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ABSTRACT
Multiple samples can be utilised at the comparison stage of a bio-
metric system in order to increase its biometric performance via
information fusion or decision heuristics. It has been shown, that
in a single-instance dual-probe setup, fusing the probe scores yields
significant biometric performance increase over the single-probe
baseline. Additionally, using the probe-probe comparison score was
demonstrated to further improve the biometric performance of a fin-
gerprint recognition system in a study by Cheng et al. In this paper,
through a benchmark on the CASIA-IrisV4-Interval dataset and on
the iris corpus of the BioSecure dataset, the aforementioned method
is shown to be viable for an iris recognition system. However, since
it requires an additional parameter, which must be estimated empiri-
cally, we propose a simpler method which exhibits similar biometric
performance, while requiring no additional parametrisation.

CCS Concepts
• Security and privacy → Biometrics; • Computing method-
ologies→ Biometrics;
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1 INTRODUCTION
In past years, several multi-biometric iris recognition systems have
been proposed [1, 2], some of which consolidate information from
multiple samples of a single eye instance during enrolment. Some
of these single-instance multi-sample fusion approaches have been
found to significantly improve the recognition accuracy of iris
recognition systems. The vast majority of proposed iris-based multi-
sample fusion schemes process multiple extracted feature vectors,
i.e. binary iris-codes, at the time of enrolment. The first concep-
tual scheme of this kind was presented in [3], in which a majority
vote-based coding is applied for each bit position of an odd num-
ber of iris-codes, with the goal of reducing the intra-class varia-
tion between the resulting reference and probe iris-codes. In [4], a
weighted majority voting was proposed to improve the accuracy
of an iris recognition system. A weight map, which indicates the
stability of iris-code bits, is obtained from several iris-codes at en-
rolment. Comparison scores are then estimated as a weighted sum
of mis-matching bits. A similar approach based on personalized
weight maps has been presented in [5]. In [6], so-called “fragile”
bits, i.e. bits which exhibit a higher probability than others to flip
their value during a genuine comparison, are detected by compar-
ing several iris-codes obtained from a single eye. Incorporating
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those bits into noise masks extracted in the iris segmentation stage
was shown to improve the overall biometric performance of the iris
recognition system. In contrast to the aforementioned approaches,
a signal-level fusion of iris texture information extracted from mul-
tiple frames of a video was proposed in [7]. Based on a pixel-wise
averaging, a single normalised iris texture is obtained. Such tex-
tures exhibit higher quality/reliabiltiy, and have been shown to
improve the biometric performance of an iris recognition system.
This scheme has been derived from a concept which was first intro-
duced for face recognition [8]. Similar schemes have been proposed
for fingerprint recognition systems [9, 10]. In [11], a score fusion
of single-fingerprint dual-probe is proposed, where in addition to
utilising the reference-probe comparison scores, the probe-probe
comparison score is incorporated into a score fusion. In this paper,
said score fusion method, along with proposal of further heuristics
are applied in an iris-based system and benchmarked.

The remainder of this paper is organised as follows: in section
2, the fusion strategies for single-iris dual-probe iris recognition
are described. In section 3, the experimental setup and results are
presented, while section 4 contains a summary of the paper.

2 FUSION STRATEGIES
State-of-the-art iris recognition systems capture multiple samples
during acquisition stage for the purpose of supporting compensa-
tion of pose or gaze variations or for providing some fundamental
presentation attack detection (PAD) [12]. Those additional samples
can then be utilised at comparison stage. Specifically, in a system
where two probe samples are present at comparison stage, three
comparison scores can be computed as shown in figure 1: two (HD1
and HD2) between the reference and each probe and one (HD3)
between the two probes themselves. It is then possible to fuse the
scores, for example, in following ways:

• Using only the scores between the reference and probes,
an Average Reference-Probe score (referred to as "ARP"):
(HD1 + HD2)/2. Observe, that for fusing the scores no nor-
malisation is required, since the experimental scores stem
from a single biometric system (same modality and same
comparison algorithm).

• Using all three scores, an Average Reference-Probe score
weighted by the probe-probe score (referred to as "w-ARP"):
(HD1 − a ∗ HD3 + HD2 − a ∗ HD3)/(2 − a), where a is esti-
mated on a training set, so that it maximises the biometric
performance.

• Based on the probe-probe score, the reference-probe scores
are either fused using ARP or only the minimum is used
(referred to as "Min-or-ARP"). Here, the probe-probe score
functions as a quality check – if one (or both) probes are of
bad quality, then HD3 is likely to be high. In this case, if HD3
exceeds the acceptance threshold of the biometric system,
it will therefore be better, instead of ARP, to simply use the
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minimum of HD1 and HD2. Doing so will disproportionally
favour genuine transactions, by providing better chances of
acceptance even in case of one sample being of bad quality;
whereas the impact on impostor scores is expected to be
negligible.

HD3

HD2

HD1

Enrolled

Probe 1

Probe 2

Figure 1: Single-iris dual-sample iris recognition

3 PERFORMANCE EVALUATION
This section contains the evaluation of the dual-sample fusion
schemes described in section 2. In subsection 3.1, the used dataset
and the experimental setup details are outlined, while the results
are presented and discussed in subsection 3.2.

3.1 Dataset
The experiments were performed on the CASIA-IrisV4-Interval
database [13] (henceforth referred to as "CASIA") and the iris corpus
of the BioSecure database [14] (henceforth referred to as "BioSe-
cure"), both containing images captured in near-infrared light spec-
trum. An overview of the datasets is shown in table 1, while example
images are shown in figure 2. Several subjects had to be removed
from the BioSecure dataset due to labelling errors.

(a) CASIA

(b) BioSecure

Figure 2: Example images from the datasets
The raw images were processed with the commonly used meth-

ods, as shown in figure 3. After segmentation using the Viterbi
algorithm [15], where the iris and pupil boundaries are located, the
iris textures were normalised according to the rubbersheet model
[16] and subsequently enhanced by applying Contrast Limited

Table 1: Dataset overview

Dataset Subjects Instances Images Resolution
CASIA 249 395 2639 320 × 280 px

BioSecure 210 420 1680 640 × 480 px

Table 2: Numbers of comparisons performed during exper-
iments ("Fusion" refers to all three fusion experiments, i.e. ARP, w-ARP and Min-or-
ARP, since for each one of those the transactions numbers are identical)

Dataset Experiment Genuine Impostor

CASIA Baseline 41594 7993888
Fusion 20797 3996944

BioSecure Baseline 10080 2111632
Fusion 5040 1055816

Adaptive Histogram Equalization (CLAHE). Feature extraction was
performed with the Daugman-like 1D-LogGabor algorithm (LG),
generating iris-codes of size 512 × 20 = 10240 bits. Such templates
are compared using fractional Hamming distance with circular
shifts applied to account for sample misalignment. The implemen-
tations of the aforementioned algorithms were provided by open-
source frameworks OSIRIS [17] and USIT [18]. The evaluation of
the methods described in section 2 along with a single-sample base-
line were performed in verification mode. In the experiments, all
possible transactions were performed; table 2 shows the numbers
of transactions for each experiment.

(a) Iris detection in a raw image

(b) Normalised and enhanced texture

(c) 1D Log-Gabor Iris-Code

Figure 3: Iris recognition processing chain

3.2 Results
Figure 4 shows the receiver operating characteristic (ROC) curves
of the benchmarked approaches.

The baseline is not shown, since its biometric performance is
well below that of the fusion approaches (see table 3). It can be seen,
that by incorporating the third comparison score (between the two
probes – w-ARP) into the score fusion, biometric performance can
be improved over that of a simple score fusion of the two reference-
probe scores (ARP). It also appears that said third comparison score
can be effectively used as a quality check, since the Min-or-ARP
algorithm slightly outperforms the plain score fusion strategy (ARP)
and has a biometric performance comparable to that of w-ARP. In
figure 5, it can be seen that the biometric performance of w-ARP
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Figure 4: ROC curves

varies strongly with the value of the a parameter. This provides
strong motivation for introducing the Min-or-ARP scheme, as a
parameter-free alternative.

In table 3, additional metrics for benchmarking the strategies
are listed. Those are: equal-error-rate (EER), area under ROC curve
(AUC) and decidability (d’). The decidability is computed using
the means and standard deviation of the genuine and impostor
score distributions: d ′ = |µ1−µ2 |√

1
2 ∗(σ 2

1 +σ
2
2 )

(higher values are better).

This metric is useful in assessing the intrinsic decidability of a bio-
metric decision problem, although with the limitation of ignoring
statistical moments higher than second-order [19]. It can be ob-
served, that the dual-sample set-ups all outperform the baseline
significantly, while the benefits of the additional heuristics (w-ARP,
Min-or-ARP) over ARP are noticeable, especially in the significantly
higher decidability values.

In addition to the biometric performance and decidabilitymetrics,
it is interesting to take a look at the statistical and visual proper-
ties of the genuine and impostor score distributions produced by
the algorithms described in section 2. Those are listed in table 4,
while figure 6 shows kernel density estimates of the distributions.
Most noticeable is that the genuine distribution for w-ARP has
significantly shifted to the left, while its corresponding distribution
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Figure 5: Scatter plots forw-ARP scheme showing the depen-
dence of biometric performance on the a parameter

Table 3: Results

Dataset System EER AUC d’

CASIA

Baseline 0.00334 0.99938 5.88276
ARP 0.00130 0.99968 6.69575

w-ARP 0.00110 0.99969 7.07860
Min-or-ARP 0.00115 0.99968 6.74932

BioSecure

Baseline 0.04563 0.97855 3.80808
ARP 0.02698 0.98806 4.25278

w-ARP 0.02317 0.99103 4.60225
Min-or-ARP 0.02455 0.98919 4.49606

has only done so slightly, which explains the improved biometric
performance.

4 SUMMARY
In this paper, several methods for fusing information in single-
iris dual-probe authentication scenario were benchmarked. It has
been shown that using two probe samples can yield significant
biometric performance improvements over the single probe sample
baseline. Specifically, aside from a simple score fusion of the two
reference-probe scores, a third score – between the two probes
– can be utilised. Here, two methods were tested: one a direct
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Table 4: Distribution statistics

Dataset Type System Min Max Mean Std Skew Ex. kurt.

CASIA

Genuine

Baseline 0.076 0.484 0.242 0.051 0.377 0.390
ARP 0.090 0.484 0.242 0.045 0.383 0.506

w-ARP 0.079 0.487 0.223 0.044 0.532 0.821
Min-or-ARP 0.090 0.484 0.242 0.044 0.363 0.496

Impostor

Baseline 0.354 0.524 0.463 0.016 -0.568 0.479
ARP 0.371 0.520 0.463 0.014 -0.599 0.587

w-ARP 0.355 0.530 0.461 0.018 -0.397 0.277
Min-or-ARP 0.355 0.520 0.463 0.014 -0.607 0.616

BioSecure

Genuine

Baseline 0.064 0.497 0.266 0.072 0.972 0.846
ARP 0.142 0.491 0.266 0.065 0.959 0.875

w-ARP 0.120 0.497 0.248 0.063 1.078 1.415
Min-or-ARP 0.142 0.491 0.262 0.062 1.031 1.304

Impostor

Baseline 0.351 0.526 0.465 0.015 -0.591 0.499
ARP 0.370 0.511 0.465 0.013 -0.631 0.669

w-ARP 0.356 0.522 0.460 0.017 -0.395 0.087
Min-or-ARP 0.370 0.511 0.464 0.013 -0.639 0.667
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Figure 6: Kernel density estimates for the score distributions

re-implementation of the idea from single-fingerprint dual-probe
system of Cheng et al., where the third score is directly incorpo-
rated into the score fusion. A second method was proposed, where
the third score acts as a probe quality check, based on which the
reference-probe scores are either fused or only the minimum is used.
Both methods yield slight improvements over the simple score fu-
sion method in terms of biometric performance (ROC curves) and
decidability (d’). The advantage of the proposed method (Min-or-
ARP) over the existing weighted fusion method (w-ARP) is that
it does not require additional parametrisation (in w-ARP, the a

parameter has to be estimated on a training set to minimise the
EER).

For the systems operating in verification mode, the additional
computational workload of the dual-sample approach is negligible
– 2 or 3 template comparisons instead of 1, while in the identifica-
tion mode, the workload would be doubled (the score between the
two probes need only be calculated once). Lastly, the dual-sample
approach could be effortlessly incorporated into some operational
systems, since they might already capture multiple samples, e.g. for
PAD.
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