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Abstract

Recent researches on panoptic segmentation resort to a

single end-to-end network to combine the tasks of instance

segmentation and semantic segmentation. However, prior

models only unified the two related tasks at the architectural

level via a multi-branch scheme or revealed the underlying

correlation between them by unidirectional feature fusion,

which disregards the explicit semantic and co-occurrence

relations among objects and background. Inspired by the

fact that context information is critical to recognize and lo-

calize the objects, and inclusive object details are signif-

icant to parse the background scene, we thus investigate

on explicitly modeling the correlations between object and

background to achieve a holistic understanding of an im-

age in the panoptic segmentation task. We introduce a Bidi-

rectional Graph Reasoning Network (BGRNet), which in-

corporates graph structure into the conventional panoptic

segmentation network to mine the intra-modular and inter-

modular relations within and between foreground things

and background stuff classes. In particular, BGRNet first

constructs image-specific graphs in both instance and se-

mantic segmentation branches that enable flexible reason-

ing at the proposal level and class level, respectively. To

establish the correlations between separate branches and

fully leverage the complementary relations between things

and stuff, we propose a Bidirectional Graph Connection

Module to diffuse information across branches in a learn-

able fashion. Experimental results demonstrate the superi-

ority of our BGRNet that achieves the new state-of-the-art

performance on challenging COCO and ADE20K panoptic

segmentation benchmarks.

1. Introduction

Thanks to the visual reasoning based on human com-

† Equal contribution. ⋆ Corresponding Author.

monsense, humans are capable of accomplishing recogni-

tion and segmentation of the objects and background of an

image at a single glance. Recent researches have been de-

voted to developing numerous specific models for instance

segmentation [5, 22] and semantic segmentation [26]. Gen-

erally, instance segmentation detects and segments each

foreground object (named things) while semantic segmen-

tation parses amorphous regions and background (named

stuff ). Tackling the two correlated tasks in separate models,

these methods have sacrificed the holistic understanding of

an image.

Recently, a new proposed panoptic segmentation task

has attracted researches [18, 19, 21, 25] to develop end-to-

end networks to segment all foreground objects and back-

ground contents at the same time. As shown in Figure 1(a,

b), some of the previous works [18, 19] unified instance

segmentation and semantic segmentation at the architec-

tural level via a multi-branch scheme. The others moved

forward to reveal the underlying connection between the

two related tasks by unidirectional feature fusion [21]. Al-

though successfully tackling two tasks in one network,

these approaches overlooked the explicit semantic and co-

occurrence relations between objects and background in a

complicated environment, which leads to limited perfor-

mance gain.

To address these realistic challenges, we reconsider the

characteristics of object segmentation as well as scene pars-

ing and investigate on robustly modeling the various rela-

tions between them to better tackle the panoptic segmen-

tation task. Intuitively, visual context is essential for in-

stance segmentation when predicting fine-grained objects

categories and contours [8], while foreground object details

can benefit the segmentation of global scene and stuff [21].

It is obvious and remarkable that things and stuff can bene-

fit each other by information propagation in one unified net-

work to boost the overall performance of panoptic segmen-

tation. Inspired by this, we introduce a new Bidirectional

Graph Reasoning Network (named BGRNet) that incorpo-
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Figure 1. Different architectures for panoptic segmentation. (a) Simple multi-branch structure [18, 25] where two branches have no

connection. (b) Unidirectional feature connection structure [21] that propagates information from things branch to stuff branch. (c) Our

Bidirectional Graph Reasoning Network that enables mutual interaction and promotion for things and stuff based on graph convolution.

rates graph structure into the conventional panoptic segmen-

tation network to encode the semantic and co-occurrence

relations as well as diffuse information between things and

stuff, as shown in Figure 1(c).

Specifically, taking advantage of graph convolutional

networks [17], our BGRNet extracts image-specific graphs

from a panoptic segmentation pipeline and learns the di-

verse relations of things and stuff utilizing a multi-head

attention mechanism. We propose a Bidirectional Graph

Connection Module to bridge things graph and stuff graph

in different branches, which enables graph reasoning and

information propagation in a bidirectional way. Then we

refine the feature representations in both branches by pro-

jecting the diffused graph node features. In this way, BGR-

Net is aware of the reciprocal relations between things and

stuff and exhibits superior performance in panoptic segmen-

tation.

Furthermore, our BGRNet can be easily instantiated

to various network backbones and optimized in an end-

to-end fashion. We perform extensive experiments on

two challenging panoptic segmentation benchmarks, i.e.,

COCO [24] and ADE20K [37]. Our approach shows the

superior flexibility and effectiveness in modeling and utiliz-

ing the relations between things and stuff, which achieves

state-of-the-art performance in terms of PQ on two bench-

marks.

2. Related Work

Instance Segmentation. Instance segmentation mainly fo-

cuses on locating and segmenting each foreground object.

Early methods [6, 11] followed a bottom-up scheme [1] or

top-down scheme based on segment proposals [12], until

Mask R-CNN [13] extended Fast R-CNN to deal with in-

stance segmentation by predicting instance masks and class

labels in parallel, which became a common backbone for in-

stance segmentation. Mask Scoring R-CNN [15] corrected

Mask R-CNN by aligning mask quality with mask score.

Semantic Segmentation. Semantic segmentation parses

scene images into per-pixel semantic classes. Began with

FCNs [26] and DeepLab family [2], methods like fully con-

volutional network and atrous convolution made semantic

segmentation thriving by boosting the overall segmentation

quality. Besides, the scene parsing method with global con-

text information was also studied in [35, 36].

Panoptic Segmentation. Panoptic Segmentation, a novel

task introduced by [19], has lately received extensive at-

tention by researchers. The task, which unifies instance

segmentation and semantic segmentation, requires an al-

gorithm that can segment foreground instances and back-

ground semantic classes simultaneously. In [19], Kirillov

et al. simply combined the results from PSPNet and Mask

R-CNN heuristically to produce panoptic segmentation out-

puts. Not long after, [18] proposed an end-to-end net-

work for the panoptic task with a shared backbone and

two branches: thing branch for instance segmentation and

stuff branch for semantic segmentation, respectively. In-

stead of learning two tasks separately, [21] tried to utilize

the features of the instance segmentation branch to boost the

performance of the semantic segmentation branch through

an attention mechanism. [25] proposed a spatial ranking

module, to address the occlusion problem which hinders

the performance of panoptic segmentation. Moreover, UP-

SNet [32] made use of deformable convolutions together

with a parameter-free panoptic head in pursuit of more per-

formance gain. A mini-deeplab module was also used to

capture more contextual information in [28].

Graph Reasoning. There have been a surge of interest in

graph-based methods [17, 29, 33, 34, 4] and graph reason-

ing has shown to have substantial practical merit for many

tasks through modeling the domain knowledge in a single

graph [4, 16, 31, 10] or directly fusing the graph reason-

ing results [9]. However, the mainstream approaches of

panoptic segmentation are lack of the investigation on min-

ing mutual relations from different domains (e.g. position

and channel reasoning in network, things and stuff subsets)

since different graph subsets need more explicit connections

for mutual interaction and promotion. In this paper, we pro-

pose Bidirectional Graph Reasoning that propagates infor-
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Figure 2. An overview of our BGRNet that can be stacked on any existing two branches panoptic segmentation network. The image

features extracted by deep convolutional networks are fed into things branch and stuff branch. We construct Thing-Graph based on

the region features after pooling. And we obtain Stuff-Graph node representations by extracting class centers from local feature. Then

Bidirectional Graph Connection Module is used to propagate the high-level semantic graph representations within separate branches and

across branches. Finally, we re-project the graph features to enhance the discriminability of visual features and improve the performance

of both things and stuff branch.

mation from different graphs to support more flexible and

complex reasoning tasks in general cases. Moreover, dif-

ferent from [4, 16, 31] that use a single graph for reason-

ing, our method aims to build a Graph Connection Module,

whose nodes have strong semantics (rather than ambiguous

nodes in [4]) and are hence more explainable and capable

of encoding various relations.

3. Bidirectional Graph Reasoning Network

3.1. Overview

The panoptic segmentation task is to assign each pixel

in an image a semantic label and an instance id. Current

methods typically address this issue with a unified model

using two branches for foreground things and background

stuff separately [7, 18, 20, 21]. In detail, for an input im-

age, the final panoptic segmentation result was generated by

combining results from two branches using fusion strategy

following [19]. Extending the simple but effective baseline

in [18], we aim at further mining the intra-branch and inter-

branch relations within and between foreground things or

background stuff. Firstly, as shown in Figure 3, we build

image-specific graphs in two separate branches in the net-

work to enable flexible reasoning at the proposal level and

class level. In the instance segmentation branch, a region

graph is established to capture the pair-wise relationships

among proposals. In the semantic segmentation branch, we

build a graph based on the extracted class center that allows

efficient global reasoning in a coarse-to-fine paradigm. Sec-

ondly, we propose a Bidirectional Graph Connection Mod-

ule to deduce the implicit semantic relations between things

and stuff in a learnable fashion. After diffusing informa-

tion across various nodes, intra-modular reasoning is per-

formed to refine the visual features of two branches. In this

way, we explicitly model the correlations between things

and stuff class and leverage their complementary relations

in a global view, which facilitates panoptic segmentation

and has substantial practical merit in our experiments. An

overview of our Bidirectional Graph Reasoning Network is

shown in Figure 2.

3.2. Graph Representation

Formally, we define a graph as G = (V,A,X) where V

is the set of nodes, A denotes the adjacency matrix and X

is the feature matrix where each row corresponds to a node

in V .

Building Thing-Graph. In the classic object detection

paradigm, extracted regions are analyzed separately with-

out considering the underlying dependencies between ob-

jects, which leads to inconsistent detection results and lim-

ited performance in more challenging tasks like panoptic

segmentation. To remedy this issue, we introduce a Thing-

Graph to reason directly beyond local regions, which can

refine visual features of certain regions that suffer from oc-

clusions, class ambiguities and tiny-size objects. Specifi-

cally, we build a Thing-Graph Gth = (Vth, Ath, Xth) on

each input image, where |Vth| equals to the number of de-

tected regions in the image, Xth ∈ R
|Vth|×N are extracted

features from backbone of all regions and N is the dimen-

sion of the region feature. Considering the diverse relations
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Figure 3. Diagram of our intra-modular graph, i.e., Thing-Graph and Stuff-Graph, and our inter-modular Graph Connection module. For

Thing-Graph, we utilize the pooled region features as region graph nodes. For Stuff-Graph, we extract class center from local feature via

coarse score map. Then Graph Connection Module diffuses information across various graph nodes and intra-modular graph reasoning is

performed to project graph nodes features to visual features at the proposal and pixel level, respectively, in order to refine the results of

instance segmentation and semantic segmentation, which are then heuristically combined in an NMS-like procedure following [19].

among regions, we render the edges in Gth learnable to al-

low flexible reasoning among multiple proposals. We also

demonstrate the effectiveness of this learnable scheme by

comparing the results of using different kinds of knowledge

graphs in Section 4.3.

Building Stuff-Graph. As for semantic segmentation,

a naive idea of building a Stuff-Graph can be considering

each pixel as a graph node similar to the non-local network

[30]. However, this approach exhibits clear limitations in

dense predictions of semantic segmentation since it requires

a large amount of computation and vast GPU memory oc-

cupation. Thus, to reduce the computation overhead as well

as capture the long-range dependencies, we project the en-

tire feature map to the vertices of Stuff-Graph so that every

vertex represents a specific stuff class. Regarding Stuff-

Graph Gst = (Vst, Ast, Xst), given the coarse score map

Scoarse ∈ R
|Vst|×H×W produced by the original segmen-

tation head in the baseline network, and segmentation fea-

ture map F ∈ R
N×H×W , where N is the number of fea-

ture channels, we first reshape Scoarse to R
HW×|Vst| and

F to R
N×HW . After performing softmax along the HW

channel on score map, we can obtain class nodes feature

Xst ∈ R
|Vst|×N by matrix multiplication and transposition:

Xst = (F̄ S̄coarse)
T , (1)

where F̄ and S̄coarse represent F and Scoarse after reshap-

ing. The intuition behind Equation 1 is that local features,

i.e., the features of pixels, are gathered to obtain class nodes

feature based on pixel affinity via soft-mapping. By assign-

ing global class nodes features to Xst, we significantly re-

duce computation overhead in building a Stuff-Graph since

HW ≫ |Vst|. Besides, the extracted stuff nodes are more

representative and can provide global clues to further ben-

efit the final classification process after remapping them to

local features. We further demonstrate the representative

characteristics of the extracted class centers in Stuff-Graph

in Section 4.3. The processes of building Thing-Graph and

Stuff-Graph are visualized in Figure 3.

3.3. Bidirectional Graph Connection Module

Given the Thing-Graph and Stuff-Graph, we aim to

model the mutual relations between things and stuff and

propagate the features across all nodes in both Gth and Gst.

The rationale behind the design of graph nodes feature fu-

sion module across branches is quite straightforward and

comprehensible since there exists a consistent pattern of the

co-occurrence of foreground things and background stuff in

real-world scenarios. For example, when there exist objects

like persons, sports balls, baseball bats and baseball gloves

in an image, it is more reasonable to predict the stuff of

sand and playing field, and vice versa. Therefore, we dis-

till this insight into Graph Connection Module to bridge all

semantic information across branches (between foreground

things and background stuff ). In this way, the information,

relations or visual correlations of different categories from

separate branches can be exploited.

The Graph Connection from Thing-Graph to Stuff-

Graph can be formulated as:

Xt−s = At−sXthWst, (2)
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where At−s ∈ R
|Vst|×|Vth| is a transfer matrix for propa-

gating the information from Thing-Graph to Stuff-Graph,

Wst ∈ R
N×D0 is a trainable projection matrix. Xt−s

is the mapped node features from Thing-Graph to Stuff-

Graph. Similarly, the Graph Connection from Stuff-Graph

to Thing-Graph can be obtained utilizing Xst and transfer

matrix As−t with a trainable matrix Wth. Therefore, we

seek for appropriate transfer matrix At−s = {at−s
ij } and

As−t = {as−t
ij } ∈ R

|Vth|×|Vst|, where as−t
ij denotes the

connection weight from the jth node of Stuff-Graph to the

ith node of Thing-Graph.

Based on the graph representation and Graph Connec-

tion, our graph structure can be naturally decomposed into

blocks, given by

Â =

[
Ath As−t

At−s Ast

]
, X̂ =

[
Xth

Xst

]
, (3)

where Ath, Ast, At−s, As−t are normalized adjacency ma-

trices for thing-to-thing pairs, stuff-to-stuff pairs, thing-to-

stuff pairs, and stuff-to-thing pairs respectively. To model

the distribution of different node features and adaptively

handle their pairwise relations, we resort to attention mech-

anism [29] to obtain sufficient expressive power in our

model. Formally, for any two nodes xi, xj in X̂, the edge

weight αij is computed by:

αij =
exp (δ (W [xi‖xj ]))∑

k∈Ni
exp (δ (W [xi‖xk]))

, (4)

where || is the concatenation operation, Ni is the neighbor-

hood of node i, δ is LeakyReLU nonlinear activation func-

tion, and W is weight matrix. For simplicity, we build a

fully connected graph for X̂, i.e., Ni contains all nodes in

X̂.

Updating node features. Formally, with normalized graph

adjacency matrix Â and node features X̂, a single graph

reasoning layer is given by

X̃ =

[
X̃th

X̃st

]
= X̂⊕ σ(ÂX̂⊗ Ŵ), (5)

where

Ŵ =

[
Wth

Wst

]
, X̂⊗ Ŵ =

[
XthWth

XstWst

]
, (6)

Wth,Wst ∈ R
D0×D0 are trainable weight matrices, X̃th,

X̃st are node features of new Thing-Graph and Stuff-Graph

respectively, ⊕ denotes concatenation, and σ is ReLU non-

linear function. Using T Graph Reasoning layers, the model

will propagate and update the information among classes to

build more discriminating representations.

3.4. Project Nodes Features to Visual Features

To refine the results of instance and semantic segmenta-

tion, we project graph nodes features to visual features at

the proposal and pixel level, respectively. We illustrate this

process in Figure 3.

Intra-modular reasoning for detection. When enhanc-

ing the features of things branch, we only care about the

features in proposals. Hence we concatenate the updated

Thing-Graph features to each proposal after adjusting their

dimension:

fth = AthX̃thW
intra
th , (7)

where W intra
th ∈ R

(N+D0)×D1 is the weight matrix for

intra-modular reasoning in things branch. Then we con-

catenate enhanced features fth to the visual features of pro-

posals and feed them into the final fully connected layer to

obtain the detection results.

Intra-modular reasoning for segmentation. To facilitate

the dense prediction in the stuff branch, we need to enhance

the local feature of each pixel under the guidance of ex-

tracted class centers. This can be regarded as the inverse

operation of Equation 1. We reshape Scoarse to R
HW×|Vst|,

the enhanced feature of stuff branch can be calculated as:

fst = ScoarseX̃stW
intra
st , (8)

where W intra
st ∈ R

(N+D0)×D2 is the weight matrix for

intra-modular reasoning in stuff branch. Then fst is con-

catenated with local feature F , which is then fed into the

final convolution layer to obtain semantic segmentation re-

sults.

4. Experiments

4.1. Experimental Settings

Implementation Details. The architecture of BGRNet is

built on Mask R-CNN [13] with a simple semantic seg-

mentation branch similar to [32]. To be exact, the multi-

level features from ResNet50-FPN [14, 23] first undergo

deformable subnets with 3 convolution layers per level and

are then bilinearly upsampled to 1/4 of the original scale

of the input image. Finally, features from different lev-

els are added together and 1 × 1 convolution with soft-

max is applied to predict all stuff classes. We follow all

hyper-parameters settings and data augmentation strategies

in Panoptic-FPN [18]. We implement our model using Py-

torch [27] and train all models with 8 GPUs with a batch

size of 16. The initial learning rate is 0.02 and is divided by

10 two times during fine-tuning. For COCO, we train for

12 epochs, i.e., 1x schedule, following [18]. For ADE20K,

we train for 24 epochs and keep the learning rate schedule

in proportion to COCO. We adopt an SGD optimizer with

a momentum of 0.9 and a weight decay of 5e-4. We find it

beneficial to extend the attention mechanism to multi-head
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Table 1. Performance comparisons with the state-of-the-art on the

COCO val set. † indicates our implementation. Panoptic-FPN-D

is the deformable counterpart of Panoptic-FPN [18]. All methods

use ResNet50-FPN as the backbone network.

Method DF Conv. PQ PQTh PQSt

Panoptic-FPN [18] 39.0 45.9 28.7

Panoptic-FPN-D† X 39.9 46.9 29.3

AUNet [21] 39.6 49.1 25.2

OANet [25] 39.0 48.3 26.6

UPSNet-C [32] X 41.5 47.5 32.6

UPSNet-CP [32] X 41.5 47.3 32.8

UPSNet [32] X 42.5 48.5 33.4

SpatialFlow [3] 40.9 46.8 31.9

Our BGRNet X 43.2 49.8 33.4

attention [29] and we applied 3 independent output attention

heads. We use two Graph Reasoning layers (i.e. T = 2) and

dimension N = D0 = D1 = D2 = 128.

Datasets and Evaluation Metrics. We evaluate our

method on COCO [24] and ADE20K [37]. COCO is one

of the most challenging datasets for panoptic segmentation

consisting of 115k images for training, 5k images for val-

idation, and 20k images for test-dev with 80 things and

53 stuff classes. ADE20K is a densely annotated dataset

for panoptic segmentation containing 20k images for train-

ing, 2k images for validation and 3k images for test, with

100 things and 50 stuff classes. Following [19], we adopt

panoptic quality (PQ), semantic quality (SQ), and recogni-

tion quality (RQ) for evaluation.

Table 2. Performance comparisons on ADE20K val set. Panoptic-

FPN-D is the deformable counterpart of Panoptic-FPN [18]. † in-

dicates our implementation.

Methods PQ PQTh PQSt

Panoptic-FPN† [18] 29.3 32.5 22.9

Panoptic-FPN-D† [18] 30.1 33.1 24.0

Our BGRNet 31.8 34.1 27.3

4.2. Comparisons with state­of­the­art

Comparisons with recent state-of-the-art methods on

COCO and ADE20K dataset are listed in Table 1, 2.

Some previous methods achieve high performance with

over 42.5% PQ, thanks to the specially designed panoptic

head [25], multi-scale information [18, 25], and two sources

of attention [21]. Unlike previous methods [32, 25, 21], our

BGRNet does not rely on complicated feature fusion pro-

cess, i.e., RoI-Upsample [21], spatial ranking module [25],

mask pruning process [32]. Instead, we utilize powerful

graph models to capture intra-modular and inter-modular

dependencies across separate branches. Thus, we achieve

consistent accuracy gain over existed methods and set the

new state-of-the-art results in terms of PQ, PQTh, PQSt.

The advanced results demonstrate the superiority of our

BGRNet that incorporates the reciprocal information and

deduces underlying relations between things and stuff ap-

peared in the image.

The qualitative results on the ADE20K dataset are shown

in Figure 5. As can be observed, our approach outputs more

semantically meaningful and precise predictions than base-

line methods despite the existence of complex object ap-

pearances and challenging background contents. For exam-

ple, the baseline mistakes field for grass while our BGR-

Net predicts correctly thanks to the propagated information

from the things in the image. More visual results on COCO

and ADE20K can be found in Supplementary Materials.

Table 3. Ablation studies on ADE20K val set.

Methods PQ PQTh PQSt

Baseline 30.1 33.3 23.7

w Thing-Graph 30.6 33.7 24.9

w Stuff-Graph 30.7 33.0 26.2

w Thing-Graph/Stuff-Graph 31.1 33.5 26.5

Our BGRNet 31.8 34.1 27.3

4.3. Ablation Study

Combinations of intra-modular and inter-modular

graphs. Table 3 shows the performance of different

components of our BGRNet on ADE20K val set. “w

Thing(Stuff)-Graph” only has a single graph for foreground

or background branch, while “w Thing-Graph/Stuff-Graph”

contains graphs in both two branches with no inter-branch

interaction, and the graph nodes are re-projected to visual

features similar to Section 3.4.

We first analyze the effect of a single graph in either

things branch or stuff branch. For single Thing-Graph, both

PQTh and PQSt get improved thanks to the region-wise rea-

soning that considers the correlations among proposals. For

single Stuff-Graph, PQSt got a 2.5% relative improvement,

which showcases the great effect of extracting class cen-

ters to refine local features in a coarse-to-fine paradigm.

Incorporating these two graphs with no connection across

branches, the overall PQ is already 1% higher than the base-

line, which is a considerable improvement on challenging

ADE20K dataset. Furthermore, we introduce graph con-

nection module, which greatly improves the segmentation

quality of things and stuff, due to the ability to mine the

underlying relations between foreground and background.

As can be seen from the last row in Table 3, our BGRNet

improves PQTh and PQSt by 0.8% and 3.6% respectively,

resulting in 31.8% overall PQ, which outperforms Panoptic-

FPN [18] by a large margin.

Thing/Stuff-Graph Construction. To validate the effi-

ciency of the proposed Thing-Graph and Stuff-Graph, we
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Table 4. Comparisons of different graphs and architectural designs on ADE20K val set.

# Basic network [13]
Thing-Graph Construction Stuff-Graph Construction Graph Connection Reasoning direction

PQ PQTh PQSt

Knowledge Graph [16] Attention Non-local [31] Class-center Semantic similarity Attention Thing-Stuff Stuff-Thing

1 X 30.1 33.3 23.7

2 X X 30.4 33.5 24.2

3 X X 30.6 33.7 24.9

4 X X 30.6 32.8 26.3

5 X X 30.7 33.0 26.2

6 X X X X X X 31.5 33.7 27.1

7 X X X X X 31.4 33.6 27.0

8 X X X X X 31.6 34.3 26.2

9 X X X X X X 31.8 34.1 27.3

Image Foreground Wall Ceiling Field

Image Grass Ceiling Tree Building

Image Earth Water House Plant

Image Foreground Building Sky Road

Figure 4. Visualization of similarities between extracted class centers and pixels generated by our method. Class Centers are listed below

the images. The deeper the color is, the stronger the similarity between the class center and pixels. Benefited from the Class-center Stuff-

Graph Construction scheme, our BGRNet can refine the local features under the guidance of the class center from a global view. Best

viewed in color.

consider different construction methods and compare their

performance in Table 4(#2,#3). Regarding Thing-Graph,

we consider establishing the region-wise relations via a

fixed knowledge graph. As for the knowledge graph for

foreground objects, we follow [16] to construct a fixed rela-

tion knowledge Thing-Graph and extract an adjacency ma-

trix of regions according to their class predictions. This

scheme achieves 30.4% PQ, which is inferior to the adopted

multi-head attention mechanism in BGRNet. The weakness

may lie in the wrong region graphs due to the misclassi-

fication of some proposals, which indicates that the edge

weights between some proposals are not reasonable any-

more. As for the non-local graph for background, though

slightly higher PQSt (26.3% vs 26.2%) is achieved, it in-

curs much larger computation since every pixel is regarded

as a graph node. Furthermore, with a non-local graph, the

subsequent graph connection will be prohibitively expen-

sive when the region-based Thing-Graph is considered. As

can be seen, constructions of attention-based Thing-Graph

and class-center Stuff-Graph lead to higher performance

and moderate computation.

Different Graph Connection matrices. We also investi-

gate the performance of our model using a different graph

connection method, i.e., semantic similarity. To be exact,

the Ã in Equation 3 is built on the semantic similarity other

than a multi-head mechanism under this setting. The word

embeddings of predicted classes of regions and stuff names

of class centers are used to calculate the cosine similarity
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Figure 5. Visualized comparisons of panoptic segmentation outputs on ADE20K dataset. Raw images, Ground-Truth Segmentation,

Panoptic-FPN outputs and BGRNet outputs are presented from top to bottom.

to form an adjacency matrix. As can be seen in Table 4,

the semantic similarity-based connection is also helpful in

bridging the chasm between things and stuff and achieves

31.5% PQ, which is still lower than that of attention-based

mechanism (31.8% PQ). This indicates that our Graph Con-

nection Module is supposed to obtain more sufficient ex-

pressive power and discover the diverse relations between

things nodes and stuff nodes in a complicated scene than

merely depends on a fixed linguistic graph.

Unidirectional enhancement. We investigate the direction

of Graph Connection by exploring unidirectional enhance-

ment in Table 4. Previous method [21] uses two sources of

attention to perform unidirectional enhancement from the

foreground branch to background branch. To fully lever-

age the reciprocal relations between foreground and back-

ground, we thus investigate and compare the performance

with different enhance directions. ‘Thing-Stuff’ stands for

only enhancing the feature of semantic segmentation branch

after Graph Connection. ‘Stuff-Thing’ represents only en-

hancing the feature of detection branch after Graph Connec-

tion. It can be found that although unidirectional enhance-

ment can lead to considerable performance gain, merely

performing Graph Connection in one direction is not able

to fully enhance the feature, and a two-way graph connec-

tion further boosts the overall PQ to 31.8%.

Visualize the correlations. To demonstrate the representa-

tive characteristics of the extracted class centers described

in Section 3.2, we visualize the similarity between partic-

ular stuff class centers and local features of pixels in Fig-

ure 4. As can be seen, the extracted stuff class center cor-

relates well with corresponding area and the responses in

other area are inhibited, despite the existence of multiple

stuff classes, class ambiguity and fuzzy edges between dif-

ferent stuff classes. For example, in the third row, the ex-

tracted class centers correlate well with the confusing stuff

class including plant, water and earth. Under the guidance

of the class center features from a global view, local fea-

tures can be refined. This greatly improves the performance

of our model in terms of PQSt.

5. Conclusion

This paper introduces a Bidirectional Graph Reasoning

Network (BGRNet) for panoptic segmentation that simul-

taneously segments foreground objects at the instance level

and parses background contents at the class level. We pro-

pose a Bidirectional Graph Connection Module to propa-

gate the information encoded from the semantic and co-

occurrence relations between things and stuff, guided by the

appearances of the objects and the extracted class centers in

an image. Extensive experiments demonstrate the superior-

ity of our BGRNet, which achieves the new state-of-the-art

performance on two large-scale benchmarks.
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