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Abstract

In this paper, we introduce a novel human interaction

detection approach, based on CALIPSO (Classifying ALl

Interacting Pairs in a Single shOt), a classifier of human-

object interactions. This new single-shot interaction clas-

sifier estimates interactions simultaneously for all human-

object pairs, regardless of their number and class. State-of-

the-art approaches adopt a multi-shot strategy based on a

pairwise estimate of interactions for a set of human-object

candidate pairs, which leads to a complexity depending, at

least, on the number of interactions or, at most, on the num-

ber of candidate pairs. In contrast, the proposed method

estimates the interactions on the whole image. Indeed, it si-

multaneously estimates all interactions between all human

subjects and object targets by performing a single forward

pass throughout the image. Consequently, it leads to a con-

stant complexity and computation time independent of the

number of subjects, objects or interactions in the image.

In detail, interaction classification is achieved on a dense

grid of anchors thanks to a joint multi-task network that

learns three complementary tasks simultaneously: (i) pre-

diction of the types of interaction, (ii) estimation of the pres-

ence of a target and (iii) learning of an embedding which

maps interacting subject and target to a same representa-

tion, by using a metric learning strategy. In addition, we

introduce an object-centric passive-voice verb estimation

which significantly improves results. Evaluations on the two

well-known Human-Object Interaction image datasets, V-

COCO and HICO-DET, demonstrate the competitiveness of

the proposed method (2nd place) compared to the state-of-

the-art while having constant computation time regardless

of the number of objects and interactions in the image.

1. Introduction

Several tasks of computer vision address the problem of

understanding the semantic content of images, like visual

relationship recognition. More specific than visual rela-

tionship, Human-Object Interaction (HOI) detection aims

at detecting what happens and where in the image by pay-

ing exclusive attention on human-centric interactions. HOI

detection is a challenging problem, essential for various ap-

plications such as activity understanding, surveillance, am-

bient assisted living, cobotics, etc. In the case of surveil-

lance system, quickly understanding human-centric inter-

actions is particularly interesting. As images may con-

tain possibly numerous people and interactions, it is cru-

cial for an HOI detection method to be scalable with the

number of visible objects and interactions. This scalability

issue motivated our work. In the following, “objects” as-

signed with human class are called subjects while those with

non-human class are targets. More formally, HOI detec-

tion consists in determining and locating the list of triplets

< subject , verb, target > describing all the interactions

visible in the image. Although HOI detection was classi-

cally based on video (in general, with a focus on a single

action), recent approaches based on a single image have

shown impressive results on detecting simultaneous inter-

actions.

Generally speaking, image-based HOI detection task is

achieved by solving the following sub-tasks: detecting in-

teracting objects (the object detection problem), correctly

pairing such objects (the association problem) and classify-

ing the interactions (the verb classification problem). Most

approaches [3, 8, 10, 11, 16, 24, 30, 32] rely on an object

detector that identifies some candidates for subject-target

pairs which boxes are then processed in a second step to

assess interaction presence and type. Sometimes, features

for objects and pairs are first extracted and, then, processed

to infer object class, location, subject-target association and

verb classification [21]. Thus, all these methods have a pair-

based second-step processing, which may become a scala-

bility issue when dealing with large numbers of object and

interaction instances in the image.

This work proposes a new interaction detection ap-

proach, named CALIPSO (Classifying ALl Interacting

Pairs in a Single shOt) which complexity is independent of

the number of interactions. The proposed model simultane-

ously estimates all interactions between all objects with a
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single forward pass throughout the image. It manages the

problems of association and verb classification while any

external object detector can be used to deal with the problem

of object detection. To this end, CALIPSO approach ex-

ploits a multi-task learning scheme, performing three com-

plementary tasks: a classification task predicts the verb of

interaction, a target presence estimation task assesses the

presence of the target object of the interaction and an em-

bedding task maps a pair of interacting subject-target to a

similar representation. Lastly, at inference time, any ob-

ject detector can be used to point out objects of interest and

output the corresponding interactions. Notice that the pro-

posed approach does not use any ontology information such

as a prior list of interactions of interest, in order to promote

generalization over target classes. We have evaluated the ef-

ficiency of the proposed approach on two widely used HOI

datasets. Our results compare favorably (2nd place) with

state-of-the-art approaches while having constant computa-

tion time regardless of the number of objects and interac-

tions in the image.

2. Related Work

HOI & visual relationships Despite the rapid research

progress in analysis of humans and their activities by com-

puter vision, human interaction recognition from a single

image remains a challenge. Whereas videos contain rich

temporal clues, such as those used in interaction analysis of

egocentric videos [2, 7, 27], images contain a lot of con-

textual information that is meaningful to infer relationships

between objects. One of the main problems of detecting

visual relationships is the need for tremendous amounts of

varied examples, as appearances and classes of both subject

and target should vary for generalization of each interac-

tion class. The release of large datasets [3, 11, 14, 33] has

allowed the developement of several visual relationship de-

tectors in recent years [4, 13, 15, 20, 21, 29, 30, 31, 32] as

well as HOI detectors [1, 3, 8, 10, 11, 23, 24, 28].

Gupta et al. [11] successively detect a subject, classify

the action and associate the target according to an interac-

tion score. Several approaches [3, 8, 10, 16] extend an ob-

ject detector model, namely Faster R-CNN [25], with extra

branches either for predicting actions, estimating a prob-

ability density over the target object location for each ac-

tion [10], the spatial relations of human-object pairs [3],

an instance-centric attention measure [8], or filtering non-

interactive human-object pairs with cross learning datasets

[16]. Qi et al. [24] present a generic framework combin-

ing graphical models and deep neural network, capturing

human-object interactions iteratively. Li et al. [15] in-

troduce a cross branch communication with phrase-guided

message to ensure a joint modeling of action classification

and target association.

Some techniques [1, 28, 29] incorporate linguistic

knowledge to address the issue of having a long-tail dis-

tribution of human-object interaction classes. They exploit

the contextual information present in the language priors

learnt with a ‘word2vec’ network, to generalize interactions

across functionally similar objects. Alternatively, Peyre et

al. [23] learn a visual relation representation combining

compositional representation for subject, target and predi-

cate with a visual phrase representation for HOI detection.

Unlike these approaches, our method does not use addi-

tional linguistic data.

However, all these approaches have a pair-based process-

ing step, i.e., a substantial processing applied on a set of

subject-target pair proposals. This may become a scalabil-

ity issue when dealing with large numbers of object and in-

teraction instances in the image. In contrast, we propose a

new interaction detection approach which complexity is in-

dependent of the number of interactions in the image. The

model classifies interactivity on a dense sampling of all pos-

sible object locations simultaneously.

Metric learning has been applied to many different

tasks, from image retrieval [6], to face recognition [26]. In

addition to providing a similarity measure to compare im-

ages, it can also been used to map visual and text features to

a shared feature space [5, 12] or associate features of visual

elements to recognize a group of such elements. For exam-

ple, Newell and Deng proposed associative embedddings to

group together body joints for human pose estimation [22].

Metric learning is also applied to visual relationship de-

tection [21, 23, 32]. In particular, Pixel2Graphs [21] pro-

duces in a single-shot manner a set of objects and interac-

tion links represented by a graph which is deduced from two

heatmaps. Then, in a second step, each of these object or

connection features is passed through a fully connected net-

work to predict interaction properties (verb, subject-target

association, object class and bounding box). This second

step is, thus, dependent on the number of interactions. Be-

sides, when multiple relations are grounded in the same lo-

cation, a fixed number of slots are used to manage these

overlapped relations, which may be limiting for densely

populated images.

CALIPSO is also based on the metric learning paradigm.

But, in contrast to Pixel2Graphs, it does not use graph to

explicitly model each object and each relation. Rather, it

simultaneously provides associative features and interac-

tion types for all locations of potential subjects and targets

in a single shot. Another fundamental difference is that

Pixel2Graphs aims to define a unique feature for each object

regardless of the relation verb, and a unique feature for each

relation. Differently, CALIPSO aims to define, for each in-

teraction verb, an embedding where all objects involved in

an interaction instance should have similar features. This al-

lows a subject-target pair to have multiple interactions while

solving the overlapped interaction issue. Moreover, having
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a different embedding space for each verb should intuitively

leave more flexibility for modeling very different types of

interactions (contact interaction, distant interaction, etc.).

3. Proposed Method

In this section, we present our proposed approach,

named CALIPSO, for interaction modeling. The task of

human-object interaction detection consists of locating and

recognizing humans and objects in a given image and iden-

tifying the actions (i.e. verbs) that connect them. Formally,

locating and recognizing the set T of interaction triplets

< subject , verb, target > with verb an interaction verb

among V verbs. The proposed approach deals with asso-

ciating and classifying subject-target interacting pairs with

complexity independent of the number of interactions. To

this end, CALIPSO decorrelates object detection task from

the association and the interaction classification tasks. It

requires an object detector only at inference time, in order

to point out and classify the objects to be really considered

for interaction. We first give an overview of the proposed

approach, then detail the proposed model tasks. Last, we

describe the inference process.

3.1. Overview

The proposed model architecture is a multi-task neural

network (cf. Figure 1). It consists of a backbone network

and an interaction network. From an image I , a feature

pyramid is constructed using a Feature Pyramid Network

(FPN) [17] backbone, capturing multi-scale high-level se-

mantics. The FPN backbone network takes an input image

I of size W×H , and outputs multiple level feature maps Fl

of size Wl×Hl, where Wl =
W
2l

, Hl =
H
2l

and l is the pyra-

mid level, l ∈ [lmin, lmax]. The FPN is built on top of the

Residual Network following RetinaNet [18] architecture.

Then, the featurized image from each FPN level feeds

a fully convolutional interaction network ending with three

tasks. The first task is an action classification that predicts

the verb describing the type of interaction between subject

and target. The second task is a target presence estimator

providing the probability that the object, a human is inter-

acting with, is visible or not, for a given verb. The third task

associates interacting subject and target, by mapping them

to the same representation. The overall network is trained

end-to-end, the three tasks are trained simultaneously, shar-

ing the common backbone which subsequently helps gen-

eralization by regularizing training. CALIPSO approach si-

multaneously estimates all possible interactions between all

humans and objects in the image, with a single forward pass

through the architecture. Thus, CALIPSO is independent

of the number of subjects, targets and interaction instances.

Moreover, by densely estimating embeddings for each verb,

negative example mining is exhaustive over the image. For

example, all people not doing a specific action over the im-

age will be provided to the network as negative samples to

learn the embedding space of this action.

Finally, at inference, after generating dense maps, an ex-

ternal object detector is used to point out candidate subjects

and targets. Therefore, the final interaction triplets are de-

termined thanks to the object class of targets provided by

the detector together with the association information and

interaction verb given by CALIPSO.

3.2. Interaction module

Firstly, interaction detection requires to identify the (hu-

man and non-human) objects in interaction. At each feature

map location, a set of reference boxes called anchors are de-

fined. These anchors are of multiple scales and aspect ratios

aligned to objects. We use anchor boxes similar to those in

the Region Proposal Network of [9]. For each level l of the

feature pyramid, we define a set of anchors Al, containing

Wl × Hl × A anchors, where A = 9 is the number of an-

chors at each feature map location. For sake of clarity, we

define A = {ai| i ∈ [1, Aall]} as the set of all the anchors

over the pyramid, where Aall is the total number of anchors.

Each anchor in A is labeled as foreground or background.

We denote G = {gj | j ∈ [1, B]} as the set of ground-truth

bounding boxes, where B is the number of objects in the

image. As it is classically done [18], an anchor is assigned

to a ground-truth box if its intersection-over-union (IoU) is

over 0.5. We define Agj as the set of anchors assigned to

ground-truth boxes gj and AG the union of all the anchors

assigned to a ground-truth box.

The interaction subnet is responsible for three tasks

learnt simultaneously. This subnet is applied with the

same weights to each level of the backbone feature

pyramid, capturing the relationships between instances

of different sizes that occurred in different levels of the

FPN. Moreover, the shared weights of the network applied

to each pyramid level enhance the learning of correlated

tasks. These tasks share a succession of eight blocks of

convolution, batchnorm and ReLU layers. The number

of blocks was found empirically (cf. section 4.5.1).

The spatial size of each task output for a given pyramid

level l is equal to the feature map size at this level: Wl×Hl.

Verb prediction task: Considering that the subjects

of the interaction can take simultaneously multiple actions,

the verb prediction task minimizes a multi-label binary

cross entropy loss Lverb between the predicted and the

ground-truth verbs. Unlike other methods, we introduce

an additional object-centric passive verb estimation to

reciprocally improve the relationship detection. The verb

prediction task is performed based on the contextual

appearance which is very informative to distinguish actions

that humans carry out and objects undergo. Among AG ,

we find the active anchors, representing anchors associated
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Figure 1. CALIPSO architecture starts with a Resnet FPN backbone with feature pyramid (Flmin
to Flmax ). The feature of a given level l

has size Wl ×Hl. The interaction network is applied on each level. It is composed of a succession of 8 blocks. The network splits into 3

branches computing 3 complementary tasks. A is the number of anchors, V is the number of verbs and T is the size of the embedding.

to people executing the actions, and the passive anchors

associated to objects undergoing the action. The passive

form classification is an optional task that improves per-

formances (cf. Section 4.5.1). Verb prediction task then

produces, for each anchor, a classification output over

the verbs in both active and passive forms resulting in an

output of size 2V with V the number of different verbs.

This reciprocal interaction estimation is expected to be a

soft way to enforce the interaction verb classification by

merging human-centric and object-centric information.

Target presence estimation task is a complementary

task to the verb prediction task. It aims to estimate the

probability that the object, a person is interacting with,

is visible or not. Similar to the verb prediction task, the

target object estimation is performed on the contextual

appearance of each person anchor, capturing the spatial

position and the surroundings of the person in the image.

For each anchor, the output of size 2V consists of binary

sigmoid classifiers. The objective of the training is to

minimize the binary cross entropy loss, Ltarget, between

the ground-truth target object labels and predicted target

estimation.

The interaction embedding task aims to map sev-

eral anchors corresponding to interacting subject and target

to the same representation for a given verb. The embedding

subnet is a function mapping the anchor space A to a

new space such that: emb : A → R
V×T where T is the

dimension of the interaction embedding space specific to

one verb. For a given verb, this embedding task aims at

ensuring to assign, first, the same embedding to anchors

related to the same object instance and, second, the same

embedding to anchors belonging to the same interaction.

Formally, given anchors ai, aj ∈ A2
G , ai and aj are in-

teracting according to verb v, i.e. ai ∼v aj , if:

∃ gn ∈ G | (ai, aj) ∈ A2
gn

(1)

or

∃ (gn, gm) ∈ G2, n 6= m,

< gn, v, gm > or < gm, v, gn >∈ T

∣

∣

∣

∣

(ai, aj) ∈ Agn×Agm

(2)

Accordingly, to each verb v, corresponds a set of equiv-

alence classes associated with an equivalence relation ∼v ,

denoted by Cv = {Ci
v|i ∈ [1, Ev]}, with Ev the number of

equivalence classes for verb v. Let |Ci
v| be the number of an-

chors belonging to the equivalence class Ci
v . The reference

of the equivalence class is defined by the mean of the output

embeddings of the same equivalence class as follows:

eCi
v
=

1

|Ci
v|

∑

j∈Ci
v

evj (3)

where evj is the predicted embedding for the anchor aj and

verb v.

The embedding network aims to learn the equivalence

class space Cv , by minimizing the equivalence loss Lemb
v ,

defined in a metric learning form. For a given verb v, the

loss is defined as:

Lemb
v = Lpull

v + Lpush
v (4)

The pulling loss that aims at gathering the corresponding

elements, is defined as:

Lpull
v =

1

Ev

∑

Ci
v∈Cv

λCi
v

|Ci
v|

∑

j∈Ci
v

(

evj − eCi
v

)2
(5)

Based on the ground truth annotations defining interact-

ing instances, the first term of the equation aims to merge
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interacting instances to the same equivalence class by com-

puting the mean squared distance between the equivalence

references eCi
v

and the predicted embedding evj for each an-

chor j in equivalence class Ci
v . The weight λCi

v
aims at fo-

cusing more on equivalence classes representing real inter-

acting subjects and targets rather than equivalence class as-

sociated to a single object not belonging to any interaction

(cf. equation 1). It is defined as:

λCi
v
=



















λpull if ∃ aj , ak ∈ Ci
v such that

(aj , ak) ∈ Agn ×Agm , n 6= m,

< gn, v, gm > or < gm, v, gn >∈ T ;

1 otherwise.

(6)

The pushing loss enables the mapping of not interacting

instance anchors into different clusters using an exponential

decreasing function with fixed parameter σ. It is defined as:

Lpush
v =

1

E2
v

∑

Ci
v,C

j
v∈C2

v
i 6=j

γCi
v,C

j
v
exp

(

−1

2σ2

(

eCi
v
− eCj

v

)2
)

(7)

The weight γCi
v,C

j
v

introduces a soft penalty to the loss to

force the network to associate the correct target among sev-

eral objects present in the image that are usual target for this

verb. For example, the feature of a person sitting on a given

chair should not be clustered with features of other chairs

or objects one can sit on (e.g. couch, bed, table, ...), present

in the image. This pushing weight is a way to enforce the

selection of the right target among various candidates even

if they are suitable for this interaction. More formally, let

labi be the class label of anchor ai and Lv the set of object

classes that can be involved in the type of interaction given

by verb v according to statistics on the dataset (e.g. chair,

couch, bed, table, ... for verb ‘‘sit”). The weight γCi
v,C

j
v

is

defined as :

γCi
v,C

j
v
=



















γpush if ∃(ak, al) ∈ Ci
v × Cj

v such that

(ak, al) ∈ Agn ×Agm , n 6= m,

(labk, labl) ∈ L2
v;

1 otherwise.

(8)

This embedding scheme is performed for each verb, al-

lowing the network to learn the different ways of interaction

depending on the verb. Moreover, the embedding predic-

tions are performed simultaneously on all anchors, regard-

less of the number of object instances. This also enables

a better management of negative interactions at training by

processing all non-interactions in the image. In addition, it

allows a fast and accurate instance connection at inference.

Notice that the embedding task does not make specific as-

sumptions between subject and target positions and can thus

model both distant and close interactions. In addition, the

embedding task learns to associate objects of possibly dif-

ferent sizes, i.e., localized on different pyramid levels.

The overall loss Ltotal of the proposed model is the sum

of verb classification loss Lverb, the target presence loss

Ltarget, and the mean of embedding losses Lemb
v .

Ltotal = Lverb + Ltarget +
1

|V |

∑

v∈V

Lemb
v (9)

3.3. Inference

In the same manner as existing approaches, we predict

the HOI triplets < subject , verb, target > , which involves

predicting the human-object bounding box pairs, identify-

ing the verb and the triplet score. The three tasks of the

proposed model provide three feature anchor maps. The

feature anchor map of the first task defines the action score

of each location in the image. The second task provides a

feature map estimating for each verb, the presence of an in-

teracting target for each human anchor. The third feature an-

chor map gives an embedding for each anchor in the image,

to determine the interacting anchors. The method extracts

all the feature maps simultaneously and independently of

the number of object instances which are at arbitrary image

locations and scales, contrary to most existing approaches

where every selected human-object pair is processed indi-

vidually.

The prediction of HOI triplets requires preliminary to

identify all human-object bounding boxes. For that pur-

pose, CALIPSO requires at inference an external detector

to point out anchors of interest from the three feature maps.

The external detector can be any bounding box-based object

detector providing the bounding box positions and the class

scores, noted sdeth for human and sdeto for object. The detec-

tor provides a set of candidate object bounding boxes that

are subsequently mapped to the anchor grid. Hence, from

this mapping, for each verb v and for each candidate bound-

ing box, different scores can be read: verb scores (specif-

ically, active score sactivev,h for human and passive score

spassivev,o for object), target presence scores s
target
v,h for hu-

man, and embeddings evi of each detected instance. These

embeddings are compared each other defining a connection

score semb
v,h,o computed as follows:

semb
v,h,o = exp(−|evh−evo |) (10)

All the above scores together define the triplet score as:

s
triplet
v,h,o = 6

√

sdeth sactivev,h sdeto s
passive
v,o s

target
v,h semb

v,h,o (11)

All the possible triplets are computed for each detected

human and each verb. Additionally, a pair score is com-

puted for target absence case:

s
pair
v,h = 3

√

sdeth sactivev,h (1− s
target
v,h ) (12)

2896



For a given verb and a given person, all triplets and the

pair are sorted according to their scores and the one with the

highest score is kept after thresholding.

4. Experiments

Experiments are conducted on two widely used datasets

for interaction detection with a comparison between the

proposed approach and recent state-of-the-art.

4.1. Datasets

V-COCO dataset1 [11] is a subset of the COCO

dataset [19] for human-object interaction detection. It in-

cludes 10, 346 images (2, 533 images in the train set, 2, 867
images in the validation set and 4, 946 images in the test

set). V-COCO contains 16, 199 human instances, where

each person has annotations for 29 action categories over

80 object categories. The target objects of the dataset are

classified into two types: “object” or “instrument”: “object”

target if it undergoes the action (e.g., “to cut a cake”), or “in-

strument” if it is a means enabling the interaction (e.g., “to

cut with a knife”). Four verbs do not have target (“stand”,

“smile”, “run”, “walk”)

HICO-DET dataset [3] is a subset of the HICO dataset

for human-object interaction detection. It is larger and more

diverse than V-COCO dataset. HICO-DET includes 47, 051
images (37, 536 images in the train set and 9, 515 images

in the test set). HICO-DET contains 117 action categories

over 80 object categories as COCO dataset. Not all com-

binations of actions over objects are relevant, according to

a defined ontology. As a consequence, only 600 specific

human-object interaction categories are annotated and eval-

uated.

4.2. Evaluation metrics

Following the standard evaluation settings of V-COCO

[11] and HICO-DET [3] datasets, we evaluate HOI detec-

tion performance using the average precision metrics. The

predicted < subject , verb, target > triplet is considered as

a true positive, when all the triplet predicted components are

correct. The predicted human and object bounding boxes

are supposed to be correct if they have IoU greater than 0.5

with ground truth boxes.

Following previous work [3, 8, 10, 24], the evaluation

on V-COCO dataset is based on the role mean average pre-

cision called AP 1
role on 24 verb categories. Indeed, for the

purpose of fair comparison with state-of-the-art approaches,

5 actions (run, smile, stand, walk and point) are ignored in

the evaluation, as done in previous approaches.

Concerning HICO-DET dataset [3], we report the mean

AP over three different HOI category sets: (a) all 600 HOI

categories in HICO (Full), (b) 138 HOI categories with less

1https://github.com/s-gupta/v-coco

than 10 training instances (Rare), and (c) 462 HOI cate-

gories with 10 or more training instances (Non-Rare).

4.3. Implementation details

We initialize the FPN ResNet backbone with corre-

sponding weights of RetinaNet [18] especially trained on

COCO dataset from which V-COCO images were previ-

ously removed. The CALIPSO is trained with stochas-

tic gradient descent (SGD), with an initial learning rate of

0.016, which is then reduced by 10 at 25000 iterations over

a batch of size 10. A horizontal image flipping is applied

for data augmentation. The weight decay is set to 10−4 and

the momentum to 0.9. σ, λv and γv are experimentally set

to 2, 10 and 100.

At inference, CALIPSO requires an external detector to

filter interacting bounding boxes from the three sub-task

feature maps. As done in most state-of-the art methods,

the Faster RCNN [25] from Detectron2 framework is used

as external detector. It is based on a ResNet-50-FPN back-

bone to generate all object bounding boxes. Other object

detectors are tested to show the influence on HOI detection.

4.4. Qualitative results

Figures 2 and 3 illustrate the interaction results detected

by the proposed model. They show all the triplets occurred

in the image. Each triplet is represented by a solid-line box

for the subject and a dashed-line box for the target object.

At the top left of the subject box, the action performed is

indicated on a background with same color as the related

target box.

Figure 2 depicts interactions detected by our approach.

As can be seen, CALIPSO can infer HOI in various situ-

ations such as: 1) Individual person performing different

actions on a single object (i.e, “a person rides, sits and

holds a bicycle”, in Figure 2-a-b-c-f). 2) Individual per-

son interacting with different objects (e.g., in Figures 2-b

and 2-f, “a person works on a computer while sitting on

a chair/couch”). 3) Several people interacting with a sin-

gle object (e.g., in Figure 2-e, “two people hold the same

knife”). Notice that CALIPSO correctly assigns the tar-

get object to the corresponding action, and can successfully

detect contactless interactions (in Figure 2-d, “look at and

throw a frisbee”).

Figure 3 illustrates another sample of V-COCO test im-

ages, where CALIPSO detects some incorrect triplets. This

is mainly caused by : 1) Wrong object detection, with either

no detected object (as shown in Figure 3-b where the cell

phone is not detected) or misclassified object (illustrated in

Figure 3-c where the backpack is classified as human). 2)

Wrong verb estimation, depicted in Figure 3-d where the

person has a confusing posture. 3) Wrong target associa-

tion, shown in Figure 3-c where the wine glass is held by

2https://github.com/facebookresearch/Detectron
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Figure 2. Samples of human-object interactions detected by

CALIPSO on some V-COCO test images. An interaction triplet

is composed of a human subject represented by a solid-line box, a

target object represented by a dashed-line box and, at the top left

of the subject box, the action performed is written on a background

with same color as the target object box (best viewed in color).

Figure 3. Illustration of some incorrect human-object interaction

detections on some V-COCO test images.

the wrong person. Figure 3-a shows an example where all

these difficulties appear simultaneously. Indeed, the high

density of objects leads to more occlusion, misunderstand-

ing of the object depth in the scene and, thus, confusions in

subject-target associations.

4.5. Quantitative results

4.5.1 Ablation study

In Table 1 we evaluate on V-COCO dataset the contributions

of various components of the method.

Shared weights: Sharing weights across feature pyra-

mid network levels shows improvement by 2.25 p.p. (per-

centage points) in interaction detection performances. In-

tuitively, it may capture better the relationships between in-

stances belonging to different levels of the FPN correspond-

ing to different object size.

Passive mode: Whereas active mode is subject-centric,

the passive mode is a way of introducing a complementary

Method AP
1

role
(%)

CALIPSO 46.36

CALIPSO w/o weight sharing 43.86

CALIPSO w/o passive mode 36.86

CALIPSO w/o target presence 25.51

CALIPSO 5 blocks 44.35

CALIPSO 8 blocks 46.36

CALIPSO 11 blocks 45.05

Table 1. Ablation studies for CALIPSO on theV-COCO test set.

target-centric point of view and, thus, introducing redun-

dancy to improve robustness. Without passive mode task,

our model reaches an AP 1
role of 36.86%. It increases by

approximately almost 10 p.p. and reaches an AP 1
role of

46.36% when passive mode task is used.

Target presence: Target presence has on CALIPSO per-

formance a huge impact, increasing results by about 20 p.p.

Such a variation in performance is due to the difficulty of

setting a maximal distance (in the embedding) below which

a subject can be considered in interaction with the target. It

is well-known that directly thresholding a learnt metric is

not trivial. Indeed, metric learning does not constrain abso-

lute distance between samples but only a ranking between

them. Target presence task is a way to bypass this issue.

Depth of Interaction Net: The number of blocks used

in the Interaction Net has been empirically chosen. A suc-

cesion of 8 blocks showed the best result.

4.5.2 Results on V-COCO dataset

As the proposed method focuses on HOI classification in-

dependently of object detection task, it can advantageously

use any external object detector at inference time. Indeed,

changing the detector does not require to re-train or adapt

the network, which is a very interesting property when bet-

ter object detectors appear in the state of the art. Conse-

quently, we evaluate our model with two different external

object detectors in input: Faster RCNN [25] with ResNet50

backbone (Faster R50) which is generally used by state-of-

the-art methods as a basis to learn interactions, and Faster

RCNN with a ResNext101 backbone (Faster RNext101).

For fair comparison, we report RPDCD results of Interac-

tiveness [16] approach which corresponds to models trained

without extra datasets.

Table 2 shows the evaluation results of CALIPSO vari-

ants compared to state-of-the art methods on V-COCO

dataset. CALIPSO reaches the second place behind Inter-

activeness [16] but it is computationally far more efficient

as we will see in Section 4.5.4.

Besides, in order to decorrelate object detection task

from interaction detection one, we use at inference the per-

fect object detector and report results in table 2. The per-
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formance is increased by about 7 p.p. which shows that the

main issue is still the interaction detection (i.e. verb classi-

fication and subject-target association).

Method Detector / BB AP
1

role
(%)

VSRL [11] Faster R50 31.8

InteractNet [10] Faster R50 40.0

GPNN [24] Deform. CNN 44.0

iCAN late(early) [8] Faster R50 44.7 (45.3)

Xu [28] Faster R50 45.9

Interactiveness [16] Faster R50 47.8

Ours Faster R50 46.36

Ours Faster RNext101 47.65

Ours Groundtruth 54.48

Table 2. Evaluation results for CALIPSO on V-COCO test set

compared with state-of-the-art methods. Object detectors or back-

bones (BB) used are mentioned in the middle column.

4.5.3 Results on HICO-DET dataset

Since objects in HICO-DET dataset are loosely annotated

(many boxes can be assigned to the same object), we adopt

the same protocol as [10] to clean annotation. We use a

ResNext101 object detector trained on COCO to detect ob-

ject and assign the ground truth labels from HICO-DET an-

notations to the detected objects that highly overlap HICO-

DET boxes.

Following the evaluation settings of [3], we report the

quantitative evaluation of Full, Rare, and Non-Rare inter-

actions on “default” evaluation setting. Table 3 reports

the average precision results of our method on HICO-

DET dataset, compared to state-of-the-art HOI detection

approaches. Once again, for fair comparison, we reported

methods that only use the dataset without help of additional

data, such as linguistic knowledge, from external datasets.

The proposed approach shows competitive results reach-

ing the second place with Faster RNext101 detector.

Average Precision (Default)

Method Full Rare Non-Rare

HO-RCNN [3] 7.81 5.37 8.54

InteractNet [10] 9.94 7.16 10.77

GPNN [24] 13.11 9.34 14.29

Xu [28] 14.70 13.26 15.13

iCAN [8] 14.84 10.45 16.15

Interactiveness [16] 17.03 13.42 18.11

Ours (Faster R50) 14.31 10.43 15.46

Ours (Faster RNext101) 14.89 11.12 16.01

Table 3. Evaluation results on HICO-DET test set compared with

state-of-the-art methods.

4.5.4 Computation Complexity and Time

Concerning complexity relative to the numbers of people

(N ) and objects (M ) in the image, notice that CALIPSO

only does one pass throughout the image with complexity

O(1), whereas all other state-of-the-art approaches have a

complexity of O(P ) with P the number of processed pairs,

T ≤ P ≤ N × M with T = |T | the number of ground

truth triplets. The impact on computation time is shown

in Figure 4: CALIPSO runs in constant time (460 ms on

NVIDIA Titan X Pascal) independently of the numbers of

people and objects in the image. Differently, state-of-the-art

methods which provide their codes, Interactiveness [16] and

iCAN [8], have a soaring computation time (e.g., from less

than 1 second to more than 40 seconds for Interactiveness).

Figure 4. Computation time in seconds for CALIPSO (ours), Inter-

activeness [16] and iCAN [8] for increasing numbers of potential

pairs present in images.

5. Conclusion

In this paper, we proposed a novel interaction detection

model, named CALIPSO. It estimates all interactions ef-

ficiently and simultaneously between all human subjects

and object targets by performing a single forward pass

throughout the image, regardless of the numbers of objects

and interactions in the image. This constant complexity is

achieved thanks to a metric learning strategy that clusters

subject and target in interaction, and pushes away all non-

interacting objects. Besides, adding a target presence esti-

mation task as well as an object-centric passive-voice verb

estimation for redundancy showed performance improve-

ment. The proposed method shows competitive results on

two widely used datasets, compared to the state of the art,

while being much more scalable with the number of inter-

actions in the image.

This work was partly supported by Conseil régional d’Ile-de-France.

Training was performed on Factory-IA, CEA computer facilities.
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