric dependencies are modeled by splines. They propose a Bayesian analysis with
computations by MCMC. In the snow petrel case study, they use WinBUGS. They
find that survival probabilities of snow petrels decrease, possibly in a nonlinear
way, with increasing values of the SOI. The estimated rate of decrease is high
at low values of the SOI but diminishes at higher values of the SOI. Because
the data are sparse, there is too much uncertainty to conclude that the effect of
SOI is nonlinear. However, Gimenez et al. [112] note that a nonlinear effect of
SOI is biologically plausible; lower values of SOI might increase access to prey
but prey abundance may increase with higher values of SOI (Loeb et al. [176]).
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