
Alpha-Refine: Boosting Tracking Performance by

Precise Bounding Box Estimation

Bin Yan1*, Xinyu Zhang1*, Dong Wang1†, Huchuan Lu1,2 and Xiaoyun Yang3

1School of Information and Communication Engineering, Dalian University of Technology, China
2Peng Cheng Laboratory 3Remark AI

{yan bin,zhangxy71102}@mail.dlut.edu.cn, {wdice, lhchuan}@dlut.edu.cn, xyang@remarkholdings.com

Abstract

Visual object tracking aims to precisely estimate the

bounding box for the given target, which is a challeng-

ing problem due to factors such as deformation and occlu-

sion. Many recent trackers adopt the multiple-stage strategy

to improve bounding box estimation. These methods first

coarsely locate the target and then refine the initial predic-

tion in the following stages. However, existing approaches

still suffer from limited precision, and the coupling of dif-

ferent stages severely restricts the method’s transferability.

This work proposes a novel, flexible, and accurate refine-

ment module called Alpha-Refine (AR), which can signifi-

cantly improve the base trackers’ box estimation quality. By

exploring a series of design options, we conclude that the

key to successful refinement is extracting and maintaining

detailed spatial information as much as possible. Following

this principle, Alpha-Refine adopts a pixel-wise correlation,

a corner prediction head, and an auxiliary mask head as the

core components. Comprehensive experiments on Track-

ingNet, LaSOT, GOT-10K, and VOT2020 benchmarks with

multiple base trackers show that our approach significantly

improves the base tracker’s performance with little extra

latency. The proposed Alpha-Refine method leads to a se-

ries of strengthened trackers, among which the ARSiamRPN

(AR strengthened SiamRPNpp) and the ARDiMP50 (AR

strengthened DiMP50) achieve good efficiency-precision

trade-off, while the ARDiMPsuper (AR strengthened DiMP-

super) achieves very competitive performance at a real-

time speed. Code and pretrained models are available at

https://github.com/MasterBin-IIAU/AlphaRefine.

1. Introduction

Precise box estimation is indispensable for a success-

ful tracker. Early trackers usually solve this problem by

*Equal contribution.
†Corresponding Author: Dr. Dong Wang, wdice@dlut.edu.cn

Table 1. Oracle experiment on LaSOT. The center of the search

region is always set at the center of the ground truth, reflecting the

box estimation capacity of these methods. The best three results

are marked in red, green and blue bold fonts respectively.

Oracle AUC PNorm P

SiamRPNpp[23] 0.682 0.829 0.745

ATOM[7] 0.580 0.686 0.604

DiMPsuper[2] 0.693 0.799 0.734

ECO[6] 0.496 0.666 0.533

AlphaRefine 0.762 0.902 0.919

multi-scale search [1, 6, 35, 3] or sampling-then-regression

strategy [37, 29], which are inaccurate and greatly limit the

performance of the trackers. For obtaining more robust

and precise tracking results, many state-of-the-art track-

ers [40, 12, 7, 2] adopt a multiple-stage tracking strategy,

which introduces additional tracking stages for more pre-

cise box estimation. These trackers first coarsely locate the

target and then refine the initial result in the additional track-

ing stages to get more precise box prediction. However,

this box estimation can still be improved, even for state-of-

the-art trackers. An oracle experiment verifies this opinion.

We set the tracker’s search region always centering at the

ground truth so that the performance will be mainly deter-

mined by the capacity of box estimation. Table 1 shows

that with the aforementioned oracle setting, state-of-the-art

trackers’ AUC scores are still far from perfection, indicating

unsatisfying box estimation, although some methods (e.g.

ATOM [7], DiMP [2]) have built-in box estimation mod-

ules. In contrast, given the perfectly centered search region,

the proposed Alpha-Refine achieves significantly better per-

formance, demonstrating that Alpha-Refine’s superiority in

box estimation.

Additionally, most of refinement methods in existing

trackers [40, 12, 7, 2] are weak in transferability, because

their training is coupled with other components. Extra re-

training is required if above refinement modules are applied

to new base trackers. As opposed to these methods, Alpha-
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Figure 1. Performance improvement of our Alpha-Refine module

on LaSOT. ‘Base’: the base tracker; ‘Base+AR’: the base tracker

with Alpha-Refine (AR). This figure shows that all base trackers

are significantly improved by the proposed AR module.

Refine is trained independently and can be directly applied

to any existing trackers in a plug-and-play style, requiring

no extra training or modification of the base tracker.

In this work, a series of design options are investigated

and compared. Specifically, we assess multiple feature fu-

sion modules and prediction heads. We also explore to use

an auxiliary mask head, which introduces pixel-level super-

vision into the training. We find that extracting and main-

taining precise spatial information is the key to precise box

estimation. To this end, we finally adopt a pixel-wise corre-

lation as well as a key-point style prediction head for better

maintaining and utilizing the detailed spatial information.

Additionally, an auxiliary mask head is used, which en-

courages the network to extract more detailed spatial infor-

mation, leading to more precise box estimation. Moreover,

if we reserve the mask head at the inference stage, Alpha-

Refine will enable the base trackers to predict the mask of

the object, satisfying scenarios where the mask is required.

The design options will be discussed in Section 3 and veri-

fied in Section 4.

To verify the effectiveness of our Alpha-Refine mod-

ule, we choose six famous base trackers: ECO [6], RT-

MDNet [16], SiamRPNpp [23], ATOM [7], DiMP [2],

and DiMPsuper [2], on multiple tracking benchmarks,

namely, LaSOT [11], GOT-10K [14], TrackingNet [28]

and VOT2020 [19]. Take Fig. 1 as an example, exper-

imental results show that our proposed refinement mod-

ule improves the base trackers’ performance significantly.

Compared with its competitors (i.e. IoU-Net [7, 2] and

SiamMask [42]), Alpha-Refine’s performance also sur-

passes them by a large margin.

The proposed Alpha-Refine method leads to a se-

ries of strengthened trackers, among which the AR-

SiamRPN (Alpha-Refine strengthened SiamRPNpp) and

ARDiMP50 (Alpha-Refine strengthened DiMP50) achieve

good efficiency-precision trade-off, while ARDiMPsuper

(Alpha-Refine strengthened DiMPsuper) achieves state-of-

the-art performance at a real-time speed on multiple bench-

marks.

2. Related Works

Early Box Estimation. Early box estimation methods are

mainly scale estimation, which can be summarized into

two categories: multiple-scale search and sampling-then-

regression strategies. Most correlation-filter-based track-

ers [13, 6, 35] and SiamFC [1] adopt the former strategy.

Specifically, these trackers construct search regions with

different sizes, then compute correlation with the template,

and finally determine the size of the target as the size-level

where the highest response locates. Multiple-scale search

is coarse and time-consuming due to its fixed-aspect-ratio

prediction and heavy image pyramid operation. Another

type of method first generates several bounding box sam-

ples, then uses some methods to choose the best one, and fi-

nally apply regression on it to obtain more accurate results.

SINT [37], MDNet [29] and RT-MDNet [16] are three rep-

resentative trackers that exploit this approach.

Modern Box Estimation. As deep learning techniques

become mature, several high-performance scale estimation

approaches are developed and can be categorized into the

following classes: RPN-based [24, 51, 23], Mask-based[42,

26], IoU-based [7, 2], and Anchor-free-based [45, 4]. RPN-

based methods learn a region proposal network [31], which

determines whether the current anchor contains the tar-

get and makes refinement to the target simultaneously.

SiameseRPN-series trackers [24, 51, 23] utilize the RPN-

based mechanism as the core component and achieve great

success in recent years. Mask representation is more accu-

rate, and the ability to predict mask is quite beneficial to pre-

cise box estimation. SiamMask [42] and D3S [26] belong

to this class, which obtain higher precision than the Siamese

tracker that can only predict boxes. IoU-based approaches

learn a network to predict the overlap between candidate

boxes and groundtruth. During the inference phase, this

strategy optimizes candidate boxes by gradient-ascent, and

therefore obtains more precise results. ATOM [7] and

DiMP [2] fully exploit this method and surpass traditional

correlation-filter trackers by a large margin. In the past

years, anchor-free philosophy has become quite popular in

the object detection field [22, 49, 18, 38]. SiamFC++ [45]

introduces this structure into object tracking field and there-

fore achieves state-of-the-art performance. The CGACD

method [9] designs a corner-based box estimation for ob-

ject tracking which wisely adopts soft-argmax to decode

the corner heat map into box coordinates. The corner-based

version of Alpha-Refine adopts a similar box representa-

tion, and experiments demonstrate that this design retains

more precise spatial information for a refinement module.

Refinement Modules. Many state-of-the-art trackers [40,

12, 7, 2, 21] apply a multiple-stage tracking strategy to

obtain accurate and robust results. This approach first lo-

cates the target coarsely and then utilizes a refinement mod-

ule to refine results from the previous stage. SPM [40]
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and Siamese Cascaded RPN [12] adopt a light-weight re-

lation network [36] and stacked RPNs [31], respectively,

as the refinement module to further increase trackers’ dis-

criminative power and precision. However, the two refine-

ment modules have to be trained together with their pre-

vious Siamese tracker in an end-to-end manner; this pro-

cedure limits their flexibility of combining with other base

trackers. ATOM [7] and DiMP [2] first use an online clas-

sification module to locate the target and then draw some

random samples around it. Finally, they deploy a modi-

fied IoU-Net [15] to maximize the overlap between these

samples and groundtruth to obtain more precise bounding

boxes. This modified IoU-Net can be trained separately

from the base tracker. Thus, the IoU-Net has good transfer-

ability but its precision can still be greatly improved. No-

tably, the winners of VOT2019 [21] utilize SiamMask [42]

as a refinement module [21]. Similar to IoU-Net [15] men-

tioned before, SiamMask [42] can be combined with any

base tracker. However, SiamMask is designed as an in-

dependent tracker rather than a refinement module, which

is not suitable and not economical to refine other trackers.

Considering previous refinement modules’ weak transfer-

ability and limited accuracy, we propose a novel, flexible,

and accurate refinement module named Alpha-Refine.

3. Alpha-Refine

Alpha-Refine is a refinement module which is able to

efficiently refine the base tracker’s outputs and significantly

improve the tracking performance. We detail the network

architecture (Fig. 2), design options, and training process as

follows.

3.1. Network Architecture

Fig. 2 shows the overall architecture of the proposed

Alpha-Refine module. This module adopts the Siamese ar-

chitecture with two input branches, namely, the reference

branch and the test branch. A parameter-shared backbone

is applied to both branches for feature extraction. Features

extracted from two branches are aggregated by a fusion

module, which is typically a correlation module (e.g. naive-

correlation, depth-wise correlation, pixel-wise correlation).

The fused feature is further processed by some convolu-

tional layers, producing the features for the prediction head.

An auxiliary mask head can be added parallel to the box

head to introduce pixel-level supervision into training. The

output of the mask head can be used for scenarios that also

require a mask result.

To function as a refinement module, the reference branch

is initialized by the first frame with the ground truth. In the

current frame, the test branch extends the base tracker’s pre-

diction into a concentric search region of two times the size,

from which Alpha-Refine predicts a finer result. Alpha-

Refine can be combined with arbitrary trackers in a plug-

and-play style and improve their performance.

Notably, compared with independent trackers, the size

of Alpha-Refine’s search region is roughly two times the

size of the object, which is smaller than normal trackers

(four times in most cases). The smaller search region can

depress the cluttered background and enable the model to

focus on more detailed spatial information, which is benefi-

cial to precise localization. Small search region also lowers

the computation cost, so that Alpha-Refine can improve the

base tracker with little latency increase. Alpha-Refine is not

capable of tracking by itself because of the small search re-

gion light-weight design. A complete base tracker is always

needed.

3.2. Feature Fusion

Most methods with Siamese architecture aggregate fea-

tures of the template and the search region using the

coarse naive correlation [1, 24, 51] or depth-wise correla-

tion [23, 42]. As shown in Fig. 3, both naive correlation

or depth-wise correlation take the whole template feature as

the kernel to correlate with the search region feature, mak-

ing adjacent sliding window on the feature map producing

similar response and blur the spatial information. As a re-

finement module, Alpha-Refine requires the feature fusion

module to maintain as much spatial information as possi-

ble. Thus, the popular naive nor depth-wise correlation is

not suitable for Alpha-Refine.

In this work, we adopt pixel-wise correlation [43] for

high-quality feature representation. We denote K ∈
R

C×H0×W0 and S ∈ R
C×H×W as features of the template

and the search region. Pixel-wise correlation first decom-

poses K into H0W0 small kernels Kj ∈ R
C×1×1 and then

uses them to compute correlation separately to obtain cor-

relation maps C ∈ R
H0W0×H×W . The process can be de-

scribed as

C = {Cj |Cj = Kj ∗ S}j∈{1,...,H0×W0}, (1)

where ∗ denotes naive correlation.

In contrast to naive or depth-wise correlation, pixel-wise

correlation takes each part of the target features as a ker-

nel. Pixel-wise correlation ensures that each correlation

map encodes information of a local region on the target

while avoiding an extremely large correlation window from

blurring the feature.

Fig. 5 shows the computation process of three correlation

methods, and Fig. 4 shows some fusion outputs. Fig. 4(c)

indicates that naive convolution can only roughly repre-

sent the center location of the object while losing most of

the shape and scale information. Fig. 4(d) illustrates that

depth-wise correlation has to encode the blurred location

into channels, which is less explainable and inefficient. By

contrast, Fig. 4(e) shows that pixel-wise correlation is better
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Figure 2. Overall architecture of the proposed Alpha-Refine. Better viewed in color with zoom-in.
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Figure 3. Illustration of blur effect. Depth-wise correlation or

naive correlation may blur the spatial information.

at retaining the target’s boundary and other detailed spatial

information.

3.3. Prediction Heads

We explore two ways of predicting the bounding box:

directly regressing the box coordinates and predicting two

corner points1 from two heatmaps. For regressing the box

coordinates, we evaluate RPN style and RCNN style de-

signs. For predicting the corners, we evaluate the key-point

style design.

RPN Style Box Head. One way of regressing the bound-

ing box is the RPN Style Box Head. Fig. 6(a) shows the

diagram. Similar to the FCN structure of one-stage object

detectors, a 4D box coordinates together with a confidence

score is predicted at each location. The box with the highest

score is regarded as the tracking result.

However, we notice some drawbacks of using this

method in the refinement module. In this method, each box

prediction is generated by an individual feature point, which

requires this feature point to summarize the information in

its receptive field and encode spatial information into the

channels, so that a single feature point can make a predic-

tion by itself. However, different feature points have vary-

1The top-left corner and the bottom-right corner

ing receptive fields, making them good at representing var-

ious parts of the object. The RPN style method ignores the

relationship between feature points at different locations,

not fully utilizing the information contained in the spatial

distribution of the feature map. Additionally, this strategy

has inconsistency because most precise box predictions may

have a low score. In the experiment, we implement this

strategy by stacking four Conv-BN-ReLU layers followed

by a prediction layer. For simplicity, we directly regress

four distances from the feature point location to four edges

of the bounding box. Another four Conv-BN-ReLU layers

are used to predict the confidence score.

RCNN Style Box Head. Similar to the second stage of

Faster-RCNN [31], this RCNN Style method reduces the

feature map into a vector and estimates the bounding box of

the object with some fully connected layers. Fig. 6(b) shows

the diagram. Compared with the RPN style method, this

method utilize the whole feature map rather than individual

feature points. Apparently, this method crashes spatial in-

formation when reducing the feature map, indicating that it

is not suitable for a refinement module. For this strategy,

we use a bounding box head containing four stacked Conv-

BN-ReLU layers in our experiment, followed by a global

average pooling layer and a fully-connected layer, which

predicts four coordinates of the bounding box.

Corner Head. Recently, keypoints detection techniques

have become popular in the object detection field, produc-

ing several state-of-the-art methods [22, 49, 10, 50]. In

our experiment, we implement a corner head with four

stacked Conv-BN-ReLU layers, followed by a Conv layer

predicting two heatmaps, which represent top-left corner

and bottom-right corner respectively. Different from meth-

ods like CornerNet [22], we do not upsample the feature

map for the computation issue, resulting in a coarse-grained

heatmaps. We apply soft-argmax [27] to the heatmaps to

make the discrete heatmaps precisely describe the position
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(a) Reference image

(b) Test image (c) Naive correlation

responses

(d) Depth-wise correlation responses 

(the first 32 channels)

(e) Pixel-wise correlation responses

(of all 64 pixel kernels)

Figure 4. Comparison among different correlation responses. (a) and (b) denote the reference branch and the test branch, respectively. (c),

(d), and (e) are correlation result of naive, depth-wise (the first 32 channels of 256), and pixel-wise correlations, respectively.

Naïve
Correlation

Depth-wise
Correlation

Pixel-wise
Correlation

Figure 5. Comparison among different correlation methods and

the illustration of the non-local module. From left to right, naive,

depth-wise, and pixel-wise correlations are demonstrated. The

black-edged cubes or squares represent sliding kernels. The red

edged ones represent corresponding correlation maps.
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(a) RPN based (b) RCNN based (c) Key-points based

Figure 6. Options for predicting box results. (a) RPN style box

prediction. (b) RCNN style box prediction. (c) Corner prediction.

of the corner point. The soft-argmax operation enable our

model to predict continuous values from discrete heatmaps.

It encodes the box estimation into the distribution of confi-

dence (heat) scores, avoiding the inconsistency problem in

the RPN style head. The key-point style method retrains the

natural spatial structure of the feature map, avoiding encod-

ing spatial information into channels, which is desirable for

Alpha-Refine.

Auxiliary Mask Head. As Alpha-Refine is a module for

precisely estimating the bounding box, additional detailed

shape information would be helpful. To this end, we add

an auxiliary mask head parallel to the box head, which in-

troduces pixel-level supervision into training. When the

box head is trained with the auxiliary mask head, the net-

work is encouraged to extract more detailed spatial infor-

mation which is required by the mask head and facilitates

precise box estimation. In addition, supervision from mask

annotation also teach the model to better discriminate fore-

ground and background, which is required by the segmen-

tation task and also beneficial to tracking. Some previous

works [42, 26] also demonstrate that mask prediction is

quite beneficial for improving tracking performance, espe-

cially on benchmarks (e.g., VOT [20, 21]) that adopt rotated

bounding box labels. In this work, the mask head is im-

plemented as a U-Net [32] style decoder, which gradually

upsample the feature map while fusing them with low-level

features from the backbone until the resolution is the same

as the input image, and a mask is predicted from the last

layer. At the inference stage, the mask head is by default

disabled to speed up Alpha-Refine. For scenarios requir-

ing pixel-level prediction, the mask head can be activated,

producing mask prediction as the output.

3.4. Training

Training Set Construction. We use the training splits of

LaSOT [11] and GOT-10K [14], ImageNet VID [33], Ima-

geNet DET [33], COCO [25], Youtube-VOS [44], and some

segmentation datasets [46, 41, 34] to train the Alpha-Refine.

Given a video sequence, two stochastic frames Fref and

Ftest with an interval of less than 50 frames are first se-

lected. The input of the reference branch is obtained by

cropping Fref at the center of the ground truth with two

times the size of the ground truth box. The input of the

test branch is obtained by cropping Ftest randomly centered

around the ground truth, with a jittered size. Specifically,

we randomly translate and scale the ground truth of Ftest to
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obtain the region to be cropped. With the following equa-

tions:

[h,w] = [2hGT , 2wGT ]× eNftest

s (2)

Omax =
√
hw × f test

c (3)

[cx, cy] = [cGT
x , cGT

y ] + (U− 0.5)×Omax (4)

we obtain the region centering at [cx, cy] with size [h,w].
[cGT

x , cGT
y , hGT , wGT ] is the ground truth bounding box.

f test
s and f test

c are two scalar factors corresponding to scale

and center, respectively. We use [f test
s , f test

c ] = [0.25, 0.25]
in our experiments. N and U represent the 2D standard

normal distributed random variable and 2D uniform ran-

dom variable respectively. The cropped images are resize

into 256× 256 as the inputs of Alpha-Refine.

Training Approach. For the box output (i.e. output of

RPN style, RCNN syle, Key-Point style Heads), the mean

squared error Lbox is used. All predictions are converted

into coordinate vectors of the format [left-most, top-most,

right-most, bottom-most] and compared with ground truth

to obtain the mean squared error. For the mask output, a

binary cross-entropy loss Lmask is used. The total loss L is

the weighted sum of two losses.

L = Lbox + λLmask, (5)

where λ = 1000 is used in the experiments. We train Alpha-

Refine for 40 epochs, each of which consists of 500 itera-

tions on eight Nvidia 2080Ti GPU with a batch size of 32

per GPU (32 × 8 samples per iteration in total). Consider-

ing the abundance of the training data, we do not freeze any

parameters of the backbone. The Adam optimizer [17] is

applied and the learning rate halves every 8 epochs.

4. Experiments

We implement our algorithm with the Pytorch [30] deep

learning library. In this section, we verify the effectiveness

of Alpha-Refine by performing comprehensive experiments

on many popular tracking benchmarks: LaSOT [11], Track-

ingNet [28], GOT-10K [14], and VOT2020 [19] together

with six representative and state-of-the-art base trackers (in-

cluding ECO [6], RT-MDNet [16], ATOM [7], SiamRP-

Npp [23], DiMP50 [2], and DiMPsuper [2]) to demonstrate

our Alpha-Refine’s capacity of boosting the trackers’ per-

formance. Besides, we evaluate our design options with

SiamRPNpp [23] as the base tracker and determine the ef-

fects of different settings of our Alpha-Refine. ResNet-34 is

used as backbone by default if not otherwise specified. All

experiments of our trackers run five times, and the results

are obtained by average.

Table 2. Comparison results on the LaSOT test set. ‘Base’: the

base tracker; and ‘Base+AR’: the base tracker with Alpha-Refine.

The best three results are marked in red, green and blue bold

fonts, respectively. Numbers are shown in percentage (%).

Method
Base Base+AR

AUC PNorm P AUC PNorm P
ECO 36.9 43.5 36.4 46.1 50.8 46.0

RT-MDNet 30.8 36.0 30.1 49.9 63.1 50.7

SiamRPNpp 47.6 54.7 47.2 55.9 62.2 57.4

ATOM 49.5 56.0 49.1 57.0 63.0 58.1

DiMP50 55.9 63.3 55.3 60.2 66.8 61.7

DiMPsuper 63.7 72.5 65.6 65.3 73.2 68.0

4.1. Representative Visual Results

Figure 7 provides some representative visual results re-

garding different refinement module. We can see that our

Alpha-Refine module facilitates the tracker obtaining more

precise bounding boxes than IoU-Net and SiamMask.

Base  Base+SiamMask  Base+IoUNet Base+AR GT 

Figure 7. Visual Comparison of Alpha-Refine and other refine-

ment modules. From left to right, we present the origin prediction

of the SiamRPNpp base tracker, and refined results obtained by

SiamMask [42], IoU-Net [7, 2], our Alpha-Refine.

4.2. Evaluation on LaSOT

LaSOT [11] is a recent large-scale tracking benchmark,

which consists of 1400 challenging videos (1120 for train-

ing and 280 for testing). In this work, we follow the one-

pass evaluation, using Success (AUC), Normalized Preci-

sion (PNorm), and Precision (P), to compare different track-

ers without and with Alpha-Refine. Table 2 shows that our

Alpha-Refine (AR) module consistently and significantly

improves the base trackers in all evaluation metrics. Es-

pecially for RT-MDNet, the improvement of the AUC score

is up to 19%. As shown in Table 3 the previous best tracker

is Siam R-CNN [39], which obtains a 64.8% AUC score

but merely runs around 5 fps. in contrast, ARDiMPsuper

achieves the best record (AUC: 65.3%), while maintaining

a real-time speed.

Latency and Speed. Table 4 reports the latency and speed

performance of different trackers without and with Alpha-

Refine, showing that our Alpha-Refine module introduces

few computation loads (merely about 5-6ms every frame),

while significantly improving the tracking accuracies (see

Table 2).
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Table 3. Comparison state-of-the-art results on the LaSOT test set. The best three results are marked in red, green and blue bold fonts,

respectively. Numbers are shown in percentage (%). More results are available at https://github.com/MasterBin-IIAU/AlphaRefine.

Method ARDiMPsuper

(ours)

SiamRCNN

[39]

ARDiMP50

(ours)

PrDiMP

[8]

LTMU

[5]

DiMP50

[2]

Ocean

[48]

ARSiamRPN

(ours)

SiamAttn

[47]

SiamFC++

[45]

AUC(%) 65.3 64.8 60.2 59.8 57.2 56.8 56.0 56.0 56.0 54.4

Speed(fps) 33 5 46 30 13 59 25 50 45 90

Table 4. Latency and speed of different methods. The tracking

speed is measured using frame per second (fps).

Method
Base Base+AR

∆t
latency fps latency fps

ECO 13.3ms 75.2 18.9ms 52.9 +5.6ms

RTMDNet 14.3ms 69.9 20.1ms 49.8 +5.7ms

ATOM 16.8ms 59.5 22.1ms 45.2 +5.3ms

SiamRPNpp 14.9ms 67.1 20.0ms 50.0 +5.1ms

DiMP50 16.7ms 59.9 21.9ms 45.7 +5.2ms

DiMPsuper 25.2ms 39.7 30.4ms 32.9 +5.2ms

4.3. Ablation Studies

In this subsection, we conduct ablation studies of our

Alpha-Refine (AR) module using SiamRPNpp [23] as the

base tracker, evaluated on the LaSOT [11] test set.

Table 5. Analysis of different head options. The best three results

are marked in red, green and blue bold fonts, respectively. Num-

bers are shown in percentage (%).

Method AUC(%) PNorm(%) P(%)

SiamRPNpp 47.6 54.7 47.2

+ARrpn 50.2 55.5 51.2

+ARrcnn 48.9 54.2 46.9

+ARc 54.6 60.3 55.3

+ARrpn+m 53.7 60.3 54.7

+ARrcnn+m 51.6 58.1 52.3

+ARc+m 55.9 62.2 57.4

Head Options. The head option is a very important com-

ponent in this work, since it is directly related with the final

output. Table 5 reports the performance of the SiamRP-

Npp+AR tracker with different head options. The symbols

ARrpn, ARrcnn and ARc denote the Alpha-Refine module

with RPN style box head, RCNN style box head and Key-

Point style corner head, respectively. ‘+m’ stands for the

auxiliary mask head used during training. From Table 5,

we have the following two conclusions: (1) all adopted box

estimation heads improve the original SiamRPNpp method,

and the corner head performs much better than the other

two; and (2) the auxiliary mask head further makes addi-

tional improvements, and the combination of the corner and

mask heads obtains the best performance. Thus, we chose

ARc+m as our final module in this work.

Feature Fusion Options. Table 6 compares the SiamRP-

Npp+AR variants using different feature fusion options

(naive, depthwise, or pixelwise in Sec 3.2), where the pre-

diction head is determined based on aforementioned discus-

Table 6. Analysis of different feature fusion types. Naive indicates

the typical feature correlation between reference and test branches.

Numbers are shown in percentage (%).

Method AUC(%) PNorm(%) P(%)

Pixelwise 55.9 62.2 57.4

Depthwise 54.8 60.8 55.8

Naive 53.1 59.4 53.9

sions. The results show that the adopted pixelwise correla-

tion performs the best, indicating that the pixelwise correla-

tion is better at extracting and maintaining spatial informa-

tion than the depthwise correlation or naive correlation.

Table 7. Comparison of different refinement modules. The best

result is marked in red bold fonts.

Method AUC(%) PNorm(%) P(%)

SiamRPNpp 47.6 54.7 47.2

+IoU-Net 48.8 55.6 47.8

+SiamMask 50.3 54.7 48.7

+AR 55.9 62.2 57.4

Comparison with Different Refinement Modules. We

compare our Alpha-Refine (AR) with two recent refinement

modules (IoU-Net presented in [7, 2] and SiamMask pro-

posed in [42]), and report the results in Table 7. Our Alpha-

Refine module surpasses IoU-Net and SiamMask by a large

margin.

Different Backbones. We investigate the Alpha-Refine

module with different backbones and reports the compari-

son results in Table 8. When the ResNet-18 backbone is

used, the latency of our AR model is very low but the corre-

sponding performance is also 7.4% higher than the original

SiamPRNpp. As the backbone goes deeper, the AUC score

is better but the speed is slower. In this work, we choose

ResNet-34 as the default backbone to balance accuracy and

speed.

Table 8. Accuracy and Speed Comparison of SiamRPNpp+AR

with different backbones.

Method AUC(%) fps latency
∆t

SiamRPNpp 47.6 67.1 14.9ms

+ AR(ResNet-50) 56.2 46.5 21.5ms 6.6ms

+ AR(ResNet-34) 55.9 50.0 20.0ms 5.1ms

+ AR(ResNet-18) 55.0 52.4 19.1ms 4.2ms

4.4. Evaluation on Other Benchmarks

TrackingNet. TrackingNet [28] is a popular large-scale
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Table 9. Comparison results on the TrackingNet test set. ‘Base’:

the base tracker; and ‘Base+AR’: the base tracker with Alpha-

Refine. The best three results are marked in red, green and blue

bold fonts, respectively. Numbers are shown in percentage (%).

Method
Base Base+AR

AUC PNorm P AUC PNorm P
ECO 61.2 71.0 55.9 75.1 80.0 71.4

RT-MDNet 58.4 69.4 53.3 76.0 81.0 72.3

ATOM 70.3 77.1 64.8 77.7 82.5 74.5

SiamRPNpp 73.3 80.0 69.4 78.8 83.7 76.4

DiMP50 74.0 80.1 68.7 79.5 84.1 76.5

DiMPsuper 77.6 82.5 72.6 80.5 85.6 78.3

short-term tracking benchmark. We evaluate various meth-

ods on its test set, which contains 511 sequences. For the

test set, only groundtruth of the first frame is given and par-

ticipants need to submit their results to the evaluation server.

Table 9 shows that our Alpha-Refine module improves dif-

ferent base trackers by a large margin. ARDiMPsuper ob-

tains 80.5% in the main AUC metric, which is slightly

worse than the previous best tracker (Siam R-CNN [39]:

81.2% in AUC). However, ARDiMPsuper runs approxi-

mately 32.9 fps, being six times faster than Siam R-CNN.

GOT-10K. GOT-10K [14] is a recent large-scale dataset,

which contains 10K sequences for training and 180 for test-

ing. We submit the tracking outputs to the official evalua-

tion server and obtain the comparison results (i.e., AO and

SRT) in Table 10. On one hand, our Alpha-Refine module

consistently and significantly improves the base trackers in

all evaluation metrics. On the other hand, ARDiMPsuper

achieves 70.1% in the main AO metric, which performs

much better and runs much faster than the previous best

tracker (Siam R-CNN [39]: 64.9% in AO, 72.8% in SRT,

and 59.7% in SR0.75).

Table 10. Comparison results on the GOT-10K test set. ‘Base’:

the base tracker; and ‘Base+AR’: the base tracker with Alpha-

Refine. The best three results are marked in red, green and blue

bold fonts, respectively. Numbers are shown in percentage (%).

Method
Base Base+AR

AO SR0.5 SR0.75 AO SR0.5 SR0.75

ECO 41.3 43.8 13.4 56.7 64.8 46.1

RT-MDNet 35.0 35.8 9.2 56.1 63.7 46.9

ATOM 53.5 62.2 37.8 63.1 71.1 55.8

SiamRPNpp 51.8 61.7 32.4 61.5 69.6 46.9

DiMP50 60.3 71.8 46.0 65.4 74.3 58.5

DiMPsuper 67.2 78.8 59.3 70.1 80.0 64.2

VOT2020. VOT2020 [19] includes 60 challenging videos

with high-quality mask-based ground truth. This bench-

mark takes expected average overlap (EAO) as the main

ranking metric, which simultaneously considers the track-

ers’ accuracy and robustness. The evaluation on VOT2020

has two settings: Baseline and real-time. The real-time re-

quires the trackers to predict bounding boxes no slower than

Table 11. Comparison results on the VOT2020 benchmark. ‘Base’:

the base tracker; and ‘Base+AR’: the base tracker with Alpha-

Refine. The best three results are marked in red, green and blue

bold fonts, respectively. The main EAO metric is reported.

Method
Base Base+AR

Baseline Real Time Baseline Real Time

RT-MDNet 0.248 0.247 0.371 0.356

SiamRPNpp 0.254 0.254 0.395 0.395

ECO 0.280 0.276 0.426 0.426

ATOM 0.275 0.279 0.416 0.414

DiMP50 0.286 0.278 0.444 0.438

DiMPsuper 0.314 0.311 0.471 0.478

the video frame rate (20 fps in the official toolkit). The re-

sults of different trackers are shown in Table 11. We can see

that the proposed Alpha-Refine module improves the base

trackers in terms of EAO significantly. Besides, Figure 8

demonstrates that our AR strengthened method ARDiMP-

super obtains the best performance in the Real-Time set-

ting.

16
0.3

0.35

0.4

0.45

0.5

Real Time

Figure 8. State-of-the-art evaluation on VOT2020. Our ARDiMP-

super obtains the best result in the real-time setting.

5. Conclusion.

In this work, we propose a novel Alpha-Refine method

for visual tracking, which is an accurate and general re-

finement module to effectively improve the tracking perfor-

mance of different types of trackers in a plug-and-play style.

By exploring multiple design options, we find that extract-

ing and maintaining precise spatial information is the key

to the precise box estimation. Alpha-Refine finally adopts a

precise pixel-wise correlation layer, a Key-Point style pre-

diction head, and an auxiliary mask head. Finally, we ap-

ply the Alpha-Refine model to six well-known and top-

performed trackers and conduct numerous evaluations on

four popular benchmarks. The experimental results demon-

strate that our Alpha-Refine could consistently improve the

tracking performance with few computational loads.
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jects as points. arXiv preprint arXiv:1904.07850, 2019. 2,

4

[50] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krahenbuhl.

Bottom-up object detection by grouping extreme and center

points. In CVPR, 2019. 4

[51] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and

Weiming Hu. Distractor-aware siamese networks for visual

object tracking. In ECCV, 2018. 2, 3

5298


