
 

Abstract— In the hyperspectral imaging device, the sensor 

detects the reflection or radiation intensity of the target at 

hundreds of different wavelengths, thus forming a spectral image 

composed of hundreds of continuous bands. The traditional 

processing method of sampling first and then compressing not 

only cannot fundamentally solve the problem of huge amount of 

data, but also causes waste of resources. To solve this problem, a 

spectral image reconstruction method based on compressed 

sampling in spatial domain and transform coding in spectral 

domain is designed by using the sparsity of single-band 

two-dimensional image and the spectral redundancy of spatial 

coded data. Based on Bayesian theory, a compressed sensing 

measurement matrix of adaptive projection is proposed. 

Combining these two algorithms, an adaptive Grouplet-FBCS 

algorithm is constructed to reconstruct the image using smooth 

projection Landweber. Experimental results show that, compared 

with existing image block compression sensing algorithms, this 

algorithm can significantly improve the quality of image signal 

reconstruction. 
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I. INTRODUCTION 
pectral technology and imaging technology are two 
important fields in photoelectric detection technology, and 

their respective development is maturing and they are widely 
used. In 1960s, remote sensing technology rose. In the field of 
remote sensing, people want not only the spatial information of 
the detected target, but also the high-resolution spectral 
information of the target while detecting the high-resolution 
spatial information [1]. Driven by the application demand, the 
imaging optical instrument and spectral detection instrument 
are creatively combined in the remote sensing field, and the 
spectral imaging technology is formed [2-3].  

Although hyperspectral imaging has great potential for civil 
and military use, because hyperspectral image is a kind of 3D 
image data, its data capacity is very large. Especially, when the 
inter-spectral resolution of hyperspectral images is improved, 
the amount of image data will increase dramatically [4]. The 

 

amount of data in hyperspectral images is very large. In order to 
ensure the efficient transmission and storage of massive 
hyperspectral images, its high-quality image compression 
sampling coding has become one of the important key 
technologies [5-6]. Literature [7] thinks that the traditional data 
compression is relatively low and the sampling amount is large, 
so the compressed sensing algorithm is introduced to reduce the 
sampling rate of large data, and at the same time reduce the data 
amount and improve the calculation efficiency. However, the 
performance of sparse models used in compressed sensing 
algorithms is less considered. [8] According to the existing 
characteristics of hyperspectral images, the coding difficulty is 
simplified by regularization projection, and the reconstruction 
quality of signal-to-noise ratio optimization is improved, but 
the model used for coding is not considered. When studying 
hyperspectral image reconstruction in Literature [9-10], the 
compressed sensing technology was applied to edge 
information reconstruction, and a joint prediction algorithm 
was proposed for compressed reconstruction in spatial 
spectrum domain, which reduced the computational complexity 
and increased the computational speed by projection of convex 
sets alternately. This method achieved good reconstruction 
results in compressed reconstruction of hyperspectral images. 
[11] Considering that compressed sensing algorithm needs 
high-quality sparse model, in order to improve the quality of 
hyperspectral image reconstruction and the ability of the 
algorithm to accurately recover information, the structure 
information is estimated a priori, which significantly improves 
the accuracy of image reconstruction by the proposed algorithm. 
At the same time, it has been well verified when applied to 
images with noise background [12-14] , a lossy compression 
method based on in-band prediction and inter-band fractal 
coding is proposed. Literature [15] proposed clustering 
differential pulse coding for lossless compression of 
hyperspectral images in spectral domain. 

In order to realize spectral imaging and decoding 
reconstruction, this paper proposes a spectral image 
reconstruction method based on spatial domain compression 
sampling. In this paper, the spatial dimension information of 
hyperspectral data is fully mined and utilized, so that the 
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classification results of hyperspectral data are optimized to a 
certain extent. Compared with the typical hyperspectral 
classification methods combined with spatial domain 
information, the advantages of this method are that it relies less 
on prior knowledge in the optimization process, and it can 
achieve better performance when classifying targets in complex 
background. 

II.  ORIGINALITY 
For the image compression sensing algorithm, the traditional 

compression sensing processing only uses the sparsity of the 
image signal as a priori, and does not consider the distribution 
of the image sparsity coefficient, so the sampling rate cannot be 
reasonably allocated by using the characteristics of the signal 
itself. All areas in the same image signal are collected at the 
same sampling rate, which leads to great differences in the 
reconstruction effect of image blocks with different sparsity in 
the same projection domain, and the details are not prominent. 

In this paper, based on compressed sampling in spatial 
domain, the Grouplet transform is more suitable for actual 
images in scientific research through adaptive threshold 
denoising, instead of idealized threshold setting. 
Self-adaptively preprocess the noise in each band of 
hyperspectral image, so that the band affected by noise has 
better image quality and clearer image surface after 
compression and reconstruction. 

Adaptive sampling compressive sensing algorithm based on 
spatial and directional features. If there is a priori, the spatial 
frequency of the image block is used to determine the type of 
the image block, and the basic sampling rate is obtained, and 
then the sampling rate is adjusted by the statistical 
characteristics of the direction coefficient in the transform 
domain. 

Aiming at the problem that the traditional compressed 
sensing algorithm can not adaptively adjust the sampling rate 
according to the signal characteristics in image processing 
applications, this paper proposes an adaptive sampling 
compressed sensing algorithm with prior information. This 
paper mainly studies the problem of adaptive sampling rate 
allocation using statistical features of image transform domain 
coefficients and texture features in spatial domain. 

III. RESEARCH METHOD 
Hyperspectral imaging technology is based on many 

narrow-band image data technologies, which combines 
imaging technology with spectral technology, detects the 
two-dimensional geometric space and one-dimensional 
spectral information of the target, and obtains continuous 
and narrow-band image data with high spectral resolution.  

A.  Sparse Transformation and Image Coding  

As we all know, the premise of signal compression sampling 
is that the signal is compressible. The compressibility of the 
signal contains two meanings: first, the signal itself is sparse, 
that is, most of the coefficients in the signal are zero, and only a 
few non-zero coefficients exist; Second, from a broader 

perspective, the signal itself may not be sparse, but its 
projection on a certain space is sparse.  

Compressed sensing, also known as compressed sampling or 
compressed sensing, is a method of capturing and representing 
compressible signals at a frequency far lower than Nyquist 
sampling frequency (Figure 1). The original signal is 
reconstructed by solving the 0- norm optimization problem. 
Compressed sampling: 

xy                                     (1) 
 

 
Figure 1. Sparse signal compression sampling 

 
 Any signal in N  space can be represented by the linear 

combination of N -dimensional orthogonal bases  N

ii 1 . 

With N ×N basis matrix  N 21 , each column of 

the basis matrix is a basis in i set. x  can be expressed as 





N

i

iisx
1

                               (2) 

s is N ×1 dimensional column vector, and the weight 
coefficient is ii xs  , . 

If only K  coefficients in N -dimensional signal s  are not 
zero, and other coefficients are all zero, then the coefficients are 
K  sparse [16-17]. 

The premise of compressed signal is compressible. 
Assuming that the sparsity of the N -dimensional signal s  is 
K , under the framework of compressed sensing, the M

-dimensional observation vector y is obtained by observing for
M  times ( NMK  ), and the observed signal x can be 
accurately reconstructed through the projection matrix   and 
the observation vector y . 

The image is compressible, and sparse decomposition can be 
obtained by projecting it into the transform domain. A good 
image compression algorithm can't be separated from a good 
sparse transformation. Similarly, the compressed sampled 
signal can't be separated from a good sparse basis in the 
reconstruction process. Figure 2 shows sparse decomposition 
of signals. 
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Figure 2. Sparse decomposition of signals 

 
B. Data Characteristics of Hyperspectral Imaging  

In the field of image research, to study image compression 
algorithms, it is necessary to study the statistical characteristics 
of images, that is, to study the correlation of images. As 
hyperspectral imaging is a typical three-dimensional data cube, 
the correlation of hyperspectral imaging is not only spatial 
correlation, but also strong inter-spectral correlation [18]. 

The autocorrelation of hyperspectral imaging image features, 
that is, the spatial correlation between different pixels in 
hyperspectral imaging in the same band, should be explained in 
the physical sense before studying. When the autocorrelation 
coefficient is 1, it can be seen that the autocorrelation function 
represents the spatial correlation of hyperspectral imaging in a 
single band. 

In order to quantitatively analyze the spectral correlation of 

images, we introduce the cross-correlation function k) h (l,  
to express it, and the formula is 

   dxdykylxfyxfk) h (l    ,,,         (3) 

It is normalized and discretized, including:  

   

     
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k) h (l

1 1

22

1 1

,,

,,
,             (4) 

In the formula,    yxgyxf ,,,  respectively represents the 

gray level of pixels corresponding to  yx,  in two adjacent 

hyperspectral imaging, and kl,  respectively represents the 
position change values of rows and columns of pixels. When 

0 kl , k) h (l,  is called the cross-correlation coefficient 
between two images, which is denoted as  . 

In hyperspectral imaging, the correlation between 
hyperspectral imaging in two adjacent bands is very strong. 
This spectral correlation is unique to hyperspectral imaging 
data cube, so the statistical characteristics of this data should be 
fully utilized in hyperspectral imaging processing and 
compression [19]. Several bands of hyperspectral imaging 
Canal are selected for testing, and their spatial correlation and 

inter-spectral correlation are calculated. Figure 3 shows the 
spatial correlation coefficients of the 40th and 60th bands. 

 

 
Figure 3. Spatial correlation coefficients of the 40th and 

60th bands.  
 

General interferometric hyperspectral imager, whether 
temporal, spatial or spatio-temporal modulation, finally obtains 
interferometric data cube as shown in Figure 4. 

 

 
Figure 4. Typical interference data cube 

 
It can be seen from Figure 4 that the interference data cube 

collected in real time is gray-white gray scale. Therefore, the 
statistical characteristics of interferometric hyperspectral 
imaging will be different from dispersive hyperspectral 
imaging and grating hyperspectral imaging. Among them, there 
is spatial correlation between YX , directions and spectral 
correlation between Z  directions. 

In theory, interference hyperspectral imaging has good 
spatial correlation and inter-spectral correlation, but in practice, 
due to the sampling of optical path difference and spatial 
resolution, the dynamic range of inter-frame correlation of 
interference images is relatively large. If the collected images 
are large similar objects, the inter-frame correlation is very 
strong, but if not, the inter-frame correlation will not be strong. 
Similarly, the dynamic range of correlation in X  direction is 
also relatively large. The correlation among the columns 
reflects the correlation of spectral dimension, which is 
relatively stable for spectral dimension. 
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C. Compression Coding 

According to CS theory [20], each observation can be 
regarded as the inner product of the row vector of the 
measurement matrix and the vector to be measured, and each 
observation value contains part of the global information of the 
data to be measured. Schmidt orthogonalization method is used 
to preprocess the measurement matrix, which does not affect 
the randomness of the measurement matrix and weakens its 
correlation [21]. 

Given spectral image data   LNNL

ii RXX 


 1 , where 

L  is the number of bands, iX  is the two-dimensional image 

of band i , and N  is the image size. The measurement 
matrices A and B  are used to observe the rows and columns 
of the image independently [22], and the observation model is 
obtained 

T

ii BAXY                                   (5) 

In which: NMRBA , , M is the observed quantity; 
MM

i RY   is compressed sampling data. At this time, the 
measurement matrix needs MN2  storage space. Define the 
spatial sampling rate as 

2

2

N

M
Rspa                                  (6) 

 Information is the key to the subsequent application of 
spectral image detection information. In order to ensure the 
accuracy of spectral reconstruction and improve the accuracy 
of subsequent applications, this study uses different random 
Gaussian matrices as the measurement matrix of each band, 
that is, three-dimensional coding strategy is adopted to enhance 
the randomness between spectra of sampling coding, thus 
improving the quality of spectral reconstruction. KL transform 
is used to remove inter-spectral redundancy after compression 
sampling in spatial domain. So that the energy of encoded data 
is concentrated in a few principal components, and its core is 
eigenvalue decomposition of covariance matrix of zero-mean 
data [23]. 

The two-dimensional matrix form of compressed sampled 
data   LNNL

ii RY 


1 in spectral spatial domain is 

  LMT

M
RyyyY 

2

2,,, 21  , where 

 21 MjRy L

j   is the j th measured value and 






2

1
2
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j
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M

y  is the mean value of compressed sampled 

data in spatial domain, so the covariance matrix of sampled data 
in spatial domain is 

   yyyy
M

C j
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M

j
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

 


2

1
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1             (7) 

Eigenvalue decomposition is carried out on covariance 
matrix C  to obtain eigenvalue matrix D  and eigenvector 
matrix V , which satisfy the following requirements: 

CVVD T                                   (8) 

In which the diagonal elements of D  are eigenvalues. 
After eigenvalue decomposition, the eigenvectors 

corresponding to K significant eigenvalues are adaptively 
selected to form the transformation matrix KLRP  , which 
satisfies the following requirements 

LKc
L

i

i

K

i

i









 1,99.0

1

1





                  (9) 

In which i  is the eigenvalue. At this time, due to the 
randomness of the measurement matrix in spatial domain, the 
number of significant eigenvalues of KL transform in spectral 
domain is not fixed. 

The specific form of KL transform in spectral domain is 

YPY 
~ , and the data to be transmitted at this time includes 

mean y , KL transform matrix P  and reserved principal 

component Y
~ , so the compression ratio speR  of KL transform 

in spectral domain is 

L

K

LM

LLKKM
Rspe 


 2

2

                 (10) 

D.  Mathematical model of hyperspectral compression 

sampling.  

Any hyperspectral image contains a lot of redundant 
information and some noises, but these redundant information 
values are usually random and often mixed with the pixel 
values of the image. Because the noise and redundancy in 
hyperspectral images will affect the sparse representation of 
images, thus affecting the subsequent compression 
reconstruction, and the accuracy of sparse representation is the 
prerequisite for the accuracy of compression reconstruction, the 
process of removing these redundant information and noise has 
become the first step in image processing. 

This section will be combined with the Grouplet algorithm 
with adaptive threshold to form an adaptive Grouplet-FBCS 
(AGrouplet-AFBCS) algorithm [24-25]. And the adaptive 
threshold Grouplet algorithm is combined with the compressed 
sensing algorithm to form the adaptive threshold Grouplet-CS 
(AGrouplet-CS) algorithm. 

Smooth projection Landweber iterative compressed 
sensing reconstruction algorithm based on block 
measurement is an iterative threshold algorithm for block 
compressed sensing measurement, which has good 
reconstruction performance and fast convergence speed. 
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Some processing procedures can be added to optimize the 
algorithm in the iterative process, and has strong scalability. 
It is applied to the decoding end of distributed compressed 
video sensing to decode and reconstruct video. Because 
compressed sensing measurement based on block can 
effectively reduce the computational complexity of coding 
end and memory consumption of measurement matrix, and 
because of the small amount of data each time, the network 
transmission has good real-time performance. In the 
iterative process, optimization criteria can be added or the 
statistical correlation of adjacent frames can be used to assist 
algorithm reconstruction, which reduces the blocking effect 
and improves the visual effect of the picture. 

 
(1)Adaptive threshold theory of orthogonal Grouplet 

transformation. 
The Bayesian Shrink soft threshold algorithm is introduced 

into the thresholding process of Grouplet transform, and the 
Grouplet transform algorithm with adaptive threshold is 
constructed to denoise hyperspectral images in image 

preprocessing. The soft threshold function T is the 
contraction function, and the formula is 

   0,maxsgn TxxT                   (11) 

The method of introducing generalized Gaussian prior 
function into Bayesian theory to calculate the optimal threshold 
has been introduced into scientific research projects by scholars 
at home and abroad. And the signal and Gaussian noise are 
transformed by generalized Gaussian distribution, and then 
calculated by soft threshold formula, the optimal threshold can 
be obtained 

 
x

l
xT






2ˆ
                               (12) 

 
6745.0

ˆ YMedia
l                            (13) 

 22 ˆˆmax lyx                        (14) 





M

k

y Y
M 1

22 1
̂                           (15) 

2̂  is the variance of noise, k  is the estimated value of 

variance of noise, k  is the number of decomposition layers, Y  

is the coefficient value of high-frequency diagonal, and 2ˆ
y

represents the average value of high-frequency subband 
diagonal 2Y . The above two variance parameters are obtained 
from the measured data of each subband. 

Generalized Gaussian distribution is the information 
coefficient carried by natural images described by shape 
parameter  .  

        xCx xx ,exp,             (16) 
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(2)Adaptive sampling compressive sensing algorithm based 
on spatial and directional features 

First, calculate the initial value  0x , and then iterate using 
formulas (20) and (21) 

      tTtt MxyMx 



1

                   (20) 

 
     



 



otherwise0
1

itt
t if

x


                (21) 

Where  is the size factor, and its size is the maximum 

eigenvalue of MM T
. It can be clearly seen from formulas (20) 

and (21) that PL(Projected Landweber) algorithm belongs to 
IST algorithm in convex relaxation. 

In order to remove the blocking effect, SPL (Projected Land 
Weber Reconstruction) algorithm combines PL algorithm with 
smooth filtering, that is, the image is subjected to Weiner 
filtering once before each iteration [25]. In each iteration, 
Bivariate Shrinkage algorithm is used for threshold processing 
[26]. 

For smooth image blocks, there is little difference in 
statistical characteristics of sub-band coefficients in different 
directions, so there is no need to adjust the sampling rate, that is, 

 10.0,max '
,

'
, lili SS  . Fig. 5 shows the sampling schematic 

diagram of smooth block and texture block, and 1L  is taken 
for convenience of observation. 

 

 
Figure 5. Schematic diagram of sampling when 1L  

 
It is worth noting that the image block size in this section is 

only 32× 32, and the number of wavelet transform layers 
1L  or 2L  is more appropriate. When 1L  is used, 

the image reconstruction effect is better, but because the base 
band coefficient is completely reserved, the overall sampling 
rate must be greater than LT 4/1 , that is, 0.25. 
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When the target sampling rate is 25.0TS , 1L , 
meanwhile, the texture block can't use the statistical features of 
wavelet coefficients to adjust '

, jiS  well, so it can abandon the 

fine tuning step and use  10.0,max '
,

'
, lili SS  . 

Therefore, when TST  , v  is set to 1; When TST  , 

2L , sampling steps are shown in Figure 6. 
 

 
Figure 6. Schematic diagram of sampling when TST   

 
(3)Algorithm flow 
The image is divided into blocks ix  with the size of BB , 

and its spatial frequency is calculated respectively. The type of 
each block is judged, and the corresponding basic sampling rate

iS  is obtained. 

And if TST  , performing two-layer wavelet 

decomposition on the image block, ii x , and obtaining a 

first-layer measured value lilili My ,,,  , wherein the 

sampling rate is  10.0,max '
,

'
, lili SS  . 

If TST  , the image block is decomposed by single-layer 

wavelet, ii x . And if ix belongs to a smooth block, 

obtaining a measured value lisili My ,,,  , wherein siM ,  is 
2'

,
2

, , BSmBm lili  ; And if ix  belongs to the texture 

block, obtaining the observed value ljilji My ,,,,  . 
Finally, according to formula (20) and formula (21), the SPL 

algorithm is used to reconstruct the image. 

IV. RESULT ANALYSIS 
In the experiment, the hyperspectral images Indian Pines and 

Ribeira were selected, and all bands with a spatial size of 
180×180 were taken as experimental data. The hyperspectral 
image Crown was selected for comparison with previous 
chapters, so pixels with a size of 64×64 in all bands of the 
image were intercepted. In the process of sparse representation 
of hyperspectral images by Grouplet-CS transform basis with 
adaptive threshold, pre-denoising is carried out in advance 
through adaptively set threshold, and whether the images are 
affected by noise has obvious differences on the reconstruction 
results. 

A. Compression reconstruction errors of different 

compression ratios. 

Ribeira data is noisy image data, which undergoes sparse 
reconstruction by adaptive Grouplet transform. The 
reconstruction error fluctuates obviously at different 
compression ratios, and the reconstruction error in the same 
band decreases significantly with the increase of compression 
ratio, as shown in Figure 7. At the same time, in the 
reconstruction process of compressed sensing, the image signal 
and noise are not estimated a posteriori, and the sparse model is 
not projected adaptively. Therefore, the intensive reading of the 
reconstructed image will be affected by noise, and the 
reconstruction accuracy of images in different bands is quite 
different. 

 

   
Figure 7. Compression reconstruction errors of Ribeira data 

with different compression ratios 
 

According to Fig. 8, the overall reconstruction accuracy of 
two 3d data is quite different, but both of them decrease with 
the increase of compression ratio. The error of Ribeira data 
mainly affected by noise is obviously higher than that of Indian 
Pines data with zero noise. 

 

 
Figure 8. Compression reconstruction error of 

Grouplet-CS transform with adaptive threshold of different 
compression ratios 

 
In view of the reconstruction error of Ribeira data, this 

section introduces adaptive projection Bayesian compressed 
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sensing algorithm to estimate noise and improve the reliability 
of information recovery. 

B. Application of hyperspectral data compression and 

reconstruction 

In this section, the application research compares the effects 
of adaptive threshold and Grouplet transform with fixed hard 
threshold (the threshold is set to 0) on hyperspectral image 
compression and reconstruction. Mainly used for comparative 
study: hard threshold Grouplet-FBCS algorithm, hard threshold 
Grouplet-AFBCS algorithm, adaptive threshold 
Grouplet-FBCS algorithm and adaptive threshold 
Grouplet-AFBCS algorithm. 

The advantages of the adaptive Grouplet-AFBCS algorithm 
can be seen from the error results of image information 
reconstruction in each band. The effectiveness of the algorithm 
is verified by comparing the reconstruction error of 
hyperspectral 3D data with the average peak signal-to-noise 
ratio, and the reliability of the result is proved by the change 
trend of structural similarity ratio. As shown in figures 9 and 
10. 

 

 
Figure 9. Mean root mean square error line chart of 

different algorithms and different sampling points 
 

Grouplet transform with adaptive threshold has better 
performance for sparse model provided for compression 
reconstruction process when image is sparse. Not only is the 
sparsity good, but the sparsity coefficient is closer to the 
original signal. 

 

 
Figure 10. Peak line chart of average signal-to-noise ratio 

of different algorithms and sampling points 
 

At the same time, it can be seen that the algorithm combined 
with the adaptive Grouplet transform needs less sampling 
points. When the sampling points are 600, the error reduction is 
no longer obvious, and the peak value of signal-to-noise ratio 
rises slowly. Therefore, the algorithm not only reduces the error 
of information recovery, but also shortens the operation time 
and improves the calculation efficiency. These two pictures 
also verify that the adaptive FBCS algorithm is superior to 
FBCS algorithm in sampling points and information 
reconstruction accuracy. 

The reconstruction error and peak signal-to-noise ratio of 
two different Grouplet bases combined with adaptive FBCS 
algorithm show a rapid change trend, but when the sampling 
point is 600, the change trend gradually slows down. Therefore, 
the expected expectation is verified, and Figure 11 further 
clarifies the reliability and effectiveness of the algorithm 
proposed in this section. 
 

 
Figure 11.  Line chart of structural similarity of different 

algorithms and different sampling points 
 

Combined with Grouplet basis of different threshold 
processing methods, hyperspectral images are expressed 
sparsely, and the image information is reconstructed accurately 
by Bayesian compressed sensing algorithm and FBCS 
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algorithm improved by adaptive projection matrix, so as to 
obtain high-quality and high-precision reconstruction methods 
and high signal-to-noise ratio reconstruction results. The 
feasibility of the proposed algorithm is verified, which shows 
that the sparse model obtained by Grouplet transform with 
adaptive threshold has better performance and more reliability. 

At the same time, it can be seen that the algorithm combined 
with the adaptive Grouplet transform needs less sampling 
points. When the sampling points are 600, the error reduction is 
no longer obvious, and the peak value of signal-to-noise ratio 
rises slowly. Therefore, the algorithm not only reduces the error 
of information recovery, but also shortens the operation time 
and improves the calculation efficiency. 

This picture also verifies that the adaptive FBCS algorithm is 
superior to FBCS algorithm in sampling points and information 
reconstruction accuracy. The reconstruction error and peak 
signal-to-noise ratio of two different Grouplet bases combined 
with adaptive FBCS algorithm show a rapid change trend, but 
when the sampling point is 600, the change trend gradually 
slows down. Therefore, the expected expectation is verified. 

V. CONCLUSION 
Hyperspectral imaging technology is a new breakthrough in 

the development of hyperspectral imaging technology. 
Studying the information extraction technology in 
hyperspectral imaging can provide a powerful guarantee for the 
development and application of interferometric hyperspectral 
imaging technology. On the basis of studying the evaluation 
criteria of hyperspectral imaging quality, this paper 
systematically studies the whole process of data processing and 
information extraction of interference hyperspectral imaging. A 
spectral image reconstruction method based on compressed 
sampling in spatial domain and KL transform in spectral 
domain is proposed from the perspective of application method, 
which can effectively reduce the cost of data sampling. There 
are many bands in hyperspectral images, and the spatial 
structure of two-dimensional images corresponding to each 
band is different. Therefore, the adaptive threshold Grouplet 
transform is combined with adaptive projection Bayesian 
compressive sensing algorithm, and it is applied to the 
compression reconstruction of hyperspectral images. The 
experimental results show that the reconstruction accuracy of 
this algorithm is better than other algorithms proposed in this 
paper. 

Due to the limited ability and time, my research involves 
many links such as preprocessing, data inversion, display, 
transmission and compression, etc., and the research on each 
link is only superficial, and there is no in-depth and systematic 
research. For each part of the research, there is a lot of work left 
behind, which needs to be analyzed and studied in further 
research. 
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